(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-11
(45)【発行日】2024-07-22
(54)【発明の名称】ロードミリングのためのピックツール
(51)【国際特許分類】
E21B 10/46 20060101AFI20240712BHJP
【FI】
E21B10/46
(21)【出願番号】P 2021546311
(86)(22)【出願日】2020-02-06
(86)【国際出願番号】 EP2020052944
(87)【国際公開番号】W WO2020161218
(87)【国際公開日】2020-08-13
【審査請求日】2021-09-28
【審判番号】
【審判請求日】2022-12-05
(32)【優先日】2019-02-07
(33)【優先権主張国・地域又は機関】GB
【早期審査対象出願】
(73)【特許権者】
【識別番号】512107972
【氏名又は名称】エレメント、シックス、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング
【氏名又は名称原語表記】ELEMENT SIX GMBH
(74)【代理人】
【識別番号】100120031
【氏名又は名称】宮嶋 学
(74)【代理人】
【識別番号】100127465
【氏名又は名称】堀田 幸裕
(74)【代理人】
【識別番号】100130719
【氏名又は名称】村越 卓
(72)【発明者】
【氏名】エリク、バインバッハ
(72)【発明者】
【氏名】ベルント、ハインリッヒ、リーズ
【合議体】
【審判長】居島 一仁
【審判官】有家 秀郎
【審判官】土屋 真理子
(56)【参考文献】
【文献】特表平3-503430(JP,A)
【文献】特表平3-503793(JP,A)
【文献】特開2017-82586(JP,A)
【文献】特表2017-526840(JP,A)
【文献】特開昭60-30795(JP,A)
【文献】特表2017-525876(JP,A)
【文献】米国特許出願公開第2008/0309146(US,A1)
【文献】米国特許出願公開第2013/0002004(US,A1)
【文献】米国特許第7661765(US,B2)
【文献】米国特許出願公開第2016/0003041(US,A1)
【文献】米国特許出願公開第2012/0098326(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
E21C25/00-37/26
E21C45/00-45/08
E21C50/00-50/02
(57)【特許請求の範囲】
【請求項1】
中心軸(102)に沿って配置されるインパクトチップ(202)及び支持体(106)を備えるピックツール(200)であって、前記インパクトチップ(202)は前記支持体(106)に対してろう付けされ、前記インパクトチップ(202)はその遠位端(206)において超硬質ビット(208)を備え、前記インパクトチップ(202)の近位端(204)は、非平面的な第1インターフェース(108)で前記支持体(106)に接合され、前記非平面的な第1インターフェース(108)は、2つの同軸且つ環状のインターフェース面(110、112)を備え、当該2つの同軸且つ環状のインターフェース面(110、112)は前記中心軸(102)に垂直な半径方向外側に延び、前記2つのインターフェース面(110、112)は、前記中心軸が延びる方向に間隔があけられており、内側インターフェース面(110)は、前記中心軸が延びる方向に、外側インターフェース面(112)及び前記超硬質ビット(208)の中間にあり、前記外側インターフェース面(112)の
幅は、前記内側インターフェース面(110)の
幅よりも小さく、
前記幅は半径方向に延び、
前記支持体(106)は中央突出部(114)を備え、前記インパクトチップ(202)は、前記中央突出部(114)を受けるための対応の形状の中央凹部(124、218)を備え、前記支持体(106)は、前記中央突出部(114)を取り囲み且つ前記中央突出部から延びる第1環状接合面(116)を備え、前記第1環状接合面(116)は、半径方向外側の第2環状接合面(120)に接続され、前記インパクトチップ(202)は、前記中央凹部(124、218)を取り囲み且つ前記中央凹部(124、218)から延びる第3環状接合面(126)を備え、前記インパクトチップは、前記第3環状接合面(126)に接続される半径方向外側の第4環状接合面(128)を更に備え、前記インパクトチップ(202)の前記第3環状接合面(126)と前記支持体(106)の前記第1環状接合面(116)とは互いに向かい合い、前記インパクトチップ(202)の前記第4環状接合面(128)と前記支持体の前記第2環状接合面(120)とは互いに向かい合うことを特徴とする、ピックツール(200)。
【請求項2】
前記インパクトチップ(202)は本体部(210)を備え、前記超硬質ビット(208)は第2インターフェースで前記本体部(210)に接合される、請求項1に記載のピックツール(200)。
【請求項3】
前記第2インターフェースは平面である請求項2に記載のピックツール(200)。
【請求項4】
前記第2インターフェースは、前記本体部(210)の窪んだ錐形又は前記本体部(210)の先端が除去された窪んだ錐形である請求項2に記載のピックツール(200)。
【請求項5】
前記超硬質ビット(208)は、合成のダイヤモンド粒、天然のダイヤモンド粒及びcBN粒のうちの少なくとも一つを含む請求項1~4のいずれか一項に記載のピックツール(200)。
【請求項6】
前記超硬質ビット(208)は、多結晶ダイヤモンド(PCD)材料及び多結晶cBN(PCBN)材料のうちの少なくともいずれかを含む請求項1~4のいずれか一項に記載のピックツール(200)。
【請求項7】
前記中央突出部(114)は円筒形本体部(114a)を備える請求項1~6のいずれか一項に記載のピックツール(200)。
【請求項8】
前記支持体(106)の前記第1環状接合面(116)は、ショルダー(122)において前記支持体(106)の前記第2環状接合面(120)に接続される、請求項1~7のいずれか一項に記載のピックツール(200)。
【請求項9】
前記インパクトチップ(202)及び前記支持体(106)は、前記ショルダー(122)に沿って測定される少なくとも0.2mmのギャップによって分離される、請求項8に記載のピックツール(200)。
【請求項10】
前記インパクトチップ(202)は、前記本体部(210)に隣り合う保護スカート部(132)を備える請求項2~9のいずれか一項に記載のピックツール(200)。
【請求項11】
前記保護スカート部(132)は、前記中心軸(102)と垂直な方向に25mm~40mmの直径を有する、請求項10に記載のピックツール(200)。
【請求項12】
前記インパクトチップ(202)は、第4環状接合面(128)から突出する突出部(129)を備える請求項1~11のいずれか一項に記載のピックツール(200)。
【請求項13】
前記ピックツール(200)はロードミリングツールである、請求項1~12のいずれか一項に記載のピックツール(200)。
【発明の詳細な説明】
【技術分野】
【0001】
発明は、採掘(mining)、ミリング(milling)及び掘削に使用するための耐摩耗性ピックツールに関する。特に、ピックツールは、多結晶ダイヤモンド(PCD)材料を備えるチップを含むことができるが、これに限定されるものではない。
【背景技術】
【0002】
ピックツールは、岩石、アスファルト、石炭、或いはコンクリートなどの硬いものや摩耗性のあるものを破壊、穿孔、その他の方法で分解するために一般的に使用され、道路の再整備、採掘、トレンチング、建設などの用途で使用されうる。
【0003】
ピックツールは、それらが動作する環境により様々な点で極端な摩耗や故障が発生しうるので、頻繁に交換される必要がある。例えば、道路の再整備作業では、複数のピックツールが回転可能なドラムに取り付け可能であり、ドラムが回転されると道路のアスファルトを砕くことができるようになっている。同様の手法が、炭鉱においてなど、岩石層を砕くのにも用いられうる。
【0004】
超硬炭化タングステン材料(cemented tungsten carbide material)により形成される作業チップよりも優れた耐摩耗性を有しやすい人工ダイヤモンド材料を含む作業チップを備えるピックツールもある。しかし、合成ダイヤモンドや天然ダイヤモンドは超硬金属炭化物材料(cemented metal carbide material)よりも脆く且つ耐破砕性に劣る傾向があり、これはピック作業での潜在的な有用性が低くなる傾向がある。
【0005】
より長い可使時間を有するピックツールを提供する必要がある。
【0006】
特に、スチール支持体の保護に役立つ超硬金属炭化物インパクトチップを備えたピックツールを、追加コストなしで提供する必要がある。
【発明の概要】
【0007】
発明によれば、中心軸、インパクトチップ及び支持体を備え、インパクトチップの近位端は非平面的なインターフェースで支持体に接合され、非平面的なインターフェースは、2つの同軸且つ環状のインターフェース面を備え、外側のインターフェース面の幅は、内側のインターフェース面の幅と同じ又は当該幅よりも小さく、インパクトチップは、その遠位端に超硬質ビットを備えるピックツールが提供される。
【0008】
この構成はより大きなろう付け面を提供し、それはろう付け後の圧縮応力を増大させる。これは、より高いせん断強度をもたらす。
【0009】
外側のインターフェース面の幅が内側のインターフェース面の幅と同じ又は当該幅よりも小さい場合、ろう付けプロセスの間ろう付け材料は半径方向内側に流れることが促され、それもまたろう付け後のより高いせん断強度の達成に貢献する。
【0010】
更に、ピックツール全体の耐摩耗性が大幅に向上する。これは、カーバイドチップが残存する有用な寿命を有するにもかかわらず、スチール支持体の摩耗によりピックツールが故障するという事態を避ける。この構成では、十分な寿命の使用が達成されるので、カーバイドインパクトチップに対してなされた投資が実現される。
【0011】
また、ろう付けプロセスは、その大きなろう付け面積のために、製造公差の面でより柔軟性がある。またその構成は、より信頼性の高いろう付けプロセスをもたらす。
【0012】
最後に、溶接品質を検査するためにサンプルを分割する前においてサンプルの準備が必要ないため、ピックツールの品質チェックが一層容易である。
【0013】
発明の好ましい特徴及び/又は任意の特徴は、従属請求項2から20において提供される。
【図面の簡単な説明】
【0014】
ピックツールの非限定的な例示構成が添付の図面を参照して説明され、当該図面において:
【
図1】
図1は、従来技術ピックツールを搭載する典型的なロードミリングマシンの下面を示す。
【
図2】
図2は、従来技術ピックツールの正面斜視図を示す。
【
図3】
図3は、インパクトチップと支持体との間のインターフェースの部分断面とともに
図2の従来技術ピックツールの正面斜視図を示す。
【
図4】
図4は、インパクトチップが砕ける前(左)と砕けた後(右)の摩耗した従来技術ピックツールの例を示す。
【
図5】
図5は、発明の一実施形態におけるピックツールの正面斜視図を示す。
【
図7】
図7は、
図5の正方形Eの一部を拡大した図を示し、
図2の従来技術ピックの断面も概略的に示す。
【
図11】
図11は、発明の更なる実施形態におけるピックツールの正面斜視図を示す。
【
図17】
図17は、
図11のピックツールでの使用のための代替インパクトチップの断面図を示す。
【
図18】
図18は、インパクトチップの更なる代替実施形態の拡大図を示す。
【0015】
すべての図面において、同じ参照番号は同じ一般的な特徴を示す。
【発明を実施するための形態】
【0016】
図1は、典型的なロードミリングマシン(road-milling machine )10の下側を示す。ミリングマシンは、舗装の新しい層を配置する前に、舗装12などの層を劣化させるために使用されるアスファルトプレーナー又は舗装プレーナー(an asphalt or pavement planer)であってもよい。複数のピックツール14が回転可能ドラム16に取り付けられる。ドラム16は、ピックツール14を層12と係合させる。ベースホルダ18は、ドラム16にしっかりと取り付けられ、中間ツールホルダ(図示せず)によって、ピックツール14が選択的角度で層12に係合するように、回転の方向からオフセットした角度でピックツール14を保持しうる。いくつかの実施形態では、ピックツール14のシャンク(図示せず)がツールホルダ内に回転可能に配置されるが、これは超硬質インパクトチップを備えるピックツール14には必要ない。
【0017】
図2及び
図3は、従来技術ピックツール14を示す。ピックツール14は、概ね釣鐘形状のインパクトチップ20と、スチール支持体22とを備える。支持体は、本体部24と、本体部24から中心に延びるシャンク26とを備える。インパクトチップ20は、支持体22の一端に設けられた円形凹部27内に着座する。これは、スチール支持体22のエッジが常に金属炭化物インパクトチップ20を取り囲むことを意味する。円形の凹部27内に配置され薄い円形のディスクとして設けられる典型的なろう付け材料(図示せず)は、インパクトチップ20を支持体22に確実に接合する。ピックツール14は、シャンク26と、シャンク26を既知の方法で取り囲むスプリングスリーブ28とによって、例えばロードミリングマシンの駆動機構に取り付け可能である。スプリングスリーブ28は、ピックツール14とツールホルダとの間の相対的な回転を可能にする。
【0018】
使用において、
図4において明らかなように、スチール支持体22は、特にろう付けの近くで、カーバイドインパクトチップ20よりも速い速度で浸食される。このエリアにおけるスチールの体積は、使用しているうちに摩耗によって徐々に減少する。最終的には、支持体22がインパクトチップ20を十分に支持できなくなり、インパクトチップ20が折れてしまい、インパクトチップ20の耐用年数が早期に終了してしまう。
【0019】
次に、
図5から
図10に目を向けると、発明によるピックツールの第1実施形態が概ね100で示されている。ピックツール100は、中心軸102と、インパクトチップ104と、支持体106とを備える。スプリングスリーブ28は、発明に必須ではなく、省略されてもよい。ピックツール100は、その中心軸102を中心に対称である。
図6において最もよく見られるように、インパクトチップ104は、非平面的なインターフェース108で支持体106に接合される。重要なことに、インターフェース108が2つの同軸且つ環状のインターフェース面110、112を備える。
【0020】
支持体106は中央突出部又はピン114を備え、当該ピン114は、第1環状接合面116(
図7参照)によって囲まれ、第1環状接合面116内に半径方向外方に延びる。この実施形態において、中央突出部114はボス(boss)であり、円筒状本体部114aを備える。しかし、中央突出部114の他の形状やプロファイルが想定され、例えば円錐形の突出部又は先端が切り取られた円錐形の突出部又は半球形の突出部などが挙げられる。円筒上本体部114aの直径Θ
Pは、好ましくは約5mmであるが、3mm~10mmの範囲であってもよい。円筒部114aの高さH
1は、好ましくは約2.5mmであるが、1mm~5mmの範囲であってもよい。中央突出部114は、弓状のノッチ118によってアンダーカットされてもよい。そのノッチは追加体積部を提供し、当該追加体積部内にろう付け材料が流れ込み、広いろう付けエリアに貢献するのに役立つ。
【0021】
第1環状接合面116は、ショルダー122によって、半径方向外側の第2環状接合面120に接続される。
図7において、ショルダー122は最初は弓形で、次に直線状になっている。それは第1及び第2環状接合面116、120の中間に配置されている。第1及び第2環状接合面116、120が中心軸102に対して垂直に配置されているのに対し、
図7に示すように、ショルダー122は中心軸102に対して鋭角θで配置されている。その角度θは10~30度であり、好ましくは約20度である。
【0022】
第1及び第2環状接合面116、120は、第1環状接合面116が中央突出部114と第2環状接合面120との軸方向の中間に位置するように、軸方向に離間している、すなわち段差がある。代わりに、第2環状接合面120が中央突出部114と第1環状接合面116との軸方向の中間に位置することも実現可能であるが、これは、インパクトチップ104においてより多くの(より少なくではない)カーバイド材料を必要とする可能性が高いため、好ましい配置ではない。
【0023】
図8に示すように、インパクトチップ104は、支持体106の中央突出部114を受けるための中央凹部124を一端において備える。凹部124の内部構成は、一部が半球状、一部が円筒状となっているが、他の形状も可能である。中央突出部114及び凹部124の役割は、製造の初期段階の間、初期組立体において、インパクトチップ104及び支持体106の良好な相対位置を確保することである。またそれらは、焼結前の段階で、プレスの間もアシストして素地(green body)の密度を改良する。しかし、それらは、それらが溶接強度の増大に直接的に寄与しないという点で、発明にとって不可欠ではないので、それらは省略されうる。突出部114及び凹部124がインパクトチップに含まれるか否かに関わらず、第1及び第2環状インターフェース面110、112が軸方向にある程度の間隔を空けていることが重要である。
【0024】
インパクトチップ104は、中央凹部124を取り囲み、中央凹部124から半径方向外側に延びる第3環状接合面126を更に備える。またインパクトチップ104は、第3環状接合面126に接続された半径方向外側の第4環状接合面128を備える。
【0025】
図8及び
図9で最もよくわかるように、複数のディンプル129が第4環状接合面128から突出している。ディンプル129は、中心長手軸102を中心に、等角度に配置されている。この実施形態では、ディンプルが6個あるため、隣り合うディンプル間の角度間隔Φは60度となっている。なお、第4環状接合面128には、任意の数のディンプルが配置されていてもよい。当該ディンプルは、インパクトチップ104と支持体106との間に約0.3mmの小さなギャップG
1を作るのに役立つ。当該ディンプルは、ろう付けが接合するインパクトチップ104の表面積を更に増やし、接合部のせん断強度を更に高める。
【0026】
支持体106と同様に、第2の前記ショルダー130は、インパクトチップ104の第3及び第4環状接合面126、128を接続する。
【0027】
この実施形態において、第1及び第2ショルダー122、130は平面である。しかし、それらは必ずしもそうである必要はない。第1及び第2環状インターフェース面110、112の間の構造的リンクが、インパクトチップ104と支持体106との間のインターフェースの長さを延長することが重要であるが、これがどのように達成されるかは必ずしも重要ではない。例えば、その構造的リンクは、単に環状のインターフェース面110、112のうちの1つの面取りであってもよいし、或いはフィレット(fillet)であってもよい。
【0028】
インパクトチップ104の第3環状接合面126と支持体106の第1環状接合面116とは、互いに向き合っているが、選択自由な任意のディンプル129を除いては、それらは互いに対して接していない。更に、インパクトチップ104の第4環状接合面128と支持体106の第2環状接合面120とは、互いに向き合っているが、やはり、任意のディンプル129を除いては、それらは互いに対して接触していない。インパクトチップ104及び支持体106は、第1及び第2ショルダー122、130で測定された約0.2mmのギャップG2だけ離されている。ギャップG2は、ろう付け材(図示せず)がインパクトチップ104と支持体106との間に着座するためのスペースを提供する。同様に、ギャップG3も、追加のろう付け材(図示せず)がインパクトチップ104と支持体106との間に着座するためのスペースを提供する。組立体のために、ろう付けはリング又は環体として供給され、それによってこの発明に関してギャップG1とG3における2つのリングが必要となる。しかし、一旦加熱されると、ろう付けが溶けて流れるようになる。G1での外側ろう付けリングからのろう付けは、ギャップG2を通ってG3で内側ろう付けリングに向かい、ろう付け接合部の長さを更に増大させる。これは、接合部の強度を大幅に増大させる。実行できるように、2つよりも多い環状のインターフェース面が設けられてもよい。
【0029】
インパクトチップ104は、保護スカート部132を備える。この実施形態において、スカート部132は、中央凹部124、第3環状接合面126及び第2ショルダー130を包含している。また支持体106に接合される場合、スカート部132は、突出部114、第1環状接合面116及び第1ショルダー122も包含する。スカート部132は、第2及び第4環状接合面120,128の遭遇部において、支持体106と概ね一致して周辺的に終了する。スカート部132は、少なくとも25mmの直径Θ
S(
図10参照)を有する。好ましくは、直径Θ
Sは、包含的に25mm~40mmである。この全般的な構成は重要であり、なぜならばそれはインパクトチップ104における同じ体積の炭化物材料に関して、スチール支持体106に関してより大きな保護が与えられることを意味するからである。炭化物材料の体積は、追加コスト無しで、単にそれが最も必要とされる場所に再配分されるだけである。注目すべきは、直径Θ
Sがその範囲の上限にある場合、インパクトチップ104が支持体106にわたって半径方向外側に突出し、それによってピックツール100の摩耗に対するより多大な側面保護を提供する。
【0030】
この実施形態において、2つの同軸且つ環状インターフェース面110、112は、半径方向に測定された異なる幅を有する。しかし、インターフェース面110、112が代替的に同じ幅を持っていてもよいことが想定される。半径方向外側の環状インターフェース面112は、半径方向内側の環状インターフェース面110よりも幅が小さい方が好ましく、これはろう付け材の半径方向内側への流れを促進し、それによって改善された接合強度を促すからである。半径方向内側の環状インターフェース面110は、約15mmの外径ΘIRO及び約5mmの幅を有する。半径方向外側の環状インターフェース面112は、約25mmの外径と、3mm~7mmの幅を有する。半径方向外側の環状インターフェース面112は、17mm~22mm(例えば、25mm-3mm=22mm)の内径ΘIROを有する。
【0031】
明確にするために、半径方向内側の環状インターフェース面110は、第1及び第3環状接合面116、126を備える。半径方向外側の環状インターフェース面112は、第2及び第4環状接合面120、128を備える。
【0032】
中央凹部124と反対側の端部において、インパクトチップ104は丸みを帯びた形状を持つ作業面134を有し、当該丸みを帯びた形状は、円錐形、半球形、ドーム形、切り落とされた形、又はそれらの組み合わせであってもよい。横方向断面において六角形、四角形及び八角形であるものなど、他の形態のチップが発明の範囲内で想定される。
【0033】
図10において最もよくわかるように、インパクトチップ104は、全体として、概して釣り鐘形状である。作業面134は、インパクトチップ104の円筒状の第1本体面136内に延び、第1本体面136と同一直線上にある。そして第1本体面136は、インパクトチップ104の湾曲した第2本体面138内に延び、第2本体面138と同一直線上にある。第1及び第2本体面136、138は、そこにおいて凹むいかなる外部溝もなく、共に途切れることなく連続する。同様に、支持体106は、いかなる種類の外部溝も持たない。
【0034】
この実施形態において、インパクトチップ104は、超硬金属炭化物材料で構成される。いくつかの実施形態において、支持体106は、最大で約17MPa・m1/2、最大で約13MPa・m1/2、最大で約11MPa・m1/2、或いは最大で約10MPa・m1/2の破壊靱性を有する超硬金属炭化物材料を備える。いくつかの実施形態において、支持体106は、少なくとも約8MPa・m1/2又は少なくとも約9MPa・m1/2の破壊靱性を有する超硬金属炭化物材料を備える。いくつかの実施形態において、支持体106は、少なくとも約2,100MPa、少なくとも約2,300MPa、少なくとも約2,700MPa、或いは少なくとも約3,000MPaの抗折力(transverse rupture strength)を有する超硬金属炭化材料を備える。
【0035】
いくつかの実施形態において、支持体106は、最大で8ミクロン又は最大で3ミクロンの平均サイズを有する金属炭化物の粒を含む超硬炭化物材料(cemented carbide material)を備える。一実施形態において、支持体106は、少なくとも0.1ミクロンの平均サイズを有する金属炭化物の粒を含む超硬炭化物材料を備える。
【0036】
いくつかの実施形態において、支持体106は、最大で13重量%、最大で約10重量%、最大で7重量%、最大で約6重量%、或いは最大で3重量%のコバルト(Co)などの金属バインダー材料を含む超硬金属炭化物材料を備える。いくつかの実施形態において、支持体106は、少なくとも1重量%、少なくとも3重量%、又は少なくとも6重量%の金属バインダーを含む超硬金属炭化物材料を備える。
【0037】
次に
図11~
図18に目を向けると、発明によるピックツール及び/又はインパクトチップの代替的な実施形態が示されている。これらの実施形態は、以下に説明するように、それらが超硬質ビットを含むという点ですべて共通する。第1実施形態を参照して説明したものと同様の特徴は、同じ参照数字を使用して示されており、簡潔にするために、更なる説明は省略される。
【0038】
図11~16のピックツールは、全般的に200で示され、中心軸102、インパクトチップ202、及び支持体106を備える。第1実施形態と同様に、ピックツール200は、その中心軸102を中心に対称である。インパクトチップ202は、第1実施形態と同様に、概ね釣鐘形状であり、100度前後である角度β(例えば、
図15参照)で半径方向外側に広がる。インパクトチップ202は、支持体106に最も近い近位端204と、反対の遠位端206とを有する。近位端204におけるインパクトチップ202の構成は、第1実施形態と同じである。遠位端206におけるインパクトチップ202の構成は大きく異なっており、以下に説明する。
【0039】
インパクトチップ202は、
図12に示すように、本体部210に接合される超硬質ビット208を備える。本体部210の直径Θ
B(例えば、
図15参照)は、好ましくは約12mmである。超硬質ビット208と本体部210との間の接合部は、従来型のろう付け材料によって提供される。
【0040】
図17において最もよく分かるように、超硬質ビット208は、超硬質ボリューム部212と基材部214とを備える。超硬質ボリューム部212は、基材部214の遠位端に対して焼結接合されている。超硬質ボリューム部212は、多結晶ダイヤモンド(PCD)材料を備えるが、代替的に多結晶cBN(PCBN)材料を備えうる。超硬質ボリューム部の作業面は、既知の方法で、尖っていたり、丸みを帯びていたり、切り落とされていたりしてもよい。そのように、超硬質ボリューム部は、概して半球状又は円錐状又はピラミッド状又は類似の形状をしていてもよい。超硬質ボリューム部の例は、出願人自身のEP2795062B1、GB2490795A、WO2014/0491432A2、及びWO2018/162442A1において示されている。
【0041】
超硬質ビットの全体的な形状は、概して円形、概して長方形、概してピラミッド型、概して円錐型、概して非対称型、又はそれらの組み合わせであってもよい。
【0042】
基材部214は、通常は円筒形で、典型的には超硬金属炭化物を備える。これは、第1実施形態におけるインパクトチップの材料と同じ材料であってもよい。超硬質ボリューム部212と基材部214との間のインターフェースは、平面であっても非平面であってもよい。
【0043】
基材部214は、一体的ベース部216を含む。
図11~
図16において、ベース部216は円錐形の構成を有し、基材部214とのインターフェースから離れる方向に半径方向内側に先細りとなり、一定の半径を有する湾曲した頂点で終わる。その錐体の最大高さH
1は、約2.3mmである。またベース部216は超硬金属炭化物を備える。
【0044】
図17において、ベース部216は、先端が切り取られた円錐形の構成を有し、基材部214とのインターフェースから離れる方向に半径方向内側に向かって先細りになっており、平面状の端面に隣り合う。
【0045】
両方の実施形態において、インパクトチップ202の遠位端206は、超硬質ビット208のベース部216を受容するように対応して形作られる。インパクトチップ202は、超硬質ビット208を受け入れるための凹部218を備える。超硬質ビット208の体積の50%よりもかなり小さい部分がインパクトチップ202内に受けられる。凹部218の構成は、実施形態に応じて、(先端が切り取られた)逆円錐である。
【0046】
この接続配置の目的は、超硬質ビット208と本体部210との間のろう付け接合部の長さを改善することであり、それによってインパクトチップ202全体のせん断強度を向上させる。凹部218の底部に、ろう付け材料を許容する0.1mmの非常に小さなギャップG
4が設けられている。
図16に示した錐の角度αは、典型的には約120度である。その錐の(すなわち基部での)最大内径Θ
Rは、約9.4mmである。その錐の最大高さH
2は、約2.4mmである。
【0047】
インパクトチップ202の弓形側壁201は、凹部18の周縁で、すなわち直径ΘRの測定位置で、終端する遠位端206において面取りされている。側壁201の面取り部203は、約1.3mmの深さH2を有する。
【0048】
ピックツール200の更に別の実施形態において、インパクトチップ202と超硬質ビット208との間のインターフェースは、平面であり、概して円錐形ではない。対応するインパクトチップ202aが
図18に示される。インパクトチップ202の遠位端206は、平坦な円形の端面220を有する。インパクトチップ202の他のすべての特徴は、上述したものと同じままである。
【0049】
改善された溶接強度を提供する2つの環状インターフェース面110、112の組み合わせ、及び支持ツール106の改善された保護を提供する保護スカート部132は、一緒に、使用時におけるピックツール100の非常に優れた性能をもたらす。注目すべきは、インパクトツール100の有用な作業寿命(これは時間、切断された又は計画されたメーター切断、操作回数などの点で測定されうる)が延長される。中央突出部114及び凹部134配置も含められる場合、この優れた性能は、炭化物材料の再配分とわずかな追加コストで取得可能である。
【0050】
ここで使われるある概念及び用語が簡単に説明される。
【0051】
ここで使用されているように、ピックツールは物体の機械的に分解(又は破壊)のためのものであり、当該物体は、例えば、非限定的な例として、岩、石炭、カリ(potash)、又は他の地質材料、又はコンクリート、又はアスファルトを含む又はから成る地層、岩石、舗装、建築構造物、又は他の物体である。ここで用いられるように、本体を分解又は破壊することは、本体から材料の断片を砕くこと、切断すること、ミリングすること、平削りすること、又は取り除くことを含みうる。ピックツールは、分解されるべき本体に対してピックを駆動するための駆動装置につながれることができ、当該駆動装置においてピックツールに具備される打撃チップが駆動されて本体を打撃する。いくつかの例において、駆動装置は回転可能ドラムを含みうるものであり、当該回転可能ドラムに対して複数のピックツールがつながれる。ピックツールの中には、採掘作業において又は地中に穴を開けるために使用されうるものがあり;例えば、ピックツールは、石炭又はカリを採掘するために又は油及びガス採取作業においてドリルで地中に穴を開けるために使用されうる。いくつかのピックは、路面、例えばアスファルト又はコンクリートを含む路面、を削るために使用されうる。
【0052】
合成ダイヤモンド、天然ダイヤモンド、多結晶ダイヤモンド(PCD)材料、立方晶窒化ホウ素(cBN)、及び多結晶cBN(PCBN)材料が、超硬質材料の例である。ここで用いられるように、PCBN材料は立方晶窒化ホウ素(cBN)の粒を含み、当該立方晶窒化ホウ素(cBN)の粒は、金属又はセラミック材料を含む又は金属又はセラミック材料から本質的に構成されるマトリックス内に分散される。ここで用いられるように、多結晶ダイヤモンド(PCD)材料は、複数のダイヤモンド粒の集合体を含み、当該集合体のうちのかなりの部分が互いに対して直接的に結合しており、当該集合体においてダイヤモンドの含有量はPCD材料の少なくとも約80体積%である。ダイヤモンド粒子間の隙間は、合成ダイヤモンドに関する触媒材料を含みうる充填材で少なくとも部分的に埋められていてもよいし、それらは実質的に空であってもよい。ここで用いられるように、合成ダイヤモンドのための触媒材料は、合成ダイヤモンド又は天然ダイヤモンドが熱力学的に安定する温度及び圧力で、合成ダイヤモンド粒の成長又は合成ダイヤモンド粒又は天然ダイヤモンド粒の直接相互成長を促進することができる。ダイヤモンド用の触媒材料の例は、Fe、Ni、Co及びMn、及びこれらを含むある合金である。超硬質材料の他の例は、炭化ケイ素などのセラミック材料又はCo-結合されたWC材料などの超硬炭化物材料を含むマトリクスによって一緒に保持されるcBN粒又はダイヤモンドを有するある複合材料を含みうる。例えば、あるSiC結合ダイヤモンド材料は、(SiC以外の形態で少量のSiを含みうる)SiCマトリックスに分散される少なくとも約30体積%のダイヤモンド粒を含みうる。
【0053】
ここで用いられるように、焼結された多結晶超硬質材料は、多結晶材料が焼結によって形成されるのと同じプロセスで基板に接合されると、「焼結接合」である。PCD又はPCBNなどの多結晶超硬質材料は、ダイヤモンド粒又はcBN粒を含む原料を、それぞれ、少なくとも約2GPa、少なくとも約4GPa、又は少なくとも約5.5GPaの超高圧と、少なくとも約1,000℃又は少なくとも1,200℃の高温とで、焼結することで形成されてもよい。非超硬質相又は材料も含みうる原料は、基板の表面に接触して焼結されてもよく、それによって焼結された多結晶材料が焼結プロセスの間に基板に焼結接合されるようになる。焼結工程は、超硬質粒の前駆集合体内の複数の超硬質粒の間に浸入する基板からの溶融したセメント材料を含みうる。基板からの結合材料又はセメント材料は、焼結された超硬質体積内で明らかになってもよく、及び/又は基板からの材料を含む相又は化合物は、接合境界に隣り合う超硬質体積内に存在してもよく、及び/又は超硬質体積からの材料を含む相又は化合物は、接合境界に隣り合う基板の体積において存在してもよい。例えば、基板はコバルト-超硬炭化タングステン(cobalt-cemented tungsten carbide)含んでもよく、タングステン(W)及び/又はコバルト(Co)を含む相又は化合物は超硬質体積において存在していてもよく;及び/又は超硬質材料はダイヤモンドを含んでもよく、高炭素(C)含有量を示す相又は化合物は基板において存在してもよく;及び/又は超硬質材料はcBNを含んでもよく、ホウ素(B)及び/又は窒素(N)を含む相又は化合物は基板において存在してもよい。いくつかの例において、基板から超硬質体積内へのCoの侵入(いわゆる「プルーム(plumes)」)は接合境界部に存在してもよい。