(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-11
(45)【発行日】2024-07-22
(54)【発明の名称】熱交換器およびその製造方法
(51)【国際特許分類】
B23K 1/00 20060101AFI20240712BHJP
F28F 21/08 20060101ALI20240712BHJP
F28F 3/08 20060101ALI20240712BHJP
F28D 9/02 20060101ALI20240712BHJP
B21D 53/04 20060101ALI20240712BHJP
【FI】
B23K1/00 330H
F28F21/08 A
F28F3/08 301Z
F28D9/02
B21D53/04 Z
B23K1/00 S
(21)【出願番号】P 2020151435
(22)【出願日】2020-09-09
【審査請求日】2023-07-11
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】100106518
【氏名又は名称】松谷 道子
(74)【代理人】
【識別番号】100132241
【氏名又は名称】岡部 博史
(72)【発明者】
【氏名】李 泰行
(72)【発明者】
【氏名】中島 孝仁
(72)【発明者】
【氏名】名越 健二
【審査官】山下 浩平
(56)【参考文献】
【文献】特開2016-205755(JP,A)
【文献】特開2020-101329(JP,A)
【文献】特開2002-130977(JP,A)
【文献】特開2007-278568(JP,A)
【文献】特開2003-293063(JP,A)
【文献】特開2009-161827(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 1/00 - 3/08、
31/02、33/00
B21D 47/00 - 55/00
F28D 1/00 - 13/00
F28F 3/00 - 7/02、99/00
F28F 21/00 - 27/02
(57)【特許請求の範囲】
【請求項1】
冷媒流路を有するプレートフィンが隙間を有して積層されたプレートフィン積層体を備えた熱交換器の製造方法であって、
表面にロウ材層を含み、流路形成領域を有する複数のブレージングシートを選定し、
前記プレートフィンは、
前記選定された複数のブレージングシートを重ねてロウ付けして、対向する流路形成領域により冷媒流路が形成され、
重ねた前記ブレージングシートにおいて、ロウ付け前の未接合状態における流路形成領域により形成される未接合流路断面積に対するロウ付け後の接合状態の流路断面積の割合を示す流路断面比率が
、45.3%≦R≦81.8%、の範囲内となるように製造され
、
前記ブレージングシートの選定は、前記ブレージングシートにおけるロウ材層の厚みとロウ材層のシリコン濃度との相関関係を示す材料の散布図において、略平行四辺形で示す選択領域内のロウ材層の厚みとロウ材層のシリコン濃度の関係を満たす前記ブレージングシートを選定することにより行われ、
前記選択領域は、前記ロウ材層のシリコン濃度(wt%)をx、前記ロウ材層の厚み(mm)をyとしたときに、数1、数2、数3、および数4の不等式により囲まれた領域である熱交換器の製造方法。
【数1】
【数2】
【数3】
【数4】
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、熱交換器に関し、特に、冷媒が流れる流路を有する板状のプレートフィンを積層して構成された積層型プレートフィンの熱交換器およびその製造方法に関する。
【背景技術】
【0002】
異なる熱エネルギーを有する流体間において、熱エネルギーを交換するために使用される熱交換器は、多くの製品に用いられており、特に積層型プレートフィンの熱交換器は、例えば、家庭用および車両用の空気調和機、コンピュータ、および各種電気機器に用いられる。
【0003】
積層型プレートフィンの熱交換器は、板状のプレートフィンに形成された流路を流れる流体(冷媒)と、積層されたプレートフィンの間を流れる流体(空気)との間で熱交換を行う形式である。
【0004】
上記のような積層型プレートフィンの熱交換器の分野においては、小型化および軽量化を図り、信頼性の高い製品の提供を目的として、各種の構成が提案されている(例えば、特許文献1-4参照)。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2012-112562号公報
【文献】特開平09-001385号公報
【文献】特許第3283471号公報
【文献】特許第5714387号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
積層型プレートフィンの熱交換器の分野においては、軽量化、小型化および熱交換の効率化を図る目的として、プレートフィンを熱伝導率の高い材料で厚みを薄く構成し、プレートフィンに形成された流路に従来の熱交換器に比べて高い圧力の流体(冷媒)を流すことが検討されている。
【0007】
熱交換器において、流路に対して高圧の冷媒を流すためには、冷媒が安定して流れるように、冷媒の流量と流速にバラツキの生じることがない所望の流路断面を有する構成とする必要がある。特に、複数のプレートフィンを積層して構成する積層型プレートフィンの熱交換器においては、複数のプレートフィンをロウ付けにより接合して積層型プレートフィンを形成する構成であり、プレートフィンに形成される冷媒の流れる流路が、所望の断面形状を有して、安定して確実に形成されることは重要な課題であった。
【0008】
本開示は、軽量化、小型化および効率化を達成すると共に、熱交換器における冷媒流路が所望の断面形状および所望の耐圧性能を確実に有して、信頼性の高い熱交換器の提供を目的とする。
【0009】
本開示は、上記の課題を解決するものであり、複数のプレートフィンをロウ付けにより接合して構成される積層型プレートフィンの熱交換器において、小型化および効率化を達成すると共に、所望の断面形状および所望の耐圧性能を有する冷媒流路を備える信頼性の高い機器およびその製造方法の提供を目的とするものである。
【課題を解決するための手段】
【0010】
上記目的を達成するために、本開示の一態様の熱交換器の製造方法は、
冷媒流路を有するプレートフィンが隙間を有して積層されたプレートフィン積層体を備えた熱交換器の製造方法であって、
前記プレートフィンは、表面にロウ材層を含み、流路形成領域を有するブレージングシートを重ねてロウ付けして、対向する流路形成領域により冷媒流路が形成され、
重ねた前記ブレージングシートにおいて、ロウ付け前の未接合状態における流路形成領域により形成される未接合流路断面積に対するロウ付け後の接合状態の流路断面積の割合を示す流路断面比率が所定の範囲内となるように製造される。
【0011】
また、本開示の一態様の熱交換器は、
冷媒流路を有するプレートフィンが隙間を有して積層されたプレートフィン積層体を備えた熱交換器であって、
前記プレートフィンは、表面にロウ材層を含み、流路形成領域を有するブレージングシートを重ねてロウ付けして形成された冷媒流路を備え、
重ねた前記ブレージングシートにおいて、ロウ付け前の未接合状態における流路形成領域により形成される未接合流路断面積に対するロウ付け後の接合状態の流路断面積の割合を示す流路断面比率が所定の範囲を有する。
【発明の効果】
【0012】
以上のように、本開示の熱交換器およびその製造方法によれば、軽量化、小型化および効率化を達成すると共に、熱交換器における冷媒流路が所望の断面形状および所望の耐圧性能を確実に有して、信頼性の高い熱交換器を提供することができる。
【図面の簡単な説明】
【0013】
【
図1】本開示に係る実施の形態1の積層型プレートフィンの熱交換器の外観を示す斜視図
【
図2】実施の形態1の熱交換器においてプレートフィンを構成するブレージングシートの一例を示す平面図
【
図3】実施の形態1におけるプレートフィン積層体を、その長手方向に直交する面で切断した端面図
【
図4】実施の形態1におけるブレージングシートが接合(ロウ付け)される前の状態を拡大して模式的に示す断面図
【
図5】実施の形態1の熱交換器において用いられるブレージングシートの積層構造を模式的に示す断面図
【
図6】ブレージングシートがロウ付けされて冷媒流路が形成された状態を示す断面写真
【
図7】Al-Si(アルミニウム-シリコン)二元系状態図
【
図8】ロウ付け時において溶融したロウ材が芯材の内部に浸入した状態を示す断面写真
【
図9】対向するブレージングシートがロウ付けされて形成された冷媒流路の流路断面形状の具体例を示す断面写真
【
図10】実験において形成された冷媒流路について算出した結果を示すグラフ
【
図11】実験において形成された冷媒流路について算出した結果を示すグラフ
【
図12】実施の形態1におけるブレージングシートがロウ付けされた後の状態を拡大して模式的に示す断面図
【
図13】実験結果において、「ロウ材層厚み」と「補正流動指数」との関係を示すグラフ
【
図14】実験結果において、「ロウ材層中のシリコン濃度」と「補正流動指数」との関係を示すグラフ
【
図15】実験結果において、熱交換器における好ましい冷媒流路を形成するための材料因子である「ロウ材層厚み」および「ロウ材層におけるシリコン濃度(Si濃度)」の領域を示すグラフ
【発明を実施するための形態】
【0014】
以下、本開示の熱交換器の具体的な実施の形態として積層型プレートフィンの熱交換器について添付の図面を参照しながら説明する。なお、本開示の熱交換器は、以下の実施の形態に記載した具体的な積層型プレートフィンの熱交換器の構成に限定されるものではなく、以下の実施の形態において説明する技術的特徴を有する技術的思想と同等の技術に基づくものを含むものである。
【0015】
また、以下の実施の形態において示す形状、構成、方法(工程、工程の順序)などは、一例を示すものであり、発明を本開示の内容に限定するものではない。以下の実施の形態における要素のうち、最上位概念を示す独立請求項に記載されていない要素については、任意の要素として説明される。なお、図面においては、理解しやすくするために、それぞれの要素を主体として模式的に描いている。
【0016】
先ず始めに、本開示の熱交換器およびその製造方法における各種態様を例示する。
本開示に係る第1の態様の熱交換器の製造方法は、
冷媒流路を有するプレートフィンが隙間を有して積層されたプレートフィン積層体を備えた熱交換器の製造方法であって、
前記プレートフィンは、表面にロウ材層を含み、流路形成領域を有するブレージングシートを重ねてロウ付けして、対向する流路形成領域により冷媒流路が形成され、
重ねた前記ブレージングシートにおいて、ロウ付け前の未接合状態における流路形成領域により形成される未接合流路断面積に対するロウ付け後の接合状態の流路断面積の割合を示す流路断面比率が所定の範囲内となるように製造される。
【0017】
本開示に係る第2の態様の熱交換器の製造方法は、前記の第1の態様における前記流路断面比率が、31.0%≦R≦81.8%、の範囲内でもよい。
【0018】
本開示に係る第3の態様の熱交換器の製造方法は、前記の第1の態様における前記流路断面比率(R)は、45.3%≦R≦81.8%、の範囲内でもよい。
【0019】
本開示に係る第4の態様の熱交換器の製造方法は、前記の第1の態様から第3の態様におけるいずれかの態様において、前記ブレージングシートにおけるロウ材層の厚みとロウ材層のシリコン濃度との関係が所定の選択領域の範囲内の関係を有して製造されてもよい。
【0020】
本開示に係る第5の態様の熱交換器の製造方法は、前記の第1の態様から第3の態様におけるいずれかの態様において、前記ブレージングシートにおけるロウ材層の厚みとロウ材層のシリコン濃度との相関関係を示す材料の散布図において、略平行四辺形で示す選択領域(M)内の範囲から選択されたロウ材層の厚みとロウ材層のシリコン濃度を示す材料を用いて製造されてもよい。
【0021】
本開示に係る第6の態様の熱交換器は、冷媒流路を有するプレートフィンが隙間を有して積層されたプレートフィン積層体を備えた熱交換器であって、
前記プレートフィンは、表面にロウ材層を含み、流路形成領域を有するブレージングシートを重ねてロウ付けして形成された冷媒流路を備え、
重ねた前記ブレージングシートにおいて、ロウ付け前の未接合状態における流路形成領域により形成される未接合流路断面積に対するロウ付け後の接合状態の流路断面積の割合を示す流路断面比率が所定の範囲を有する。
【0022】
本開示に係る第7の態様の熱交換器は、前記の第6の態様において、前記流路断面比率が、31.0%≦R≦81.8%、の範囲内でもよい。
【0023】
本開示に係る第8の態様の熱交換器は、前記の第6の態様において、前記流路断面比率が、45.3%≦R≦81.8%、の範囲内でもよい。
【0024】
本開示に係る第9の態様の熱交換器の製造方法は、前記の第6の態様から第8の態様におけるいずれかの態様において、前記ブレージングシートが、芯材の少なくとも一方の面にロウ材層を有し、
前記芯材および前記ロウ材層を構成する材料が、アルミニウム合金であり、前記ロウ材層は、シリコンを含有するアルミニウム合金で構成されてもよい。
【0025】
本開示に係る第10の態様の熱交換器は、前記の第9の態様において、前記ブレージングシートが、前記芯材の両側に前記ロウ材層を有する構成としてもよい。
【0026】
(実施の形態1)
以下、本開示の実施の形態1の熱交換器およびその製造方法について、添付の図面を参照しながら説明する。
図1は、実施の形態1の積層型プレートフィンの熱交換器(以下、単に熱交換器と称する)1の外観を示す斜視図である。
図1に示すように、実施の形態1の熱交換器1は、第1流体Aである冷媒が給入される給入管4と、長方形の板状である複数のプレートフィン2aが隙間を有して積層して構成されたプレートフィン積層体2と、プレートフィン2aに形成された冷媒流路を流れた冷媒を排出する排出管5とを備える。
【0027】
なお、実施の形態1の熱交換器1においては、給入管4および排出管5が実質的に同じ構成を有しており、そのときの動作に対応する機能を名称として用いる。なお、本開示においては、給入管4および排出管5を合わせてスリーブ(4、5)と称する。
【0028】
プレートフィン積層体2の積層方向(
図1に示す熱交換器1では上下方向)の両端にはエンドプレート3が配設されており、エンドプレート3は長方形のプレートフィン2aと平面視(
図1に示す熱交換器1では上方から見た形状)おいてはが略同一形状である。一方のエンドプレート3の長手方向の両端側には給入管4または排出管5が接合されている。なお、実施の形態1の構成においては、一方のエンドプレート3の両端側にそれぞれ給入管4または排出管5を接合した構成で説明するが、熱交換器1が用いられる装置の仕様に応じて、一方のエンドプレート3に給入管4を接合し、他方のエンドプレート3に排出管5を接合する構成としてもよい。
【0029】
なお、以下の実施の形態1においては、
図1に示し熱交換器1におけるプレートフィン積層体2の積層方向を上下方向とし、プレートフィン積層体2に設けた一方のエンドプレート3の位置を上側とし、他方のエンドプレート3の位置を下側にとして説明する。但し、当該熱交換器1が装置(例えば、空調機器)に設けられた状態においては、その積層方向が上下方向(鉛直方向)に特定されるものではない。
【0030】
プレートフィン積層体2の積層方向の両端に配設されたエンドプレート3は、位置決め手段(例えば、位置決めボルトなど)により所定間隔を有して互いに固定されており、プレートフィン積層体2を挟着している。両端のエンドプレート3を所定間隔に維持して固定する位置決め手段は、積層された各プレートフィン2aに対する位置決めの機能を有する。エンドプレート3は、例えば、アルミニウム、アルミニウム合金、ステンレスなどの金属材により形成された板材で構成してもよく、後述するブレージングシートを積層して形成された積層体で構成してもよい。
【0031】
実施の形態1の熱交換器1においては、第1流体Aである冷媒がプレートフィン積層体2の各プレートフィン2aに形成された流路形成領域13で構成される冷媒流路60(
図3参照)を流れる構成である。一方、第2流体Bである空気は、プレートフィン積層体2におけるプレートフィン2aの積層間に形成された隙間を通り抜ける構成である。このように構成された熱交換器1は、プレートフィン積層体2において第1流体Aと第2流体Bとの間で熱交換が行われる。
【0032】
実施の形態1の熱交換器1におけるプレートフィン積層体2を構成する複数のプレートフィン2aのそれぞれは、2枚のブレージングシート(第1フィン部材10、第2フィン部材20)を対向するように張り合わせて接合(ロウ付け)され、冷媒流路60が形成される構成である。このように構成されるプレートフィン2aは、複数積層された状態で加圧および加熱されて接合(ロウ付け)され、プレートフィン積層体2が構成されている。なお、プレートフィン積層体2が加熱されて接合されるとき、同時に、エンドプレート3およびスリーブ4、5を同時に加熱して接合(ロウ付けして熱交換器を作製してもよい。
【0033】
図2は、プレートフィン2aを構成するブレージングシート50(
図4参照)の第1フィン部材10と第2フィン部材20の一例を示す平面図である。
図2において、(a)が第1フィン部材10の平面図であり、(b)が第2フィン部材20の平面図である。第1フィン部材10および第2フィン部材20は、アルミニウム合金製の薄板であり、詳細な構成については後述する。第1フィン部材10および第2フィン部材20は、ブレージングシート50の薄板を用いて所定形状に加工される。所定形状に加工された第1フィン部材10および第2フィン部材20は、所定位置で対向して配置されて互いに密着するように加圧され、加熱されることにより、対向する平坦な所定領域が互いに確実に接合(ロウ付け)される。
【0034】
図2の(a)に示す第1フィン部材10には、給入管4からの冷媒が供給され、または排出管5へ冷媒を排出する環状のヘッダ流路11のための凹みが、長手方向の両端側に形成されている。ヘッダ流路11の外周部分の一カ所からは、所定距離だけ導出するヘッダ連通流路12が形成されており、ヘッダ連通流路12の導出方向の延長線上には、プレートフィン2aにおける熱交換領域に形成される流路形成領域13の端部が配設される。
【0035】
第1フィン部材10における流路形成領域13は、ヘッダ連通流路12と同様に、凹みにより形成されている。流路形成領域13は、プレートフィン2aの熱交換領域の全体を蛇行するように形成されている。なお、実施の形態1におけるヘッダ流路11、ヘッダ連通流路12および流路形成領域13の構成は例示であり、この例示の構成に本開示を特定するものではない。
【0036】
実施の形態1の構成において、第1フィン部材10に接合(ロウ付け)される第2フィン部材20には、
図2の(b)に示すように、流路形成領域21、22が形成されている。実施の形態1においては、第1フィン部材10と第2フィン部材20との接合(ロウ付け)により、ヘッダ流路11から連通流路12を介して流路形成領域13が連通する冷媒流路60が形成される。この結果、実施の形態1の熱交換器1においては、給入管4から供給された冷媒が、ヘッダ流路11、ヘッダ連通流路12、流路形成領域21、流路形成領域13(流路形成領域22)、流路形成領域21、ヘッダ連通流路12、およびヘッダ流路11に流れて排出管5から排出される。
【0037】
図2の(b)に示すように、第2フィン部材20においては、第1フィン部材10における直線状の流路形成領域13に対向する領域に流路形成領域22が形成されている。この流路形成領域22は、流路形成領域13の同様に同じ方向に突出する凸形状の領域であり、流路形成領域13より突出高さが低く形成されている。この流路形成領域22が第1フィン部材10の直線状の流路形成領域13に対向して配置されることにより、流路形成領域13の直線部分の冷媒流路60が確保され、冷媒の流れ方向に直交する断面形状の変形が抑制されている。
【0038】
なお、第1フィン部材10および第2フィン部材20には、伝熱遮断スリット6が形成されており、近接した流路形成領域13間の伝熱作用を抑制して、熱交換効率を高めている。
【0039】
図3は、実施の形態1におけるプレートフィン積層体2を、その長手方向に直交する面で切断した端面図である。
図3においては、第1フィン部材10および第2フィン部材20が接合(ロウ付け)されて第1フィン部材10の流路形成領域13と第2フィン部材20の流路形成領域22とにより冷媒流路60が形成された状態を模式的に示している。
図4は、第1フィン部材10と第2フィン部材20が接合(ロウ付け)される前の状態を拡大して模式的に示す断面図である。
図4に示すように、実施の形態1における第1フィン部材10と第2フィン部材20としては、芯材51の両面にロウ材層(52、53)が形成された3層構造のブレージングシート50が用いられている。なお、プレートフィン積層体2においては、後述するように、芯材51の一方の面に犠牲材層が形成された4層構造のブレージングシート50を用いてもよい。
【0040】
〈ブレージングシート〉
図5は、実施の形態1の熱交換器1において、第1フィン部材10と第2フィン部材20として用いられるブレージングシート50の積層構造を模式的に示す断面図である。
図5における(a)は3層構造のブレージングシート50aを示し、(b)は4層構造のブレージングシート50bを示す。
【0041】
図5の(a)に示す3層構造のブレージングシート50aは、アルミニウム合金層が積層された構造を有しており、芯材51の両面に第1ロウ材層52、第2ロウ材層53が積層された3層構造である。3層構造のブレージングシート50aの具体例としては、例えば、芯材51がマンガン(Mn)を含有するアルミニウム合金であり、第1ロウ材層52および第2ロウ材層53がシリコン(Si)を含有するアルミニウム合金である。
なお、芯材51の材料としては、例えば、代表的には、3000系(アルミニウム-マンガン(Al-Mn)系合金)、5000系(アルミニウム-マグネシウム(Al-Mg)系合金)、または6000系(アルミニウム-マグネシウム-シリコン(Al-Mg-Si)系合金)等を挙げることができるが、これらに限定されるものではない。本開示におけるブレージングシート50(50a,50b)における芯材51としては、熱交換器の種類または構造等の諸条件に応じて求められる物性を実現し得るアルミニウム合金であればよい。
【0042】
なお、また、第1ロウ材層52および第2ロウ材層53としては、ロウ材として用いられるシリコン(Si)を含有するアルミニウム合金であり、すなわち、アルミニウム-シリコン(Al-Si)系合金であればよい。また、ロウ材としてのAl-Si系合金には、ロウ材としての機能に影響を及ぼさない範囲で、Si以外の元素を含有してもよい。また、ロウ材としてのAl-Si系合金には、不可避的不純物として種々の元素が含有されてもよい。
【0043】
また、
図5の(b)に示す4層構造のブレージングシート50bは、3層構造のブレージングシート50aと同様にアルミニウム合金層が積層された構造であるが、芯材51の一方の面には第1ロウ材層52との間に犠牲材層54が形成されている。犠牲材層54が芯材51の一方の面を被覆しており、第2ロウ材層53が芯材51の他方の面、即ち、犠牲材層54が被覆している面とは反対側の面を被覆している。犠牲材層54の材料は、芯材51、第1ロウ材層52および第2ロウ材層53と同様にアルミニウム合金であるが、亜鉛(Zn)を含有するアルミニウム合金である。
【0044】
犠牲材層54の材料として用いられるアルミニウム合金は、犠牲防食作用を発揮するために、亜鉛(Zn)を含有している。なお、犠牲材層54の材料としては、犠牲防食作用としての機能に影響を及ぼさない範囲で、Zn以外の元素を含有してもよい。また、犠牲材層54の材料としてのAl-Zn系合金には、不可避的不純物として種々の元素を含有してもよい。
【0045】
実施の形態1の熱交換器の製造においては、上記の材料で構成されたブレージングシート50で形成された第1フィン部材10および第2フィン部材20が重ね合わされて、高温(580℃以上)の炉の中においてロウ付けされて、互いに接合され、冷媒流路が形成される。このようにして製造されるプレートフィン積層体2が実施の形態1の熱交換器1に用いられる。
【0046】
図6は、第1フィン部材10および第2フィン部材20がロウ付けされて冷媒流路60が形成された状態を示す断面写真である。即ち、
図6の断面写真は、前述の
図4に示した重ね合わされた第1フィン部材10および第2フィン部材20が高温度でロウ付けされた状態を示す、具体例である。
図6に示す断面写真の冷媒流路60は、所望の流路断面を有しており、対向して配設された第1フィン部材10の第2ロウ材層53と、第2フィン部材20の第1ロウ材層52が溶融して互いに接合された状態となると共に、所望の冷媒流路60が形成されている。
【0047】
図6の断面写真に示すように、第1フィン部材10の芯材51と、第2フィン部材20の芯材51との間の領域にロウ材層(53、52)が溶融してフィレット(接合部)61が形成される。このフィレット(接合部)61は、ロウ付け前における第1フィン部材10の第2ロウ材層53と、第2フィン部材20の第1ロウ材層52とが所定高温度の加熱により溶融して、第1フィン部材10と第2フィン部材20との接合領域61a、および冷媒流路60の両側の流路形成領域61bで凝集し、第1フィン部材10と第2フィン部材20がロウ付けされ、接合されている。このときのロウ付け時のロウ材層(53、52)の溶融量に対しては、それぞれの芯材51へ浸入する浸入量(減肉量)が減じられた溶融量(実質溶融量)によりフィレット(接合部)61の量(形状と大きさ)、即ち、接合領域61aおよび流路形成領域61bの接合量(形状と大きさ)が決定される。
【0048】
ロウ付けされた第1フィン部材10と第2フィン部材20との接合強度(耐圧性能)は、フィレット(接合部)61の量(形状と大きさ)に影響されるものであり、一定以上の量が確保されていなければプレートフィン積層体2において使用中の破壊、冷媒漏れなどに繋がるものとなる。また、冷媒流路60を形成する流路形成領域61bにおいては、所望の流路断面形状とならない場合には、所定の熱交換能力を担保することができないという問題を有する。
【0049】
上記のように、第1フィン部材10と第2フィン部材20とのロウ付けより、第1フィン部材10と第2フィン部材20とが所望の接合強度(耐圧性能)となり、冷媒流路が所望の流路断面形状に形成されるための影響因子としては、少なくとも以下のものが存在する。
【0050】
(1)材料因子としてのロウ材層厚み、
(2)材料因子としてのロウ材層におけるシリコン濃度(Si濃度)、
(3)条件因子としてのロウ付け温度、および
(4)条件因子としてのロウ付け時間。
【0051】
上記の影響因子において、(1)~(3)はロウ材層の溶融量を決定し、(4)は芯材51への浸入量(減肉量)を決定する。
【0052】
〈ロウ付け時のSi拡散〉
図7は、Al-Si(アルミニウム-シリコン)二元系状態図であり、縦軸が温度T[℃]、横軸がSi濃度[%]を示す。
図7に示す二元系状態図において、共晶等温線を示す共晶温度は577℃であり、二相共存領域はSi濃度が1.6~12.1%を示している。また、Si濃度が0%におけるAL液相温度は660℃である。
【0053】
図7の状態図に示すように、基本的には、ある特定温度Tにおける液相比率σは、アルミニウム合金のSi濃度[Si]により決定される。従って、ロウ付け時におけるロウ材層(53、52)の溶融量は、「ロウ材層の厚み」、「ロウ材層中のSi濃度」、および「ロウ付け温度」により決定することが可能である。しかしながら、ロウ付け時においては、ロウ材層におけるSi原子の一部が芯材51中に拡散するため、ロウ材層のロウ材量の全てがフィレット(接合部)61に形成されることはない。
【0054】
上記のように、ロウ付け時においてロウ材層におけるSi原子が芯材51の中に拡散するため、ロウ材層においてフィレット(接合部)61を形成するためのSi量は、合金材料のミルシートに記載されたSi濃度から計算された算出値よりは減少する。即ち、ロウ付け時におけるロウ材層における溶融量を決定する液相比率σは、ミルシートに記載されたSI濃度から計算された液相比率算出値より小さくなる。
【0055】
従って、ロウ付け時におけるSi拡散量の定量化が可能であれば、正確な実質的な液相比率σの算出は可能となるが、Si拡散量は実績におけるバラツキが大きく、実験値などからの定量化は困難である。
【0056】
そこで、本開示においては、拡散の理論式からSi拡散量を簡易モデル化することにより、ロウ付け時におけるSi拡散の影響を考慮に入れた実質的な液相比率(補正液相比率)σ2を用いて、ロウ付け持のロウ材層の溶融量を算出することを可能としたものである。
【0057】
〈Si拡散量の簡易モデル化〉
次に、ロウ付け時におけるSi拡散による液相比率σの変化を簡便モデル化するための考え方について説明する。
【0058】
図7に示した二元系状態図から、Si濃度[Si]による液相比率σの変化は、下記式[1]に示すSi濃度[Si]の一次式で表現される。
【0059】
【0060】
上記の式[1]に示すように、液相比率σの変化がSi濃度[Si]の一次式で表現されるため、ロウ付け時におけるSi拡散による液相比率σの変化もSi濃度[Si]の一次式で表現できると考察される。
【0061】
ロウ付け時におけるSi拡散量は、発明者の実験などから、「ロウ付け時間の平方根(√t1)」、「拡散係数(D)」、および「芯材とロウ材層のSi濃度勾配(Cb-Cc)」に比例することが確認された。従って、Si拡散を考慮に入れた場合のロウ付け時における実質的な液相比率(補正液相比率)σ2は、下記式[2]により表すことが可能である。
【0062】
【0063】
上記の式[2]において、「K1」はフィッティング用の係数であり、「D」は拡散係数、「Cb」はロウ材層中のSi濃度、「Cc」は芯材中のSi濃度、および「t1」はロウ付け時間を示している。
【0064】
発明者は、上記の検討結果から、ロウ付け時において形成される実質的な溶融量(実質溶融量)は、「ロウ材層の厚み」と「補正液相比率σ2」との乗算により求めることが可能であることを見出した(下記式[3]参照)。
【0065】
【0066】
〈ロウ付け時の減肉量〉
前述のように、ロウ付け時において、ロウ材層が溶融してフィレット(接合部)61が形成される。このフィレット(接合部)61を形成するためのロウ材量は、ロウ材層の溶融量から、芯材51へ浸入した浸入量(減肉量)が減じられた量である。このロウ材量によりフィレット(接合部)61の形成量(形状と大きさ)、即ち、接合領域61aおよび流路形成領域61bの形成量(形状と大きさ)が決定される。
【0067】
図8は、ロウ付け時において溶融したロウ材が芯材51の内部に浸入した状態を示す断面写真である。前述の
図6に示した断面写真においては、溶融したロウ材により芯材51の間にフィレット(接合部)が形成されており、互いのブレージングシート50が確実に接合された状態を示している。一方、
図8に示した断面写真においては、溶融したロウ材がそれぞれの芯材51の内部に浸入しており、ブレージングシート50間の接合強度が低下していることが理解できる。
【0068】
図8の断面写真に示す状態は、ロウ付け時間が所定の時間を過ぎて長くなった場合の状態を示しており、このような状態においては、溶融したロウ材が芯材51の内部に徐々に侵入していく。このように、ロウ材が芯材51に侵入すると、その侵入した分(減肉量)、即ち、減少した分だけ接合強度が低下する。
【0069】
ロウ付け時においてロウ材が芯材51に侵入した減肉量は、「ロウ付け時間」と密接な関係を有しており、「減肉量」が「ロウ付け時間」の平方根に比例することが知られている。従って、「減肉量」と「ロウ付け時間」との関係を下記式[4]で表すことができる。
【0070】
【0071】
〈補正流動指数F2〉
次に、ロウ付け時においてロウ材層から実質的に溶融する「実質溶融量」と、上記の「減肉量」とを考慮に入れて定義される「補正流動指数F2」について説明する。「補正流動指数F2」は、所望の流路断面を有する冷媒流路60を形成し、接合すべき対向するブレージングシート50間において、所定の接合強度(耐圧性能)を確保するための指標となる数値である。「補正流動指数F2」としては、下記の式[5]に示すように定義される。
【0072】
【0073】
上記のように、「補正流動指数F2」は、前述の(1)材料因子としての「ロウ材層の厚み」、(2)材料因子としての「ロウ材層におけるシリコン濃度(Si濃度)」、(3)条件因子としての「ロウ付け温度」、および(4)条件因子としての「ロウ付け時間」という、ロウ付け時の影響因子が加味された指標である。
【0074】
従って、接合すべき対向するブレージングシート50間において所定の接合強度(耐圧性能)が確実に確保され、所望の流路断面を有する冷媒流路60が形成されたときの「補正流動指数F2」を求めることにより、ロウ付け時の所望の材料因子となる「ロウ材層の厚み」および「ロウ材層におけるシリコン濃度(Si濃度)」における範囲を決定することができる。
【0075】
図9は、対向するブレージングシート50がロウ付けされて形成された冷媒流路60において、その冷媒流路60の流路断面の具体的な形状を示す断面写真である。なお、流路断面とは、冷媒流路60における冷媒が流れる方向に直交する方向に切断したときの断面である。
【0076】
図9の(a)は、冷媒流路60の流路断面が所望形状を有する場合を示しており、設計上の理想形状である略山形形状と相似形を示す断面写真である。
図9の(b)は、流路断面が略楕円形状であり、実質溶融量が多くフィレット(接合部)の占める面積が多くなり、接合強度(耐圧性能)は高くなるが、冷媒流路60の流路断面が小さくなっている。
図9の(c)は、実質溶融量がさらに多くなって、フィレット(接合部)の占める面積がさらに多くなり、冷媒流路60の流路断面が小さな円形形状となっている。
図9の(d)は、ロウ付けされたブレージングシート50間の冷媒流路60が塞がれており、流路閉塞状態である。
【0077】
発明者は、熱交換器1のプレートフィン積層体2の製造において、条件を変えて各種のロウ付け実験を行い、以下の実験結果を得た。
【0078】
〈冷媒流路の流路断面形状と流路断面積の関係〉
各種ロウ付け実験においては、形成された冷媒流路60の具体的な実験結果として、流路断面積Sを測定した。前述の
図4に示したように、対向して配置されたブレージングシート50が未接合状態の場合における設計上の未接合断面積Saは、203,000μm
2であった。
【0079】
図9の(a)に示した設計上の理想形状である略山形形状の場合においては、流路断面積Sが、92,000μm
2≦S≦166,000μm
2の範囲であった。
【0080】
図9の(b)に示した略楕円形状の場合においては、流路断面積Sが、63,000μm
2≦S<92,000μm
2の範囲であった。
【0081】
図9の(c)に示した小さな円形形状の場合においては、流路断面積Sが、S<63,000μm
2であった。
【0082】
上記の実験結果から、ロウ付けにより形成された冷媒流路60において、所定の冷媒流量および冷媒流速を担保するためには、望ましい流路断面形状としては
図9の(a)に示した形状である。また、流路断面形状として許容される流路断面積Sの範囲としては、63,000μm
2≦S<166,000μm
2の範囲である。
【0083】
本開示においては、冷媒流路形成の標準化のために、ロウ付け前の未接合状態における流路形成領域(13、21,22)により形成される未接合断面積Sa(
図4参照)に対する流路断面積Sの比率である流路断面比率Rを用いる。即ち、冷媒流路60に関して、未接合流路断面積(Sa)に対するロウ付け後の接合状態の流路断面積(S)の割合を示す流路断面比率(R)が所定の範囲内となるようにロウ付けされる。望ましい流路断面形状における流路断面比率Rとしては、45.3%≦R≦81.8%の範囲で示すことができる。また、許容される流路断面形状における流路断面比率Rとしては、31.0%≦R≦81.8%の範囲で示すことができる。
【0084】
図10および
図11は、前述の「補正流動指数F
2」の実験において形成された冷媒流路60について算出した結果を示すグラフである。
図10においては、横軸が「補正流動指数F
2」を示し、縦軸が「流路断面積S[μm
2]」を示す。
図11においては、横軸が「補正流動指数F
2」を示し、縦軸が「接合断面積J[μm
2]」を示す。
図12は、第1フィン部材10と第2フィン部材20が接合(ロウ付け)された後の状態を拡大して模式的に示す断面図である。
図12に示す断面図において、冷媒流路60の断面積である流路断面積を「S」にて表示している。また、接合断面積Jは、前述の
図4に示した接合(ロウ付け)前の状態を模式的に示した断面図において冷媒流路の未接合断面積Saに対して、
図12に示した流路断面積Sを減算した値の1/2として定義している。即ち、[接合断面積J=(未接合断面積Sa-流路断面積S)/2]、と示すことができる。ロウ付け後(接合後)においては、冷媒流路60の両側に略三角形の断面を有する接合領域(フィレット)が形成されているためである。
図12の断面図においては、接合断面積Jをクロスハッチングで示している。
【0085】
図10のグラフにおいて、許容される範囲内の流路断面積Sを有し、且つ、形成された冷媒流路60が望ましい接合強度(耐圧性能)を示したときには「○」で示している。また、
図10において、形成された冷媒流路60の流路断面積Sが許容範囲を超えた場合には細い×印で示し、形成された冷媒流路60の接合強度(耐圧性能)が所定値以下を示した場合には太い×印で示している。
図10における破線曲線は近似曲線である。
【0086】
熱交換器の冷媒流路60において、必要な熱交換能力を担保するためには、前述したように、許容される流路断面形状における流路断面比率Rとして、31.0%≦R≦81.8%の範囲であることが必要である。このため、発明者の実験結果から算出すると、好ましい補正流動指数F
2としては、「366」以下の範囲となり、
図10に示したグラフにおいては、一点鎖線より以下を示す矢印の領域である(F
2≦366)。
【0087】
また、
図11のグラフにおいて、形成された冷媒流路60が望ましい接合強度(耐圧性能)を示し、且つ、許容される範囲内の流路断面積Sを有しているときには「○」で示している。また、
図11において、形成された冷媒流路60の接合強度(耐圧性能)が所定値以下を示した場合には太い×印で示し、形成された冷媒流路60の流路断面積Sが許容範囲を超えた場合には細い×印で示している。
図11における破線曲線は近似曲線である。
【0088】
図11のグラフに示すように、発明者の実験結果から算出すると、好ましい補正流動指数F
2としては、「130」以上の範囲となり、
図11に示したグラフにおいては、一点鎖線より以上を示す矢印の領域である(130≦F
2)。
【0089】
従って、冷媒流路60の流路断面積Sおよび接合面積Jに関して補正流動指数F2を指標とすると、以下に示す不等式の範囲となる。
【0090】
【0091】
発明者は、上記の不等式[6]を導き出したことにより、不等式[6]を満足する材料因子「ロウ材層厚み」および「ロウ材層におけるシリコン濃度(Si濃度)」の範囲を指定することが可能であることを知見した。
【0092】
図13は、縦軸が「ロウ材層厚み[mm]」を示し、横軸が「補正流動指数F
2」を示している。また、
図14は、縦軸が「Si濃度[%]」を示し、横軸が「補正流動指数F
2」を示している。
図13および
図14のグラフにおいては、前述の
図10および
図11と同様に、許容される範囲内の流路断面積Sを有し、且つ、形成された冷媒流路60が望ましい接合強度(耐圧性能)を示したときには「○」で示し、流路断面積Sが許容範囲を超えた場合には細い×印で示し、接合強度(耐圧性能)が所定値以下を示した場合には太い×印で示している。
図13および
図14のグラフにおいては、2本の一点鎖線の間の領域が、補正流動指数F
2における好ましい領域となる。
【0093】
図15は、熱交換器1の製造において、好ましい冷媒流路60を形成するための材料因子である「ロウ材層厚み」および「ロウ材層におけるシリコン濃度(Si濃度)」の領域を示すグラフである。
図15において、縦軸が「ロウ材層厚み[mm]」を示し、横軸が「ロウ材層におけるシリコン濃度(Si濃度)」を示している。
図15のグラフにおいて、略平行四辺形で囲まれた領域が、好ましい冷媒流路60を形成するための材料因子(「ロウ材層厚み」、および「ロウ材層におけるシリコン濃度(Si濃度)」)の選択領域Mを示している。この選択領域M内であれば、
図15の(a)に示す断面写真のように、冷媒流路60が所望の流路断面形状となる。一方、
図15のグラフに示す略平行四辺形で囲まれた選択領域Mから外れた場合には、
図15の(b)に示す断面写真のように、冷媒流路60が閉塞されるか、所定の流路断面積に満たない形状、若しくは、
図15の(c)に示す断面写真のように、接合面が小さく、接合強度(耐圧性能)が所定の強度を満たさない状態である。
【0094】
次に、
図15のグラフにおいて、選択領域Mが右下方向に下降する略平行四辺形の形状となる理由について説明する。
【0095】
まず、選択領域Mを示す略平行四辺形における下側2辺(第1境界線L1および第2境界線L2)が右下方向に下降する理由は、以下の理由による。
【0096】
選択領域Mにおける第1境界線L1および第2境界線L2は、接合強度(耐圧性能)に関する下限線である。所定の接合強度を担保するためには、一定量以上のロウ材の溶融量を確保する必要がある。前述のように、ロウ材層の厚み厚く、およびロウ材層中のSi濃度が高ければ、ロウ材の溶融量は増加する。即ち、一定量以上のロウ材の溶融量を担保するためには、ロウ材層厚みが薄い場合には、ロウ材層中のSi濃度を高くする必要があり、反対に、ロウ材層厚みが厚い場合には、ロウ材層中のSi濃度を低くする必要がある。その結果、
図15に示すグラフにおいては、選択領域Mにおける下側2辺である第1境界線L1および第2境界線L2が右下方向に下降する線となる。
【0097】
次に、選択領域Mを示す略平行四辺形における上側2辺(第3境界線L3および第4境界線L4)が右下方向に下降する理由は、以下の理由による。
【0098】
選択領域Mにおける第3境界線L3および第4境界線L4は、冷媒流路60の流路断面に関する下限線である。所定の流路断面を担保するためには、一定量以下のロウ材の溶融量とする必要がある。前述のように、ロウ材層厚み厚く、およびロウ材層中のSi濃度が高ければ、ロウ材の溶融量は増加する。即ち、一定量以上のロウ材の溶融量を担保するためには、ロウ材層厚みが薄い場合には、ロウ材層中のSi濃度を高くする必要があり、反対に、ロウ材層厚みが厚い場合には、ロウ材層中のSi濃度を低くする必要がある。その結果、
図15に示すグラフにおいては、選択領域Mにおける上側2辺である第3境界線L3および第4境界線L4が右下方向に下降する線となる。
【0099】
上記のように、実施の形態1の熱交換器の製造においては、特定のブレージングシート50を重ね合わせてロウ付けを行い、所望の冷媒流路60を形成するためには、
図15のグラフにおける選択領域Mの領域内となるように、材料因子である「ロウ材層厚み」および/または「ロウ材層におけるシリコン濃度(Si濃度)」を選択することにより可能となることが理解できる。
【0100】
実施の形態1において説明した構成において上記の選択領域Mを特定する第1境界線L1、第2境界線L2、第3境界線L3、および第4境界線L4で囲まれた範囲は、下記の不等式[7]、[8]、[9]および[10]で示すことが可能となる。なお、不等式[7]、[8]、[9]および[10]において、ロウ材層厚みを「y」とし、ロウ材層Si濃度を「x」としている。
【0101】
【0102】
【0103】
【0104】
【0105】
実施の形態1においては、選択領域Mを特定する平行四辺形の内部は上記の不等式[7]、[8]、[9]および[10]の全てを満足する範囲となる。この、選択領域Mの範囲内であれば、プレートフィン2aに形成される冷媒流路60が所望の断面形状を有し、プレートフィン2aが所望の接合強度(耐圧性能)でロウ付けされた信頼性の高い熱交換器を構成することが可能となる。
【0106】
なお、実施の形態1においては、ブレージングシート50として、芯材51の両面にロウ材層(52、53)を備えた構成について説明したが、ロウ材層としては犠牲防食層としての機能を有していてもよく、芯材51のいずれか一方の面にシリコン(Si)と亜鉛(Zn)を含有するアルミニウム合金層が形成された構成としてもよい。また、犠牲防食層においては、犠牲防食作用としての機能に影響を及ぼさない範囲でZn以外の元素を含有しても良い。また、不可避的不純物として種々の元素を含有してもよい。
【0107】
以上のように、実施の形態1において詳細に説明したように、本開示の熱交換器においては、ブレージングシートを積層して形成されるプレートフィン積層体が用いられている。このように構成された熱交換器においては、プレートフィン積層体に形成される冷媒流路が所望の断面形状を有するとともに、それぞれのプレートフィンが所望の接合強度(耐圧性能)でロウ付けされて接合部分における冷媒のリーク発生が防止された熱交換器を提供することができる。この結果、本開示の熱交換器およびその製造方法においては、軽量化、小型化および効率化を達成すると共に、熱交換器における冷媒流路が所望の断面形状および所望の耐圧性能を確実に有して、信頼性の高い熱交換器を提供することができる。
【0108】
本開示をある程度の詳細さをもって実施の形態において説明したが、これらの構成は例示であり、実施の形態の開示内容は構成の細部において変化してしかるべきものである。本開示においては、実施の形態における要素の置換、組合せ、および順序の変更は請求された本発明の範囲及び思想を逸脱することなく実現し得るものである。
【産業上の利用可能性】
【0109】
本開示に係る熱交換器は、小型で軽量化を図ることができ、所望の断面形状および所望の耐圧性能を確実に有する構成であるため、各種製品に用いることが可能であり、市場価値の高い製品を提供することができる。
【符号の説明】
【0110】
1 熱交換器
2 プレートフィン積層体
2a プレートフィン
3 エンドプレート
4 給入管
5 排出管
6 伝熱遮断スリット
12 ヘッダ連通流路
13 流路形成領域
21、22 流路形成領域
50 ブレージングシート
51 芯材
52 第1ロウ材層
53 第2ロウ材層
54 犠牲材層
60 冷媒流路
61 フィレット(接合部)
61a 接合領域
61b 流路形成領域