(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-09
(45)【発行日】2024-07-18
(54)【発明の名称】スパッタ堆積装置及び方法
(51)【国際特許分類】
C23C 14/34 20060101AFI20240710BHJP
C23C 14/35 20060101ALI20240710BHJP
C23C 14/56 20060101ALI20240710BHJP
H05H 1/46 20060101ALI20240710BHJP
【FI】
C23C14/34 V
C23C14/35 Z
C23C14/56 E
H05H1/46 L
(21)【出願番号】P 2022528171
(86)(22)【出願日】2020-11-10
(86)【国際出願番号】 GB2020052848
(87)【国際公開番号】W WO2021094731
(87)【国際公開日】2021-05-20
【審査請求日】2022-07-05
(32)【優先日】2019-11-15
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】500024469
【氏名又は名称】ダイソン・テクノロジー・リミテッド
(74)【代理人】
【識別番号】100147485
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100119530
【氏名又は名称】冨田 和幸
(72)【発明者】
【氏名】マイケル エドワード レンダル
(72)【発明者】
【氏名】ロバート イアン ジョセフ グルアー
【審査官】▲高▼橋 真由
(56)【参考文献】
【文献】特開昭49-101273(JP,A)
【文献】国際公開第2018/128009(WO,A1)
【文献】特開2004-043934(JP,A)
【文献】国際公開第2018/001523(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C23C 14/00-14/58
H05H 1/46
(57)【特許請求の範囲】
【請求項1】
スパッタ堆積装置であって、
運搬方向に基板を導く、ガイド部材と、
1つのプラズマを発生させる、プラズマ源と、
装置内で、
前記プラズマを、
使用中、基板がプラズマに曝される、前処理領域と、
運搬方向において前処理領域の後に位置し、使用中、基板にターゲット材料のスパッタ堆積を提供する、スパッタ堆積領域と、
に閉じ込めるように構成される磁石配列と、を備え、
磁石配列が、一以上の磁性素子を備え、該一以上の磁性素子が
前記プラズマを前処理領域とスパッタ堆積領域の両方に閉じ込める閉じ込め磁場を供給するように配置され、
前処理領域とスパッタ堆積領域が、ガイド部材の周りに配置される、スパッタ堆積装置。
【請求項2】
磁石配列が、使用中、プラズマが基板の表面の少なくとも一部と相互作用するために、プラズマを前処理領域内に閉じ込めるように構成される、請求項1に記載のスパッタ堆積装置。
【請求項3】
前処理領域内で、プラズマが、使用中、アブレーティブプロセスにおいて、基板と相互作用する、請求項2に記載のスパッタ堆積装置。
【請求項4】
磁石配列が、プラズマを、ガイド部材の周りで、前処理領域とスパッタ堆積領域の間に延在して閉じ込めるように構成される、請求項1に記載のスパッタ堆積装置。
【請求項5】
ターゲット材料を支持するように配置されるターゲット部を備え、
堆積領域が、ターゲット部とガイド部材の間に位置する、請求項1に記載のスパッタ堆積装置。
【請求項6】
磁石配列が、プラズマをシート状に閉じ込めるように構成される、請求項1に記載のスパッタ堆積装置。
【請求項7】
ガイド部材が、湾曲部材を備える、請求項1に記載のスパッタ堆積装置。
【請求項8】
湾曲部材が、ローラーを備える、請求項7に記載のスパッタ堆積装置。
【請求項9】
プラズマが、湾曲部材の曲面の少なくとも一部の曲率に実質的に従う、請求項7に記載のスパッタ堆積装置。
【請求項10】
磁石配列が、プラズマを、湾曲部材周りで、前処理領域に閉じ込めるように構成される、請求項7に記載のスパッタ堆積装置。
【請求項11】
磁石配列が、少なくとも二つの磁性素子間で画定される、比較的強い磁場強度の領域が、シート状になるように配置される、少なくとも二つの磁性素子を備える、請求項1に記載のスパッタ堆積装置。
【請求項12】
一以上の磁性素子が、電磁石である、請求項1に記載のスパッタ堆積装置。
【請求項13】
一以上の磁性素子のうち一つの又は複数の磁場強度を制御する磁気コントローラーを備える、請求項1に記載のスパッタ堆積装置。
【請求項14】
一以上の磁性素子が、ソレノイドを備え、ソレノイドの断面が細長い、請求項1に記載のスパッタ堆積装置。
【請求項15】
請求項7から10のいずれか一項に従属するとき、ソレノイドの断面が、湾曲部材の回転軸と実質的に平行な方向に細長い、請求項14に記載のスパッタ堆積装置。
【請求項16】
請求項7から10のいずれか一項に従属するとき、磁石配列が、湾曲部材の曲線の外側に配置される、請求項1に記載のスパッタ堆積装置。
【請求項17】
プラズマ源が、誘導結合プラズマ源である、請求項1から10のいずれか一項に記載のスパッタ堆積装置。
【請求項18】
プラズマ源が、一以上の細長いアンテナを備える、請求項1から10のいずれか一項に記載のスパッタ堆積装置。
【請求項19】
一以上の細長いアンテナが、実質的に線形である、請求項18に記載のスパッタ堆積装置。
【請求項20】
一以上の細長いアンテナが、運搬方向に実質的に垂直な方向に延在する、請求項18に記載のスパッタ堆積装置。
【請求項21】
一以上の細長いアンテナが、湾曲している、請求項18に記載のスパッタ堆積装置。
【請求項22】
請求項7から10のいずれか一項に従属するとき、一以上の湾曲した細長いアンテナが、湾曲部材の長手方向軸に実質的に垂直な平面内に延在する、請求項21に記載のスパッタ堆積装置。
【請求項23】
請求項7から10のいずれか一項に従属するとき、一以上の細長いアンテナが、湾曲部材の長手方向軸に実質的に平行な方向に延在する、請求項18に記載のスパッタ堆積装置。
【請求項24】
スパッタ堆積方法であって、
ガイド部材を使用して、運搬方向に基板を導くことと、
プラズマ源を使用して、
1つのプラズマを発生させることと、
磁石配列を使用して、
基板がプラズマに曝される、前処理領域と、
運搬方向において、前処理領域の後に位置し、基板にターゲット材料のスパッタ堆積を提供する、スパッタ堆積領域と、
に
前記プラズマを閉じ込めることと、を含み、
磁石配列が、一以上の磁性素子を備え、該一以上の磁性素子が
前記プラズマを前処理領域とスパッタ堆積領域の両方に閉じ込める閉じ込め磁場を供給するように配置され、
前処理領域とスパッタ堆積領域が、ガイド部材の周りに配置される、スパッタ堆積方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、堆積に関するものであり、より具体的には、スパッタ堆積するための方法及び装置に関するものである。
【背景技術】
【0002】
堆積は、基板上にターゲット材料が堆積されるプロセスである。堆積の例は、薄い層(通常、おおよそナノメートル又はナノメートルの数分の1から数マイクロメートル又は数十マイクロメートルまで)をシリコンウエハーやウェブなどの基板上に堆積する薄膜堆積である。薄膜堆積技術の例としては、凝縮相のターゲット材料を蒸発させて蒸気を生成させ、次に蒸気を基板表面上に凝縮させる、物理気相成長(PVD)がある。PVDの例としては、イオンなどのエネルギー粒子による衝撃を受けて粒子がターゲットから放出される、スパッタ堆積である。スパッタ堆積の例では、アルゴンなどの不活性ガスといったスパッタガスを、低圧で真空チャンバーに導入し、プラズマを生成させるエネルギー電子を使用して、スパッタガスをイオン化させる。プラズマイオンによるターゲットへの衝撃により、ターゲット材料を放出させ、該ターゲット材料は、その後、基板表面上に堆積し得る。スパッタ堆積は、ターゲット材料を加熱せずに堆積させることができ、結果として、基板への熱によるダメージを低減、防止できる点で、蒸着などの他の薄膜堆積方法より有利である。
【発明の概要】
【0003】
本発明の第一の態様によると、スパッタ堆積装置が提供され、該スパッタ堆積装置は、
運搬方向に基板を導く、ガイド部材と、
プラズマを発生させる、プラズマ源と、
装置内で、プラズマを、
使用中、基板がプラズマに曝される、前処理領域と、
運搬方向において前処理領域の後に位置し、使用中、基板にターゲット材料のスパッタ堆積を提供する、スパッタ堆積領域と、
に閉じ込めるように構成される、磁石配列と、を備え、
前処理領域とスパッタ堆積領域が、ガイド部材の周りに配置される。
【0004】
前処理領域とスパッタ堆積領域をガイド部材の周りに配置し、この方法で生成されるプラズマを閉じ込めることで、生成されるプラズマのより効率的な利用を可能にし得る。結果として、既知の装置やプロセスに比べ、よりエネルギー効率の良いスパッタ堆積プロセスを実現できる。本装置は、既知のスパッタ堆積装置に比べ、空間効率の向上ももたらし得る。例えば、ガイド部材の周りに、前処理領域とスパッタ堆積領域を配置することで、より大きな空間を占め、全体のエネルギー必要量を増加させるかもしれないさらなる部品の必要性を減らすことができる。追加の部品は、装置を動かし、管理することをより複雑にする可能性もある。この方法で、生成されるプラズマを閉じ込めることにより、同一のプラズマ源を、基板を前処理すること及び基板にターゲット材料のスパッタ堆積を提供することの両方で使用することが可能になり得る。さらに、同一のガイド部材を、分離した前処理領域と堆積領域を提供するために使用でき、それゆえ、プラズマを閉じ込める磁石配列によりもたらされる制御を考慮すると、例えば、別個のプラズマ源及び/又は基板ガイド部材を使用する場合に比べて、空間必要量及びエネルギー必要量を節約できる。
【0005】
いくつかの例において、磁石配列は、使用中、プラズマが基板の表面の少なくとも一部と相互作用するために、プラズマを前処理領域に閉じ込めるように構成される。この相互作用により、基板がスパッタ堆積領域に入る前に、基板の表面の処理をもたらすことができ、堆積中、基板へのターゲット材料の堆積を向上させることができる。
【0006】
いくつかの例において、前処理領域内で、プラズマは、使用中、アブレーティブプロセスにおいて基板と相互作用する。基板のアブレーションにより、堆積の前に、基板表面の均質性及び/又は粗さを増大させることができ、スパッタ堆積プロセス中、基板へのターゲット材料の堆積の均一性及び/又は結晶化度の制御を向上させることができる。
【0007】
いくつかの例において、磁石配列は、ガイド部材の周りで、前処理領域とスパッタ堆積領域の間に延在してプラズマを閉じ込めるように構成される。
【0008】
いくつかの例において、スパッタ堆積装置は、ターゲット材料を支持するように配置されるターゲット部を備え、堆積領域は、ターゲット部とガイド部材の間に位置する。
【0009】
いくつかの例において、磁石配列は、プラズマをシート状に閉じ込めるように構成される。これは、前処理領域及び/又は堆積領域におけるプラズマを実質的に均一な密度にでき、基板上へのターゲット材料の堆積の均一性を向上させることができる。
【0010】
いくつかの例において、ガイド部材は、湾曲部材を備える。いくつかの例では、湾曲部材は、ローラーを備える。これは、スパッタ堆積装置を、基板を運搬するためのロールツーロールシステムで実行することを可能にし得る。ロールツーロールシステムは、連続両面堆積プロセスのより簡単な製造経路も可能にし得る。
【0011】
いくつかの例において、プラズマは、湾曲部材の曲面の少なくとも一部の曲率に従う。これにより、前処理領域及び/又は堆積領域で、プラズマに曝される基板の面積を増やすことができる。
【0012】
いくつかの例において、磁石配列は、湾曲部材の周りでプラズマを前処理領域に閉じ込めるように構成される。
【0013】
いくつかの例において、磁石配列は一以上の磁性素子を備える。
【0014】
いくつかの例において、磁石配列は、少なくとも二つの磁性素子間で画定される、比較的強い磁場強度の領域が、シート状になるように配置される、少なくとも二つの磁性素子を備える。
【0015】
いくつかの例において、一以上の磁性素子は電磁石である。
【0016】
いくつかの例において、スパッタ堆積装置は、一以上の磁性素子のうちの一つの又は複数の磁場強度を制御する磁気コントローラーを備える。これにより、堆積領域内の基板及び/又はターゲット材料におけるプラズマ密度の調節が可能になり得、それゆえ、スパッタ堆積における制御を向上させることが可能になり得る。これは、結果として、スパッタ堆積装置の操作における柔軟性の向上を可能にし得る。さらに、磁場強度を制御できることで、同様に、前処理領域内の基板におけるプラズマ密度の調節が可能になる。これにより、結果として、前処理プロセスにおける制御を向上させることが可能になり得、また、スパッタ堆積装置の操作における柔軟性をもたらし得、これは異なるタイプの基板及び/又はターゲット材料を利用できることを意味する。
【0017】
いくつかの例において、一以上の磁性素子はソレノイドを備え、ソレノイドは断面が細長い。ガイド部材が湾曲部材を備えるいくつかの例において、ソレノイドは、断面が湾曲部材の回転軸に実質的に平行な方向に細長くてもよい。
【0018】
ガイド部材が湾曲部材を備えるいくつかの例において、磁石配列は、湾曲部材の曲線の外側に配置される。
【0019】
いくつかの例において、プラズマ源は誘導結合プラズマ源である。
【0020】
いくつかの例において、プラズマ源は、一以上の細長いアンテナを備える。いくつかの例において、一以上の細長いアンテナは実質的に線形である。いくつかの例において、一以上の細長いアンテナは、運搬方向に実質的に垂直な方向に延在する。いくつかの例において、一以上の細長いアンテナは湾曲している。ガイド部材が湾曲部材を備えるいくつかの例において、一以上の湾曲した細長いアンテナは、湾曲部材の長手方向軸に実質的に垂直な平面内に延在する。ガイド部材が湾曲部材を備えるいくつかの例において、一以上の細長いアンテナは、湾曲部材の長手方向軸に実質的に平行な方向に延在してもよい。
【0021】
本発明の第二の態様によると、スパッタ堆積方法が提供され、該スパッタ堆積方法は、
ガイド部材を使用して、運搬方向に基板を導くことと、
プラズマ源を使用して、プラズマを発生させることと、
磁石配列を使用して、プラズマを、
基板がプラズマに曝される、前処理領域と、
運搬方向において前処理領域の後に位置し、基板にターゲット材料のスパッタ堆積を提供する、スパッタ堆積領域と、
に閉じ込めることと、を含み、
前処理領域とスパッタ堆積領域がガイド部材の周りに配置される。
【0022】
添付の図面を参照して作成された、単に例として与えられる以下の説明から、本発明のさらなる特徴及び利点が明らかになるだろう。
【図面の簡単な説明】
【0023】
【
図2】
図1の装置例の断面図の模式図であるが、磁力線例を含む。
【
図3】
図1及び2の装置例の一部の平面図の模式図である。
【
図4】
図3の装置例の一部の平面図の模式図であるが、磁力線例を含む。
【発明を実施するための形態】
【0024】
例による装置及び方法の詳細は、図を参照して、以下の説明から明らかになるだろう。この説明では、説明の目的で、特定の例の多くの具体的な詳細が示される。明細書における「例」又は類似の用語への言及は、例に関連して説明される特定の特徴、構造、又は特性が、少なくとも一つの例に含まれるが、必ずしも他の例に含まれるとは限らないことを意味する。さらに、特定の例は、例の根底にある概念の説明及び理解を容易にするために、特定の特徴を省略及び/又は必然的に簡略化して概略的に記載されることに注意されたい。
【0025】
図1から5を参照すると、スパッタ堆積装置例100が示されている。装置100は、基板116にターゲット材料108をスパッタ堆積するために使用され得、それゆえ、幅広い多くの産業用途、例えば光学コーティング、磁気記録媒体、電子半導体デバイス、LED、薄膜太陽電池等のエネルギー発電デバイス、及び薄膜電池等のエネルギー貯蔵デバイスの製造においてなどの薄膜堆積の実用性を有する用途において実施できる。したがって、本開示の背景は、エネルギー貯蔵デバイスやそれらの一部の製造に関連する場合があるが、本明細書に記載されるスパッタ堆積装置100及びスパッタ堆積方法は、それらの製造に制限されないことを理解されたい。
【0026】
明確にするため図には示されていないが、装置100は、使用中、スパッタ堆積に適した低圧、例えば3×10―3torrに排気されるハウジング(図示なし)内で提供され得ることを理解されたい。例えば、ハウジング(図示なし)は、ポンプシステム(図示なし)によって、適切な圧力(例えば、1×10―5torr未満)に排気され得、使用中、スパッタ堆積に適した圧力が達成される程度(例えば、3×10―3torr)まで、ガス供給システム(図示なし)を使用して、アルゴンや窒素などのプロセスガス又はスパッタガスが、ハウジングに導入され得る。
【0027】
図1から5までに示される例に戻ると、概観において、装置100は、ガイド部材118、プラズマ源102及び磁石配列104を備える。
【0028】
ガイド部材118は、基板116、例えば、基板のウェブを、運搬方向115に導くように配置される。ガイド部材118は、例えば、湾曲経路(
図1及び2において矢印Cで示される)に沿って基板116を導く湾曲部材118を備え得る。
【0029】
湾曲部材118は、例えば心棒120により与えられる軸120の周りを回転するように配置され得る。
図3において示されるように、軸120は、湾曲部材118の長手方向軸でもある。いくつかの例において、湾曲部材118は、ローラーを備え得る。ある場合には、湾曲部材118は、基板供給アセンブリ119全体で実質的に円筒状のドラム又はローラー118により提供され得る。基板供給アセンブリ119は、基板116が、ローラー118の湾曲面の少なくとも一部により運ばれるように、基板116をローラー118へ及びローラー118から供給するように配置され得る。いくつかの例において、基板供給アセンブリは、基板116をドラム118上に送り込むように配置される第一ローラー110a及び基板116が湾曲経路Cに追従した後、基板116をドラム118から送り込むように配置される第二ローラー110bを備える。基板供給アセンブリ119は、「リールツーリール」プロセス配置(図示なし)の一部であってもよく、基板116は、基板116の第一リール又はボビン(図示なし)から送られ、装置100を通過後、処理後の基板を重ねたリール(図示なし)を形成するために、第二リール又はボビン(図示なし)に送られる。
【0030】
いくつかの例において、基板116は、シリコン又はポリマーであってもよく、或いはシリコン又はポリマーを含んでいてもよい。いくつかの例において、例えばエネルギー貯蔵デバイスの製造のために、基板116は、ニッケル箔であってもよく、或いは少なくともニッケル箔を含んでいてもよいが、アルミニウム、銅若しくは鋼又はポリエチレンテレフタラート(PET)上のアルミニウムのような金属化プラスチックを含む金属化材料などの任意の適した金属を、ニッケルの代わりに使用できることを理解されたい。
【0031】
「プラズマ生成配列」とも称され得る、プラズマ源120は、プラズマ112を発生させるように配置される。
【0032】
プラズマ源120は、誘導結合プラズマ源であり得、例えば、誘導結合プラズマ112を発生させるように配置される。プラズマ源120は、一以上のアンテナ102a、102bを含んでいてもよく、例えば、該一以上のアンテナ102a、102bを通じて、ハウジング(図示なし)内で、プロセスガス又はスパッタガスから誘導結合プラズマ112を発生させるために、無線周波数電力供給システム(図示なし)により、適切な無線周波数(RF)電力が送られる。いくつかの例において、無線周波数電流を、一以上のアンテナ102a、102bを通じて、例えば、1MHzから1GHzの周波数;1MHzから100MHzの周波数;10MHzから40MHzの周波数;又は、おおよそ13.56MHz若しくはそれの倍数の周波数で送ることにより、プラズマ112が生成され得る。RF電力は、プラズマ112を生成するプロセスガス又はスパッタガスのイオン化を引き起こす。一以上のアンテナ102a、102bを通って送られるRF電力を調整することにより、前処理領域内で、プラズマ112のプラズマ密度に作用することができる。それゆえ、プラズマ源102におけるRF電力の制御によって、前処理プロセスを制御できる。これは、結果として、スパッタ堆積装置100の操作における柔軟性の向上を可能にし得る。
【0033】
いくつかの例において、プラズマ源102は、ガイド部材118から離れて配置され得る。例えば、プラズマ源102は、湾曲部材118から半径方向に離れて配置されてもよい。そうすることで、プラズマ112がガイド部材118から離れて生成され得る。
【0034】
一以上のアンテナ102a、102bは、細長いアンテナであってもよく、いくつかの例においては、実質的に線形である。いくつかの例において、一以上のアンテナ102a、102bは、細長いアンテナであって、湾曲部材
118の長手方向軸120(例えば、ローラー118の曲率半径の原点を通る、ローラー118の軸120)に実質的に平行な方向に延在し得る。
図1の例において、ローラー118の長手方向軸120は、ローラー118の回転軸でもある。一以上の細長いアンテナ102a、102bは、湾曲していてもよい。例えば、そのような湾曲した細長いアンテナ102a、102bは、湾曲部材118の曲面の曲率に追従し得る。場合によっては、一以上の湾曲した細長いアンテナ102a、102bは、湾曲部材118の長手方向軸120と実質的に垂直な平面内に延びる。
【0035】
いくつかの例において、プラズマ源102は、誘導結合プラズマ112を生成するための2つのアンテナ102aと102bを備える。いくつかの例(例えば、
図3に示されるような例)において、アンテナ102aと102bは、細長く、実質的に線形であり、湾曲部材118の(回転軸120でもあり得る)長手方向軸120に平行に延びる。アンテナ102aと102bは、実質的に互いに平行に延び得、互いから横方向に配置され得る。以下でより詳細に説明するように、これにより、2つのアンテナ102aと102b間のプラズマ112の細長い領域を正確に生成することが可能になり得、結果として、生成されるプラズマ112を、少なくとも堆積領域114に、正確に閉じ込めることに役立ち得る。いくつかの例において、アンテナ
102aと
102bは、ガイド部材118と同様の長さであってもよく、その結果、ガイド部材118により導かれる基板116の幅と同様になり得る。細長いアンテナ102aと102bは、基板ガイド118の長さと一致する(それゆえ、基板116の幅と一致する)長さを有する領域にわたって生成されるプラズマ112を供給できるようにし得、それゆえ、プラズマ112を、基板116の幅全体にわたって均等に又は均一に利用可能にし得る。以下でより詳細に説明するように、これは、結果として、均等な又は均一なスパッタ堆積をもたらすことに役立ち得る。
【0036】
磁石配列104は、使用中、基板116にターゲット材料108のスパッタ堆積を提供するために、装置内100内で、プラズマ112(例えば、プラズマ生成配列102により生成されるプラズマ)を、スパッタ堆積領域114に閉じ込めるように配置される。
【0037】
磁石配列104は、装置100内で、使用中、基板116がプラズマ112に曝される前処理領域117にプラズマ112を閉じ込めるようにも構成される。スパッタ堆積領域114は、運搬方向115において、前処理領域117の後に位置しており、前処理領域117とスパッタ堆積領域114は、ガイド部材118の周りに配置される。これは、使用中に起こる堆積の前に、基板116の処理、例えば基板116の「前処理」を可能にし得る。そのような基板116の前処理は、ターゲット材料108をその上に堆積させる基板116の表面から物質を取り除くことを含んでもよい。スパッタ堆積プロセスは、堆積前に、プラズマ112によって基板を処理し又は「活性化」しておくことにより、向上され得る。例えば、基板116の前処理により、堆積プロセス中に、スパッタ堆積領域114内における基板116へのターゲット材料108の付着をより促進できる。それゆえ、スパッタ堆積は、結果として、より一様に実行され得る。これは、例えば処理後の基板の一様性を向上させ得、また、例えば品質管理の必要性を減らし得る。例えば、リールツーリールタイプの装置の一部として、ガイド部材、例えば湾曲部材118の周りに配置される前処理領域117とスパッタ堆積領域114があることで、生成したプラズマ112のより効率的な利用やそれゆえ、より効率的なスパッタ堆積プロセスが可能になるだけでなく、空間効率の高い方法で行うことも可能になる。例えば、ガイド部材118の周りに前処理領域117とスパッタ堆積領域114を配置することで、より大きな空間を占め、エネルギー必要量を増加させ、装置の複雑さを高めるさらなる部品の必要性を減らすことができる。例えば、同一のプラズマ源102を、基板116の前処理をするため及び基板にターゲット材料108のスパッタ堆積を提供するための両方に使用でき、プラズマ112を閉じ込める磁石配列による制御によって、同一のガイド部材118を、分かれた前処理領域117と堆積領域114に提供するために使用できる。
【0038】
例えば、磁石配列104は、使用中、プラズマ112が基板116の表面の少なくとも一部と相互作用するように、プラズマ112を前処理領域117に閉じ込め得る。プラズマ112と基板116の表面の相互作用により、基板がスパッタ堆積領域114に入る前に、基板116を処理できる。これは、基板116へのターゲット材料108の堆積を向上させることができる。場合によっては、例えばプラズマ112は、使用中、アブレーティブプロセスにおいて、前処理領域117内で基板116と相互作用する。プラズマ112は、例えば、オリゴマー、有機汚染物質などの不純物及び/又は他の不均質性を含んだ基板116の表面から物質を取り除くための処理の一環として、基板表面をアブレーションし得る。不均質性は、基板を製造するとき、例えばポリマー溶液キャスティングシステムにより生じる可能性があり、汚染物質は、基板116の表面に移動し、堆積処理中に熱に曝されるとき、不均一な「パッチ状の」コーティングを残す可能性がある。それゆえ、そのような基板116の前処理は、基板表面の均質性を向上させ得る。結果として、そのような処理は、基板116がスパッタ堆積領域114に到達すると、基板116へのターゲット材料108のより均一な堆積を可能にし得る。それゆえ、スパッタ堆積は、結果として、より一様に実行され得る。これは、例えば処理後の基板の一様性を向上させ得、また、例えば品質管理の必要性を減らし得る。
【0039】
基板の活性化(又は基板の粗面化)のメカニズムとしてアブレーションは、基板のスパッタリング閾値を超えるかどうかに依存し得る。例えば、スパッタ堆積のターゲット材料のスパッタリング閾値と同様に、基板のスパッタリング閾値は、基板材料に対応する規定の最小エネルギー閾値であり得る。
【0040】
スパッタリング閾値は、プラズマイオンから基板材料の原子へのエネルギーの移動が、基板材料の表面原子の結合エネルギーと等しくなるエネルギーの規定量であり得る。言い換えると、プラズマイオンが、原子が基板材料の表面から抜け出すのに必要なエネルギーより大きいエネルギーを基板材料に移動させることができると、基板のスパッタリング(又はアブレーション)が起こり得る。しかしながら、基板材料のスパッタリング閾値未満であっても、基板の活性化又は粗面化は基板材料の再構成により起こり得る。例えば、基板材料のスパッタリング閾値未満のプラズマエネルギーで、プラズマイオンから基板材料へのエネルギーの移動は、結合の破壊や再構成、例えば基板材料の原子間の化学結合の破壊や再構成を引き起こし得る。これにより、アブレーションを伴わずに、基板表面の活性化又は粗面化をさせることができる。
【0041】
磁石配列104は、一以上の磁性素子104a、104b、104cを備え得る。磁性素子104a、104b、104cは、プラズマを前処理領域117及びスパッタ堆積領域114に閉じ込めるための、またいくつかの例において、プラズマを前処理領域117及びスパッタ堆積領域114に導くための閉じ込め磁場を供給するように配置される。磁石配列104、例えば磁性素子104a、104b、104cは、湾曲部材118の曲線の外側に配置され得る。
【0042】
磁力線が、磁場の配置又は形状を描くために使用され得ることを理解されたい。磁性素子例104a、104b、104cにより供給される磁場例を、概略的に
図2及び4で示しており、磁力線(慣習通り矢印により示されている)は、使用中、供給される磁場を描写するために使用される。
【0043】
前処理領域117及びスパッタ堆積領域114に影響を及ぼすように配置される磁力線は、生成されるプラズマ112を、前処理領域117及びスパッタ堆積領域114に閉じ込め得る。生成されるプラズマ112が磁力線に追従する傾向があるため、これが生じる。例えば、閉じ込め磁場内の初速度を持つプラズマ112のイオンは、磁力線の周りでイオンに周期的な運動をさせるローレンツ力を受ける。初動が磁場と厳密に垂直でないと、イオンは磁力線を中心とする螺旋経路をたどる。したがって、そのようなイオンを含むプラズマは磁力線に従う傾向があり、それゆえ、そのようなプラズマをそれによって画定される経路に閉じ込め、例えば導くことができる。したがって、磁力線は、前処理領域117及びスパッタ堆積領域114に入るように配置されるため、プラズマ112を前処理領域117及びスパッタ堆積領域114に閉じ込め、例えば導く。
【0044】
いくつかの例において、プラズマ112は、湾曲部材118の曲面の少なくとも一部の曲率に実質的に従う。例えば
図2及び4で示されるように、閉じ込め磁場を描く磁力線は、湾曲部材118の曲面の少なくとも一部の曲率に従うように、例えば湾曲経路Cの曲線に実質的追従するようにそれぞれ湾曲し得る。そのような例において、原理上は、磁性素子104a、104b、104cにより供給される全部又は全体の磁場は、湾曲部材118の曲面の少なくとも一部の曲率に従うように、例えば、湾曲経路Cの曲線に追従するように、配置されない磁力線により描かれ得る部分を含んでいてもよいことを理解されたい。そうであるが、そのような例において、供給される閉じ込め磁場、すなわち、スパッタ堆積領域114に、プラズマ112を閉じ込める磁性素子104a、104b、104cにより供給される磁場の全体又は全部の一部は、湾曲部材118の曲面の少なくとも一部の曲率に実質的に従う磁力線により描かれる。
【0045】
いくつかの例において、閉じ込め磁場を描く磁力線は、湾曲部材118の本質的な又はかなりのセクター又は部分の周り、例えば、使用中、基板116を運搬し又はこれと接触する湾曲部材118の概念的なセクターの全体又は本質的部分にわたって、湾曲部材又はローラー118の曲線に従うように、例えば、追従するように配置され得る。例えば、湾曲部材118は、実質的に円筒状であり、閉じ込め磁場を描く磁力線は、湾曲部材118の円周の少なくとも約1/16、又は少なくとも約1/8、又は少なくとも約1/4、又は少なくとも約1/2の周りで湾曲部材118の曲線に追従するように配置され得る。例えば、
図2における閉じ込め磁場を描く磁力線は、湾曲部材118の円周の少なくとも約1/4の湾曲経路に追従する。したがって、例において、プラズマ112は、湾曲部材118の曲面、例えば、円周の少なくとも約1/16、又は少なくとも約1/8、又は少なくとも約1/4、又は少なくとも約1/2の周りの曲率に実質的に従い得る。
【0046】
場合によっては、磁石配列104は、プラズマ112を、湾曲部材118の周りで、前処理領域117に閉じ込めるように構成される。例えば、プラズマ源102は、湾曲部材118の本質的な又はかなりのセクター又は部分により、例えば、使用中、基板116を運搬し又はこれと接触する湾曲部材118の概念的なセクターの全体又は本質的部分にわたって、前処理領域117から離隔されていてもよい。場合によっては、離隔は、湾曲部材118の円周の少なくとも約1/16、又は少なくとも約1/8、又は少なくとも約1/4、又は少なくとも約1/2となってもよい。それゆえ、磁石配列104は、使用中、基板116の前処理のために、湾曲部材118の本質的な又はかなりのセクター又は部分の周りで、プラズマ112を前処理領域117に閉じ込めるように配置され得る。
【0047】
例において、磁石配列104は、プラズマ112を、ガイド部材118の周りで、前処理領域117とスパッタ堆積領域114の間で延在して閉じ込めるように構成される。例えば、前処理領域117とスパッタ堆積領域114は、ガイド部材、例えば湾曲部材118の本質的な又はかなりのセクター又は部分によって互いから離隔されていてもよい。場合によっては、離隔は、湾曲部材118の円周の少なくとも約1/16、又は少なくとも約1/8、又は少なくとも約1/4、又は少なくとも約1/2となってもよい。
【0048】
例において、一以上の磁性素子104a、104b、104cは、プラズマ源102が、磁性素子104a、104b、104cのうちの第一のサブセットを、磁性素子104a、104b、104cのうちの第二のサブセットから離隔するように配置され得る。例えば、
図1は、磁性素子104cが、他の磁性素子104a、104bから、それらの間に位置するプラズマ源102により離隔されていることを示す。磁性素子104a、104b、104cのうちの第一のサブセット104cは、例えば、プラズマ112を、プラズマ源102から前処理領域117まで閉じ込めるように構成され得る。例えば、磁性素子104a、104b、104cのうちの第二のサブセット104a、104bは、プラズマ112を、プラズマ源102からスパッタ堆積領域114まで閉じ込めるように構成され得る。合わせて、磁性素子104a、104b、104cは、本明細書で説明するように、プラズマ112を前処理領域117及びスパッタ堆積領域114に閉じ込めるように構成される。
【0049】
ある例において、湾曲経路Cの曲線が言及される場合、該曲線は、経路が湾曲している程度として理解してよく、該経路に沿って基板ガイド118が基板116を運搬する。ドラム又はローラーなどの湾曲部材118は、湾曲経路Cに沿って基板116を運搬し得る。そのような例において、湾曲経路Cの曲線は、基板116を運搬する湾曲部材118の曲面が湾曲している程度、例えば平面から逸脱する程度に由来し得る。言い換えると、湾曲経路Cの曲線は、湾曲部材118が基板116を追従させる湾曲経路Cが湾曲している程度として理解してもよい。実質的に湾曲経路Cの曲線に追従することは、湾曲経路Cの湾曲形状と実質的に一致すること又は再現することとして理解してもよい。例えば、磁力線は、湾曲経路Cと共通の曲率中心を有するが、湾曲経路Cとは異なる曲率半径を有する(示している例では大きい)湾曲経路に追従してもよい。例えば、磁力線は、半径方向にずれるが、基板116の湾曲経路Cと実質的に平行である湾曲経路に追従してもよい。例において、磁力線は半径方向にずれるが、湾曲部材118の曲面に実質的に平行である湾曲経路に追従し得る。例えば、
図2において閉じ込め磁場を描く磁力線は、半径方向にずれるが、湾曲経路Cに実質的に平行な湾曲経路に、少なくともスパッタ堆積領域114において追従し、それゆえ、湾曲経路Cの曲線に実質的に追従する。
【0050】
閉じ込め磁場を描く磁力線は、湾曲経路Cの本質的な又はかなりのセクター又は部分の周りで、例えば、基板116が湾曲部材118により導かれる湾曲経路Cの概念的なセクターの全体又は本質的部分にわたって、湾曲経路Cの曲線に追従するように配置され得る。例えば湾曲経路Cは、概念的な円の周の一部を表し得、閉じ込め磁場を特徴づける磁力線は、概念的な円の円周の少なくとも約1/16、又は概念的な円の円周の少なくとも約1/8、又は概念的な円の円周の少なくとも約1/4、又は概念的な円の円周の少なくとも約1/2の周りで、湾曲経路Cの曲線に追従するように配置され得る。
【0051】
湾曲部材118の少なくとも一部の曲面の曲率に実質的に従う、例えば湾曲経路Cの曲線に追従する生成したプラズマ112を閉じ込めることにより、少なくとも湾曲部材118の曲面周りの方向で、例えば湾曲経路Cの曲線周りの方向で、基板116におけるプラズマ密度のより均一な分布を可能にし得る。これは、結果として、基板116上に湾曲部材118の周りの方向、例えば湾曲経路Cの曲線周りの方向でより均一にスパッタ堆積することを可能にし得る。それゆえ、結果として、スパッタ堆積は、より一様に実施され得る。これは、例えば、処理後の基板の一様性を向上させ得、例えば、品質管理の必要性を減らし得る。これは、生成される磁場を描く磁力線が基板の中に及び外に詰まったループを描き、それゆえ、基板で均一なプラズマ密度の分布とならない、マグネトロンタイプのスパッタ堆積装置と比較され得る。
【0052】
加えて又は代わりに、湾曲部材118の曲面の少なくとも一部の曲率に実質的に従うように、例えば湾曲経路Cの曲線に追従するように、生成したプラズマ112を閉じ込めることで、プラズマ112に曝される基板の面積を増加させることが可能になり得、それゆえ、スパッタ堆積がもたらされ得る面積を増加させることが可能になり得る。これにより、例えばリールツーリールタイプの装置を通して、所与の堆積度のために、より速い速度で基板116を供給することが可能になり得、それゆえ、より効率的なスパッタ堆積が可能になり得る。
【0053】
いくつかの例において、磁石配列(又は「磁気閉じ込め配列」)104は、磁場を供給するように配置される少なくとも2つの磁性素子104a、104bを備え得る。例えば、少なくとも2つの磁性素子104a、104bは、少なくとも2つの磁性素子104a、104b間で画定される比較的強い磁場強度の領域が、シート状になるように配置され得る。すなわち、プラズマ112の奥行き(又は厚さ)が、実質的にそれ自体の長さ又は幅より小さくなる形状である。プラズマ112のシートの厚さは、シートの長さと幅に沿って実質的に一定であり得る。プラズマ112のシートの密度は、それ自体の幅及び長さ方向のうち一つ又はその両方で実質的に均一であり得る。
【0054】
いくつかの例において、少なくとも2つの磁性素子104a、104b間で供給される比較的強い磁場強度の領域は、湾曲部材118の曲面の少なくとも一部の曲率に実質的に従い、例えば湾曲経路Cの曲線に実質的に追従する。
【0055】
図1及び2で概略的に示している例において、二つの磁性素子104a、104bは、ドラム118を挟んで互いに逆側に位置しており、(
図1が意図する)ドラム118の最下部より上に配置される。二つの磁性素子104a、104bは、湾曲部材118の両側、例えば、基板116が湾曲部材118に供給される供給側、及び湾曲部材118から基板118が排出される排出側において、湾曲部材118の曲面の少なくとも一部の曲率に従うように、例えば湾曲経路Cの曲線に追従するように、プラズマ112を閉じ込める。少なくとも二つの磁性素子を有することにより、スパッタ堆積領域114で、プラズマ112に曝される基板116の面積を(さらに)増加させ得、それゆえ、スパッタ堆積がもたらされ得る面積を増加させ得る。これにより、リールツーリールタイプの装置を通して、所与の堆積度のために、より速い(より一層速い)速度で基板116を供給することが可能になり得、それゆえ、例えばより効率的なスパッタ堆積が可能になり得る。
【0056】
上述のとおり、いくつかの例において、磁性素子104a、104b、104cの第一のサブセットは、プラズマ源102を挟んで磁性素子104a、104b、104cの第二のサブセットの逆側に配置され得る。例えば磁石配列104は、磁場を供給するように配置される少なくとも三つの磁性素子104a、104b、104cを備えてもよい。図において二つの磁性素子104a、104bとして示される、少なくとも三つの磁性素子104a、104b、104cのうち少なくとも二つの磁性素子は、上記の例で説明したように、スパッタ堆積領域114に影響を及ぼす磁場を供給するように配置され得る。図において磁性素子104cとして示される少なくとも三つの磁性素子104a、104b、104cのうち少なくとも一つは、前処理領域117に影響を及ぼす磁場を供給するように配置され得る。それゆえ、少なくとも三つの磁性素子104a、104b、104cのうちの少なくとも二つの磁性素子104a、104bは、プラズマ112を少なくともスパッタ堆積領域114に閉じ込めるように構成され得、一方、少なくとも三つの磁性素子104a、104b、104cのうちの少なくとも一つの磁性素子104cは、プラズマ112を少なくとも前処理領域117に閉じ込めるように構成され得る。合わせて、本明細書で説明するように、少なくとも三つの磁性素子104a、104b、104cは、プラズマ112を前処理領域117とスパッタ堆積領域114に閉じ込めるように構成される。
【0057】
いくつかの例において、一以上の磁性素子104a、104b、104cは、電磁石104a、104b、104cであってもよい。装置100は、例えば一以上の電磁石104a、104b、104cから供給される磁場強度を制御するための磁気コントローラー(図示なし)を備え得る。これにより、閉じ込め磁場を描く磁力線の配置を制御することが可能になり得る。これにより、スパッタ堆積領域114内の基板116及び/又はターゲット材料108におけるプラズマ密度の調節が可能になり得、それゆえ、スパッタ堆積の制御を向上させることが可能になり得る。これは、結果として、スパッタ堆積装置100の操作の柔軟性を向上させ得る。さらに、磁石配列104によって供給される磁場強度を制御することにより、同様に、前処理領域117内で、基板116におけるプラズマ密度の調節が可能になる。これにより、結果として、前処理プロセス、例えばアブレーションの量の制御を向上させることが可能になり得、異なるタイプの基板及び/又はターゲット材料を利用できるというような、スパッタ堆積装置100の操作における柔軟性を加え得る。前処理領域117内のプラズマ密度と同様に、磁石配列104により供給される閉じ込め磁場を描く磁力線の配置を制御することで、プラズマ112の形状を、前処理領域117内で制御することを可能にする。これは、結果として、前処理領域117の大きさ、例えば、使用中、常時プラズマに曝される基板の領域のサイズを調節することを可能にし得る。したがって、異なるタイプの基板及び/又はターゲット材料を利用できるというスパッタ堆積装置100の操作におけるさらなる柔軟性を提供できる。
【0058】
いくつかの例において、一以上の磁性素子104a、104b、104cは、ソレノイド104a、104b、104cにより提供され得る。例において、ソレノイド104a、104b、104cは断面が細長い。例えば、ソレノイド104a、104b、104cは、湾曲部材118、例えばローラー118の回転軸に実質的に平行な方向に断面が細長くてもよい。各ソレノイド104a、104b、104cは、使用中、プラズマ112が通過する(閉じ込められる)開口部を画定し得る。
図1及び2に概略的に示される例のように、三つのソレノイド104a、104b、104cがあってもよく、各ソレノイド104a、104b、104cは、例えば湾曲経路Cの曲線に実質的に追従するために、ソレノイド104a、104b、104c間で比較的強い磁場強度の領域が供給されるように曲げられ得る。そのような方法で、
図1に示されるように、一方向で、生成されるプラズマ112は、第一のソレノイド104aを通過し得、(
図1が意図する)ドラム118の下で、堆積領域114に入り、上昇して、第二のソレノイド104bを通過し得る。他の方向で、生成されるプラズマ112は、第一のソレノイド104aを通過し得、ドラム118の周りで前処理領域117に入り、上昇して第三のソレノイド104cを通過し得る。
【0059】
図1及び2において、三つの磁性素子104a、104b、104cのみ示されているが、さらなる磁性素子(図示なし)、例えばさらに前記ソレノイドを、プラズマ112の経路に沿って配置してもよいことを理解されたい。これにより、閉じ込め磁場の強化が可能になり得、それゆえ、正確な閉じ込めが可能になり得、及び/又は閉じ込め磁場の制御の自由度がより大きくなり得る。
【0060】
例において、
図1及び2に示されるように、スパッタ堆積装置100は、ターゲット材料108を支持するように配置されるターゲット部106を備える。このような場合において、堆積領域114は、ターゲット部106とガイド部材118の間に位置し得る。例えばターゲット部106とガイド部材118は、堆積領域114がそれらの間に形成されるように互いから距離を空け得る。堆積領域114は、使用中、ターゲット材料108から基板116上へのスパッタ堆積が起こる、例えば基板ガイド118とターゲット部106間の面積又は体積とみなされ得る。
【0061】
いくつかの例において、ターゲット部106は、スパッタ堆積中、ターゲット材料108を所定の位置に支持若しくは保持する、プレート又は他の支持構造を備え得る。ターゲット材料108は、基板116にスパッタ堆積を行う素となる材料であり得る。例えばターゲット材料108は、スパッタ堆積により基板116上に堆積される材料であってもよいし、スパッタ堆積により基板116上に堆積される材料を含んでもよい。
【0062】
いくつかの例において、例えばエネルギー貯蔵デバイスの製造のために、ターゲット材料108は、エネルギー貯蔵デバイスのカソード層であるリチウムイオンを貯蔵するのに適した材料、例えばコバルト酸リチウム、リン酸鉄リチウム、若しくは多硫化アルカリ金属塩などであってもよく、又はこれらを含んでもよいし、或いは、それらの前駆体物質であってもよく、又はそれらの前駆体物質を含んでもよい。加えて又は代わりに、ターゲット材料108は、エネルギー貯蔵デバイスのアノード層、例えばリチウム金属、グラファイト、シリコン、若しくは酸化インジウムスズなどであってもよく、若しくはこれらを含んでもよいし、或いは、それらの前駆体物質であってもよく、又はそれらの前駆体物質を含んでもよい。加えて又は代わりに、ターゲット材料108は、エネルギー貯蔵デバイスの電解質層であるイオン電導性であるが電気絶縁体でもある材料、例えば窒化リン酸リチウム(LiPON)であってもよく、又はこれを含んでもよいし、或いは、その前駆体物質であってもよく、又はその前駆体物質を含んでもよい。例えば、ターゲット材料108は、例えばターゲット材料108の領域で窒素ガスとの反応を経て、基板116上にLiPONを堆積させるための前駆体物質としてのLiPOであってもよく、或いはこれを含んでもよい。
【0063】
いくつかの例において、磁石配列104、例えば一以上の磁性素子104a、104b、104cを含む磁石配列104は、プラズマ112をシート状に閉じ込めるように構成される。例えば磁石配列104は、プラズマ112をシート状に閉じ込める磁場を供給するように配置され得る。いくつかの例において、磁石配列104は、例えば少なくとも堆積領域114内及び/又は前処理領域117内で、プラズマ112を実質的に均一な密度を有するシート状に閉じ込めるように構成される。ある場合では、磁石配列104は、湾曲シート状にプラズマ112を閉じ込めるように構成される。
【0064】
例えば
図4及び5に示されるように、いくつかの例において、一以上のソレノイド104a、104b、104cは、使用中、その内部で生成される磁力線の方向に実質的に垂直な方向に細長くてもよい。例えば
図3から5で最もよく分かるように、ソレノイド104a、104b、104cは、使用中、プラズマ112が閉じ込められ得る(使用中、プラズマ112が通る)開口部をそれぞれ有しており、ここで、開口部は、湾曲部材118の長手方向軸120に実質的に平行な方向に細長い。
図3及び4で最もよく分かるように、細長いアンテナ102a、102bは、ソレノイド104a、104b、104cに平行に延在し得、ソレノイド104a、104bと一直線に並び得る。上記で述べたように、プラズマ112は、細長いアンテナ102a、102bの長さに沿って生成され得、細長いソレノイド104a、104cは、プラズマ112を細長いアンテナ102a、102bから離れる方向に閉じ込め、例えば導き、及びそれぞれの細長いソレノイド104a、104cを通ってプラズマ112を閉じ込め得、例えば導き得る。
【0065】
プラズマ112は、細長いアンテナ102a、102bから細長いソレノイド104a、104cまで、シート状に閉じ込められ得、例えば導かれ得る。つまり、プラズマ112の奥行き(又は厚さ)は、実質的にその長さ又は幅より小さい。プラズマ112のシートの厚さは、シートの長さ及び幅に沿って実質的に一定であってもよい。プラズマ112のシートの密度は、その幅方向及び長さ方向のうち一方向、又はその両方向で実質的に均一であってもよい。プラズマ112はシート状であり、堆積領域114及び前処理領域117で湾曲部材118の曲面の曲率に実質的に従うように、例えば湾曲経路Cの曲線に追従するように、湾曲部材118の周囲で、ソレノイド104a、104b、104cにより供給される磁場によって閉じ込められ得る。上記で言及したような例において、プラズマ112は、湾曲シート状に閉じ込められてもよい。プラズマ112のそのような湾曲シートの厚さは、湾曲シートの長さ及び幅に沿って実質的に一定であってもよい。湾曲シート状のプラズマ112は、実質的に均一な密度を有してもよく、例えば湾曲シート状のプラズマ112の密度は、その長さ及び幅のうち一つ、又はその両方で実質的に均一であり得る。
【0066】
湾曲シート状のプラズマを閉じ込めることで、湾曲部材118により運ばれる基板116のプラズマ112に曝される領域を増加させることを可能にし得、それゆえ、スパッタ堆積がもたらされ得る領域を増加させることを可能にし得る。これは、例えばリールツーリールタイプの装置を通して、所与の堆積度のために、より速い(より一層速い)速度で基板116を提供することを可能にし得、それゆえ、例えばより効率的なスパッタ堆積を可能にし得る。
【0067】
(例えば、少なくともスパッタ堆積領域114において)湾曲シート状のプラズマ112、例えば実質的に均一な密度を有する湾曲シート状のプラズマ112を閉じ込めることは、代わりに又は加えて、例えば湾曲部材118の曲線周りの方向及び湾曲部材118の長さ方向の両方において、基板116におけるプラズマ密度のより均一な分布を可能にし得る。これは、結果として、例えば湾曲部材118の表面周りの方向及び基板116の幅にわたって、基板116により均一にスパッタ堆積することを可能にし得る。したがって、結果として、スパッタ堆積をより一様に行うことができる。それゆえ、例えば処理後の基板の一様性を向上させ得、品質管理の必要性を減らし得る。これは、生成される磁場を特徴づける磁力線が基板の中へ及び外へ詰まったループを描き、それゆえ、基板で均一なプラズマ密度の分布とならないマグネトロンタイプのスパッタ堆積装置と比較され得る。
【0068】
いくつかの例において、閉じ込められるプラズマ112は、少なくとも堆積領域114内で高密度プラズマであり得る。例えば、(湾曲シート状又は他の形状の)閉じ込められるプラズマ112は、例えば少なくとも堆積領域114内で、1011cm-3以上の密度であり得る。堆積領域114の高密度のプラズマ112により、効果的な及び/又は高速のスパッタ堆積が可能となり得る。
【0069】
図1から5に示されている例では、ターゲット部106及びそれにより支持されるターゲット材料108は、実質的に平面である。しかし、(以下でより詳細に説明するような)いくつかの例において、ターゲット部106の少なくとも一部分が、ターゲット部の他の一部分の支持面に対して鈍角を形成する支持面を画定するように、ターゲット部106が配置されてもよいし、配置されるように構成可能であってもよい。例えば、ターゲット部106は、実質的に曲げられていてもよい。例えば
図6で示されるように、ターゲット部は、湾曲部材118の曲面の少なくとも一部の曲率に実質的に従うように、例えば湾曲経路Cの曲線に追従するように配置されてもよい。
【0070】
図6は、他のスパッタ堆積装置例600を示す。装置600の示されている部品の多くは、
図1から5で示され、上記で説明した装置100の部品と同一であり、したがって、同一の関連する説明を適用する。類似した特徴は、類似の引用符号で与えられ、
図1から5で説明した例の任意の特徴を
図6で示される例に適用し得ることを理解されたい。
【0071】
しかし、
図6で示される例において、ターゲット部606は実質的に湾曲している。この例において、ターゲット部606により支持されるターゲット材料608は、それに従って実質的に湾曲している。この場合において、湾曲したターゲット部606の任意の部分は、湾曲方向に沿って湾曲したターゲット部606の他の任意の部分と鈍角を形成する。いくつかの例において、ターゲット部606の異なる部分は、例えば基板116に所望の堆積の配置又は組成をもたらすために、異なるターゲット材料を支持してもよい。
【0072】
いくつかの例において、湾曲したターゲット部606は、湾曲経路Cの曲線に実質的に追従し得る。例えば湾曲したターゲット部606は、湾曲経路Cの湾曲形状に実質的に一致し得るか、又は湾曲経路Cの湾曲形状を再現し得る。例えば湾曲したターゲット部606は、湾曲経路から半径方向にずれるが、湾曲経路に実質的に平行な曲線を有し得る。例えば、湾曲したターゲット部606は、湾曲経路Cと共通の曲率中心を有する曲線を有し得るが、湾曲経路Cとは異なる曲率半径を有し、示される例ではより大きい、曲率半径を有する。これに応じて、湾曲したターゲット部606は、結果として、使用中、湾曲部材118の周りに閉じ込められる湾曲したプラズマ112の曲線に実質的に追従し得る。言い換えれば、いくつかの例において、プラズマ112は、閉じ込め配列の磁性素子104a、104bにより、基板116の経路Cとターゲット部606の間に位置するように閉じ込められ、湾曲経路C及び湾曲したターゲット部606の両方の曲線に実質的に追従し得る。
【0073】
図1から5に示される装置100のターゲット部108と同様に、
図6のターゲット部例606(及びそれに応じて、それにより支持されるターゲット材料608)は、湾曲部材118(例えば、ドラム118の長手方向軸120に平行な方向)の全長に実質的にわたって延在し得ることを理解されたい。これは、ドラム118により運ばれる基板116のターゲット材料608が堆積され得る表面積を最大化することを可能にし得る。
【0074】
上述のとおり、プラズマ112は、湾曲経路Cと湾曲ターゲット部606の両方の曲線に実質的に追従するように閉じ込められ得る。湾曲経路Cと湾曲したターゲット部606間の面積又は体積は、それに応じて、湾曲部材118周りで湾曲し得る。したがって、堆積領域614は、使用中、湾曲部材118により運搬される基板116にターゲット材料608のスパッタ堆積が起こる湾曲した体積を表し得る。これにより、常時、湾曲部材118により運搬される基板116のウェブの堆積領域614にある表面積を増加させることができる。これにより、結果として、使用中、ターゲット材料608が堆積され得る基板116のウェブの表面積を増加させることが可能になり得る。これは、ターゲット部606の空間的な取り付け面積を実質的に増やさず、かつ、湾曲部材118の大きさを変えることなく、結果として、スパッタ堆積がもたらされ得る面積を増加させること可能がなり得る。これにより、例えばリールツーリールタイプの装置を通して、所与の堆積度のために、より速い(より一層速い)速度で基板116のウェブを供給することが可能になり、それゆえ、より効率的なスパッタ堆積が可能になり得るだけでなく、空間効率の高い方法で行うことが可能になり得る。
【0075】
図7は、他のスパッタ装置例700を示す。装置700の示されている部品の多くは、
図1から6で示され、上記で説明した装置100の部品と同一であり、再度説明はしない。類似の特徴は、類似の引用符号で与えられ、
図1から6に関して説明した例の任意の特徴を
図7に示される例に適用し得ることを理解されたい。しかし、
図7で示される例において、ターゲット部706の少なくとも一つの部分706aが、ターゲット部706の他の部分706bの表面に対して鈍角を形成する表面を画定するように、ターゲット部706が配置され又は配置されるように構成可能である。
【0076】
いくつかの例において、ターゲット部706の第一の部分706aと、例えば隣接したターゲット部706の第二の部分706bとの成す角が、鈍角となるように取り付けられてもよい。該鈍角は、第一の部分706aと第二の部分706bが共に湾曲部材118の曲面の少なくとも一部の曲率に近似して、例えば湾曲経路Cの曲線に近似して配置されるように選択され得る。
図7の例で示されるように、ターゲット部706は、例えばそれぞれが隣接する部分と鈍角を成す三つの(
図7に示されるように、実質的に平面の)部分706a、706b、706cから成り得る。第一の部分706aは、湾曲部材118の供給側に向いて配置され得、第二の部分706bは、湾曲部材118の中心部に向いて配置され得、第三の部分706cは、湾曲部材118の排出側に向いて配置され得る。三つの部分706a、706b、706cは、共に湾曲部材118の曲面の少なくとも一部の曲率に近似するように、例えば湾曲経路Cの曲線に近似するように配置され得る。それゆえ、堆積領域714は、使用中、基板116にターゲット材料708a、708b、708cのスパッタ堆積が起こる、湾曲した体積に近似し得る。それにより、常時、堆積領域714に存在する基板116の表面積の増加量が増大し得る。これにより、例えばターゲット部706の空間的な取り付け面積を実質的に増やすことなく、かつ、湾曲部材118の大きさを変えることなく、スパッタ堆積がもたらされ得る面積を増加させることが可能になり得る。
【0077】
いくつかの例において、ターゲット部706は、ターゲット部706の少なくとも一部分706aが、ターゲット部706の他の部分706bの表面に対して鈍角を形成する表面を画定して配置されるように構成可能である。例えばターゲット部706の第一の部分706aと、例えば、隣接したターゲット部706の第二の部分706bとの成す角は、設定で変えられてもよい。例えば、第一の部分706aと第二の部分706bは、ヒンジ素子724又は第一の部分706aと第二の部分706b間の角度を変更できるような他の部品で、機械的に連結してもよい。同様に、第二の部分706bと第三の部分706cも、ヒンジ素子726又は第二の部分706bと第三の部分706c間の角度を変更できるような他の部品で機械的に連結してもよい。第二の部分706bに対して第一の部分706a及び/又は第三の部分706cが動くように、例えば第二の部分706bに対する第一の部分706a及び/又は第三の部分706cの成す角度が変わるように、アクチュエータ及び適切なコントローラー(図示なし)を設けてもよい。これにより、ターゲット部の第一の部分706a又は第三の部分706cの各ターゲット材料708a、708cが受けるプラズマ密度の制御が可能になり得、それゆえ、使用中、堆積速度の制御が可能になり得る。
【0078】
代わりに又は加えて、プラズマ112の曲率を変更し、それにより、ターゲット部の第一の部分706a、第二の部分706b又は第三の部分706cの各ターゲット材料708a、708b、708cが受けるプラズマの密度を制御するコントローラー(図示せず)により、磁性素子104a、104b、104cにより供給される閉じ込め磁場を制御してもよく、これにより、使用中、堆積速度の制御が可能になり得る。
【0079】
いくつかの例において、ターゲット部706の一部分706a、706b、706cで供給されるターゲット材料は、ターゲット部の他の部分706a、706b、706cで供給されるターゲット材料と異なってもよい。これにより、基板116にスパッタ堆積されるターゲット材料を所望の配置又は組成にすることを可能にし得る。例えば、第一の部分706a又は第三の部分706cが第二の部分706bと成す角度を制御することにより、及び/又は磁性素子104a、104b、104cの制御で閉じ込められるプラズマの曲率を制御することにより、一以上のターゲット部706a、706b、706cが受けるプラズマ密度を制御することで、基板116上にスパッタ堆積されるターゲット材料のタイプ又は組成を制御することが可能になり得る。これにより、柔軟なスパッタ堆積が可能になり得る。
【0080】
いくつかの例において、閉じ込め磁場を描く磁力線が、少なくともスパッタ堆積領域内で、湾曲経路Cの曲線、例えば湾曲部材118の曲面の少なくとも一部の曲率に実質的に追従するように、各磁力線に対して垂直に延び且つ磁力線をつなげる仮想線が曲げられるよう配置され得る。
【0081】
例えば、
図8は他のスパッタ堆積装置例800を示す。装置800の示されている部品の多くは、
図1から7で示され、上記で説明した装置100の部品と同一であってもよく、したがって、同一の関連する説明を適用する。類似の特徴は、類似の引用符号で与えられ、
図1から7に関して説明した例の任意の特徴は、
図8で示される例に適用され得ることを理解されたい。しかし、
図8で示される例において、磁石配列804の磁性素子804aは、閉じ込め磁場を供給するように配置され、磁力線(
図8の黒矢印)は閉じ込め磁場を描き、例えば特徴づけ、閉じ込め磁場は、それぞれ実質的に直線状であるが、少なくとも堆積領域(明確にするために、
図8で明確に示していない)において、湾曲経路Cの曲線、例えば湾曲部材118の曲面の少なくとも一部の曲率に実質的に追従するために、各磁力線に対して垂直に延び且つ磁力線をつなげる仮想線が曲げられるように配置される。
【0082】
プラズマ生成配列802は湾曲し、湾曲部材又はドラム118の長手方向軸120に対して実質的に垂直な方向に延在する一以上の細長いアンテナ802aを備えてもよい。
図8の例において、湾曲部材118の長手方向軸120は、湾曲部材118の回転軸でもある。明確にするために、
図8では一つのアンテナ802aのみ示しているが、一以上のそのようなアンテナ802aが使用され得ることを理解されたい。湾曲したアンテナ802aは、湾曲経路Cの曲線に実質的に追従し得、例えば湾曲部材118の曲面の少なくとも一部の曲率に実質的に従い得る。例えば湾曲したアンテナ802aは、半径方向及び軸方向にずれるが、湾曲経路Cと平行であってもよく、例えば半径方向及び軸方向にずれるが、湾曲経路Cに沿って基板を導く湾曲部材118と平行であってもよい。湾曲したアンテナ802aは、実質的に湾曲した形状を有するプラズマ(明確にするため、
図8で図示なし)を生成するために、無線周波数電力を使用して駆動され得る。
【0083】
磁性素子804aは、ソレノイド804aを備え得る。明確にするため、
図8では一つの磁性素子804aのみ示しているが、例えば
図8において、他のそのような磁性素子(図示なし)を、ソレノイド804aに対して湾曲部材118を挟んだ反対側に配置してもよいことを理解されたい。ソレノイド804aは、開口部を有し得、該開口部を通して、使用中、プラズマ(
図8に図示なし)が閉じ込められ、例えば導かれる。開口部は湾曲し、湾曲部材118の長手方向軸(回転軸)120に対して実質的に垂直な方向に細長くなっていてもよい。湾曲したソレノイド804aは、湾曲経路Cの曲線に実質的に追従し得る。例えば、湾曲したソレノイド804aは、湾曲部材118の曲面から半径方向及び軸方向にずれるが、湾曲部材118の曲面と平行であり得る。湾曲したソレノイド804aは、湾曲したアンテナ802aと湾曲部材118の中間に配置され得る。湾曲したソレノイド804aは、閉じ込め磁場をもたらし、該閉じ込め磁場においては、磁力線が、少なくとも堆積領域内において、湾曲経路Cの曲線に実質的に追従するように、磁力線に対して垂直に延び且つ磁力線をつなげる仮想線が曲げられるよう配置される。
【0084】
プラズマ(
図8で図示なし)は、湾曲したアンテナ802aの長さに沿って生成され得、湾曲したソレノイド804aは、プラズマ(
図8において図示なし)を湾曲したアンテナ802aから離れる方向に、湾曲したソレノイド804aを貫くように閉じ込め得る。プラズマは、湾曲したソレノイド804aにより湾曲シート状に閉じ込められ得る。この場合において、湾曲シートの長さは、湾曲部材118の長手方向(回転)軸120と平行な方向に延在する。湾曲シート状のプラズマは、湾曲部材118の周りで、湾曲部材118の曲線を再現するように、ソレノイド804aにより供給される磁場により閉じ込められ得る。プラズマの湾曲シートの厚さは、湾曲シートの長さ及び幅に沿って実質的に一定であってもよい。湾曲シート状のプラズマは、実質的に均一な密度を有し、例えば湾曲シート状のプラズマの密度は、その長さと幅のうち一つ又はその両方で実質的に均一であってもよい。上述のとおり、湾曲シート状に閉じ込められているプラズマにより、スパッタ堆積がもたらされ得る面積を増加させることが可能になり得、それゆえ、より効率的なスパッタ堆積が可能になり得、及び/又は例えば湾曲部材の曲線周り及び基板116の幅にわたる方向の両方で、基板116でのプラズマ密度のより均一な分布が可能になり得る。これにより、結果として、例えば湾曲部材118の表面周りの方向及び湾曲部材118の長さにわたる方向の両方で、基板116のウェブにより均一なスパッタ堆積が可能になり得、基板の処理の一様性を向上させ得る。
【0085】
例えば、一以上の磁性素子804aを備える磁石配列804は、装置800内で、スパッタ堆積領域と同様に、プラズマを前処理領域に閉じ込めるように構成され、ここで、前処理領域とスパッタ堆積領域は、他の例で説明したように、ガイド部材118の周りに配置される。明確にするために、
図8においてはっきりと示していないが、一以上の磁性素子804aは、プラズマを前処理領域とスパッタ堆積領域の両方に閉じ込める閉じ込め磁場を供給するように配置され得る。例えば、上述のとおり、プラズマは、湾曲したソレノイド804aにより、湾曲シート状に閉じ込められ得る。湾曲シート状のプラズマは、湾曲したソレノイド804aを含む磁石配列804により、湾曲部材118を備えるガイド部材の周りで、前処理領域(明確にするため、
図8においてはっきりと示していない)内に移動され得る。他の例と同様に、前処理領域は、運搬方向115においてスパッタ堆積領域より前に位置する。
【0086】
図9を参照すると、スパッタ堆積方法例900がフロー図で示されている。方法900において、基板は、ガイド部材を使用して運搬方向に導かれる。プラズマは、プラズマ源を使用して生成され、磁石配列によって、ガイド部材の周りに配置される前処理領域とスパッタ堆積領域に閉じ込められる。前処理領域において、基板はプラズマに曝され、運搬方向で前処理領域の後に位置するスパッタ堆積領域において、基板にターゲット材料のスパッタ堆積がもたらされる。
【0087】
ターゲット材料、基板、ガイド部材、プラズマ源、磁石配列、前処理領域及びスパッタ堆積領域は、例えば、
図1から8に関して上記で説明した任意の例であり得る。いくつかの例において、この方法は、
図1から8に関して説明した装置100、600、700、800のうち任意のものにより実行され得る。
【0088】
この方法は、ステップ902において、ガイド部材を使用して基板を運搬方向に導くことを含む。例えば、基板は、
図1から8に関して説明したガイド部材、例えば湾曲部材118により導かれ得る。
【0089】
この方法は、ステップ904において、プラズマ源を使用してプラズマを発生させることを含む。例えばプラズマは、
図1から8に関して上記で説明したプラズマ生成配列102、802のうち一つにより生成され得る。
【0090】
ステップ906において、この方法は、磁石配列を使用して、プラズマを前処理領域と、運搬方向において前処理領域の後に位置するスパッタ堆積領域に閉じ込めることを含み、前処理領域とスパッタ堆積領域は、ガイド部材の周りに配置される。例えば、プラズマは、
図1から8に関して上記で説明した磁石配列104、804のうち一つにより閉じ込められ得る。前処理領域内で、基板はプラズマに曝される。スパッタ堆積領域は、基板にターゲット材料のスパッタ堆積をもたらす。
【0091】
上述のとおり、前処理領域とスパッタ堆積領域をガイド部材の周りに配置して、生成されるプラズマを、この方法で閉じ込めることにより、生成したプラズマのより効率的な利用が可能になり得、それゆえ、より効率的なスパッタ堆積処理が可能になり得るだけでなく、空間効率の高い方法で行うことも可能になり得る。例えば、ガイド部材の周りに前処理領域とスパッタ堆積領域を配置することで、より空間を占め、エネルギー必要量を増加させ、装置の実行及び維持における複雑さを高めるようなさらなる部品の必要性を減らすことができる。例えば生成したプラズマを、この方法で閉じ込めることで、同一のプラズマ源を、基板の前処理をすることと基板にターゲット材料108のスパッタ堆積を提供することの両方で使用できる。さらに、同一のガイド部材を、離隔した前処理領域とスパッタ堆積領域を提供するために使用でき、それゆえ、例えばプラズマを閉じ込める磁石配列によりもたらされる制御を考慮すると、別個のプラズマ源及び/又はガイド部材を使用することと比べて、空間必要量やエネルギー必要量を節約することができる。
【0092】
上記の例は、本発明の例示的な例として理解されたい。さらなる実施形態が予想される。例えば、説明した例の多くは、基板を導くために湾曲部材を利用する。湾曲部材、例えばローラー又はドラムは、基板を運搬するためにロールツーロールシステムの一部を形成又はロールツーロールシステムと連動し得る。ある場合において、湾曲部材は、ローラーでなくてもよいが、それでもなお基板を運搬できる湾曲経路を画定し得る。しかし、いくつかの例において、湾曲したガイド部材が好ましいが、例えばロールツーロールシステムが実施されない実施形態も予想される。そのようなスパッタ堆積装置又は方法の実施形態は、例えば、KR20130029488で説明されるようなシートツーシート及び/又は基板支持レーザーリフト技術を利用したシステムで実施され得る。
【0093】
任意の一つの例に関連して説明される任意の特徴は、単独で、又は説明される他の特徴と組み合わせて使用され得、他の任意の例の1つ以上の特徴、又は他の例の任意の組み合わせと組み合わせて使用され得ることを理解されたい。さらに、上記で説明していない均等物及び改良物もまた、添付の特許請求の範囲内で定義される発明の範囲から逸脱しないで使用され得る。