(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-10
(45)【発行日】2024-07-19
(54)【発明の名称】WIFIデバイスについての到着レイテンシおよび離脱レイテンシの決定
(51)【国際特許分類】
H04W 76/30 20180101AFI20240711BHJP
H04W 84/12 20090101ALI20240711BHJP
【FI】
H04W76/30
H04W84/12
(21)【出願番号】P 2022566279
(86)(22)【出願日】2021-03-10
(86)【国際出願番号】 US2021021759
(87)【国際公開番号】W WO2021221797
(87)【国際公開日】2021-11-04
【審査請求日】2023-02-03
(32)【優先日】2020-04-30
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】502208397
【氏名又は名称】グーグル エルエルシー
【氏名又は名称原語表記】Google LLC
【住所又は居所原語表記】1600 Amphitheatre Parkway 94043 Mountain View, CA U.S.A.
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】メインガスト,マーシー
(72)【発明者】
【氏名】アクスリー,アンドリュー
(72)【発明者】
【氏名】ミディ,ダニエル
【審査官】吉江 一明
(56)【参考文献】
【文献】特開2019-186693(JP,A)
【文献】特開2019-169164(JP,A)
【文献】特表2006-505977(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04W 4/00 - 99/00
(57)【特許請求の範囲】
【請求項1】
データ処理装置によって実行される、コンピュータにより実現される方法であって、
環境内のWiFiアクセスポイントから報告を受信することを含み、前記報告は、前記WiFiアクセスポイントのうちの1つへの接続または前記WiFiアクセスポイントのうちの1つからの切断の指示と、前記接続または前記切断の時間と、前記WiFiアクセスポイントのうちの前記1つの識別子とを含み、前記方法はさらに、
前記報告から、接続時間および切断時間を含むデータを生成することと、
前記環境内の1つ以上のセンサまたはデバイスから、
データを受信することと、
機械学習システムを用いて、前記環境に対する到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを生成することとを含み、前記接続時間および切断時間を含むデータならびに前記
1つ以上のセンサ
またはデバイス
から受信した前記データは、前記機械学習システムに入力される、方法。
【請求項2】
前記到着レイテンシおよび前記離脱レイテンシのうちの少なくとも1つを用いて、前記環境において、ユーザについて、存在の指示および不在の指示のうちの少なくとも1つを調整することをさらに含む、請求項1に記載の方法。
【請求項3】
前記存在の指示および前記不在の指示のうちの少なくとも1つの調整の後に、前記存在の指示または前記不在の指示に基づいて、前記環境における制御可能なデバイスのために制御信号を生成することと、
前記制御信号を、前記
制御可能なデバイスによって実現されるよう、前記
制御可能なデバイスに送信することとをさらに含む、請求項2に記載の方法。
【請求項4】
前記機械学習システムは、到着モデルを使用して前記到着レイテンシを生成し、前記機械学習システムは、離脱モデルを使用して前記離脱レイテンシを生成する、請求項1から3のいずれか1項に記載の方法。
【請求項5】
前記報告は、さらに、
WiFiデバイスの識別子を含み、前記WiFiデバイスの前記識別子は、ソルト化されハッシュ化されたメディアアクセス制御アドレス(SHMAC)を含む、請求項1から4のいずれか1項に記載の方法。
【請求項6】
前記環境における前記1つ以上のセンサおよびデバイスは、モーションセンサおよび進入路センサのうちの1つ以上を含む、請求項1から5のいずれか1項に記載の方法。
【請求項7】
前記報告の各々は、さらに、WiFiデバイスの識別子を含み、前記方法はさらに、
前記機械学習システムを用いて、到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを、WiFiデバイスごとに、前記報告のうちの1つにおける識別子とともに生成することを含み、前記接続時間および切断時間を含むデータ、ならびに前記
1つ以上のセンサ
またはデバイス
から受信した前記データは、前記機械学習システムに入力される、請求項1から6のいずれか1項に記載の方法。
【請求項8】
WiFiデバイスについて到着レイテンシおよび離脱レイテンシを判断する、コンピュータにより実現されるシステムであって、
クラウドコンピューティングシステムのコンピューティングデバイスを備え、前記コンピューティングデバイスは、環境内の1つ以上のWiFiアクセスポイントから報告を受信し、前記報告の各々は、前記WiFiアクセスポイントのうちの1つへの接続または前記WiFiアクセスポイントのうちの1つからの切断の指示と、前記接続または前記切断の時間と、前記WiFiアクセスポイントのうちの前記1つの識別子とを含み、前記コンピューティングデバイスはさらに、
前記報告から、接続時間および切断時間を含むデータを生成し、前記環境内の1つ以上のセンサまたはデバイスから、
データを受信し、
機械学習システムを用いて、前記環境に対する到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを生成し、前記接続時間および切断時間を含むデータならびに前記
1つ以上のセンサ
またはデバイス
から受信した前記データは、前記機械学習システムに入力される、システム。
【請求項9】
前記クラウドコンピューティングシステムの前記コンピューティングデバイスは、さらに、前記到着レイテンシおよび前記離脱レイテンシのうちの少なくとも1つを用いて、前記環境において、ユーザについて、存在の指示および不在の指示のうちの少なくとも1つを調整する、請求項8に記載のシステム。
【請求項10】
前記クラウドコンピューティングシステムの前記コンピューティングデバイスは、さらに、前記コンピューティングデバイスが前記存在の指示および前記不在の指示のうちの少なくとも1つを調整した後、前記存在の指示または前記不在の指示に基づいて、前記環境内における制御可能なデバイスのために、制御信号を生成し、前記制御信号を、前記
制御可能なデバイスによって実現されるよう、前記
制御可能なデバイスに送信する、請求項9に記載のシステム。
【請求項11】
前記機械学習システムは、到着モデルを使用して前記到着レイテンシを生成し、前記機械学習システムは、離脱モデルを使用して前記離脱レイテンシを生成する、請求項8から10のいずれか1項に記載のシステム。
【請求項12】
前記報告は、さらに、
WiFiデバイスの識別子を含み、前記WiFiデバイスの前記識別子は、ソルト化されハッシュ化されたメディアアクセス制御アドレス(SHMAC)を含む、請求項8から11のいずれか1項に記載のシステム。
【請求項13】
前記環境における前記1つ以上のセンサおよびデバイスは、モーションセンサおよび進入路センサのうちの1つ以上を含む、請求項8から12のいずれか1項に記載の、コンピュータにより実現されるシステム。
【請求項14】
前記報告の各々はWiFiデバイスの識別子をさらに含み、前記クラウドコンピューティングシステムの前記コンピューティングデバイスは、さらに、前記機械学習システムを用いて、到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを、WiFiデバイスごとに、前記報告のうちの1つにおける識別子とともに生成し、前記接続時間および切断時間を含むデータ、ならびに前記
1つ以上のセンサ
またはデバイス
から受信した前記データは、前記機械学習システムに入力される、請求項8から13のいずれか1項に記載のシステム。
【請求項15】
1つ以上のコンピュータと、前記1つ以上のコンピュータによって実行されると前記1つ以上のコンピュータに請求項1から7のいずれか1項に記載の方法を実施させる命令を記憶する1つ以上の記憶装置とを備える、システム。
【請求項16】
1つ以上のコンピュータによって実行されると前記1つ以上のコンピュータに請求項1から7のいずれか1項に記載の方法を実施させるプログラム。
【発明の詳細な説明】
【背景技術】
【0001】
背景
環境内のWiFi(登録商標)アクセスポイントは、WiFiデバイスが環境の外部からWiFiアクセスポイントに接続することを可能にする信号範囲を有し得る。この結果、その環境に近づく人が持っているWiFiデバイスが、その人がその環境に入る前に、WiFiアクセスポイントに接続する場合がある。これはまた、その環境を出る人が持っているWiFiデバイスが、その人がその環境を出た後しばらくの間、WiFiアクセスポイントに接続されたままであることになる場合もある。
【発明の概要】
【課題を解決するための手段】
【0002】
概要
開示される主題の実施形態によれば、報告が、環境におけるWiFiアクセスポイントから受信されてもよい。報告の各々は、WiFiアクセスポイントのうちの1つへの接続またはWiFiアクセスポイントのうちの1つからの切断の指示と、接続または切断の時間と、WiFiアクセスポイントのうちの1つの識別子とを含んでもよい。接続時間および切断時間を含むデータは、報告から生成されてもよい。センサおよびデバイスデータが、環境内のセンサまたはデバイスから受信されてもよい。環境に対する到着レイテンシの長さおよび離脱レイテンシの長さを示すデータが、機械学習システムによって生成されてもよく、接続時間および切断時間を含むデータ、ならびにセンサおよびデバイスデータは、機械学習システムに入力される。
【0003】
環境内のユーザについての存在の指示または不在の指示が、到着レイテンシまたは離脱レイテンシで調整されてもよい。
【0004】
環境内の制御可能なデバイスのための制御信号が、存在の指示および不在の指示のうちの少なくとも1つの調整後に、存在の指示または不在の指示に基づいて生成されてもよい。制御信号は、デバイスによって実現されるよう、デバイスに送信されてもよい。
【0005】
機械学習システムは、到着レイテンシを生成するために到着モデルを使用してもよい。機械学習システムは、離脱レイテンシを生成するために離脱モデルを使用してもよい。
【0006】
報告は、WiFiデバイスの識別子をさらに含んでもよい。WiFiデバイスの識別子は、ソルト化されてハッシュ化されたメディアアクセス制御アドレス(SHMAC)を含んでもよい。
【0007】
環境内のセンサおよびデバイスは、モーションセンサまたは進入路センサを含んでもよい。
【0008】
報告は、WiFiデバイスの識別子を含んでもよい。到着レイテンシの長さおよび離脱レイテンシの長さを示すデータが、機械学習システムで、WiFiデバイスごとに、報告のうちの1つにおける識別子とともに生成されてもよく、接続時間および切断時間を含むデータならびにセンサおよびデバイスデータは、機械学習システムに入力される。
【0009】
開示される主題の実施形態によれば、環境内のWiFiアクセスポイントから報告を受信するための手段が含まれ、報告の各々は、WiFiアクセスポイントのうちの1つへの接続またはWiFiアクセスポイントのうちの1つからの切断の指示と、接続または切断の時間と、WiFiアクセスポイントのうちの1つの識別子とを含んでもよく、さらに、報告から接続時間および切断時間を含むデータを生成するための手段と、環境内の1つ以上のセンサまたはデバイスからセンサおよびデバイスデータを受信するための手段と、機械学習システムで、環境について、到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを生成するための手段とが含まれ、データは、接続時間および切断時間を含んでもよく、センサおよびデバイスデータは、機械学習システムに入力され、さらに、存在の指示および不在の指示のうちの少なくとも1つの調整後に、存在の指示または不在の指示に基づいて、環境内における制御可能なデバイスのために、制御信号を生成するための手段と、制御信号を、デバイスによって実現されるよう、デバイスに送信するための手段と、機械学習システムを用いて、到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを、WiFiデバイスごとに、報告のうちの1つにおける識別子とともに生成するための手段とが含まれ、接続時間および切断時間を含むデータ、ならびにセンサおよびデバイスデータは、機械学習システムに入力される。
【0010】
開示される主題のさらなる特徴、利点、および実施形態は、以下の詳細な説明、図面、および特許請求の範囲の考察から示されるかまたは明らかとなり得る。さらに、上記の概要および以下の詳細な説明の両方は、例示的なものであり、特許請求の範囲を限定することなくさらなる説明を提供することを意図するものであることを理解されたい。
【0011】
図面の簡単な説明
開示される主題をさらに理解するために含まれる添付の図面は、本明細書に組み込まれ、本明細書の一部を構成する。図面は、開示される主題の実施形態を示し、詳細な説明とともに、開示される主題の実施形態の原理を説明する役割も果たす。開示された主題およびそれが実施され得る様々な態様の基本的な理解に必要であり得るよりも詳細に構造上の詳細を示す試みは、なされない。
【図面の簡単な説明】
【0012】
【
図1】
図1は、開示される主題のある実現例による、WiFiデバイスについての到着レイテンシおよび離脱レイテンシを判断するのに好適な例示的なシステムおよび構成を示す図である。
【
図2A】
図2Aは、開示される主題のある実現例による、WiFiデバイスについて到着レイテンシおよび離脱レイテンシを判断するのに好適な例示的環境を示す図である。
【
図2B】
図2Bは、開示される主題のある実現例による、WiFiデバイスについて到着レイテンシおよび離脱レイテンシを判断するのに好適な例示的環境を示す図である。
【
図3】
図3は、開示される主題の実現例による、WiFiデバイスについて到着レイテンシおよび離脱レイテンシを判断するのに好適な例示的なプロセスを示す図である。
【
図4】
図4は、開示される主題の一実施形態によるコンピューティングデバイスを示す図である。
【
図5】
図5は、開示される主題の一実施形態によるシステムを示す図である。
【
図6】
図6は、開示される主題の一実施形態によるシステムを示す図である。
【
図7】
図7は、開示される主題の一実施形態によるコンピュータを示す図である。
【
図8】
図8は、開示される主題の一実施形態によるネットワーク構成を示す図である。
【発明を実施するための形態】
【0013】
詳細な説明
ここに開示される実施形態によれば、WiFiデバイスについて到着レイテンシおよび離脱レイテンシを判断することは、WiFiデバイスによる環境内のWiFiアクセスポイントへの接続およびWiFiアクセスポイントからの切断を、環境内の他のセンサおよびデバイスからの信号とともに使用して、環境に到着し、環境から離脱するWiFiデバイスの接続および切断のレイテンシを判断することを可能にしてもよい。環境内のWiFiアクセスポイントは、クラウドコンピューティングシステムに、WiFiデバイスによる接続および切断が検出された時間を含む報告を送信してもよい。報告は、環境内のセンサおよびデバイスからの信号とともに、機械学習システムへの入力として、使用されてもよい。機械学習システムは、環境内のWiFiアクセスポイントへのWiFiデバイスの接続とWiFiデバイスを携行している人の環境内への到着との間のレイテンシと、WiFiデバイスを携行している人の環境からの離脱と環境内のすべてのWiFiアクセスポイントからのWiFiデバイスの切断との間のレイテンシとを判断してもよい。
【0014】
環境は、いくつかのWiFiアクセスポイントを含んでもよい。環境は、例えば、家、オフィス、アパート、または屋内および屋外の空間を含んでもよい他の環境等の構造物であってもよく、人々が環境に出入りするために使用する進入路を含んでもよい。WiFiアクセスポイントは、環境全体にわたって分散されてもよく、たとえば、メッシュネットワーク、またはハブおよびスポークのネットワークを形成してもよい。WiFiアクセスポイントは、WiFiアクセスポイントに接続するWiFiデバイスに対して、ローカルエリアネットワーク(LAN)、およびインターネットなどの広域ネットワーク(WAN)へのアクセスを、提供してもよい。WANへのアクセスは、WiFiアクセスポイントが、たとえば、有線または無線モデムへの接続を介してアクセスを有してもよい任意の好適な有線または無線WAN接続を介して提供されてもよい。
【0015】
WiFiアクセスポイントがWiFi信号をブロードキャストおよび受信することが可能であってもよい範囲は、環境の進入路を越えて延在してもよい。これは、WiFiデバイスが環境の外にある間に、WiFiデバイスが環境内のWiFiアクセスポイントに接続すること、または接続されたままであることを可能にしてもよい。たとえば、電話機が、家に入る前に家の中のWiFiアクセスポイントに接続することができてもよく、または電話機が、家を出た後に家の中のWiFiアクセスポイントに接続されたままであることができてもよい。
【0016】
WiFiデバイスは、環境内のWiFiアクセスポイントに接続し、環境内のWiFiアクセスポイントから切断してもよい。WiFiデバイスは、WiFiデバイスがWiFiネットワークに接続することを可能にするWiFi無線機を含む任意の好適なデバイスであってもよい。WiFiデバイスは、たとえば、電話、タブレット、ラップトップ、腕時計もしくは他のウェアラブルデバイス、またはWiFi対応追跡タグであってもよい。WiFiデバイスが環境内を移動し、環境に出入りするとき、WiFiデバイスは、WiFiデバイスの位置およびWiFiアクセスポイントの範囲に応じて、環境全体にわたって、異なるWiFiアクセスポイントに対して接続および切断してもよい。たとえば、WiFiデバイスは、家の3階で開始し、その階のWiFiアクセスポイントに接続してもよい。WiFiデバイスは、家の2階に移動し、3階のWiFiアクセスポイントから切断し、2階のWiFiアクセスポイントに接続してもよい。WiFiデバイスは、家の1階に移動し、2階のWiFiアクセスポイントから切断し、1階のWiFiアクセスポイントに接続してもよい。WiFiデバイスは、家を出て、1階のWiFiアクセスポイントから切断してもよい。WiFiデバイスは、その後、家に再び入り、1階のWiFiアクセスポイントに接続してもよい。
【0017】
環境に到着する人によって携行されているWiFiデバイスが環境内のWiFiアクセスポイントに接続する時間と、WiFiデバイスを携行している人が環境に入る時間との間には、レイテンシがある場合がある。これは、環境に対する到着レイテンシであってもよい。例えば、電話を携行している人が家の進入路に近づくと、家の外側に延在する、WiFiアクセスポイントからのWiFi信号の範囲により、電話は、人が進入路を通って家に入って電話を家の中に持ち込む5秒前に、1階のWiFiアクセスポイントに接続してもよい。家に対する到着レイテンシは5秒としてもよい。
【0018】
WiFiデバイスを携行している人が環境から離脱する時間と、WiFiデバイスが環境内のWiFiアクセスポイントから切断する時間との間にも、レイテンシがあってもよい。これは、環境に対する離脱レイテンシであってもよい。例えば、電話を携行している人が家を出るとき、その人が進入路を通って家を出て、家から6秒間離れた後に、電話が家の1階のWiFiアクセスポイントから切断されてもよい。WiFiアクセスポイントは、切断がWiFiデバイス上で発生した後のある時間量の間、WiFiデバイスの切断を検出しないことがあり、これは、離脱レイテンシに追加のレイテンシを追加してもよい。
【0019】
環境内のWiFiアクセスポイントは、WiFiデバイスによるWiFiアクセスポイントへの接続およびWiFiアクセスポイントからの切断を報告してもよい。接続および切断は、例えば、環境から遠隔であってもよいクラウドコンピューティングシステムに、インターネット接続を介して、報告されてもよい。WiFiアクセスポイントは、WiFiデバイスの接続および切断が起こると、それらをリアルタイムで報告してもよく、または任意の他の好適な時間および間隔でそれらを報告してもよい。たとえば、家の3階のWiFiアクセスポイントは、WiFiデバイスの接続が成功裏に確立されると、その接続をクラウドコンピューティングシステムに報告してもよく、WiFiデバイスの切断を検出すると、その切断を報告してもよい。
【0020】
クラウドコンピューティングシステムに送信されるWiFiデバイスの接続および切断の報告は、WiFiデバイス用の識別子、報告を送信するWiFiアクセスポイント用の識別子、報告が接続に関してであるかまたは切断に関してであるかの指示、およびWiFiアクセスポイントが接続または切断を検出した時間を示す接続時間または切断時間を含む、任意の好適なデータを含んでもよい。報告に含まれる接続時間または切断時間は、任意の好適なレベルの精度で指定されてもよく、例えば、任意の好適なフォーマットで指定される時間および日付を含んでもよい。WiFiアクセスポイント用の識別子は、クラウドコンピューティングシステムが同じ環境内における異なるWiFiアクセスポイントからの報告を区別することを可能にしてもよい任意の好適な識別子であってもよい。WiFiアクセスポイント用の識別子は、例えば、WiFiアクセスポイントのコンポーネントのMACアドレスに基づいてもよく、またはユーザによってWiFiアクセスポイントに割り当てられた識別子であってもよい。
【0021】
WiFiデバイス用の識別子は、クラウドコンピューティングシステムが異なるWiFiデバイスについての報告を互いから区別することを可能にしてもよいが、WiFiデバイス自体またはWiFiデバイスのユーザの肯定的な識別を可能にしなくてもよい、プライバシー保護識別子であってもよい。たとえば、WiFiデバイス用の識別子は、WiFiデバイスのメディアアクセス制御(MAC)アドレス、たとえば、クラウドコンピューティングシステムが環境においてWiFiアクセスポイントから報告を受信することを可能にするようユーザがオプトインするときに生成される、ソルト化されハッシュ化されたMAC(SHMAC)に基づいてもよい。WiFiデバイス用のSHMACは、たとえば、WiFiアクセスポイントによって生成されてもよく、WiFiデバイスについての報告においてクラウドコンピューティングシステムに送信されてもよい。ユーザはまた、SHMAC、またはWiFiデバイス用の任意の他の好適な識別子を、WiFiアクセスポイントまたはクラウドコンピューティングシステムに、直接、入力してもよい。SHMACは、クラウドコンピューティングシステムによって受信された、同じSHMACを含むすべての報告が、同じWiFiデバイスについての報告であると見なされることを可能にしてもよいが、クラウドコンピューティングシステムが、たとえば、物理WiFiデバイスを識別するために使用され得るMACアドレスまたは他のそのような識別子を判断することによってWiFiデバイスを識別することを可能にしなくてもよい。
【0022】
クラウドコンピューティングシステムは、環境内の他のデバイスおよびセンサからデータを受信してもよい。環境は、例えば、ハブコンピューティングデバイスを含んでもよい。ハブコンピューティングデバイスは、環境内において、センサ、および自動化システムなどの他のシステムを管理するための、任意の好適なコンピューティングデバイスであってもよい。ハブコンピューティングデバイスは、例えば、環境用のコントローラであってもよい。例えば、ハブコンピューティングデバイスは、環境内に位置するサーモスタット、セキュリティハブ、または他のコンピューティングデバイスであるか、またはそれを含んでもよい。ハブコンピューティングデバイスはまた、環境内の別のデバイスであってもよく、または、例えばインターネットを介して、環境内のデバイスに接続されてもよい、環境を管理することに専用の別個のコンピューティングデバイスであってもよい。ハブコンピューティングデバイスは、任意の好適な有線接続、無線接続、ローカル接続、および広域接続を介して、環境全体にわたって分散されたいくつかのセンサおよび制御可能なデバイスに接続されてもよい。たとえば、ハブコンピューティングデバイス、センサ、および環境の他の構成要素は、メッシュネットワークにおいて接続されてもよい。センサのいくつかは、例えば、モーション検出に使用される受動赤外線センサを含むモーションセンサ、光センサ、カメラ、マイクロフォン、進入路センサ、光スイッチ、および、電話、タブレット、ラップトップ、またはフォブなどのデバイスの存在を検出するためにセンサとしてBluetooth(登録商標)、WiFi、RFID、または他のワイヤレスデバイスを使用してもよいモバイルデバイススキャナであってもよい。センサは、個々に分散されてもよく、またはセンサデバイスにおいて他のセンサと組み合わせられてもよい。例えば、センサデバイスは、低電力モーションセンサおよび光センサ、またはマイクロフォンおよびカメラ、または利用可能なセンサの任意の他の組合せを含んでもよい。
【0023】
ハブコンピューティングデバイスは、環境全体にわたってセンサおよび他のデバイスからデータを含む信号を受信し、信号からのデータをクラウドコンピューティングシステムに送信してもよい。データは、例えば、環境の外部ドア等の進入路を監視するセンサによって検出される開閉イベント、および環境の進入路の周囲の領域を監視するモーションセンサによって検出される動き、照明、電化製品、およびA/V機器を含むデバイスが、ハブコンピューティングデバイスまたはクラウドコンピューティングシステムによる自動制御を介するのではなく、ユーザからの入力に基づいていつオンまたはオフにされたかを示すデータ、セキュリティシステムが警備モードから警備解除モードに、または警備解除モードから警備モードにいつ遷移するかを含む、環境のためのセキュリティシステムのステータス、ならびに人が環境に入ったかまたは出たかを示し得る任意の他の好適なデータを含んでもよい。いくつかの実現例では、ハブコンピューティングデバイスは、計算能力が環境からオフサイトに位置するクラウドコンピューティングシステムの全体的な部分であってもよいので、センサおよび他のデバイスからのデータは、WiFiアクセスポイントを介して直接クラウドコンピューティングシステムに送信されてもよい。
【0024】
クラウドコンピューティングシステムは、環境におけるWiFiアクセスポイントから受信された報告からのWiFiデバイスの接続時間および切断時間、ならびに環境における他のデバイスおよびセンサから受信されたデータを使用して、環境に対する到着レイテンシおよび離脱レイテンシを判断してもよい。例えば、クラウドコンピューティングシステムは、機械学習システムを含んでもよい。機械学習システムは、例えば、深層学習ニューラルネットワークなどの人工ニューラルネットワーク、ベイジアンネットワーク、サポートベクターマシン、任意のタイプの分類器、または任意の他の好適な統計的もしくはヒューリスティックな機械学習システムタイプなど、任意の好適な機械学習システムであってもよい。機械学習システムは、到着レイテンシを判断するための到着モデルおよび離脱レイテンシを判断するための離脱モデルなどのモデルを含んでもよい。モデルは、任意の好適な態様で機械学習システムをトレーニングすることによって生成されてもよい。例えば、モデルは、機械学習システムの教師付きもしくは教師なしオフライントレーニングを使用して、または教師付きもしくは教師なしオンライン学習を通して、生成されてもよい。例えば、機械学習システムはニューラルネットワークであってもよく、到着モデルは、ニューラルネットワーク環境と、ニューラルネットワーク環境とともに使用されるべき重みのセットとの両方を含んでもよく、離脱モデルは、ニューラルネットワーク環境と、ニューラルネットワーク環境のための重みのセットとを含んでもよい。到着モデルおよび離脱モデルのためのニューラルネットワーク環境は同じであってもよく、または異なっていてもよく、到着モデルの重みのセットと離脱モデルの重みのセットとは異なっていてもよい。
【0025】
環境内のWiFiアクセスポイントから受信された報告からのWiFiデバイスについての接続時間および切断時間、ならびに環境内の他のデバイスおよびセンサから受信されたデータは、機械学習システムのための入力データとして、クラウドコンピューティングシステムによって使用されてもよい。機械学習システムは、到着レイテンシの長さおよび離脱レイテンシの長さを示してもよいデータを生成および出力してもよい。
【0026】
入力データは、機械学習システムに任意の好適な態様で入力されてもよく、機械学習システムによって、任意の数のモデルを通して処理されてもよい。例えば、入力データは、到着モデルおよび離脱モデルの両方を通して処理されてもよい。到着モデルは、到着レイテンシの長さを示すデータを出力してもよく、離脱モデルは、離脱レイテンシの長さを示すデータを出力してもよい。機械学習システムは、到着レイテンシの長さを示すデータと、離脱レイテンシの長さを示すデータとの両方を出力してもよい。
【0027】
たとえば、クラウドコンピューティングシステムは、SHMACによって識別され、家の中のWiFiアクセスポイントに接続し、家の中のWiFiアクセスポイントから切断する、WiFiデバイスのすべてについて、家の中のWiFiアクセスポイントから報告を受信してもよい。WiFiデバイスは、電話、タブレット、ラップトップ、およびウェアラブルデバイスなど、よりモバイルであってもよいWiFiデバイスと、TV、ゲームコンソール、およびデスクトップコンピュータなど、あまりモバイルでなくてもよいWiFiデバイスとを含んでもよい。クラウドコンピューティングシステムはまた、家の外部ドアおよび家の外部ドア付近の進入路を監視するモーションセンサおよび進入路センサを含む、家の中の他のデバイスならびにセンサからデータを受信してもよい。クラウドコンピューティングシステムは、WiFiアクセスポイントから受信した報告からの接続時間および切断時間、ならびに環境内の他のセンサおよびデバイスから受信したデータを、機械学習システムに入力してもよい。機械学習システムへの入力は、最初に、到着モデルを通して処理されてもよい。機械学習システムは、家に対する到着レイテンシの長さを示すデータを出力してもよい。到着レイテンシの長さを示すデータは、任意の好適なフォーマットであってもよく、時間の長さとして解釈可能であってもよい。例えば、到着モデルを使用する機械学習システムは、ミリ秒単位の到着レイテンシであってもよい数を出力してもよい。到着レイテンシは、たとえば、WiFiデバイスが家の中のWiFiアクセスポイントに接続する時間と、家の中のモーションセンサ、進入路センサ、および他のデバイスが外部ドアを通って家に入る人に対応する信号を生成する時間との間で機械学習システムによって行われる相関に基づいてもよい。機械学習システムへの入力は、次いで、離脱モデルを通して処理されてもよい。機械学習システムは、家に対する離脱レイテンシの長さを示すデータを出力してもよい。離脱レイテンシは、例えば、WiFiデバイスが家の中のWiFiアクセスポイントから切断される時間と、モーションセンサ、進入路センサ、および家の中の他のデバイスが外部ドアを通って家を出る人に対応する信号を生成する時間との間で機械学習システムによって行われる相関に基づいてもよい。
【0028】
機械学習システムによって判断される到着レイテンシおよび離脱レイテンシは、環境内のWiFiアクセスポイントに接続し、WiFiアクセスポイントから切断する、すべてのWiFiデバイスに、一般化されてもよい。たとえば、機械学習システムは、環境に対する単一の到着レイテンシおよび単一の離脱レイテンシを判断するために使用されてもよく、これらの到着レイテンシおよび離脱レイテンシは、環境内でWiFiアクセスポイントに接続または切断する任意のWiFiデバイスに適用されると見なされてもよい。
【0029】
到着レイテンシおよび離脱レイテンシはまた、デバイス単位で判断されてもよい。例えば、機械学習システムのための入力データにすべての報告からの接続時間および切断時間を含む代わりに、各セットが、異なるSHMACを含む報告からの接続時間および切断時間を含む、異なる入力データのセットが生成されてもよい。たとえば、WiFiアクセスポイントから受信された報告中に、5つの異なるWiFiデバイスに対応する5つの異なるSHMACがある場合、各セットが5つのWiFiデバイスのうちの1つについての報告からの接続時間および切断時間を含む、5つの異なる入力データのセットを生成してもよい。入力データのセットは、1対が、環境内のWiFiアクセスポイントに接続されるかまたはWiFiアクセスポイントから切断される5つのWiFiデバイスの各々に対してである、5つの別々の対の到着レイテンシおよび離脱レイテンシを生成するために使用されてもよい。
【0030】
到着レイテンシおよび離脱レイテンシはまた、進入路単位で判断されてもよい。例えば、機械学習システムのための入力データにセンサおよび他のデバイスからのすべてのデータを含める代わりに、各セットが環境の異なる進入路に対するセンサおよび他のデバイスからのデータを含む、異なる入力データのセットを生成してもよい。例えば、環境が2つの外部ドアを有する場合、外部ドアのうちの異なるドアの使用を監視するかまたは相関付けるセンサおよび他のデバイスからのデータを各々が含む、2つの異なる入力データのセットが生成されてもよい。入力データのセットは、1対が環境への進入路の各々についてである、2つの別個の対の到着レイテンシおよび離脱レイテンシを生成するために使用されてもよい。
【0031】
入力データは、任意の好適な時間および任意の好適な間隔で、機械学習システムに入力されてもよい。たとえば、クラウドコンピューティングシステムは、WiFiアクセスポイントのいずれかから任意のWiFiデバイスについての新たな報告が受信されるか、または環境内の任意のセンサもしくはデバイスから新たなデータが受信されるときはいつでも、入力データを更新してもよい。クラウドコンピューティングシステムは、任意の更新の直後に、または入力データに対する何らかの設定された数の更新の後に、更新された入力データを機械学習システムへの入力として使用し、更新された到着レイテンシおよび離脱レイテンシを生成してもよい。クラウドコンピューティングシステムはまた、例えば、1時間に1回等、時限間隔に基づいて、機械学習システムに入力データを入力してもよい。いくつかの実現例では、環境に対する到着レイテンシおよび離脱レイテンシは、環境について一度、たとえばWiFiアクセスポイントが環境内で最初にセットアップされた後に、判断されてもよく、ユーザが、それらが再び判断されることを要求するまで、再び判断されなくてもよい。
【0032】
クラウドコンピューティングシステムは、機械学習システムによって出力された到着レイテンシおよび離脱レイテンシを任意の好適な態様で使用してもよい。たとえば、到着レイテンシおよび離脱レイテンシは、環境内におけるWiFiアクセスポイントへの接続およびWiFiアクセスポイントからの切断を用いて行われた、環境内における人の存在および不在判定を調整するために使用されてもよい。環境に対する到着レイテンシが5秒である場合、クラウドコンピューティングシステムは、環境に存在せず、かつWiFiデバイスが環境内のWiFiアクセスポイントにちょうど接続したユーザを、接続がなされてから、ユーザが環境内に存在すると判定する前に、さらに5秒の間、不在であると見なしてもよい。同様に、離脱レイテンシが6秒である場合、クラウドコンピューティングシステムは、環境内に存在し、かつWiFiデバイスが環境内のWiFiアクセスポイントから切断されたユーザを、切断に先立つ追加の6秒にわたって不在であったと見なしてもよい。この判断は、切断がWiFiアクセスポイントによって報告された後に遡及的に行われてもよい。クラウドコンピューティングシステムは、照明、センサ、セキュリティデバイス、施錠、A/Vデバイス、HVACシステム、セキュリティシステム、およびブラインドなどの電動装置などの、環境内の制御可能なデバイスを制御するときに、これらの調整された存在および不在判定を用いてもよく、これらの制御可能なデバイスは、クラウドコンピューティングシステムから直接、または環境内に位置するハブコンピューティングデバイスなどのコンピューティングデバイスを介して制御されてもよい。クラウドコンピューティングシステムは、例えば、セキュリティシステムを警備解除モードから警備モードに変更する際の遅延を離脱レイテンシの量だけ低減し、人が環境を出て、環境を無人状態にした後、セキュリティシステムが警備解除モードにある時間の量を低減してもよい。例えば、セキュリティシステムを再警備状態にすることにおける遅延が10秒に設定され、離脱レイテンシが6秒であると判断される場合、クラウドコンピューティングシステムは、セキュリティシステムを再警備状態にすることにおける遅延を4秒に低減してもよい。この結果、セキュリティシステムは、人が環境を出て、環境を無人状態にしてから10秒後に再警備状態になってもよく、それは、WiFiアクセスポイントからその人のWiFiデバイスが切断されたことに基づいて、その人が環境において不在であると判断された4秒後であってもよい。同様に、進入路内の照明は、到着レイテンシに基づいて点灯されてもよい。例えば、5秒の到着レイテンシを使用して、ユーザについての存在判定を、ユーザのWiFiデバイスが環境内のWiFiアクセスポイントに接続することに基づいて調整することは、存在判定が到着レイテンシを使用して調整されなかった場合よりも5秒遅く照明が点灯される結果となってもよく、人が実際に環境に入る時間により近い時間に照明が点灯されることを可能にしてもよい。
【0033】
いくつかの実現例では、機械学習システムは、環境のためのハブコンピューティングデバイスの一部であってもよい。WiFiアクセスポイントからの報告ならびに環境内のデバイスおよびセンサからのデータは、ハブコンピューティングデバイスによって受信されてもよい。ハブコンピューティングデバイスは、報告からWiFiデバイスについての接続時間および切断時間を判断してもよく、接続時間および切断時間を、環境内の他のデバイスおよびセンサから受信したデータとともに、機械学習システムのための入力データとして使用してもよい。到着レイテンシの長さおよび離脱レイテンシの長さを示す機械学習システムからの出力は、ハブコンピューティングデバイスによって行われる存在および不在判定を調整するためにハブコンピューティングデバイスによって使用されてもよく、またはクラウドコンピューティングシステムに送信されてもよい。
【0034】
図1は、開示される主題の実現例による、WiFiデバイスについて到着レイテンシおよび離脱レイテンシを判断するのに好適な例示的なシステムを示す。クラウドコンピューティングシステム100は、報告プロセッサ110と、機械学習システム120と、ストレージ140とを含んでもよい。クラウドコンピューティングシステム100は、報告プロセッサ110、機械学習システム120、およびストレージ140を実現するための、例えば、
図7に説明されるようなコンピュータ20等の任意の好適なコンピューティングデバイスまたはシステムであってもよい。クラウドコンピューティングシステム100は、例えば、任意のエリアにわたって分散された任意の好適な態様で接続されたコンピューティングデバイスの任意の好適な組み合わせを使用してクラウドコンピューティングサービスを提供するサーバシステムであってもよい。報告プロセッサ110は、WiFiアクセスポイントから報告を受信し、報告を処理して接続/切断時間146を生成するためのハードウェアまたはソフトウェアの任意の好適な組合せであってもよい。機械学習システム120は、環境に対する到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを生成してもよい機械学習システムを実現するためのハードウェアおよびソフトウェアの任意の好適な組合せであってもよい。ストレージ140は、揮発性および不揮発性ストレージを実現するためのハードウェアおよびソフトウェアの任意の好適な組合せであってもよい。
【0035】
環境150は、WiFiアクセスポイント171,172,および173を含んでもよい。WiFiアクセスポイント171,172,および173は、WiFiを有するデバイスが接続してもよいWiFi LANを形成するための任意の好適なデバイスであってもよい。WiFiアクセスポイント171,172,および173は、メッシュネットワークを形成してもよく、またはハブおよびスポークのネットワークの一部としてもよく、たとえば、任意の好適な有線または無線接続を介してWiFiアクセスポイント171,172,および173のうちの1つ以上に接続された有線または無線モデムを介して、インターネットなどのWANに接続してもよい。
【0036】
WiFiデバイス191,192,および193は、たとえば、スマートフォン、タブレット、ウェアラブルデバイス、または他のポータブルWiFi装備デバイスであってもよい。WiFiデバイス191は、環境150内にあり、WiFiアクセスポイント171に接続されてもよい。WiFiデバイス192は、環境150の外部にあってもよく、環境150内の任意のWiFiアクセスポイントに接続されなくてもよい。WiFiデバイス193は、環境150内にあり、WiFiアクセスポイント173に接続されてもよい。WiFiデバイス191は、外部戸口などの、環境150への進入路に向かって移動してもよく、環境150を出て、環境150から離れるように移動し続けてもよい。たとえば、WiFiデバイス191は、環境150を離脱する人によって携行される電話であってもよい。WiFiデバイス191は、環境150を出た後、WiFiデバイス191がWiFiアクセスポイント171の範囲外に移動し、WiFiアクセスポイント171から切断する前に、ある時間量の間、WiFiアクセスポイント171に接続されたままであってもよい。WiFiデバイス192は、環境150への進入路に向かって移動してもよく、環境150に進入してもよい。たとえば、WiFiデバイス192は、環境150に到着する人によって携行されてもよい。WiFiデバイス192は、WiFiデバイス192が環境150に入る前のある時間にWiFiアクセスポイント171に接続してもよい。WiFiデバイス193は、WiFiアクセスポイント173から離れてWiFiアクセスポイント172に向かって移動してもよい。WiFiデバイス193がWiFiアクセスポイント172に向かって移動すると、WiFiデバイス193は、WiFiアクセスポイント173から切断し、WiFiアクセスポイント172に接続してもよい。WiFiアクセスポイント173は、WiFiデバイス193がWiFiアクセスポイント172に接続された後に、WiFiデバイス193の切断を検出してもよい。
【0037】
WiFiアクセスポイント171,172,および173は、クラウドコンピューティングシステム100に報告を送信してもよい。報告は、WiFiデバイス191,192,および193などのWiFiデバイスによるWiFiアクセスポイント171,172,および173への接続およびそれらからの切断についての接続時間ならびに切断時間を含んでもよい。報告は、任意の好適な時間もしくは間隔で、または任意の好適なイベントに基づいて、送信されてもよい。たとえば、WiFiアクセスポイント171,172,および173は、それらがWiFiデバイスの接続または切断を検出したときはいつでも、新たな報告を送信してもよく、または任意の好適な長さの間隔で、新たな報告を送信してもよい。報告は、たとえば、WiFiデバイスについて決定されたSHMACなどの、プライバシー保護識別子を使用して、WiFiデバイスを識別してもよい。たとえば、WiFiアクセスポイント171は、WiFiデバイス191が最初にWiFiアクセスポイント171に接続するときに、クラウドコンピューティングシステム100に報告を送信してもよい。報告は、WiFiデバイス191に対するSHMACと、WiFiアクセスポイント171のための識別子と、接続が報告されているという指示と、接続の時間とを含んでもよい。WiFiアクセスポイント171は、同様に、たとえば、WiFiデバイス191が環境150から離れてWiFiアクセスポイント171の範囲外に移動し、WiFiデバイス191がWiFiアクセスポイント171から切断された、と判断すると、報告を送信してもよい。WiFiアクセスポイント171は、接続時に環境150の外にあってもよいWiFiデバイス192の接続を報告する報告をクラウドコンピューティングシステム100に送信してもよい。WiFiアクセスポイント172は、WiFiデバイス193の接続を報告する報告をクラウドコンピューティングシステム100に送信してもよい。WiFiアクセスポイント173は、WiFiデバイス193の初期接続およびWiFiデバイス193の後続の切断を報告する報告をクラウドコンピューティングシステム100に送信してもよい。
【0038】
クラウドコンピューティングシステム100は、報告プロセッサ110を含んでもよい。報告プロセッサ110は、WiFiアクセスポイント171,172,および173などのWiFiアクセスポイントから報告を受信し、報告を処理して接続/切断時間146を生成するための、ハードウェアとソフトウェアとの任意の好適な組合せであってもよい。報告プロセッサ110は、WiFiデバイス191,192,および193の接続および切断に基づいて生成された、WiFiアクセスポイント171,172,および173からの報告を受信してもよい。報告内の接続時間および切断時間は、接続時間および切断時間がとられた報告を生成したWiFiアクセスポイントと、各接続時間および切断時間が報告されたWiFiデバイスとを識別するデータとともに、接続/切断時間146に追加されてもよい。WiFiデバイスは、たとえば、SHMACまたは任意の他のプライバシー保護識別子によって識別されてもよい。接続/切断時間146は、報告が報告プロセッサ110によって受信されるたびに更新されてもよい。報告プロセッサ110によって生成され更新された接続/切断時間146は、任意の好適なフォーマットでストレージ140に記憶されてもよく、機械学習入力データ145の一部として記憶されてもよい。
【0039】
クラウドコンピューティングシステム100は、機械学習システム120を含んでもよい。機械学習システム120は、到着レイテンシおよび離脱レイテンシを判断するために任意の好適なモデルを使用して任意の好適な機械学習システムを実現するためのハードウェアおよびソフトウェアの任意の好適な組み合わせであってもよい。機械学習システム120は、例えば、深層学習ニューラルネットワークなどの人工ニューラルネットワーク、ベイジアンネットワーク、サポートベクターマシン、任意のタイプの分類器、または任意の他の好適な統計的もしくはヒューリスティックな機械学習システムタイプであってもよい。機械学習システム120は、機械学習入力データ145を入力として受け取ってもよく、環境150に対する到着レイテンシおよび離脱レイテンシの長さを示すデータを出力してもよい。機械学習システム120は、すべてのWiFiデバイスのために使用されてもよい、環境150に対する単一の到着レイテンシおよび単一の離脱レイテンシを出力してもよく、WiFiデバイスごとの到着レイテンシおよび離脱レイテンシを出力してもよく、進入路ごとの到着レイテンシおよび離脱レイテンシを出力してもよく、またはWiFiデバイスおよび進入路ごとの到着レイテンシおよび離脱レイテンシを出力してもよい。機械学習システム120は、到着モデル142および離脱モデル143を含む機械学習入力モデル141を使用してもよい。到着モデル142は、機械学習入力データ145に基づいて到着レイテンシを判断するための、機械学習システム120に好適な任意のフォーマットにおける、機械学習モデルであってもよい。離脱モデル143は、機械学習入力データ145に基づいて離脱レイテンシを判断するための、機械学習システム120に好適な任意のフォーマットにおける、機械学習モデルであってもよい。機械学習システム120は、例えば、教師ありもしくは教師なしオンライン学習またはオフライン学習を含む、任意の好適なタイプの学習を使用して実現されてもよい。
【0040】
機械学習入力データ145は、任意の好適な態様で機械学習システム120に入力されてもよい。例えば、機械学習入力データ145のすべては、環境150内のWiFiアクセスポイントのすべて、例えば、WiFiアクセスポイント171,172,および173からの報告からのすべてのWiFiデバイス、例えば、WiFiデバイス191,192,および193についての接続/切断時間を含んで、同時に、機械学習システム120に入力されてもよい。機械学習入力データ145は、接続/切断時間146におけるデータのすべてと、センサおよびデバイスデータ147とを含み、到着モデル120が機械学習システム120によって使用されている間に、到着モデル142に入力されてもよい。機械学習システム120は、到着モデル142によって判断された、環境150に対する到着レイテンシの長さを示すデータを出力してもよい。機械学習入力データ145はまた、離脱モデル143が機械学習システム120によって使用されている間に離脱モデル143に入力されてもよい。機械学習システム120は、離脱モデル143によって判断された、環境150に対する離脱レイテンシの長さを示すデータを出力してもよい。環境150に対する到着レイテンシおよび離脱レイテンシは、たとえば、WiFiデバイスの接続および切断を用いて行われる、環境150におけるユーザについての存在および不在判定に対する調整を行う際に、環境150内のWiFiアクセスポイントに接続し、環境150内のWiFiアクセスポイントから切断する、すべてのWiFiデバイスとともに、使用されてもよい。
【0041】
機械学習入力データ145はまた、入力データのセットに分割されてもよく、入力データの各別個のセットは、別個のWiFiデバイスに関するデータを含む。入力データの第1のセットは、たとえば、WiFiデバイス191に関するデータを含んでもよく、入力データの第2のセットは、WiFiデバイス192に関するデータを含んでもよい。入力データの各セットは、機械学習システム120に別々に入力されてもよい。たとえば、WiFiデバイス191のためのデータを含む入力データの第1のセットは、機械学習システム120に入力されてもよい。機械学習システム120は、到着モデル142および離脱モデル143を用いて、環境150に関するWiFiデバイス191についての到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを出力してもよい。機械学習システム120は、入力データのセットが機械学習システム120に入力されるWiFiデバイス191,192,および193の各々について、環境150に関する到着レイテンシの長さおよび離脱レイテンシの長さを示すデータ、例えば、1対の到着レイテンシおよび離脱レイテンシを出力してもよい。到着レイテンシおよび離脱レイテンシは、WiFiデバイス単位で使用されてもよい。たとえば、WiFiデバイス191についての到着レイテンシおよび離脱レイテンシは、WiFiデバイス191による環境150内のWiFiアクセスポイントへの接続およびWiFiアクセスポイントからの切断を用いて行われる存在および不在判定を調整するときに、使用されてもよい。WiFiデバイス191について判断されるものとは別に判断される、WiFiデバイス192についての到着レイテンシおよび離脱レイテンシは、WiFiデバイス192による環境150内のWiFiアクセスポイントへの接続およびWiFiアクセスポイントからの切断を用いて行われる存在および不在判定を調整するときに、使用されてもよい。
【0042】
機械学習入力データ145はまた、入力データのセットに分割されてもよく、入力データの各別個のセットは、別個の進入路に関するデータを含む。環境150は、複数の進入路、例えば、外部ドアを有してもよく、センサおよびデバイスデータ147は、環境150内の種々のセンサおよびデバイスがどの進入路に最も近いかの指示を含んでもよい。例えば、センサおよびデバイスデータ147のいくつかは、環境150の第1の外部ドアの近くにあると示されるセンサおよびデバイスからであってもよく、センサおよびデバイスデータ147のいくつかは、環境150の第2の外部ドアの近くにあるセンサおよびデバイスからであってもよい。入力データの第1のセットは、例えば、第1の外部ドアに関するデータを含んでもよく、入力データの第2のセットは、第2の外部ドアに関するデータを含んでもよい。入力データの各セットは、機械学習システム120に別々に入力されてもよい。例えば、第1の外部ドアのデータを含む入力データの第1のセットは、機械学習システム120に入力されてもよい。機械学習システム120は、到着モデル142および離脱モデル143を用いて、環境150の第1外部ドアに対する到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを出力してもよい。機械学習システム120は、同様に、第2の外部ドアに関するデータを含む入力データのセットを使用して、環境150の第2の外部ドアに対する到着レイテンシおよび離脱レイテンシを出力してもよい。到着レイテンシおよび離脱レイテンシは、例えば、進入路に最も近いことがわかっているWiFiアクセスポイントに基づいて、進入路単位で使用されてもよい。例えば、WiFiアクセスポイント171は、第1の外部ドアに最も近くてもよく、第1の外部ドアに対する到着レイテンシおよび離脱レイテンシは、WiFiアクセスポイント171への接続およびWiFiアクセスポイント171からの切断を用いて行われる存在および不在判定を調整するときに、使用されてもよい。WiFiアクセスポイント172は、第2の外部ドアに最も近くてもよく、第2の外部ドアに対する到着レイテンシおよび離脱レイテンシは、WiFiアクセスポイント172への接続およびWiFiアクセスポイント172からの切断を用いて行われる存在および不在判定を調整するときに、使用されてもよい。
【0043】
環境150に対する到着レイテンシおよび離脱レイテンシについて判断される時間の長さは、例えば、機械学習入力データ145内の異なるタイプのデータ間の相関、ならびに環境150のWiFiアクセスポイントへの接続およびWiFiアクセスポイントからの切断に関するデータにおけるパターン、および環境150への人の到着または環境150からの人の離脱を示すセンサおよび他のデバイス159からの信号に基づいてもよい。例えば、機械学習入力データ145が、WiFiデバイスによるWiFiアクセスポイント171への多くの接続の3~7秒後に、進入路センサがドアの開放を検出し、ドアの近くのモーションセンサが動きを検出するデータを含む場合、機械学習システム120の到着モデル142は、3~7秒の範囲におけるどこか、例えば5秒に、環境150に対する到着レイテンシを判断してもよい。同様に、機械学習入力データ145が、進入路センサがドアの開放を検出し、ドアの近くのモーションセンサが動きを検出してから4~8秒後に、WiFiアクセスポイント172からの切断が発生するデータを含む場合、機械学習システム120の離脱モデル143は、4~8秒の範囲のどこか、例えば6秒に、環境150に対する離脱レイテンシを判断してもよい。
【0044】
機械学習入力データ145は、新たなデータが、例えば報告プロセッサ110から受信されるにつれて、継続的に更新されてもよい。更新された機械学習入力データ145は、機械学習システム120への入力として使用されてもよく、それは、新たな到着レイテンシおよび離脱レイテンシを生成してもよい。新たな到着レイテンシおよび離脱レイテンシは、任意の好適な時間および間隔で生成されてもよい。
【0045】
環境150に対する到着レイテンシおよび離脱レイテンシは、任意の好適な態様で使用されてもよい。例えば、到着レイテンシおよび離脱レイテンシは、WiFiデバイスの接続および切断に基づいて、クラウドコンピューティングシステム100によって環境150において人に対して行われる存在および不在判定を調整するために、使用されてもよい。例えば、環境150に対する到着レイテンシは、5秒であると判断されてもよい。WiFiデバイス191は、クラウドコンピューティングシステム100が、WiFiデバイス191のユーザが環境150に存在しないと判断した後、WiFiアクセスポイント171に接続することを検出されてもよい。クラウドコンピューティングシステム100は、WiFiデバイス191がWiFiアクセスポイント171に接続するのを検出するとWiFiデバイス191のユーザが存在するという存在および不在判定を更新する代わりに、到着レイテンシの長さ、例えば5秒の間待機してから、ユーザが存在するという存在および不在判定を更新してもよい。これは、WiFiデバイス191のユーザが環境150に入る時間に、より近いように、対応してもよい。WiFiアクセスポイント171からの切断に基づいてユーザが不在であるという判定は、遅延レイテンシを使用してクラウドコンピューティングシステム100によって遡及的に調整されてもよく、不在の総時間を遅延レイテンシ分だけ増大させる。これは、ユーザがいつ、およびどれくらいの間、環境150に不在であるかの、より正確な計算を提供してもよい。遅延レイテンシはまた、存在および不在判定に基づく、制御可能なデバイスによるアクションのタイミングを調整するために使用されてもよい。たとえば、WiFiデバイス191がWiFiアクセスポイント171に接続するときに人の到着の検出でセキュリティシステムが警備解除モードに入る上での遅延は、到着レイテンシ分だけ増加されてもよく、セキュリティシステムは、WiFiデバイス191を携行している人が環境150への進入路に到着するときにより近く警備解除する。WiFiデバイス191がWiFiアクセスポイント181から切断するときに人の離脱の検出に基づいてセキュリティシステムが警備モードに入る上での遅延は、離脱レイテンシ分だけ低減されてもよく、環境150のセキュリティシステムは、遅延レイテンシの長さにセキュリティシステムのための遅延時間の長さを加えた後に再警備状態となるのではなく、人がWiFiデバイス191を携行して環境150から離脱したときからカウントされた遅延時間後に再警備状態となる。
【0046】
ハブコンピューティングデバイス155は、信号受信機156を含んでもよい。ハブコンピューティングデバイス155は、信号受信機156を実現するために、例えば、
図7に説明されるようなコンピュータ20等の任意の好適なデバイスであってもよい。ハブコンピューティングデバイス155は、例えば、
図5に記載されるコントローラ73であってもよい。ハブコンピューティングデバイス155は、単一のコンピューティングデバイスであってもよく、または複数の接続されたコンピューティングデバイスを含んでもよく、たとえば、サーモスタット、他のセンサ、電話、タブレット、ラップトップ、デスクトップ、テレビ、腕時計、またはセキュリティシステムおよび自動化機能を含んでもよい、環境150のためにハブとして働き得る他のコンピューティングデバイスであってもよい。環境150は、例えば、住宅、オフィス、または他の環境であってもよい。環境150は、ハブコンピューティングデバイス155から制御されてもよい。ハブコンピューティングデバイス155は、環境全体にわたって様々なセンサに、およびHVACシステムなどの環境150内の様々なシステムに、接続されてもよい。ハブコンピューティングデバイス155は、ユーザがハブコンピューティングデバイス155と対話してもよい任意の好適なハードウェアおよびソフトウェアインターフェイスを含んでもよい。ハブコンピューティングデバイス155は、環境150内に位置してもよく、オフサイトに位置してもよく、または環境150およびオフサイトの両方に計算デバイスを含んでもよい。オンサイトハブコンピューティングデバイス155は、環境150全体にわたって、または、たとえばクラウドコンピューティングプラットフォームの一部としてなど、リモートに接続された他のコンピューティングデバイスからの計算リソースを使用してもよい。
【0047】
信号受信機156は、環境150内にあってもよくハブコンピューティングデバイス155に接続されてもよいセンサおよび他のデバイスによって生成された信号を受信するための、ハブコンピューティングデバイス155上のハードウェアまたはソフトウェアの任意の好適な組合せであってもよい。たとえば、信号受信機156は、環境150全体にわたって分散されてもよいセンサおよびデバイス159から信号を受信してもよい。センサおよびデバイス159は、例えば、モーションセンサ、進入路センサ、カメラ、マイクロフォン、光センサ、接触センサ、傾斜センサ、WiFiもしくはBluetooth(登録商標)検出器、照明、電化製品、A/V機器、HVACシステム、セキュリティシステム、または環境150内の任意の他の好適なセンサもしくはデバイスタイプであってもよい。センサおよびデバイス159から信号受信機156によって受信される信号は、例えば、環境150の外部ドアを監視する進入路センサによって検出される開閉イベント、環境150の外部ドアの周囲の領域を監視するモーションセンサによって検出される動き、照明、電化製品、およびA/V機器を含むデバイスが、ハブコンピューティングデバイス155またはクラウドコンピューティングシステム100による自動化された制御を通してではなく、ユーザからの入力に基づいて、いつオンまたはオフにされたかを示すデータ、ならびにユーザが環境150に存在しているか、不在であるか、入りつつあるか、または出つつあるかを示してもよい、任意の他の好適なデータを含んでもよい。信号は、例えば、センサからのアクティブ出力に基づいて、またはセンサからのアクティブ出力の欠如に基づいて、センサおよびデバイス159によって生成される信号および他のデータを含んでもよい。例えば、モーションセンサは、それが動きを検出したときにアクティブ出力を生成してもよく、それが動きを検出しないときにアクティブ出力の欠如を有してもよい。
【0048】
信号受信機156は、環境150のセンサおよびデバイス159から受信された信号をクラウドコンピューティングシステム100に送信してもよい。クラウドコンピューティングシステム100は、信号をセンサおよびデバイスデータ147としてストレージ140に記憶してもよい。センサおよびデバイスデータ147は、機械学習入力データ145の一部として記憶されてもよい。
【0049】
いくつかの実現例では、機械学習システム120は、ハブコンピューティングデバイス155上で実行されてもよい。機械学習入力データ145は、クラウドコンピューティングシステム100のストレージ140の代わりにハブコンピューティングデバイス155のストレージに記憶されてもよく、またはストレージ140は、ハブコンピューティングデバイス155にとってアクセス可能であってもよい。機械学習入力データ145がハブコンピューティングデバイス155に記憶される場合、ハブコンピューティングデバイス155は、環境150のWiFiアクセスポイントから報告を受信してもよく、接続/切断時間146を生成するために報告プロセッサ110と同様の報告プロセッサを含んでもよい。機械学習システム120によって出力される到着レイテンシの長さおよび離脱レイテンシの長さは、クラウドコンピューティングシステム100に送信されてもよく、またはハブコンピューティングデバイス400によって使用されてもよい。
【0050】
図2Aは、開示される主題のある実現例による、WiFiデバイスについて到着レイテンシおよび離脱レイテンシを判断するのに好適な例示的環境を示す。環境150は、例えば、環境150に出入りするために使用される外部ドアであってもよい進入路220を含んでもよい。進入路センサ225は、進入路220の開閉を監視するように位置決めされてもよい。モーションセンサ227は、進入路220の真後ろの環境150の廊下に生じる動きを検出するように位置決めされてもよい。WiFiアクセスポイント171,172,および173は、環境150の全体にわたって位置決めされてもよい。
【0051】
WiFiデバイス192を携行している人280が、環境150の外側から進入路220に接近してもよい。WiFiデバイス192は、人280が進入路220を通って環境150に入る前に、環境150の外側に位置してもよいポイント251においてWiFiアクセスポイント171に接続してもよい。WiFiアクセスポイント171は、接続の時間を含む、WiFiデバイス192の接続を示す報告を、クラウドコンピューティングシステム100に送信してもよい。報告プロセッサ110は、WiFiアクセスポイント171からの報告を処理してもよく、接続が検出された時間、WiFiアクセスポイント171の識別子、およびWiFiデバイス192の識別子を、機械学習入力データ145における接続/切断時間146に追加してもよい。
【0052】
人280がポイント252で進入路220を通って環境150に入ると、進入路センサ225は、進入路220の開放およびその後の閉鎖を示すセンサデータを生成してもよい。センサデータは、ハブコンピューティングデバイス155上の信号受信機156に送信されてもよく、次いで、ハブコンピューティングデバイスは、進入路センサ225からのセンサデータをハブコンピューティングデバイス100に送信してもよく、そこで、センサデータはセンサおよびデバイスデータ147の一部として記憶されてもよい。モーションセンサ227は、進入路220の後ろの廊下における人280の動きを検出してもよく、動きの検出を示すセンサデータをハブコンピューティングデバイス155上の信号受信機156に送信してもよい。ハブコンピューティングデバイス155は、モーションセンサ227からのセンサデータをハブコンピューティングデバイス100に送信してもよく、そこで、センサデータはセンサデータおよびデバイスデータ147の一部として機械学習入力データ145に記憶されてもよい。
【0053】
WiFiデバイス193を携行している人281が環境150にいてもよい。WiFiデバイス193は、最初にWiFiアクセスポイント173に接続されてもよい。人は、WiFiアクセスポイント172に向かって移動してもよい。WiFiデバイス193は、WiFiアクセスポイント172に接続し、WiFiアクセスポイント173から切断してもよい。WiFiアクセスポイント173は、切断がWiFiデバイス193上で発生し、WiFiデバイス193がWiFiアクセスポイント172に接続した後、しばらくしてWiFiデバイス193の切断を検出してもよい。WiFiアクセスポイント173は、WiFiアクセスポイント173が接続および切断を検出した時間を含む、WiFiデバイス193の初期接続および後の切断を報告する報告を、クラウドコンピューティングシステム100に送信してもよい。WiFiアクセスポイント172は、WiFiデバイス193の接続を報告する報告をクラウドコンピューティングシステム100に送信してもよい。ハブコンピューティングデバイス100の報告プロセッサ110は、報告を処理し、接続時間および切断時間、ならびに関連付けられた識別子を、機械学習入力データ145における接続/切断時間146に追加してもよい。
【0054】
機械学習入力データ145は、機械学習システム120に入力されてもよく、機械学習システム120は、環境150に対する到着レイテンシを判断するために到着モデル142を使用してもよい。機械学習システム120によって判断される、環境150に対する到着レイテンシは、たとえば、WiFiデバイス191などのWiFiデバイスが、たとえばポイント251などの環境150の外側のポイントでWiFiアクセスポイント171に接続するときと、人281など、WiFiデバイスを携行している人が、例えばポイント252において、進入路220を通って環境150進入するときとの間の時間の長さの推定値であってもよい。
【0055】
図2Bは、開示される主題のある実現例による、WiFiデバイスについて到着レイテンシおよび離脱レイテンシを判断するのに好適な例示的環境を示す。WiFiデバイス191を携行している人282は、環境150内から進入路220に接近してもよい。WiFiデバイス191は、WiFiアクセスポイント171に接続されてもよい。人は、ポイント254で進入路220を通って環境150を出て、環境150から離れる。WiFiデバイス191は、人282が、環境150の外側において進入路220からいくらかの距離に位置してもよいポイント253に到達するまで、WiFiアクセスポイント171に接続されたままであってもよく、その時点で、WiFiデバイス191は、WiFiアクセスポイント171から切断してもよい。WiFiアクセスポイント171は、WiFiデバイス191上で切断が発生した後、ある時間量で、WiFiデバイス191の切断を検出してもよく、切断の時間を含む、WiFiデバイス191の切断を示す報告を、クラウドコンピューティングシステム100に送信してもよい。報告プロセッサ110は、WiFiアクセスポイント171からの報告を処理し、切断が検出された時間、WiFiアクセスポイント171の識別子、およびWiFiデバイス191の識別子を、機械学習入力データ145における接続/切断時間146に追加してもよい。
【0056】
人282がポイント252で進入路220を通って環境150を離れるとき、進入路センサ225は、進入路220の開放およびその後の閉鎖を示すセンサデータを生成してもよい。センサデータは、ハブコンピューティングデバイス155上の信号受信機156に送信されてもよく、次いで、ハブコンピューティングデバイスは、進入路センサ225からのセンサデータをハブコンピューティングデバイス100に送信してもよく、そこで、センサデータはセンサおよびデバイスデータ147の一部として記憶されてもよい。モーションセンサ227は、進入路220が開かれる前に進入路220の背後の廊下において人282の動きを検出してもよく、動きの検出を示すセンサデータをハブコンピューティングデバイス155上の信号受信機156に送信してもよい。ハブコンピューティングデバイス155は、モーションセンサ227からのセンサデータをハブコンピューティングデバイス100に送信してもよく、そこで、センサデータは、センサデータおよびデバイスデータ147の一部として機械学習入力データ145に記憶されてもよい。
【0057】
WiFiアクセスポイント171からの報告ならびに進入路センサ225およびモーションセンサ227からのデータで更新された機械学習入力データ145は、機械学習システム120に入力されてもよく、機械学習システムは、離脱モデル143を使用して環境150に対する離脱レイテンシを判断してもよい。機械学習システム120によって判断される、環境150に対する離脱レイテンシは、たとえば、WiFiデバイス191などのWiFiデバイスを携行している人が環境150を出るときと、WiFiデバイスが環境150の外側のポイント、たとえばポイント253でWiFiアクセスポイント171から切断し、その切断がWiFiアクセスポイント171によって検出されるときとの間の時間の長さの推定値であってもよい。
【0058】
図3は、開示される主題の実現例による、WiFiデバイスについて到着レイテンシおよび離脱レイテンシを判断するのに好適なプロセスの一例を示す。300において、WiFiデバイスが環境においてWiFiアクセスポイントに接続し、WiFiアクセスポイントから切断する時間に関する報告が、WiFiアクセスポイントからクラウドコンピューティングシステムにおいて受信されてもよい。
【0059】
302において、WiFiの接続時間および切断時間に関するデータを報告から生成してもよい。
【0060】
304において、センサおよびデバイスデータが、クラウドコンピューティングシステムにおいて受信され、機械学習入力データとともに記憶されてもよい。
【0061】
306において、到着レイテンシおよび離脱レイテンシの長さを示すデータが、接続および切断時間についてのデータならびにセンサおよびデバイスデータを使用して、機械学習システムによって生成されてもよい。
【0062】
報告が、環境内のWiFiアクセスポイントから受信されてもよい。報告の各々は、WiFiアクセスポイントのうちの1つへの接続またはWiFiアクセスポイントのうちの1つからの切断の指示と、接続または切断の時間と、WiFiアクセスポイントのうちの1つの識別子とを含んでもよい。接続時間および切断時間を含むデータは、報告から生成されてもよい。センサおよびデバイスデータが、環境内のセンサまたはデバイスから受信されてもよい。環境に対する到着レイテンシの長さおよび離脱レイテンシの長さを示すデータが、機械学習システムによって生成されてもよく、接続時間および切断時間を含むデータ、ならびにセンサおよびデバイスデータは、機械学習システムに入力される。
【0063】
環境内のユーザについての存在の指示または不在の指示が、到着レイテンシまたは離脱レイテンシで調整されてもよい。
【0064】
環境内の制御可能なデバイスのための制御信号が、存在の指示および不在の指示のうちの少なくとも1つの調整後に、存在の指示または不在の指示に基づいて生成されてもよい。制御信号は、デバイスによって実現されるよう、デバイスに送信されてもよい。
【0065】
機械学習システムは、到着レイテンシを生成するために到着モデルを使用してもよい。機械学習システムは、離脱レイテンシを生成するために離脱モデルを使用してもよい。
【0066】
報告は、WiFiデバイスの識別子をさらに含んでもよい。WiFiデバイスの識別子は、ソルト化されハッシュ化されたメディアアクセス制御アドレス(SHMAC)を含んでもよい。
【0067】
環境内のセンサおよびデバイスは、モーションセンサまたは進入路センサを含んでもよい。
【0068】
報告は、WiFiデバイスの識別子を含んでもよい。到着レイテンシの長さおよび離脱レイテンシの長さを示すデータが、機械学習システムで、WiFiデバイスごとに、報告のうちの1つにおける識別子とともに生成されてもよく、接続時間および切断時間を含むデータならびにセンサおよびデバイスデータは、機械学習システムに入力される。
【0069】
システムは、環境内におけるWiFiアクセスポイントと、クラウドコンピューティングシステムのコンピューティングデバイスとを備え、コンピューティングデバイスは、環境内のWiFiアクセスポイントから報告を受信してもよく、報告の各々は、WiFiアクセスポイントのうちの1つへの接続またはWiFiアクセスポイントのうちの1つからの切断の指示と、接続または切断の時間と、WiFiアクセスポイントのうちの1つの識別子とを含み、コンピューティングデバイスはさらに、報告から、接続時間および切断時間を含むデータを生成し、環境内の1つ以上のセンサまたはデバイスから、センサおよびデバイスデータを受信してもよく、機械学習システムを用いて、環境に対する到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを生成してもよく、接続時間および切断時間を含むデータならびにセンサおよびデバイスデータは、機械学習システムに入力される。
【0070】
クラウドコンピューティングシステムのコンピューティングデバイスは、環境におけるユーザについての存在の指示または不在の指示を、到着レイテンシまたは離脱レイテンシで調整してもよい。
【0071】
クラウドコンピューティングシステムのコンピューティングデバイスは、コンピューティングデバイスが存在の指示または不在の指示を調整した後、存在の指示または不在の指示に基づいて、環境における制御可能なデバイスのために制御信号を生成してもよく、制御信号を、デバイスによって実現されるよう、デバイスに送信してもよい。
【0072】
機械学習システムは、到着レイテンシを生成するために到着モデルを使用してもよく、離脱レイテンシを生成するために離脱モデルを使用してもよい。
【0073】
報告は、WiFiデバイスの識別子を含んでもよく、WiFiデバイスの識別子は、ソルト化されハッシュ化されたメディアアクセス制御アドレス(SHMAC)を含む。
【0074】
環境内のセンサおよびデバイスは、モーションセンサまたは進入路センサを含んでもよい。
【0075】
報告は、WiFiデバイスの識別子を含んでもよい。クラウドコンピューティングシステムのコンピューティングデバイスは、機械学習システムを用いて、到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを、WiFiデバイスごとに、報告のうちの1つにおける識別子とともに生成してもよく、データは接続時間および切断時間を含み、センサおよびデバイスデータは、機械学習システムに入力される。
【0076】
開示される主題の実施形態によれば、環境内のWiFiアクセスポイントから報告を受信するための手段が含まれ、報告の各々は、WiFiアクセスポイントのうちの1つへの接続またはWiFiアクセスポイントからの切断の指示と、接続または切断の時間と、WiFiアクセスポイントのうちの1つの識別子とを含んでもよく、さらに、報告から接続時間および切断時間を含むデータを生成するための手段と、環境内の1つ以上のセンサまたはデバイスからセンサおよびデバイスデータを受信するための手段と、機械学習システムで、環境について、到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを生成するための手段とが含まれ、データは、接続時間および切断時間を含んでもよく、センサおよびデバイスデータは、機械学習システムに入力され、さらに、存在の指示および不在の指示のうちの少なくとも1つの調整後に、存在の指示または不在の指示に基づいて、環境内における制御可能なデバイスのために、制御信号を生成するための手段と、制御信号を、デバイスによって実現されるよう、デバイスに送信するための手段と、前記機械学習システムを用いて、到着レイテンシの長さおよび離脱レイテンシの長さを示すデータを、WiFiデバイスごとに、報告のうちの1つにおける識別子とともに生成するための手段とが含まれ、接続時間および切断時間を含むデータ、ならびにセンサおよびデバイスデータは、機械学習システムに入力される。
【0077】
ここに開示される実施形態は、1つ以上のセンサを使用してもよい。一般に、「センサ」は、その環境に関する情報を得ることができる任意のデバイスを指し得る。センサは、それらが収集する情報のタイプによって説明されてもよい。例えば、ここに開示されるセンサの種類は、運動、煙、一酸化炭素、近接度、温度、時間、物理的配向、加速度、場所などを含んでもよい。センサはまた、環境情報を取得する特定の物理的デバイスの観点から説明されてもよい。例えば、加速度計は、加速度情報を取得してもよく、したがって、一般的なモーションセンサおよび/または加速度センサとして使用されてもよい。センサはまた、センサを実現するために使用される特定のハードウェアコンポーネントの観点から説明されてもよい。例えば、温度センサは、サーミスタ、熱電対、抵抗温度検出器、集積回路温度検出器、またはそれらの組み合わせを含んでもよい。場合によっては、温度センサが、温度の変化および人または動物の存在を検出するために使用される場合等、センサは、複数のセンサタイプとして順次または同時に動作してもよい。
【0078】
概して、ここに開示される「センサ」は、位置センサが全地球測位センサ(GPS)と、ロケーション情報を取得するために既知のワイヤレスネットワークと相関させることができるデータを提供するワイヤレスネットワークセンサとの両方を含む場合など、複数のセンサまたはサブセンサを含んでもよい。単一のデバイスが動きセンサ、温度センサ、磁気センサ、および/または他のセンサを含む場合など、複数のセンサを単一の物理的ハウジング内に配置してもよい。そのようなハウジングも、センサまたはセンサデバイスと呼ばれてもよい。明確にするために、センサは、それらが実行する特定の機能および/または使用される特定の物理的ハードウェアに関して、そのような仕様がここに開示される実施形態の理解のために必要とされる場合に、説明される。
【0079】
センサは、環境についての情報を取得する特定の物理的センサに加えてハードウェアを含んでもよい。
図4は、ここに開示される例示的なセンサを示す。センサ60は、温度センサ、煙センサ、一酸化炭素センサ、モーションセンサ、加速度計、近接度センサ、受動赤外線(PIR)センサ、磁場センサ、無線周波数(RF)センサ、光センサ、湿度センサ、またはセンサ60が位置する環境に関する対応する種類の情報を取得する任意の他の好適な環境センサ等の環境センサ61を含んでもよい。プロセッサ64は、センサ61によって取得されたデータを受信および分析し、センサ60の他の構成要素の動作を制御し、センサと他のデバイスとの間の通信を処理してもよい。プロセッサ64は、コンピュータ可読メモリ65に記憶された命令を実行してもよい。センサ60内のメモリ65または別のメモリはまた、センサ61によって取得された環境データを記憶してもよい。Wi-Fiもしくは他のワイヤレスインターフェイス、イーサネット(登録商標)または他のローカルネットワークインターフェイスなどの通信インターフェイス63は、センサ60による他のデバイスとの通信を可能にしてもよい。ユーザインターフェイス(UI)62は、情報を提供し、および/またはセンサのユーザからの入力を受信してもよい。UI62は、例えば、センサ60によってイベントが検出されたときに可聴アラームを出力するスピーカを含んでもよい。代替的または追加的に、UI62は、イベントがセンサ60によって検出されたときに起動される照明を含んでもよい。ユーザインターフェイスは、限定出力ディスプレイ等の比較的最小限であってもよく、またはタッチスクリーン等のフルフィーチャインターフェイスであってもよい。センサ60内の構成要素は、当業者によって容易に理解されるように、内部バスまたは他の機構を介して、相互に情報を送信および受信してもよい。1つ以上の構成要素は、複数の構成要素が単一の集積回路上に実装される場合など、単一の物理的配置で実装されてもよい。ここに開示されるセンサは、他の構成要素を含んでもよく、および/または示される例示的構成要素のすべてを含まなくてもよい。
【0080】
ここに開示されるセンサは、従来の無線ネットワークなどの通信ネットワーク、ならびに/またはセンサが互いにおよび/もしくは専用の他のデバイスと通信してもよいセンサ別ネットワーク内で動作してもよい。いくつかの構成では、1つ以上のセンサは、1つ以上の他のセンサ、中央コントローラ、または1つ以上のセンサとネットワーク上で通信することができる任意の他のデバイスに情報を提供してもよい。中央コントローラは汎用であっても専用であってもよい。例えば、1つのタイプの中央コントローラは、ホームオートメーションネットワークであり、それは、住宅内の1つ以上のセンサからデータを収集および分析する。中央コントローラの別の例は、位置に対する様々なセキュリティ考慮事項に関係するため、主としてまたは専らセンサデータを収集および分析するセキュリティコントローラなど、機能のサブセット専用の専用コントローラである。中央コントローラは、ホームオートメーションおよび/またはセンサネットワークを含む住宅内に位置付けられる場合等、それが通信しセンサデータを取得するセンサに対して局所的に位置付けられてもよい。代替として、または加えて、ここに開示されるような中央コントローラは、中央コントローラが、複数の場所に位置してもよく相互に対してローカルまたは遠隔であってもよい複数のセンサと通信するクラウドベースのシステムとして実現される場合等、センサから遠隔であってもよい。
【0081】
図5は、任意の好適な有線および/または無線通信ネットワークを介して実現されてもよい、ここに開示されるようなセンサネットワークの例を示す。1つ以上のセンサ71、72は、Wi-Fiまたは他の好適なネットワークなどのローカルネットワーク70を介して、互いにおよび/またはコントローラ73と通信してもよい。コントローラは、汎用または専用コンピュータであってもよい。コントローラは、例えば、センサ71、72から受信した環境情報を受信、集約、および/または分析してもよい。センサ71、72およびコントローラ73は、単一の住居、オフィス空間、建物、部屋などの中など、互いにローカルに配置されてもよく、またはコントローラ73がクラウドベースの報告および/もしくは分析システムなどの遠隔システム74に実現される場合など、互いから遠隔にあってもよい。代替として、または加えて、センサは、遠隔システム74と直接通信してもよい。遠隔システム74は、例えば、複数の場所からのデータを集約し、命令、ソフトウェア更新、および/または集約されたデータをコントローラ73および/またはセンサ71、72に提供してもよい。
【0082】
例えば、
図1~
図10に関してさらに詳細に示され、説明されるように、ハブコンピューティングデバイス155は、コントローラ73の例であってもよく、センサ210は、センサ71および72の例であってもよい。
【0083】
開示される主題のセキュリティシステムおよびスマートホーム環境のデバイスは、デバイスが互いに通信するためのネットワークアーキテクチャおよび/またはプロトコルを提供する、Thread等のメッシュ型ネットワークであってもよい、ネットワーク70を介して通信可能に接続されてもよい。典型的なホームネットワークは、単一のデバイス通信ポイントを有してもよい。そのようなネットワークは、単一のデバイス通信ポイントが正常に動作しないとき、ネットワークのデバイスが互いに通信できないように、故障する傾向がある場合がある。開示される主題のセキュリティシステムにおいて使用されてもよいThreadのメッシュ型ネットワークは、単一のデバイスを使用する通信を回避してもよい。すなわち、ネットワーク70などのメッシュ型ネットワークでは、ネットワークに結合されたデバイスが互いに通信するのを妨げるよう故障する可能性がある単一の通信ポイントがない。
【0084】
ネットワーク70に通信可能に結合されるデバイスによって使用される通信およびネットワークプロトコルは、安全な通信を提供し、使用される電力の量を最小限にし(すなわち、電力効率的であり)、住宅内の多種多様なデバイスおよび/または製品、例えば、電化製品、アクセス制御、環境制御、エネルギー管理、照明、安全、およびセキュリティをサポートしてもよい。例えば、ネットワークおよびそれに接続されるデバイスによってサポートされるプロトコルは、IPv6をネイティブに担持してもよいオープンプロトコルを有してもよい。
【0085】
ネットワーク70などのThreadネットワークは、セットアップが容易であり、使用が安全であり得る。ネットワーク70は、認証方式、AES(高度暗号化標準((Advanced Encryption Standard))暗号化などを使用して、他の無線プロトコルに存在するセキュリティホールを低減および/または最小化してもよい。Threadネットワークは、デバイス(例えば、2、5、10、20、50、100、150、200またはそれ以上のデバイス)を、(たとえば、ネットワークの1つ以上のノードが正常に動作していないときにデバイス間の通信を提供するように)複数のホップをサポートする単一のネットワークに接続するように、スケーラブルであってもよい。Threadネットワークであってもよいネットワーク70は、ネットワークおよびアプリケーション層においてセキュリティを提供してもよい。ネットワーク70に通信可能に結合された1つ以上のデバイス(例えば、コントローラ73、遠隔システム74など)は、許可されたデバイスのみがネットワーク70に参加できることを保証するよう、製品インストールコードを記憶してもよい。ネットワーク70の1つ以上の動作および通信は、公開鍵暗号法などの暗号法を使用してもよい。
【0086】
ここに開示されるスマートホーム環境および/またはセキュリティシステムのネットワーク70に通信可能に結合されるデバイスは、低電力消費および/または低減された電力消費であってもよい。すなわち、デバイスは、互いに効率的に通信し、ユーザに機能性を提供するように動作し、デバイスは、従来のデバイスよりも低減されたバッテリサイズおよび増加したバッテリ寿命を有し得る。デバイスは、バッテリ寿命を増加させ、電力要件を低減させるよう、スリープモードを含んでもよい。たとえば、ネットワーク70に結合されたデバイス間の通信は、電力効率の良いIEEE802.15.4 MAC/PHYプロトコルを使用してもよい。開示される主題の実施形態では、ネットワーク70上のデバイス間のショートメッセージングは、帯域幅および電力を節約し得る。ネットワーク70のルーティングプロトコルは、ネットワークオーバーヘッドおよびレイテンシを低減し得る。スマートホーム環境に結合されたデバイスの通信インターフェイスは、低電力で、セキュアで、安定した、および/またはスケーラブルな通信ネットワーク70をサポートするよう、ワイヤレスシステムオンチップを含んでもよい。
【0087】
図5に示されるセンサネットワークは、スマートホーム環境の例であってもよい。図示されるスマートホーム環境は、環境、家屋、オフィスビル、ガレージ、移動式住宅などを含んでもよい。センサ71、72、コントローラ73、およびネットワーク70などの、スマート環境のデバイスは、アパート、コンドミニアム、またはオフィス空間などの環境全体を含まないスマートホーム環境に統合されてもよい。
【0088】
スマート環境は、環境の外部のデバイスを制御し、および/またはそのようなデバイスに結合されることができる。例えば、センサ71、72のうちの1つ以上は、環境の外部において、例えば、その環境から1つ以上の距離のところに位置してもよい(例えば、センサ71,72は、環境の外部において、その環境が位置する土地の周囲に沿った点に配置されてもよい。)。スマート環境内のデバイスのうちの1つ以上は、物理的にその環境内にある必要はない。例えば、センサ71,72から入力を受信してもよいコントローラ73は、環境の外に位置してもよい。
【0089】
スマートホーム環境の環境は、壁を介して互いに少なくとも部分的に分離された複数の部屋を含んでもよい。壁は、内壁または外壁を含むことができる。各部屋はさらに、床および天井を含むことができる。センサ71、72などの、スマートホーム環境のデバイスは、環境の壁、床、もしくは天井に取り付けられ、統合され、および/または支持されてもよい。
【0090】
図5に示されるセンサネットワークを含むスマートホーム環境は、ホームセキュリティおよびスマートホーム機能を提供するために、互いにおよび/または中央サーバもしくはクラウドコンピューティングシステム(例えば、コントローラ73および/または遠隔システム74)とシームレスに統合することができる、インテリジェントな、マルチセンシングの、ネットワーク接続されたデバイスを含む、複数のデバイスを含んでもよい。スマートホーム環境は、1つ以上のインテリジェントな、マルチセンシングの、ネットワーク接続されたサーモスタット(たとえば、「スマートサーモスタット」)と、1つ以上のインテリジェントな、ネットワーク接続された、マルチセンシングのハザード検出ユニット(たとえば、「スマートハザード検出器」)と、1つ以上のインテリジェントな、マルチセンシングの、ネットワーク接続された進入路インターフェイスデバイス(例えば、「スマートドアベル」)とを含んでもよい。スマートハザード検出器、スマートサーモスタット、およびスマートドアベルは、
図5に示されるセンサ71、72であってもよい。
【0091】
開示される主題の実施形態によれば、スマートサーモスタットは、周囲の気候特性(例えば、温度および/または湿度)を検出してもよく、それに応じて環境のHVAC(暖房、換気、および空調)システムを制御してもよい。例えば、周囲の気候特性は、
図5に示されるセンサ71、72によって検出されてもよく、コントローラ73は、環境のHVACシステム(図示せず)を制御してもよい。
【0092】
スマートハザード検出器は、危険物質または危険物質を示す物質(例えば、煙、火、または一酸化炭素)の存在を検出してもよい。例えば、煙、火、および/または一酸化炭素は、
図5に示されるセンサ71、72によって検出されてもよく、コントローラ73は、スマートホーム環境のユーザに視覚および/または可聴アラームを提供するようにアラームシステムを制御してもよい。
【0093】
スマートドアベルは、ドアベル機能を制御し、ある場所(例えば、環境への外側ドア)への人の接近またはそこからの離脱を検出し、例えば、コントローラ73に結合されたスピーカおよび/またはディスプレイによって出力される可聴および/または視覚メッセージを介して、人の環境への接近またはそこからの離脱を告知してもよい。
【0094】
いくつかの実施形態では、
図5に示すセンサネットワークのスマートホーム環境は、1つ以上のインテリジェントな、マルチセンシングの、ネットワーク接続された壁スイッチ(例えば、「スマート壁スイッチ」)、1つ以上のインテリジェントな、マルチセンシングの、ネットワーク接続された壁プラグインターフェイス(例えば、「スマート壁プラグ」)を含んでもよい。スマート壁スイッチおよび/またはスマート壁プラグは、
図5に示されるセンサ71、72であってもよい。スマート壁スイッチは、周囲の照明条件を検出し、1つ以上の照明の出力および/または減光状態を制御してもよい。例えば、センサ71、72は、周囲照明条件を検出してもよく、コントローラ73は、スマートホーム環境内の1つ以上の照明(図示せず)への電力を制御してもよい。スマート壁スイッチはまた、天井ファンなどのファンの出力状態または速度を制御してもよい。例えば、センサ72、72は、ファンの出力および/または速度を検出してもよく、コントローラ73は、それに応じてファンの出力および/または速度を調整してもよい。スマート壁プラグは、1つ以上の壁プラグへの電力の供給を制御して(例えば、誰もスマートホーム環境内にいないことが検出される場合、電力がプラグに供給されないようにして)もよい。例えば、スマート壁プラグの1つは、ランプ(図示せず)への電力の供給を制御してもよい。
【0095】
開示される主題の実施形態では、スマートホーム環境は、1つ以上のインテリジェントな、マルチセンシングの、ネットワーク接続された進入検出器(たとえば、「スマート進入検出器」)を含んでもよい。
図5に示されるセンサ71、72は、スマート進入検出器であってもよい。図示のスマート進入検出器(例えば、センサ71、72)は、スマートホーム環境の1つ以上の窓、ドア、および他の進入ポイントに配置されて、窓、ドア、または他の進入ポイントがいつ開かれ、破壊され、侵入され、および/またはセキュリティ侵害されたかを検出してもよい。スマート進入検出器は、窓またはドアが開かれ、閉じられ、侵入され、および/またはセキュリティ侵害されたときに、コントローラ73および/または遠隔システム74に提供されるべき対応する信号を生成してもよい。開示される主題のいくつかの実施形態では、コントローラ73とともに含まれてもよい、および/またはネットワーク70に結合されてもよいアラームシステムは、すべてのドア、窓、進入路などが閉鎖されていること、および/またはすべてのスマート進入検出器が起動準備されていることをすべてのスマート進入検出器(例えば、センサ71、72)が示すのでなければ起動準備しない場合がある。
【0096】
図5に示すセンサネットワークのスマートホーム環境は、1つ以上のインテリジェントな、マルチセンシングの、ネットワーク接続されたドアノブ(たとえば、「スマートドアノブ」)を含むことができる。例えば、センサ71、72は、ドアのドアノブ(例えば、スマートホーム環境の環境の外部ドア上に位置するドアノブ122)に結合されてもよい。しかしながら、スマートドアノブは、スマートホーム環境の外部および/または内部ドア上に提供され得ることを理解されたい。
【0097】
スマートサーモスタット、スマートハザード検出器、スマートドアベル、スマート壁スイッチ、スマート壁プラグ、スマート進入検出器、スマートドアノブ、キーパッド、およびスマートホーム環境の他のデバイスは、(例えば、
図5のセンサ71、72として図示されるように、スマート環境のためのセキュリティ、安全、および/または快適性を提供するように、ネットワーク70を介して相互に、ならびにコントローラ73および/または遠隔システム74に通信可能に結合されることができる)。
【0098】
ユーザは、ネットワーク接続されたスマートデバイスのうちの1つ以上と(たとえば、ネットワーク70を介して)対話することができる。たとえば、ユーザは、コンピュータ(例えば、デスクトップコンピュータ、ラップトップコンピュータ、タブレット等)または他のポータブル電子デバイス(例えば、スマートフォン、タブレット、キーFOB等)を使用して、ネットワーク接続されたスマートデバイスのうちの1つ以上と通信することができる。ウェブページまたはアプリケーションは、ユーザから通信を受信し、通信に基づいて、ネットワーク接続されたスマートデバイスのうちの1つ以上を制御し、および/またはデバイスの動作に関する情報をユーザに提示するように、構成され得る。例えば、ユーザは、住宅のセキュリティシステムを見ることができ、それを起動準備または起動準備解除することができる。
【0099】
1人または複数のユーザは、ネットワーク接続されたコンピュータまたはポータブル電子デバイスを使用して、スマートホーム環境において、ネットワーク接続されたスマートデバイスのうちの1つ以上を制御することができる。いくつかの例では、ユーザ(例えば、住宅に住む個人)の何人かまたはすべてが、彼らのモバイルデバイスおよび/またはキーFOBをスマートホーム環境に(たとえば、コントローラ73に)登録することができる。そのような登録を、中央サーバ(例えば、コントローラ73および/または遠隔システム74)において行って、ユーザおよび/または電子デバイスをスマートホーム環境に関連付けられているものとして認証し、ユーザに、電子デバイスを使用してスマートホーム環境のネットワーク接続されたスマートデバイスおよびセキュリティシステムを制御する許可を与えることができる。ユーザは、自身の登録された電子デバイスを使用して、居住者が仕事中または休暇中であるときなどに、スマートホーム環境のネットワーク接続されたスマートデバイスおよびセキュリティシステムを遠隔制御することができる。ユーザはまた、ユーザがスマートホーム環境内にいるときに、自身の登録された電子デバイスを使用して、ネットワーク接続されたスマートデバイスを制御してもよい。
【0100】
代替として、または電子デバイスを登録することに加えて、スマートホーム環境は、どの個人がその住宅に住み、したがって、ユーザであるか、およびどの電子デバイスがそれらの個人に関連付けられているかについての推論を行ってもよい。したがって、スマートホーム環境は、誰がユーザ(例えば、許可されたユーザ)であり、それらの個人に関連付けられた電子デバイスがスマートホーム環境のネットワーク接続されたスマートデバイス(例えば、ネットワーク70に通信可能に結合されたデバイス)を制御することを許可するかを「学習する」。様々なタイプの通知および他の情報が、1つ以上のユーザ電子デバイスに送信されるメッセージを介してユーザに提供されてもよい。たとえば、メッセージは、電子メール、ショートメッセージサービス(SMS)、マルチメディアメッセージングサービス(MMS)、非環境補足サービスデータ(USSD)、ならびに任意の他のタイプのメッセージングサービスおよび/または通信プロトコルを介して送信され得る。
【0101】
スマートホーム環境は、スマートホーム環境の外であるが住宅の近接した地理的範囲内にあるデバイスとの通信を含んでもよい。例えば、スマートホーム環境は、人々、動物、および任意の他の物体の検出された動きならびに/または存在に関して、通信ネットワーク70を介してまたは中央サーバもしくはクラウドコンピューティングシステム(例えば、コントローラ73および/または遠隔システム74)に直接情報を通信し、それに応じて照明を制御するためのコマンドを受信する屋外照明システム(図示せず)を含んでもよい。
【0102】
コントローラ73および/または遠隔システム74は、スマートホーム環境における他のネットワーク接続されたスマートデバイスから受信した情報に基づいて、屋外照明システムを制御することができる。例えば、屋外に位置するスマート壁プラグなどのネットワーク接続されたスマートデバイスのいずれかが夜間に動きを検出する場合、コントローラ73および/または遠隔システム74は、スマートホーム環境において屋外照明システムおよび/または他の照明を作動させることができる。
【0103】
いくつかの構成では、遠隔システム74は、複数の建物、複数の住居建物、近所内の個々の住居、複数の近所といった、複数の場所からのデータを集約してもよい。概して、
図4に関して先に説明されたような複数のセンサ/コントローラシステム81、82は、遠隔システム74に情報を提供してもよい。システム81、82は、前述のように1つ以上のセンサから直接データを提供してもよく、またはデータは、遠隔システム74と次いで通信するコントローラ73等のローカルコントローラによって集約および/または分析されてもよい。遠隔システムは、複数の場所からのデータを集約および分析してもよく、集約結果を各場所に提供してもよい。例えば、遠隔システム74は、センサデータにおける共通センサデータまたは傾向について、より大きい領域を調べ、識別された共通性または環境データ傾向に関する情報を各ローカルシステム81、82に提供してもよい。
【0104】
ここで論じられるシステムがユーザに関する個人情報を収集するか、または個人情報を利用してもよい状況では、ユーザは、プログラムまたは特徴がユーザ情報(例えば、ユーザのソーシャルネットワーク、ソーシャルアクションもしくはアクティビティ、職業、ユーザの好み、またはユーザの現在位置に関する情報)を収集するかどうかを制御するか、またはユーザにより関連し得るコンテンツをコンテンツサーバから受信するかどうか、および/もしくはどのように受信するかを制御する機会を提供されてもよい。さらに、特定のデータは、個人的に識別可能な情報が取り除かれるように、記憶または使用前に、1つ以上の方法で扱われてもよい。したがって、ユーザは、ユーザについての情報がどのように収集され、ここに開示されるシステムによって使用されるかを制御してもよい。
【0105】
本開示の主題の実施形態は、様々なコンピューティングデバイスにおいて実現され、様々なコンピューティングデバイスとともに使用されてもよい。
図7は、本開示の主題の実施形態を実施するのに好適な例示的なコンピューティングデバイス20である。例えば、デバイス20は、コントローラ、ここに開示されるようなセンサを含むデバイス等を実現するために使用されてもよい。代替として、または加えて、デバイス20は、例えば、デスクトップもしくはラップトップコンピュータ、またはスマートフォン、タブレット等のモバイルコンピューティングデバイスであってもよい。デバイス20は、中央プロセッサ24、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、フラッシュRAMなどのメモリ27、ディスプレイスクリーンなどのユーザディスプレイ22、1つ以上のコントローラおよびキーボード、マウス、タッチスクリーンなどの関連付けられるユーザ入力デバイスを含んでもよいユーザ入力インターフェイス26、ハードドライブ、フラッシュストレージなどの固定ストレージ23、光ディスク、フラッシュドライブなどを制御および受けるように動作可能なリムーバブルメディアコンポーネント25、ならびに好適なネットワーク接続を介して1つ以上の遠隔デバイスと通信するように動作可能であるネットワークインターフェイス29などの、コンピュータ20の主要構成要素を相互接続するバス21を含んでもよい。
【0106】
バス21は、前述のように、中央プロセッサ24と、RAM、ROM、および他のメモリを含んでもよい、1つ以上のメモリ構成要素25、27との間のデータ通信を可能にする。コンピュータ20に常駐するアプリケーションは、一般に、コンピュータ可読記憶媒体に記憶され、コンピュータ可読記憶媒体を介してアクセスされる。
【0107】
固定ストレージ23は、コンピュータ20と一体であってもよく、または別個であり、他のインターフェイスを介してアクセスされてもよい。ネットワークインターフェイス29は、有線または無線接続を介して遠隔サーバへの直接接続を提供してもよい。ネットワークインターフェイス29は、デジタルセルラー電話、WiFi、Bluetooth(登録商標)、近距離場等を含む、当業者によって容易に理解されるであろう任意の好適な技術およびプロトコルを用いて、そのような接続を提供してもよい。例えば、ネットワークインターフェイス29は、デバイスが、ここでさらに詳細に説明されるように、1つ以上のローカル、広域、または他の通信ネットワークを介して、他のコンピュータと通信することを可能にしてもよい。
【0108】
図6は、開示される主題の一実施形態による例示的なネットワーク構成を示す。ローカルコンピュータ、スマートフォン、タブレットコンピューティングデバイスなどの1つ以上のクライアント10、11は、1つ以上のネットワーク7を介して他のデバイスに接続してもよい。ネットワークは、ローカルネットワーク、広域ネットワーク、インターネット、または任意の他の好適な通信ネットワークであってもよく、有線および/または無線ネットワークを含む任意の好適なプラットフォーム上で実現されてもよい。クライアントは、1つ以上のサーバ13および/またはデータベース15と通信してもよい。デバイスは、クライアント10、11によって直接アクセス可能であってもよく、またはサーバ13がデータベース15に記憶されたリソースへのアクセスを提供する場合など、1つ以上の他のデバイスが中間アクセスを提供してもよい。クライアント10、11はまた、遠隔プラットフォーム17、またはクラウドコンピューティング構成およびサービス等の、遠隔プラットフォーム17によって提供されるサービスにアクセスしてもよい。遠隔プラットフォーム17は、1つ以上のサーバ13および/またはデータベース15を含んでもよい。1つ以上の処理ユニット14は、たとえば、クラウドベースのコンピューティングシステム、検索エンジン、コンテンツ配信システムなどの分散システムの一部であってもよく、それも、データベース15および/またはユーザインターフェイス13を含むかまたはそれ(ら)と通信してもよい。いくつかの構成では、分析システム5は、記憶または取得されたデータが、処理ユニット14、データベース15、および/またはユーザインターフェイス13に送達される前に、分析システム5によって前処理される場合など、バックエンド処理を提供してもよい。
【0109】
本開示主題の種々の実施形態は、コンピュータにより実現されるプロセスおよびそれらのプロセスを実践するための装置の形態を含んでもよく、またはその形態で具現化されてもよい。実施形態はまた、ハードドライブ、USB(ユニバーサルシリアルバス)ドライブ、または任意の他の機械可読記憶媒体などの非一時的および/または有形媒体において具現化される命令を含むコンピュータプログラムコードを有するコンピュータプログラム製品の形態で具現化され、コンピュータプログラムコードがコンピュータにロードされ、コンピュータによって実行されると、コンピュータが、開示される主題の実施形態を実施するための装置になるようにしてもよい。汎用マイクロプロセッサ上で実現されるとき、コンピュータプログラムコードは、命令によって指定される特定の論理回路の作成などによってマイクロプロセッサを専用デバイスになるように構成してもよい。
【0110】
実施形態は、開示される主題の実施形態による技術のすべてまたは一部をハードウェアおよび/もしくはファームウェアで具現化する汎用マイクロプロセッサならびに/または特定用途向け集積回路(ASIC)などのプロセッサを含んでもよいハードウェアを用いて実現されてもよい。プロセッサは、RAM、ROM、フラッシュメモリ、ハードディスク、または電子情報を記憶することができる任意の他のデバイスなどのメモリに結合されてもよい。メモリは、開示された主題の実施形態による技術を実行するためにプロセッサによって実行されるように適合された命令を記憶してもよい。
【0111】
前述の記載は、説明の目的のため、特定の実施形態を参照して記載されている。しかしながら、上記の例示的な考察は、網羅的であること、または開示される主題の実施形態を開示される厳密な形態に限定することを意図するものではない。上記の教示に鑑み、多くの修正および変形が可能である。実施形態は、開示される主題の実施形態の原理およびそれらの実際の適用例を説明し、それによって、他の当業者が、それらの実施形態および企図される特定の用途に適し得るような種々の修正を伴う種々の実施形態を利用することを可能にするために、選択および説明された。