(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-11
(45)【発行日】2024-07-22
(54)【発明の名称】機械的な妨害作用に対して補償されたマルチチャネルIRガスセンサ
(51)【国際特許分類】
G01N 21/3504 20140101AFI20240712BHJP
A61M 16/00 20060101ALI20240712BHJP
【FI】
G01N21/3504
A61M16/00 370Z
(21)【出願番号】P 2021565087
(86)(22)【出願日】2020-04-27
(86)【国際出願番号】 EP2020061644
(87)【国際公開番号】W WO2020225010
(87)【国際公開日】2020-11-12
【審査請求日】2023-04-26
(31)【優先権主張番号】102019111563.9
(32)【優先日】2019-05-03
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】515233591
【氏名又は名称】ハミルトン メディカル アーゲー
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】クリストフ・シュランツ
(72)【発明者】
【氏名】ドミニク・ノヴォトニ
【審査官】比嘉 翔一
(56)【参考文献】
【文献】特開2018-077222(JP,A)
【文献】特開2006-220582(JP,A)
【文献】特開2007-212315(JP,A)
【文献】特開2015-075385(JP,A)
【文献】特表2016-517726(JP,A)
【文献】特公昭42-016038(JP,B1)
【文献】米国特許出願公開第2001/0015408(US,A1)
【文献】欧州特許出願公開第01482301(EP,A1)
【文献】中国特許出願公開第105973831(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N21/00-G01N21/01
G01N21/17-G01N21/61
A61M11/00-A61M19/00
G01J 1/00-G01J 1/60
G01J11/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
マルチチャネル赤外線ガスセンサ(54)であって、
-所定の入射軸(E)に沿ってビームスプリッタアセンブリ(84)に入射する赤外線ビーム(64)を、複数の赤外線部分ビーム(85、86、87、88)に分割するように構成されたビームスプリッタアセンブリ(84)と、
-第1の赤外線部分ビーム(85)の第1のビーム経路に配置された第1の帯域フィルタ(90)であって、所定の第1の帯域幅と、所定の第1の
有用信号波長において透過極大とを有する第1の帯域フィルタ(90)と、
-前記第1の赤外線部分ビーム(85)の前記第1のビーム経路において、前記第1の帯域フィルタ(90)の後方に配置された第1の赤外線
有用信号センサ(92)と、
-前記第1の赤外線部分ビーム(85)とは異なる第2の赤外線部分ビーム(86)の第2のビーム経路に配置されており、所定の第2の帯域幅と、所定の第1の基準信号波長において透過極大とを有している第2の帯域フィルタ(94)であって、前記第1の基準信号波長が、前記第1の
有用信号波長とは異なっている第2の帯域フィルタ(94)と、
-前記第2の赤外線部分ビーム(86)の前記第2のビーム経路において、前記第2の帯域フィルタ(94)の後方に配置された第1の赤外線基準信号センサ(96)と、
を含んでいるマルチチャネル赤外線ガスセンサ(54)であって、
前記ビームスプリッタアセンブリ(84)は、入射する前記赤外線ビーム(64)を少なくとも4つの前記赤外線部分ビーム(85、86、87、88)に分割するように構成されており、マルチチャネル赤外線ガスセンサ(54)は、さらに、
-第3の赤外線部分ビーム(87)の第3のビーム経路に配置された第3の帯域フィルタ(98)であって、所定の第3の帯域幅と、所定の第2の
有用信号波長において透過極大とを有する第3の帯域フィルタ(98)と、
-前記第3の赤外線部分ビーム(87)の前記第3のビーム経路において、前記第3の帯域フィルタ(98)の後方に配置された第2の赤外線
有用信号センサ(100)と、
-第4の赤外線部分ビーム(88)の第4のビーム経路に配置された第4の帯域フィルタ(102)であって、所定の第4の帯域幅と、所定の第2の基準信号波長において透過極大とを有する第4の帯域フィルタ(102)と、
-前記第4の赤外線部分ビーム(88)の前記第4のビーム経路において、前記第4の帯域フィルタ(102)の後方に配置された第2の赤外線基準信号センサ(104)と、
を含んでおり、
第1、第2、第3及び第4のビーム経路の延在方向(85v、86v、87v、88v)は、対に
おいて互いに異なっており、前記第1の基準信号波長及び前記第2の基準信号波長のいずれの波長も、前記第1の
有用信号波長及び前記第2の
有用信号波長のどの波長とも異なっており、前記第1の赤外線
有用信号センサ及び前記第2の赤外線
有用信号センサ(92、100)は、前記第1の赤外線
有用信号センサ及び前記第2の赤外線
有用信号センサ(92、100)のそれぞれの
有用信号センサ検出面(92a、100a)が、前記
有用信号センサ検出面(92a、100a)の間に位置する
有用信号センサ対称面(W)に関して対称に方向付けられているように配置されており、前記第1の赤外線基準信号センサ及び前記第2の赤外線基準信号センサ(96、104)は、前記第1の赤外線基準信号センサ及び前記第2の赤外線基準信号センサ(96、104)のそれぞれの基準信号センサ検出面(96a、104a)が、前記基準信号センサ検出面(96a、104a)の間に位置する基準信号センサ対称面(V)に関して対称に方向付けられているように配置されており、前記
有用信号センサ検出面(92a、100a)は、前記
有用信号センサ対称面(W)に直交するようには方向付けられておらず、前記基準信号センサ検出面(96a、104a)は、前記基準信号センサ対称面(V)に直交するようには方向付けられていないマルチチャネル赤外線ガスセンサ(54)において、
前記第1の赤外線
有用信号センサ(92)及び前記第2の赤外線
有用信号センサ(100)が、それぞれの
有用信号センサ検出面(92a、100a)が仮想の
有用信号傾斜軸(M)の周りで互いに対して傾斜しているように配置されていること、並びに、前記第1の赤外線基準信号センサ(96)及び前記第2の赤外線基準信号センサ(104)が、それぞれの基準信号センサ検出面(96a、104a)が、仮想の基準信号傾斜軸(N)の周りで互いに傾斜しているように配置されていることを特徴とするマルチチャネル赤外線ガスセンサ(54)。
【請求項2】
前記
有用信号センサ対称面(W)と前記基準信号センサ対称面(V)とが、互いに異なっていることを特徴とする、請求項1に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項3】
前記ビームスプリッタアセンブリ(84)が、リフレクタ-ビームスプリッタアセンブリであること、及び、全ての前記赤外線
有用信号センサ(92、100)と全ての前記赤外線基準信号センサ(96、104)とが、前記ガスセンサ(54)に進入する前記赤外線ビーム(64)が前記ビームスプリッタアセンブリ(84)に入射する、前記ビームスプリッタアセンブリ(84)の入射面に
配置されていることを特徴とする、請求項1又は2に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項4】
前記赤外線
有用信号センサ(92、100)と前記赤外線基準信号センサ(96、104)とが、仮想の配置軸(A)の周りで周方向において交互に配置されていることを特徴とする、請求項3に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項5】
前記第1の赤外線
有用信号センサ及び前記第2の赤外線
有用信号センサ(92、100)が、仮想の前記配置軸(A)に関して互いに直径上で向かい合っていること、又は/及び、前記第1の赤外線基準信号センサ及び前記第2の赤外線基準信号センサ(96、104)が、仮想の前記配置軸(A)に関して互いに直径上で向かい合っていることを特徴とする、請求項4に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項6】
前記仮想の配置軸(A)が、前記入射軸(E)であることを特徴とする、請求項4又は5に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項7】
前記
有用信号センサ対称面(W)又は/及び前記基準信号センサ対称面(V)が、前記配置軸(A)を含んでいるか、又は、前記配置軸(A)に対して平行に延在していることを特徴とする、請求項4から6のいずれか一項に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項8】
前記赤外線
有用信号センサ(92、100)それぞれの前記センサ検出面(92a、100a)と、前記赤外線基準信号センサ(96、104)それぞれの前記センサ検出面(96a、104a)とが、前記ビームスプリッタアセンブリ(84)に対して傾斜していることを特徴とする、請求項1から7のいずれか一項に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項9】
前記第1の
有用信号波長の値又は/及び前記第2の
有用信号波長の値が、前記第1の基準信号波長の値と前記第2の基準信号波長の値との間にあることを特徴とする、請求項1から8のいずれか一項に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項10】
前記第1の
有用信号波長の値及び前記第2の
有用信号波長の値が、前記第1の帯域幅及び前記第3の帯域幅の内、値の小さい方の帯域幅の3分の1以上は異ならないことを特徴とする、請求項1から9のいずれか一項に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項11】
前記第2の帯域幅及び前記第4の帯域幅の内のいずれの帯域幅の値も、前記第1の帯域幅及び前記第3の帯域幅の内のいずれの帯域幅の値より小さいことを特徴とする、請求項1から10のいずれか一項に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項12】
前記ガスセンサ(54)が、評価装置(14)を含んでおり、前記評価装置は、前記第1の赤外線基準信号センサ及び前記第2の赤外線基準信号センサ(96、104)の信号から、基準情報(136)を決定し、前記第1の赤外線
有用信号センサ及び前記第2の赤外線
有用信号センサ(92、100)の信号から、
有用情報(132)を決定し、前記基準情報(136)と前記
有用情報(132)との比較から、前記第1の
有用信号波長又は/及び前記第2の
有用信号波長によって識別されたガスの、入射する前記赤外線ビーム(
64)が照射された試料ガスに占める割合に関する情報を出力することを特徴とする、請求項1から11のいずれか一項に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項13】
前記ガスセンサ(54)が、前記ビームスプリッタアセンブリ(84)、前記赤外線
有用信号センサ(92、100)及び前記赤外線基準信号センサ(96)が配置された第1の区画(68)と、赤外線ビーム源(74)が配置され、前記第1の区画(68)とは空間的に離れた第2の区画(72)とを備えたセンサハウジング(66)を有しており、前記第1の区画と前記第2の区画(68、72)との間には、測定キュベット(52)を前記第1の区画と前記第2の区画(68、72)との間で受容するための受容構造(79)が配置されていることを特徴とする、請求項1から12のいずれか一項に記載のマルチチャネル赤外線ガスセンサ(54)。
【請求項14】
生きている患者に少なくとも補助的に人工呼吸を行うための人工呼吸器(10)であって、
-呼吸ガス源(12)と、
-吸気呼吸ガスを、前記呼吸ガス源(12)から、患者側の近位呼吸ガス排気口(62)に誘導するため、及び、呼気呼吸ガスを、近位の呼吸ガス吸入口(62)から離れるように誘導するための呼吸回路アセンブリ(20)と、
-前記呼吸回路アセンブリ(20)内で呼吸ガスの圧力を変更するための圧力変更装置(13)と、
-前記呼吸ガス源(12)又は/及び前記圧力変更装置(13)を動作させるための制御装置(14)と、
-前記吸気呼吸ガス又は/及び前記呼気呼吸ガスにおける少なくとも1つのガス成分を検出するための、請求項1から13のいずれか一項に記載されたマルチチャネル赤外線ガスセンサ(54)と、
を含んでいる人工呼吸器(10)。
【請求項15】
前記マルチチャネル赤外線ガスセンサ(54)が、請求項11に記載のガスセンサ(54)であり、評価装置(14)が、人工呼吸器(10)の前記制御装置(14)の一部であることを特徴とする、請求項14に記載の人工呼吸器(10)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マルチチャネル赤外線ガスセンサに関するものであり、マルチチャネル赤外線ガスセンサは、
-所定の入射軸に沿ってビームスプリッタアセンブリに入射する赤外線ビームを、複数の赤外線部分ビームに分割するように構成されたビームスプリッタアセンブリと、
-第1の赤外線部分ビームの第1のビーム経路に配置された第1の帯域フィルタであって、所定の第1の帯域幅と、所定の第1の希望信号波長において透過極大とを有する第1の帯域フィルタと、
-第1の赤外線部分ビームの第1のビーム経路において、第1の帯域フィルタの後方に配置された第1の赤外線希望信号センサと、
-第1の赤外線部分ビームとは異なる第2の赤外線部分ビームの第2のビーム経路に配置されており、所定の第2の帯域幅と、所定の第1の基準信号波長において透過極大とを有している第2の帯域フィルタであって、第1の基準信号波長が、第1の希望信号波長とは異なっている第2の帯域フィルタと、
-第2の赤外線部分ビームの第2のビーム経路において、第2の帯域フィルタの後方に配置された第1の赤外線基準信号センサと、
を含んでいる。
【背景技術】
【0002】
本発明はさらに、当該マルチチャネル赤外線ガスセンサを有する人工呼吸器に関する。
【0003】
本出願において「赤外線」という概念は、IRとも略される。同様に、マルチチャネル赤外線ガスセンサは、以下において、「マルチチャネルIRガスセンサ」、又は、略して「ガスセンサ」とのみ表されることもある。
【0004】
冒頭に述べた種類のガスセンサは、特許文献1から知られている。特許文献1からは、同様に、当該ガスセンサを、生きている患者の呼吸ガス内のガス成分、特にCO2を測定するために用いることが知られている。
【0005】
生きている患者に人工呼吸を行う際、それが完全に鎮静状態又は昏睡状態にあり、従って自発呼吸が不可能である患者に対する人工呼吸であるにせよ、又は、少なくとも一時的に自発呼吸を行っている患者への補助的な換気であるにせよ、呼吸ガスのガス成分を知ることは、患者の生体機能を監視するため、又は/及び、人工呼吸器の正しい動作を監視するために有用かつ重要である。このことは、当該専門分野において、十分に知られている。例えば、吸気呼吸ガス及び呼気呼吸ガス中のCO2の割合を検出することによって、患者において酸素代謝がどの程度良好に機能しているかを調べることができる。しかしながらこれは、複数の可能な例の内の1つにすぎない。
【0006】
特許文献1から知られているガスセンサは、ビームスプリッタに入射する赤外線ビームを、2つの赤外線部分ビームに分割するために、反射だけではなく、透過も行うビームスプリッタを用いている。第1の赤外線部分ビームは、第1の帯域フィルタを通じて、第1のセンサに誘導される。この第1の帯域フィルタは、希望信号波長としてのCO2の赤外線吸収波長において、透過極大を有していると共に、小さい第1の帯域幅を有しており、センサ信号は、ガスセンサに入射する赤外線ビームによって照射される試料ガスのそれぞれのCO2含有量に依存して、可能な限り大きく変化する。従って、第1のセンサは、赤外線希望信号センサである。
【0007】
第2の赤外線部分ビームは、第2の帯域フィルタと、付加的にノッチフィルタとを通過した後、第2のセンサに誘導される。第2の帯域フィルタは、基準信号波長としてのCO2の赤外線吸収波長において、透過極大を有していると共に、第1の帯域フィルタよりも大きい帯域幅を有している。ノッチフィルタは、CO2の赤外線吸収波長においても同様に、減衰極大又は透過極大を有している。結果として、第2のセンサの信号は、試料ガスのCO2含有量の変化と共には変化しないか、又は、無視できる程度にのみ変化する。従って、第2のセンサは、赤外線基準信号センサである。
【0008】
IR基準信号センサは、IR希望信号センサの信号とIR基準信号センサの信号との比較によって、試料ガス内のCO2による赤外光の吸収程度と、それに伴って試料ガス内のCO2の割合とを判断可能にするために必要である。このことは、本発明にも当てはまる。
【0009】
この際、一方でのIR希望信号センサの希望信号と、IR基準信号センサの基準信号とを、1つかつ同一の入射する赤外線ビームから導出することが有用であり、これによって、希望信号も基準信号も、質的にも量的にも、概ね同じ妨害要素に晒されたので、単に妨害要素によってもたらされる希望信号の量的な変化が、基準信号の対応する変化ももたらすことが保証される。これによって、希望信号の変化から、希望信号波長によって識別されるガス成分の変化を誤って推測することが防止され得る。このことは、本発明にも当てはまる。
【0010】
既知のガスセンサには、IR希望信号センサとIR基準信号センサとが、そのそれぞれのセンサ検出面が仮想の傾斜軸の周りで互いに対して傾斜するように配置されている。特許文献1において示された概略的な描写では、それぞれ平らなセンサ検出面は、互いに対して90°傾斜するように方向付けられている。既知のガスセンサの各方向に延長したと想定されるセンサ検出面は、その共通の仮想の傾斜軸において交差する。IR希望信号センサのセンサ検出面と、IR基準信号センサのセンサ検出面とは、仮想の傾斜軸を含む対称面に関して鏡面対称に配置されている。
【0011】
特許文献1は、既知のガスセンサにおいて使用される具体的なIRセンサを挙げてはいない。しかしながら、赤外光の入射に関してだけではなく、衝撃等の機械的負荷に関しても高感度を有するIRセンサが存在する。このような機械的に高感度を有するIRセンサは、さらに、方向に依存して、機械的に高感度を有している。すなわち、同じ値の機械的負荷が、1つかつ同一のIRセンサに対して、IRセンサに機械的負荷が加えられる方向に依存して、異なって作用する。
【0012】
従って、特許文献1から知られているガスセンサの欠点は、ガスセンサに全体として均一に加えられる機械的負荷が、IR希望信号センサとIR基準信号センサとで異なって作用し、従って、試料ガスにおける関係するガス成分の決定に、望ましくない不正確性がもたらされ得ることにある。
【先行技術文献】
【特許文献】
【0013】
【文献】米国特許出願公開第2007/0241280号明細書
【発明の概要】
【発明が解決しようとする課題】
【0014】
従って、本発明の課題は、冒頭に挙げたガスセンサを、その機械的感度に関して改善し、当該ガスセンサが、先行技術に係るガスセンサと同じ機械的負荷において、より高い正確性を提供するようにする、又は、当該ガスセンサの検出結果が、先行技術に係るガスセンサの検出結果よりも、機械的負荷による影響を受けにくくすることにある。
【課題を解決するための手段】
【0015】
本発明によると、本課題は、冒頭に挙げたガスセンサによって解決され、当該ガスセンサにおいて、ビームスプリッタアセンブリは、入射する赤外線ビームを少なくとも4つの赤外線部分ビームに分割するように構成されており、マルチチャネル赤外線ガスセンサは、さらに、
-第3の赤外線部分ビームの第3のビーム経路に配置された第3の帯域フィルタであって、所定の第3の帯域幅と、所定の第2の希望信号波長において透過極大とを有する第3の帯域フィルタと、
-第3の赤外線部分ビームの第3のビーム経路において、第3の帯域フィルタの後方に配置された第2の赤外線希望信号センサと、
-第4の赤外線部分ビームの第4のビーム経路に配置された第4の帯域フィルタであって、所定の第4の帯域幅と、所定の第2の基準信号波長において透過極大とを有する第4の帯域フィルタと、
-第4の赤外線部分ビームの第4のビーム経路において、第4の帯域フィルタの後方に配置された第2の赤外線基準信号センサと、
を含んでおり、第1、第2、第3及び第4のビーム経路又は赤外線部分ビームの延在方向は、対になって互いに異なっており、第1及び第2の基準信号波長のいずれの波長も、第1及び第2の希望信号波長のどの波長とも異なっており、第1及び第2の赤外線希望信号センサは、そのそれぞれの希望信号センサ検出面が、希望信号センサ検出面の間に位置する希望信号センサ対称面に関して対称に方向付けられているように配置されており、第1及び第2の赤外線基準信号センサは、そのそれぞれの基準信号センサ検出面が、基準信号センサ検出面の間に位置する基準信号センサ対称面に関して対称に方向付けられているように配置されており、希望信号センサ検出面は、希望信号センサ対称面に直交するようには方向付けられておらず、基準信号センサ検出面は、基準信号センサ対称面に直交するようには方向付けられていない。
【0016】
本出願において、本発明に関連して一般的にIRセンサが言及される場合、それによって、IR希望信号センサだけではなくIR基準信号センサも表現されている。両方のIR希望信号センサのみが、又は、両方のIR基準信号センサのみが言及されており、希望信号センサ又は基準信号センサとしての、それぞれのIRセンサ対の目的が重要ではない場合、本出願では、目的が同じIRセンサと表現される。
【0017】
ビームスプリッタアセンブリに入射する赤外線ビームを、少なくとも4つの赤外線部分ビームに分割することによって、少なくとも2つの赤外線センサがIR希望信号センサとして、少なくとも2つの赤外線センサがIR基準信号センサとして、利用され得る。本発明によると、それぞれ少なくとも2つの目的が同じ赤外線センサは、互いに対して対称に方向付けられている。従って、2つの目的が同じ赤外線センサの対称面に対して、すなわち一方でのIR希望信号センサの希望信号センサ対称面に対して、及び、他方でのIR基準信号センサの基準信号センサ対称面に対して直交する機械的負荷は、両方の対称に方向付けられたIRセンサに、作用の量は同じか又は類似しているが、作用方向は相反して作用し得る。両方の対称に方向付けられたIRセンサのセンサ信号の適切な切り替え又は/及び評価によって、量が同じ又は量が類似しているが方向が相反する望ましくない、衝撃等の機械的負荷の作用が、相互の減衰又は減退のため用いられ得る。各IRセンサに、機械的負荷によって望ましくないことに変更されたセンサ信号が供給されるにもかかわらず、両方の目的が同じIRセンサの信号への機械的負荷の望ましくない作用は、専ら信号自体に基づいて、容易に削減又は除去さえされ得る。これは例えば、目的が同じセンサの各信号から、幾何平均値又は算術平均値を生成することによって得られる。これは、IR希望信号センサ同士に当てはまると共に、IR基準信号センサ同士にも当てはまる。従って、本発明に係るガスセンサの、機械的な妨害作用に対する補償が、少なくとも1つの空間方向から、付加的なフィルタを用いずに信号自体から、IRセンサの上述の方向付け及び配置に基づいて可能である。
【0018】
この際、「対になって異なっている」とは、任意に選択された2つずつの赤外線部分ビームが、ビーム経路において異なる延在方向を有しているということを意味している。これは、ビーム経路の一部分に該当していてもよいが、好ましくは、ビームスプリッタアセンブリに到達した後の少なくとも4つの赤外線部分ビームのビーム経路全体に該当している。
【0019】
目的が同じIRセンサのセンサ検出面を、その配設された対称面に直交しないように方向付けることによって、ガスセンサが入射軸に直交する大きな表面積を有することなく、比較的大きなセンサ検出面と、従って、高いガスセンサ感度とが得られる。これによって、まさに以下に記載する人工呼吸器に関して、空間的に小型な有利なガスセンサを得ることが可能である。
【0020】
本出願において、さらなる有利な手段によって、機械的な妨害作用を、他の空間方向からも少なくとも部分的に補償することが可能であり、従って、上述した本発明に係るガスセンサをさらに発展させて、機械的な妨害作用に対してますます広範囲にわたって無反応なガスセンサが、容易な手段で得られることが言及される。
【0021】
ガスセンサは、4つより多いIR部分ビームを利用することが可能ではあるが、ビームスプリッタアセンブリは、入射する赤外線ビームを、好ましくはまさに4つの赤外線部分ビームに分割し、当該赤外線部分ビームは、帯域フィルタを通過した後、IRセンサに衝突する。
【0022】
本発明は、目的が同じIRセンサの対称軸に関して当該IRセンサを対称に配置することを求めているのではないが、当該配置を排除するものでもなく、目的が同じIRセンサの対称面に関して当該IRセンサのセンサ検出面を対称に方向付けることを求めているに過ぎないことに留意することが重要である。ガスセンサへの機械的負荷の作用に関しては、機械的負荷の作用方向のみが重要であるので、上述した、目的が同じIRセンサに配設されたセンサ対称面に関する当該IRセンサそれぞれのセンサ検出面の対称の方向付けは、一方のIRセンサが、目的が同じIRセンサに、両方のIRセンサに配設されたセンサ対称面を介して向かい合わなければならないという厳格な意味での対称と理解されるべきではない。ここで求められる方向付けの対称性を満たすためには、目的が同じIRセンサのセンサ検出面が、当該IRセンサに配設された対称面に直交せずに対称に方向付けられていれば十分であり、つまり、両方の目的が同じIRセンサのセンサ検出面が、当該IRセンサの対称面に対して平行に配置されているか、又は、対称面の異なる側に、配設された対称面に位置する共通の仮想の傾斜軸に関して同じ角度で、しかしながら異なる傾斜方向において傾斜して配置されていれば、十分である。対称に方向付けられたセンサ検出面は、それぞれ配設された対称面に位置する軸に沿って、互いに対してずらされて配置されていてよい。
【0023】
しかしながら、結果としてビームスプリッタアセンブリに到着した後の赤外線部分ビームのビーム誘導が容易になるので、好ましくは、目的が同じIRセンサは、そのそれぞれのセンサ検出面で、当該IRセンサに配設された対称面に関して対称に方向付けられているだけではなく、当該IRセンサの対称面に関して対称に配置され、好ましくは各対称面を越えて、互いに向かい合っている。
【0024】
目的が同じIRセンサの方向付けの対称は、少なくとも4つの赤外線部分ビームのビーム誘導が結果として容易になっているので、好ましくは鏡面対称である。従って、希望信号センサ対称面及び基準信号センサ対称面は、好ましくはそれぞれ鏡面対称面である。
【0025】
好ましくは、第1及び第2のIR希望信号センサと、第1及び第2のIR基準信号センサとはそれぞれ、焦電赤外線センサである。焦電赤外線センサは、一般的に、コーティングされたセンサ検出面を有しており、当該コーティングは、赤外光の入射によって加熱される。大多数の焦電赤外線センサは、圧電特性も有しており、従って、機械的負荷に関して高感度を有している。焦電赤外線センサにおける圧電効果は、一般的に、センサ検出面に直交して作用する機械的負荷成分に関してのみ生じ、センサ検出面に対して平行な機械的負荷成分に関しては生じないので、好ましい焦電赤外線センサは、本発明に係るガスセンサのIRセンサとして、異方的に、機械的に高感度を有している。
【0026】
好ましくは、IR希望信号センサと、IR基準信号センサとは、それぞれ同じ構造の、好ましくは同一のセンサである。従って、用いられるIRセンサをIR希望信号センサとするのか、又は、IR基準信号センサとするのかの決定は、各IRセンサと協働する帯域フィルタに依存する。各帯域フィルタの透過極大の波長は、各帯域フィルタの後方に配置されたIRセンサが、IR希望信号センサなのか、又は、IR基準信号センサなのかを優先的に決定する。第2及び第4の基準信号波長は、ガスセンサを用いて測定されるべき試料ガスのガス成分の吸収波長と可能な限り一致しないように選択される。従って、IR基準信号センサによって得られる信号は、望ましいことに、試料ガスの組成に概ね依存しない。
【0027】
これに対して、第1及び第2の希望信号波長からの少なくとも1つの波長は、好ましくは、ガスセンサによって検出されるべき試料ガスのガス成分の吸収波長と一致するように、又は、少なくとも、試料ガスにおける検出されるべきガス成分の割合の変更によって、IR希望信号センサの希望信号の重大な変更がもたらされる程度に、当該吸収波長に近くなるように選択される。本明細書で提示されるマルチチャネルIRガスセンサは、好ましくは非分散CO2センサ又は非分散NOxセンサ、特に非分散NO2センサである。
【0028】
極めて基本的に、希望信号センサ対称面と基準信号センサ対称面とは、同一の対称面において一致し得る。この場合、当該対称面のいずれの側にもそれぞれIR希望信号センサ及びIR基準信号センサが位置している。この際、上述したように、目的が同じIRセンサが対称面を越えて直接向かい合う必要はないが、これは、結果として赤外線部分ビームのビーム誘導が容易になるので、一般的には行われるであろう。有利な空間的に小型なガスセンサは、基準信号センサ対称面が、希望信号センサ対称面とは異なる場合に得られる。これによってガスセンサを空間的に小型にできるので、各IRセンサを配置するために同時に利用可能である設置空間が比較的大きい場合に、希望信号センサ対称面と基準信号センサ対称面との互いに直交する配置が特に有利である。
【0029】
上述したように、目的が同じIRセンサのセンサ検出面は、当該IRセンサに配設された対称面に対して平行に方向付けられていてよい。しかしながら、これは、各センサ検出面への4つの赤外線部分ビームのビーム誘導を複雑にする可能性がある。従って、第1及び第2の赤外線希望信号センサが、そのそれぞれのセンサ検出面が仮想の希望信号傾斜軸の周りで互いに対して傾斜しているように配置されている場合、及び、第1及び第2の赤外線基準信号センサが、そのそれぞれのセンサ検出面が、希望信号傾斜軸とは異なる仮想の基準信号傾斜軸の周りで互いに傾斜しているように配置されている場合が、より有利である。
【0030】
上述の互いに対して傾斜した配置の場合、IRセンサのセンサ検出面に直交して、最も頻繁に生じるIRセンサの圧電特性において、さらなる補償効果が利用され得る。すなわち、目的が同じIRセンサ対の対称面に直交する機械的負荷の成分は、上述したように、その量は同じか又は類似するが方向が相反する信号寄与ゆえに、目的が同じIRセンサのいずれにおいても、相互の減衰又は少なくとも減退によって補償され得る。対称面内の、かつ、仮想の傾斜軸に直交する機械的負荷のさらなる成分は、両方の目的が同じIRセンサにおいて、機械的負荷の量も方向も同じ信号寄与をもたらす。IR希望信号センサもIR基準信号センサも、同じように、それぞれ希望信号傾斜軸又は基準信号傾斜軸の周りで傾斜しており、両方の異なる傾斜軸が、共通の平面又は互いに対して平行な平面に位置する場合、各対称面内の、かつ、各傾斜軸に直交する機械的負荷の信号寄与の成分は、全てのIRセンサに関して、同じ大きさであり、同じ方向を向いており、同時に生じる。従って、各IRセンサの各信号は、機械的負荷によって変化するが、各IRセンサの各信号は、同じように、同じ量で、同時に変化するので、機械的負荷のこの影響も、試料ガス内のガス成分の割合を特定するために基準信号と希望信号とを考慮する際、著しく減少するか、又は、完全に相殺され得る。
【0031】
同様に、ガスセンサの必要な設置空間を可能な限り小さくするためには、ビームスプリッタアセンブリが、リフレクタ-ビームスプリッタアセンブリであると有利であり得る。これは、少なくとも4つの赤外線部分ビームが全て、入射する赤外線ビームの、リフレクタ-ビームスプリッタアセンブリから異なる方向への反射によって形成されることを意味している。当該リフレクタ-ビームスプリッタアセンブリを用いることによって、これら4つの反射によって形成された赤外線部分ビームは、非常に容易に、上述した、各傾斜軸の周りで互いに対して傾斜したIR希望信号センサ及びIR基準信号センサのセンサ検出面に誘導され得る。リフレクタ-ビームスプリッタアセンブリを使用する際、全ての赤外線希望信号センサ及び全ての赤外線基準信号センサは、リフレクタ-ビームスプリッタアセンブリの1つかつ同一の面に、例えば入射する赤外線ビームがビームスプリッタアセンブリに入射するビームスプリッタアセンブリの入射面に存在し得る。従って、マルチチャネル赤外線ガスセンサの光学系及びセンサ系全体は概ね赤外線ビームが通過してビームスプリッタアセンブリに入射するところの入射開口部又は入射窓と、リフレクタ-ビームスプリッタアセンブリの支持体との間に配置されていてよい。
【0032】
ビームスプリッタアセンブリは、複数の部分アセンブリを含むことが可能であり、当該部分アセンブリのいずれも、入射する赤外線ビームを、4つよりも少ない赤外線部分ビームに分割するが、当該赤外線部分ビームは、全体として、初めに入射する赤外線ビームのために、4つの赤外線部分ビームを供給する。しかしながら、上述の好ましいリフレクタ-ビームスプリッタアセンブリは、容易に、複数の反射体を有することが可能であり、当該反射体は、それぞれ異なる方向付けを有する複数の反射面を有しており、好ましくは、望ましい各赤外線部分ビームに関して1つの反射面を有している。すなわち、反射体は、テーパ軸に沿って先細になる多面体であってよく、その側面は、入射する赤外線ビームのための反射面である。例えば、正確に4つの赤外線部分ビームが望まれる場合には、四角錐状の反射体が使用可能であり、好ましくは、結果として生じるガスセンサの対称構造ゆえに、四角錐状の反射体のテーパ軸は、それぞれ入射軸に対して平行に方向付けられている。
【0033】
全体として必要な設置空間は小さいが、比較的大きなセンサ検出面の配置のために十分な空間が必要である場合、赤外線希望信号センサと赤外線基準信号センサとを交互に、周方向において仮想の配置軸の周りに配置してもよい。
【0034】
上述の先細な多面体である反射体が使用可能である単純な構造によって、設置空間を省いた配置が可能になり、当該配置においては、第1及び第2の赤外線希望信号センサは、仮想の配置軸に関して互いに直径上で向かい合っており、又は/及び、第1及び第2の赤外線基準信号センサは、仮想の配置軸に関して互いに直径上で向かい合っている。
【0035】
仮想の配置軸が入射軸である場合、ガスセンサにとって、少なくとも4つの赤外線部分ビームのそれぞれの、入射する赤外線ビームに関する1回の方向転換で十分であり得る。これによって、情報担体としての赤外線ビームがビーム分割によって受ける影響は、非常にわずかな程度にとどまり、ガスセンサの正確な検出結果が可能になる。
【0036】
少なくとも4つのIRセンサの各センサ検出面に、赤外線部分ビームが略同じ強度で射し込むという意味において、IRセンサ及びそのセンサ検出面に可能な限り一様に赤外線部分ビームを照射することは、希望信号センサ対称面又は/及び基準信号センサ対称面が、配置軸を含んでいるか、又は、配置軸に対して平行に延在していることによって得られる。好ましくは、当該配置軸は、希望信号センサ対称面と基準信号センサ対称面との交線である。
【0037】
好ましくは、それぞれセンサ対称面に関して対称に方向付けられた目的が同じIRセンサは、当該IRセンサのそれぞれのセンサ検出面が、センサ対称面と45°の角度を形成するように、当該IRセンサのセンサ対称面に対して方向付けられている。従って、センサ対称面に直交する機械的負荷は、目的が同じIRセンサの信号の加算処理又は減算処理によって直接減衰又は著しく減少し得る。例えば、目的が同じIRセンサの信号は、平均値の生成によって、共通の信号情報に加工され得る。平均値として、幾何平均値又は算術平均値が生成され得る。センサ対称面が配置軸を含む場合、これは、センサ対称面に関して対称に方向付けられた目的が同じIRセンサにとって、配置軸に直交する各機械的負荷に関して有効である。従って、好ましくは、希望信号センサ対称面も、基準信号センサ対称面も、配置軸を含んでいる。
【0038】
両方の目的が同じIRセンサが、目的が同じIRセンサ対のそれぞれの傾斜軸に直交する成分を有する機械的負荷によって、同じように負荷を加えられるようにするために、希望信号傾斜軸又は基準信号傾斜軸は、配置軸に対して直交するように延在し得る。好ましくは、希望信号傾斜軸も基準信号傾斜軸も、配置軸に直交するように延在しており、これによって、配置軸に対して平行に延在する機械的負荷の成分は、4つのIRセンサ全てに対して、同時に、同量かつ同じ方向において作用する。従って、両方のIR基準信号センサによって供給される基準信号が、同じように、かつ、同時に、配置軸に沿って延在する機械的負荷の成分によって、両方のIR希望信号センサによって供給される希望信号のように変化することが保証され得る。
【0039】
目的が同じIRセンサ対の、傾斜軸に対して平行、又は、配置軸に対して直交し、かつ、配設された対称面に対して平行な機械的負荷成分は、一般的に、IRセンサ対によって供給される信号には作用を及ぼさない。従って、ガスセンサは略完全に、つまりガスセンサに作用する機械的負荷の作用方向とは無関係に、機械的負荷に対して無反応にされ得る。
【0040】
入射する赤外線ビーム又は当該赤外線ビームから生じる赤外線部分ビームの方向転換の数を可能な限り少なくするためには、各赤外線希望信号センサのセンサ検出面と、各赤外線基準信号センサのセンサ検出面とが、ビームスプリッタアセンブリに対して傾斜していると有利である。
【0041】
基本的には、基準信号波長のいずれもが、どの希望信号波長よりも大きく、又は、どの希望信号波長よりも小さいことが考えられ得る。基本的には、両方の基準信号波長は同一であってもよい。しかしながら、基準信号の特に高い質は、両方の基準信号波長が異なる値を有している場合に得られる。なぜなら、一時的に存在する予期せぬ試料ガスのガス成分による偶発的な妨害は、両方のIR基準信号センサの内の一方にのみ作用するからである。可能な限り安定した基準信号を供給するために、第1又は第2の希望信号波長の値は、第1の基準信号波長と第2の基準信号波長との間にある。特に好ましくは、両方の希望信号波長は、第1の基準信号波長と第2の基準信号波長との間にある。
【0042】
希望信号波長は、ガスセンサによって検出可能である試料ガス内のガス成分を明確にする。基本的には、希望信号波長が同じガス成分を検出すべきであるにもかかわらず、希望信号波長の値が異なることが考えられ得る。IR希望信号センサが、当該IR希望信号センサに射し込む赤外線部分ビームを、当該赤外線部分ビームによって伝達される吸収情報に関して最適に評価できることを保証するためには、第1及び第2の希望信号波長の値が、第1及び第3の帯域幅の内、値の小さい方の帯域幅の3分の1以上は異ならないようにすることが有利である。好ましくは、第1及び第2の希望信号波長の値は同じである。本明細書に記載のガスセンサの好ましい使用事例は、装置による患者の人工呼吸の間の、吸気呼吸ガス又は/及び呼気呼吸ガス内におけるCO2の検出である。CO2を検出するために、第1及び第2の希望信号波長は、好ましくは4.25μmから4.28μmまでの間の範囲にある。第1の基準信号波長は、3.90μmから4.0μmまでの範囲にあり、特に好ましくは3.95μmであり、第2の基準信号波長は、4.40μmから4.5μmまでの範囲にあり、特に好ましくは4.45μmであり得る。
【0043】
IR基準信号センサの信号が可能な限り一定であり続けるべきである一方で、IR希望信号センサの信号が、希望信号波長によって特定されるガス成分の割合の変化に、高感度に反応するようにするためには、第2及び第4の帯域幅の内のいずれの帯域幅の値も、第1及び第3の帯域幅の内のいずれの帯域幅の値よりも小さいと有利である。例えば、第2及び第4の帯域フィルタは、それぞれ2桁のナノメートル領域における帯域幅を有し、第1及び第3の帯域フィルタは、それぞれ3桁のナノメートル領域における帯域幅を有し得る。第2の帯域フィルタ及び第4の帯域フィルタの内、第1の帯域フィルタ及び第3の帯域フィルタの場合と同じように、小さい方の透過極大波長を有する帯域フィルタが、より大きな帯域幅を有し得る。第2及び第4の帯域フィルタの帯域幅は、好ましくは50nmから99nmまでの範囲、特に60nmから90nmまでの範囲にある。第1及び第3の帯域フィルタの帯域幅は、好ましくは、150nmから200nmまでの範囲、特に170nmから180nmまでの範囲にある。
【0044】
上述したガスセンサは、IR希望信号センサ及びIR基準信号センサの有利な方向付け及び配置に基づいて、ガスセンサを機械的な外部負荷に対して無反応であるように構成するための基本的な可能性を提供する。ガスセンサにおいて用いられる信号の実際の信号補正は、ガスセンサが評価装置を含むことによって得られ、当該評価装置は、第1及び第2の赤外線基準信号センサの信号から、基準情報を決定し、第1及び第2の赤外線希望信号センサの信号から、希望情報を決定し、基準情報と希望情報との比較から、第1又は/及び第2の希望信号波長によって識別されたガスの、ガスセンサに入射する赤外線ビームが照射された試料ガスに占める割合に関する情報を出力する。当該評価装置は、ガスセンサのセンサハウジング内に組み込まれた回路又はマイクロチップによって実現されていてよい。しかしながら、評価装置は、ガスセンサのセンサハウジングの外側に配置され、ガスセンサのIRセンサと、信号を伝達するように回線で接続された外部の評価装置であってもよい。
【0045】
まさに人工呼吸の際、呼吸ガスが貫流する導管部材は、換気動作の間に汚染される。これは特に、患者の体液が到達する呼気側の導管に関して当てはまる。従って、同じく湿気、唾液等によって汚染され得る測定キュベットの頻繁な交換も有利である。高価な測定技術を備えたガスセンサを、交換可能な測定キュベットと共に使用可能にするために、ガスセンサは、ビームスプリッタアセンブリ、赤外線希望信号センサ及び赤外線基準信号センサが配置された第1の区画と、赤外線ビーム源が配置され、第1の区画とは空間的に離れた第2の区画とを備えたセンサハウジングを有することが可能であり、第1の区画と第2の区画との間には、測定キュベットを受容するための受容構造が配置されている。当該受容構造は、両方の区画の間に受容間隙を含むことが可能であり、当該受容間隙内には、第2の区画から第1の区画に透過可能な測定キュベットの部分が受容可能である。
【0046】
本明細書に記載したガスセンサは、特に有利に使用可能であるので、本発明はさらに、生きている患者に少なくとも補助的に人工呼吸を行うための人工呼吸器に関しており、当該人工呼吸器は、
-呼吸ガス源と、
-吸気呼吸ガスを、呼吸ガス源から、患者側の近位呼吸ガス排気口に誘導するため、及び、呼気呼吸ガスを、近位の呼吸ガス吸入口から離れるように誘導するための呼吸回路アセンブリと、
-呼吸回路アセンブリ内で呼吸ガスの圧力を変更するための圧力変更装置と、
-呼吸ガス源又は/及び圧力変更装置を動作させるための制御装置と、
-上述したような、吸気呼吸ガス又は/及び呼気呼吸ガスにおける少なくとも1つのガス成分を検出するためにさらに改良されたマルチチャネル赤外線ガスセンサと、
を含んでいる。
【0047】
この際、呼吸ガス源は、ガスボンベ等の呼吸ガス容器であるか、又は、呼吸ガス源は、回路網において呼吸ガスを供給する、病院設備と流体力学的に連結するための連結構造であってよい。呼吸ガス源は、送風機であってもよく、当該送風機は、呼吸ガス容器から呼吸ガスを取り出し、呼吸回路アセンブリ内で輸送する。この場合、呼吸ガス容器は、人工呼吸器の周囲であってよく、呼吸ガス源は呼吸ガス容器から周囲空気を取り出す。
【0048】
圧力変更装置は、例えば呼吸ガス源からの膨張した呼吸ガスの圧力を低下させるために、弁を含み得る。圧力変更装置は、上述の送風機であるか、又は、当該送風機を含み得る。つまり、呼吸ガス源の構成に応じて、呼吸ガス源と圧力変更装置とは、2つの装置の一致する装置要素によって、又は、1つかつ同一の装置によって形成されていてよい。測定キュベットは、呼吸ガスを誘導することが可能であり、呼吸ガスは、少なくとも1つのガス成分の存在とその試料ガスに占める割合とを検出するために、ガスセンサによって赤外線が照射されるか、又は、赤外線が透過する。測定キュベットは、分流測定キュベットであってよく、分流測定キュベット内には、呼吸回路アセンブリから分岐した呼吸ガスが流れている。
【0049】
有利には、呼吸回路アセンブリは、呼吸ガスが貫流可能な測定キュベットを含んでおり、当該測定キュベットは、呼吸回路アセンブリの分岐の無い部分を形成し、呼吸ガスの赤外線透過のために、マルチチャネル赤外線ガスセンサと連結可能である。この場合、測定キュベットは主流測定キュベットであり、主流測定キュベットは直接、患者に供給される吸気呼吸ガス、又は/及び、患者から離れるように誘導される呼気呼吸ガスを誘導する。有利には、測定キュベットは、呼吸回路アセンブリ内に、解除可能かつ交換可能に配置されており、これによって、対応する汚染に際して、機能している新しい測定キュベットと容易、迅速かつ衛生的に交換可能である。
【0050】
ガスセンサの上述の評価装置は、人工呼吸器の制御装置の一部であってよい。
【0051】
有利には、制御装置は、例えば呼吸ガス源が送風機である場合、呼吸ガス源の、又は/及び、圧力変更装置の1つ又は複数の動作パラメータを、マルチチャネル赤外線ガスセンサの検出結果に基づいて変更するように構成されている。
【0052】
呼吸ガス排気口及び呼吸ガス吸入口は、例えば気管内チューブの近位端における1つかつ同一の開口部であってよい。しかしまた、2つの異なる開口部であってもよい。人工呼吸器は、上述の気管内チューブ又は喉頭マスク又はその他の人工呼吸に適したインターフェース等の、任意の患者インターフェースを有し得る。
【0053】
以下において、添付の図面を用いて、本発明を詳細に説明する。示されているのは以下の図である。
【図面の簡単な説明】
【0054】
【
図1】本発明に係る人工呼吸器を概略的に示した分解組立図である。
【
図2】
図1に係る測定キュベットの横断面を概略的に示し、測定キュベットに受容された
図1の本発明に係るマルチチャネル赤外線ガスセンサを縦断面で示した図である。
【
図3】ビームスプリッタアセンブリ、4つの赤外線センサ、及び、赤外線センサによって部分的に覆われた
図2に係る4つの帯域フィルタを、
図2の切断面III-IIIを始点とする入射軸に沿って見た場合の上面図である。
【
図4】マルチチャネル赤外線ガスセンサにおける赤外線センサの配置の補償作用を説明する概略的な図である。
【
図5】CO
2の吸収、非吸収及び再吸収位相の間におけるIR希望信号センサの異なる信号レベル(上側)と、同じ位相の間におけるIR基準信号センサの信号レベルとを示す例示的なグラフである。
【発明を実施するための形態】
【0055】
図1には、本発明に係る人工呼吸器の実施形態が、全体として参照符号10で示されている。人工呼吸器10は、送風機の形の呼吸ガス源12と、呼吸ガス源12の動作パラメータを設定するための制御装置14と、を含んでいる。呼吸ガス源12及び制御装置14は、同じハウジング16に受容されている。当該ハウジング内には、吸気弁及び呼気弁等の既知の弁も存在している。しかしながら、これらの弁は、
図1には特に示されていない。
【0056】
人工呼吸器10の制御装置14は、必要な場合にはデータを制御装置14に入力するために、押しボタン及びロータリースイッチ等の多くのスイッチを含む入力/出力装置18を有している。呼吸ガス源12の送風機は、制御装置によって、その輸送能力を変更され、これによって、呼吸ガス源から時間単位当たりに輸送される呼吸ガスの量が変更される。従って、本実施例において呼吸ガス源12は、人工呼吸器の圧力変更装置13でもある。
【0057】
呼吸ガス源12には、呼吸回路アセンブリ20が接続されており、呼吸回路アセンブリ20は、当該例では、5つの柔軟なホースを含んでいる。第1の吸気呼吸ホース22は、呼吸ガス源12と第1の吸気呼吸ホース22との間に配置されたフィルタ24から、調節装置26に向かって延在しており、調節装置26では、呼吸ガス源12から供給された呼吸ガスが、所定の湿度にまで加湿され、必要に応じてエアロゾル薬剤が加えられる。フィルタ24は、呼吸ガス源12としての送風機によって供給された周囲空気をろ過し、浄化する。
【0058】
第2の吸気呼吸ホース28は、調節装置26から吸気カスケード30に至っている。第3の吸気呼吸ホース32は、カスケード30からYコネクタ34に至り、Yコネクタ34は、遠位吸気導管36及び遠位呼気導管38を、組み合わされた近位吸気-呼気換気導管40に接続する。
【0059】
Yコネクタからハウジング16に戻るべく、第1の呼気呼吸ホース42は、呼気カスケード44に向かって延在し、呼気カスケード44から、第2の呼気呼吸ホース46はハウジング16に向かって延在し、ハウジング16において、呼気呼吸ガスは、図示されていない呼気弁を通じて、周囲に放出される。
【0060】
Yコネクタ34の、患者に近い組み合わされた吸気-呼気側では、Yコネクタ34に流量センサ48が直接続いており、本図の場合、患者に向かう、及び、患者から離れる呼吸ガスの吸気フロー及び呼気フローを検出する差圧流量センサ48が続いている。回線アセンブリ50は、流量センサ48における流れの妨害の両側に存在するガス圧力を、制御装置14に伝達し、制御装置14は、伝達されたガス圧力から、特にガス圧力の差から、時間単位当たりに流れる吸気呼吸ガス及び呼気呼吸ガスの量を算出する。
【0061】
Yコネクタ34から離れる方向において、患者に向かって、流量センサ48には、呼吸ガスにおける所定のガス成分の割合の非分散的な赤外線検出のための測定キュベット52が続いている。このガス成分の割合は、当該例の場合、呼吸ガスにおけるCO
2の割合である。この際、吸気呼吸ガスにおけるCO
2の割合も、呼気呼吸ガスにおけるCO
2の割合も、重要である。なぜなら、吸気と呼気との間におけるCO
2の割合の変化は、患者の肺の代謝機能に関する基準であるからである。
図1から認識されるのは、側面の窓53の内の1つであり、当該窓を通って、測定キュベットに解除可能に連結されたマルチチャネル赤外線ガスセンサ54の方向付けに応じて、赤外光が測定キュベット52に入射可能であるか、又は、測定キュベット52から放射可能である。
【0062】
赤外線ガスセンサ54は、赤外線ガスセンサ54が測定キュベット52を赤外線で照射できるように、測定キュベット52に連結可能である。赤外光の強度、より正確にはそのスペクトル強度から、既知の方法で、測定キュベット52を貫流する試料ガスにおける所定のガスの量又は割合が推測され得る。ここではCO2である所定のガスは、特定の波長の赤外光を吸収する。当該波長における赤外光の強度は、通過後、概ね所定のガスによる当該波長の赤外光の吸収に依存する。特定の波長の赤外光の強度を、赤外光の試料ガスにおける予想されるガスの割合の吸収スペクトルに属さない波長と比較することで、試料ガスにおける所定のガスの割合に関する情報が供給される。従って、IRガスセンサ54は、データ回線56を通じて、人工呼吸器10の制御装置14に接続されており、データ回線56を通じて、上述の強度情報を制御装置14に伝達する。
【0063】
患者に向かう方向において、測定キュベット52には、さらなるホース片58が続いており、ホース片58には、気管内チューブ60が、患者への換気インターフェースとして配置されている。気管内チューブ60の近位開口部62は、吸気呼吸ガスが気管内チューブ60を通って患者に導入される際に通過する呼吸ガス排気口でもあり、呼気呼吸ガスが患者から気管内チューブ60に戻るように誘導される際に通過する呼吸ガス吸入口でもある。
【0064】
図2には、測定キュベット52が横断面において概略的に示されており、当該測定キュベット内に連結されたマルチチャネルIRセンサ54が縦断面において概略的に示されている。
図2における測定キュベット52は、
図2の投影面に直交して、呼吸ガスによって貫流される。ガスセンサ54の赤外線ビーム64は、
図2の投影面に対して平行に、又は、当該投影面内に延在する。
【0065】
ガスセンサ54は、第1の区画68に、以下において詳細に言及するセンサ系70が配置されているセンサハウジング66を含んでいると共に、赤外線ビーム源74が配置されている第2の区画72を含んでいる。単純に例として、第2の区画72には、センサ制御装置76が搭載されており、センサ制御装置76は、回線75及び77を通じて、赤外線ビーム源74及びセンサ系70に、信号を伝達するように接続されていると共に、データ回線56を通じて、信号を伝達するように制御装置14に接続されている。当該例では、人工呼吸器10の制御装置14は、IRガスセンサ54の上位の制御装置として機能可能であり、センサ制御装置76の検出値を要求することが可能であり、これにしたがって、センサ制御装置76は、赤外線ビーム源74を対応して動作させ、センサ系70によって検出された検出信号を、制御装置14に、制御装置14による評価のために伝達する。従って、制御装置14は、IRガスセンサ54の評価装置である。
【0066】
両方の区画68及び72は、ハウジングブリッジ67によって連結されている。ハウジングブリッジ67と、ハウジングブリッジ67に接続された両方の区画68及び72の側壁68a及び72aは、クランプ受容構造79を形成しており、クランプ受容構造79内に、測定キュベット52が挿入され、解除可能にクランプによって固定され得る。クランプ力を単に手で克服することによって、測定キュベット52とガスセンサ54のハウジング66とを、再び互いから分離することが可能である。付加的又は代替的に、ガスセンサ及び測定キュベット52を固定するための固定手段を、互いに接して設けてもよい。
【0067】
区画68及び72のそれぞれは、赤外線を通過させる窓78を1つずつ有しており、窓78は、赤外線ビーム源74から放射された赤外線ビーム64によって照射される。赤外線ビーム64は、測定キュベット52を完全に横断しなければならないので、測定キュベット52は、測定キュベット52によって決定される流れの通過経路の両側においてそれぞれ窓53を有しており、窓53は、赤外光を透過させ、赤外線ビーム64によって同様に横断される。測定キュベット52は、IRガスセンサ54に受容された部分において、好ましくは、赤外線ビーム64に直交する鏡面対称面に関して鏡面対称に設計されている。なぜなら、赤外線ビーム64による測定キュベット52の照射方向は重要ではないからである。従って、IRガスセンサ54は、
図2の描写とは異なり、
図2の投影面及び赤外線ビーム64に対して直交する軸の周りに180°回転して、測定キュベット52に連結されていてよい。
【0068】
センサ系70は、専用のセンサ系ハウジング80を有している。センサ系ハウジング80は、窓82を含んでおり、窓82を通って、赤外線ビーム64は、入射軸Eに沿って、センサ系ハウジング80に入射し得る。
【0069】
窓82を通過した後、入射する赤外線ビーム64は、ビームスプリッタアセンブリ84に衝突し、ビームスプリッタアセンブリ84は、図示されていない多数の四角錐状の反射体を有しており、赤外線ビーム64のビームスプリッタアセンブリ84に入射する分を、入射軸Eに関して同じ値の角度で、4つの赤外線部分ビームに分割する。これら4つの赤外線部分ビームの内、2つずつの赤外線部分ビームが、相反する部分ビーム延在成分を有して、同一の部分ビーム面に位置しており、両方の部分ビーム面は、互いに対して直交しており、図示された例では、入射軸Eを共通の交差軸として含んでいる。
【0070】
図2の投影面に対して平行に、第2の赤外線部分ビーム86と第4の赤外線部分ビーム88とが延在している。当該赤外線部分ビームは、
図2に示されている。第2の赤外線部分ビーム86及び第4の赤外線部分ビーム88は、入射軸Eと、それぞれ約45°の角度を形成している。
【0071】
第1の赤外線部分ビーム85は、同様に、
図2の観察者から離れて、第1の帯域フィルタ90及び第1の帯域フィルタ90の後方に位置する第1の赤外線希望信号センサ92に向かって、入射軸Eに対して約45°の角度で延在している。つまり、第1の赤外線部分ビーム85は、第1の帯域フィルタ90を通過した後で初めて、第1の赤外線希望信号センサ92に到達する。第3の赤外線部分ビーム87は、
図2には示されていない。なぜなら、第3の赤外線部分ビーム87は、
図2の投影面の完全に手前に位置しているからである。第3の赤外線部分ビーム87は、
図3に示されている。
【0072】
第2の帯域フィルタ94は、第2の赤外線部分ビーム86のビーム経路において、第1の赤外線基準信号センサ96の手前に存在している。
【0073】
図2の投影面の手前に位置しているゆえに
図2に示されていない第3の帯域フィルタ98は、第3の赤外線部分ビーム87のビーム経路において、第2の赤外線希望信号センサ100の手前に存在している(
図3を参照)。
【0074】
最後に、第4の帯域フィルタ102は、第4の赤外線部分ビーム88のビーム経路において、第2の赤外線基準信号センサ104の手前に存在している。
【0075】
図3において、矢印の先端は、第1から第4の赤外線部分ビーム85、86、87及び88又はそのビーム経路の、対になって異なる延在方向85v、86v、87v及び88vを示している。
【0076】
第1の帯域フィルタ90及び第3の帯域フィルタ98は、CO2の吸収波長の範囲において、例えば、4.25μmから4.28μmの範囲において、透過極大を有している。第1の帯域フィルタ90及び第3の帯域フィルタ98の帯域幅は、170nmから180nmの範囲にある。
【0077】
第2の帯域フィルタ94及び第4の帯域フィルタ102は、CO2の吸収波長の外側の範囲において、例えば、3.90μmから4.0μmの範囲、又は/及び、4.40μmから4.5μmの範囲において、透過極大を有している。第2の帯域フィルタ94及び第4の帯域フィルタ102の帯域幅は、60nmから90nmの範囲にある。
【0078】
好ましくは、IRセンサ92、96、100及び104の構造は同じである。当該IRセンサは、そのそれぞれのセンサ検出面92a、96a及び104aに直交して、圧電性の高感度を有する焦電IRセンサである。これは、センサ検出面100aが
図3にのみ示されている第2のIR希望信号センサ98にも当てはまる。IRセンサ92、96、100及び104のセンサ検出面92a、96a、100a及び104aは、平らである。
【0079】
第1のIR基準信号センサ96及び第2のIR基準信号センサ104のセンサ検出面96a及び104aは、
図2の投影面に対して直交する傾斜軸Nの周りで、互いに対して90°傾斜している。従って、センサ検出面96a及び104aは、互いにも、ビームスプリッタアセンブリ84にも向かっている。第1のIR基準信号センサ96及び第2のIR基準信号センサ104は、
図2の投影面に直交し、かつ、入射軸E及び傾斜軸Nを含む基準信号センサ対称面Vに関して、鏡面対称に方向付けられている。同じことは、第1のIR希望信号センサ92及び第2のIR希望信号センサ98に当てはまるが、その希望信号センサ対称面Wは、
図2の投影面に対して平行である。しかしながら、同様に、希望センサ対称面Wは、入射軸Eを含んでいる。第1のIR希望信号センサのセンサ検出面92aと第2のIR希望信号センサ100のセンサ検出面100aとは、傾斜軸Mの周りで、互いに対して約90°傾斜しているが、当該傾斜軸Mは、傾斜軸Nと共に、入射軸Eに直交する共通の平面内に位置しており、傾斜軸Nと直角を形成している。
【0080】
逆に表現すると、
図3から認識されるように、当該実施例において、傾斜軸Nと入射軸Eとは、対称面Vを形成しており、傾斜軸Mと入射軸Eとは、対称面Wを形成している。
【0081】
対称面Vに関して対称に方向付けられたIR基準信号センサ96及び104と、同様に、その配設された帯域フィルタ94又は102は、対称面Wに関して鏡面対称に設計されている。同じく、対称面Wに関して対称に方向付けられたIR希望信号センサ92及び100が、その配設された帯域フィルタ90又は98のように、対称面Vに対して鏡面対称に配置されていることが有効である。
【0082】
図3が示すように、IRセンサ92、96、100及び104は、入射軸Eと一致する配置軸Aの周りで、交互に同じ90°の角距離で配置されている。IR希望信号センサには、配置軸Aの周りの周方向において、つねにIR基準信号センサが続いており、逆も同様である。
図2では視認できないセンサ検出面100aは、
図3に示されている。
【0083】
ビームスプリッタアセンブリ84内の小さい正方形は、行及び列に配置された四角錐状の反射体84aを象徴しており、その四角錐軸は、互いに対して、かつ、入射軸Eに対して平行である。
【0084】
図4では、機械的負荷がどのようにセンサ系70に作用するのかが説明されている。
図3及び
図4の投影面に対して平行に、従って対称面Wに対して平行に、かつ、入射軸Eに対して直交して、従って配置軸Aに対して直交して作用する機械的な衝突負荷Lを仮定する。この機械的な衝突負荷Lは、
図2に示され、
図4で再び示されたIRセンサ92、96及び104において示されている。
図2及び
図4に示されていないIR希望信号センサ100に関しては、IR希望信号センサ92及び100の対称な方向付けに基づいて、IR希望信号センサ92に関する記載が対応して当てはまる。
【0085】
焦電IRセンサ92、96、100及び104は、そのセンサ検出面92a、96a、100a及び104aに直交して、圧電性の高感度を有している。すなわち、センサ検出面に直交する成分を有する機械的負荷は、関係するIRセンサにおいて、電気信号を誘発し、当該電気信号の極性は、センサ検出面に直交する機械的負荷の作用方向に依存している。
【0086】
IR希望信号センサ92及び100は、そのセンサ検出面92a及び100aで、機械的な衝撃負荷Lに対して平行に方向付けられているので、機械的な衝撃負荷Lは、そのセンサ検出面92a及び100aに対して直交する成分は有していない。従って、機械的な衝撃負荷Lは、IR希望信号センサ92及び100のIR検出信号を妨害しない。
【0087】
IR基準信号センサ96及び104では、機械的な衝撃負荷Lは、互いに直交する成分L1及びL2に分解され、当該成分の内、成分L1は、第1のIR基準信号センサ96のセンサ検出面96aに直交するように方向付けられており、成分L2は、第2のIR基準信号センサ104のセンサ検出面104aに直交するように方向付けられている。配置軸A又は入射軸Eに対するセンサ検出面96a及び104aの、値は同じであるが方向が相反する角度方向ゆえに、互いに対して直交する成分L1及びL2の値は同じ大きさであるが、成分L1は、センサ検出面96aに関して、成分L2及びそのセンサ検出面104aに対する方向付けと比較して、反対を向いている。従って、機械的な衝撃負荷Lは、IR基準信号センサ96及び104のいずれにおいても、実際の赤外線によって誘発される検出信号を妨害し、当該検出信号に、機械的な衝撃負荷Lによって誘発される妨害信号を重ねる。しかしながら、両方のIR基準信号センサ96及び104の妨害信号は、同時であり、かつ、相反する方向を向いているので、当該妨害信号は、対応する信号処理によって、例えばIR基準信号センサ96及び104の検出信号の信号加算によって、減衰し得る。基準信号センサ96及び104の信号は、希望信号センサ92及び100の信号と同様に、妨害を有さない。
【0088】
基準信号センサ対称面Vと希望信号センサ対称面Wとが、配置軸Aにおいて交差し、従って、両方の面V及びWが配置軸Aを含むので、配置軸Aに直交する機械的負荷それぞれに関しては、その目的が同じ一方でのIRセンサ92及び100、他方でのIRセンサ96及び104における信号への作用が、目的が同じセンサの対応する信号処理によって減衰するか、又は、極めて著しく削減され得ることが当てはまる。
【0089】
配置軸Aに沿って延在する機械的負荷又は負荷成分は、目的が同じIRセンサの内部では、減衰できないか、又は、著しく削減され得ない。しかしながら、全てのIRセンサ92、96、100及び104が、配置軸Aに関して、同じ値の角度で方向付けられている実施形態の配置では、全てのIRセンサに負荷が同じ妨害作用をもたらすので、機械的負荷が、ガスセンサ54の信号から得られる、試料ガス中のCO2の割合に関する検出結果の正確性に与える影響は、著しく削減され得る。なぜなら、配置軸Aに沿って作用する機械的負荷は、IR希望信号センサ92及び100の信号から得られる希望信号と、IR基準信号センサ96及び104の信号から得られる基準信号とに、概ね同時に、同じ値で、同じ方向で影響を与えるからである。赤外光の吸収の算出に関して実際に重要である、一方でのIR希望信号センサ92及び100の信号レベルと、他方でのIR基準信号センサ96及び104の信号レベルとの差は、変化しないか、又は、無視できる規模でのみ変化する。
【0090】
各機械的負荷は、配置軸Aに対して平行な成分と、配置軸Aに対して直交する成分とに分割され得るので、本発明に係るセンサ系70は、センサ系70に作用する機械的負荷による妨害作用をさらに除去することを可能とする。
【0091】
図5では、時間軸としてのx座標に沿って、IRセンサ92、96、100及び104の信号が描画されている。
図5のy座標は、各信号のレベルを表している。
【0092】
信号112は第1のIR希望信号センサ92から出力され、信号116は第1のIR基準信号センサ96から出力され、信号120は第2のIR希望信号センサ100から出力され、信号124は第2のIR基準信号センサ104から出力されている。
【0093】
信号112及び120から、希望信号132が、例えば平均値の生成によって得られる。信号116及び124からは、基準信号136が、例えば同じく平均値の生成によって得られる。
【0094】
各信号レベルの周期的な振幅から認識できるように、IR基準信号センサ96及び104の両方の信号116及び124が、それぞれ機械的負荷によって妨害されているのにもかかわらず、当該信号から生じる基準信号136は、機械的負荷の影響をほとんど受けていない。同じことは、これと比較して、IR希望信号センサ92及び100の信号112及び120と、当該信号から生じる希望信号132とにも当てはまる。
【0095】
図5では、IR希望信号センサ92及び100から出力された信号112及び120と、当該信号から生成された希望信号132とが、まず低いレベルを有しており、当該レベルは、測定キュベット52内の試料ガスに含まれるCO
2による赤外線ビーム64の赤外光の吸収に起因する。この低いレベルに、より高いレベルの信号が続いており、当該レベルにおいては、測定キュベット52の試料ガスに存在するCO
2は比較的少なく、従って、帯域フィルタ90及び98の波長領域に吸収される赤外光は比較的少ない。このより高いレベルの位相に、信号112及び120と従って希望信号132とのより低いレベルを有する位相が再び続いている。
図5の信号は、現実の呼吸状況によるものではなく、実験室内での実験計画から得られたものである。
【0096】
振幅する信号112、116、120及び124それぞれをもたらすIRセンサ92、96、100及び104の機械的負荷は、同様に、振動台によって誘発される。当該機械的負荷は、ガスセンサ54の現実の医療での使用における確率的-偶発的な機械的負荷には一致しない。
【符号の説明】
【0097】
10 人工呼吸器
12 呼吸ガス源
13 圧力変更装置
14 制御装置
16 ハウジング
18 入力/出力装置
20 呼吸回路アセンブリ
22 第1の吸気呼吸ホース
24 フィルタ
26 調節装置
28 第2の吸気呼吸ホース
30 吸気カスケード
32 第3の吸気呼吸ホース
34 Yコネクタ
36 遠位吸気導管
38 遠位呼気導管
40 近位吸気-呼気換気導管
42 第1の呼気呼吸ホース
44 呼気カスケード
46 第2の呼気呼吸ホース
48 流量センサ
50 回線アセンブリ
52 測定キュベット
53 窓
54 マルチチャネル赤外線ガスセンサ
56 データ回線
58 ホース片
60 気管内チューブ
62 近位開口部
64 赤外線ビーム
66 センサハウジング
67 ハウジングブリッジ
68 第1の区画
68a、72a 側壁
70 センサ系
72 第2の区画
74 赤外線ビーム源
75、77 回線
76 センサ制御装置
78 窓
79 クランプ受容構造
80 センサ系ハウジング
82 窓
84 ビームスプリッタアセンブリ
84a 反射体
85 第1の赤外線部分ビーム
86 第2の赤外線部分ビーム
87 第3の赤外線部分ビーム
88 第4の赤外線部分ビーム
85v、86v、87v、88v 第1~第4のビーム経路の延在方向
90 第1の帯域フィルタ
92 第1の赤外線希望信号センサ
94 第2の帯域フィルタ
96 第1の赤外線基準信号センサ
98 第3の帯域フィルタ
100 第2の赤外線希望信号センサ
102 第4の帯域フィルタ
104 第2の赤外線基準信号センサ
92a、96a、100a、104a IRセンサのセンサ検出面
112、116、120、124 信号
132 希望信号
136 基準信号
A 配置軸
E 入射軸
L 機械的な衝突負荷
L1、L2 成分
M 傾斜軸
N 傾斜軸
V 基準信号センサ対称面
W 希望信号センサ対称面