(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-12
(45)【発行日】2024-07-23
(54)【発明の名称】ショベル及びショベル用のシステム
(51)【国際特許分類】
E02F 9/20 20060101AFI20240716BHJP
【FI】
E02F9/20 N
E02F9/20 M
(21)【出願番号】P 2023014312
(22)【出願日】2023-02-01
(62)【分割の表示】P 2021020274の分割
【原出願日】2015-03-13
【審査請求日】2023-02-15
【前置審査】
(73)【特許権者】
【識別番号】000002107
【氏名又は名称】住友重機械工業株式会社
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】呉 春男
【審査官】荒井 良子
(56)【参考文献】
【文献】特開2010-066117(JP,A)
【文献】特開2005-269413(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
E02F 9/20
(57)【特許請求の範囲】
【請求項1】
下部走行体と、
前記下部走行体に搭載される上部旋回体と、
前記上部旋回体に取り付けられるアタッチメントと、
前記アタッチメントの姿勢を検出する姿勢検出装置と、
制御装置と、を備えるショベルであって、
前記制御装置は、前記制御装置が参照できるようにデータベースに記憶された、前記アタッチメントによる土砂の形状を変化させる動作が行われる前の、当該ショベルが位置する作業現場の3次元形状モデルとしての土砂の形状情報を、前記アタッチメントによる土砂の形状を変化させる動作が行われた後であって、前記アタッチメントによる土砂の形状を変化させる別の動作が行われる前に更新し、
前記制御装置が更新する土砂の形状情報は、掘削された地面の形状、及び、排土された土砂の形状を含
み、
前記排土された土砂の形状は、予め記憶された情報に基づいて決定される、
ショベル。
【請求項2】
前記排土された土砂の形状情報は、撮像装置により取得される、
請求項1に記載のショベル。
【請求項3】
前記撮像装置は、マルチコプタに備えられ、
前記制御装置は、前記撮像装置から通信装置を介して土砂の形状情報を取得する、
請求項2に記載のショベル。
【請求項4】
下部走行体と、前記下部走行体に搭載される上部旋回体と、前記上部旋回体に取り付けられるアタッチメントと、前記アタッチメントの姿勢を検出する姿勢検出装置と、を備えるショベルに用いられるショベル用のシステムであって、
制御装置を有し、
前記制御装置は、前記制御装置が参照できるようにデータベースに記憶された、前記アタッチメントによる土砂の形状を変化させる動作が行われる前の、前記ショベルが位置する作業現場の3次元形状モデルとしての土砂の形状情報を、前記アタッチメントによる土砂の形状を変化させる動作が行われた後であって、前記アタッチメントによる土砂の形状を変化させる別の動作が行われる前に更新し、
前記制御装置が更新する土砂の形状情報は、掘削された地面の形状、及び、排土された土砂の形状を含
み、
前記排土された土砂の形状は、予め記憶された情報に基づいて決定される、
ショベル用のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アタッチメントを備えたショベル及びショベル用のシステムに関する。
【背景技術】
【0002】
アームを閉じる際にアームシリンダのロッド側油室から流出する作動油の流量を増減させる可変絞りを有するショベルが知られている(特許文献1参照。)。このショベルは、可変絞りを制御するためにアームシリンダのボトム側油室の圧力を監視する。ボトム側油室の圧力が所定値未満であれば、バケットが地面に接触しておらず掘削アタッチメントが空中で動作していると判断でき、アームが自重で落下しないように可変絞りを流れる作動油の流量を低減すべきと判断できるためである。また、ボトム側油室の圧力が所定値以上であれば、バケットが地面に接触していると判断でき、可変絞りのところで無駄な圧力損失が生じないように可変絞りを流れる作動油の流量を増大すべきと判断できるためである。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上述のショベルは、アームシリンダのボトム側油室の圧力に基づいてバケットと地面の接触を検知した後でなければ可変絞りを流れる作動油の流量を低減させるべきか増大させるべきかを判断できない。その結果、掘削開始時にその流量を増大させることができず、可変絞りのところで無駄な圧力損失を生じさせ、ショベルの作業効率を低下させてしまう。これは、掘削対象の地面の現在の形状を認識していないため、バケットが地面に接触する時期を事前に判断できないことに起因する。
【0005】
上述に鑑み、作業対象の地面の現在の形状を認識できるショベルを提供することが望まれる。
【課題を解決するための手段】
【0006】
本発明の実施例に係るショベルは、下部走行体と、前記下部走行体に搭載される上部旋回体と、前記上部旋回体に取り付けられるアタッチメントと、前記アタッチメントの姿勢を検出する姿勢検出装置と、制御装置と、を備えるショベルであって、前記制御装置は、前記制御装置が参照できるようにデータベースに記憶された、前記アタッチメントによる土砂の形状を変化させる動作が行われる前の、当該ショベルが位置する作業現場の3次元形状モデルとしての土砂の形状情報を、前記アタッチメントによる土砂の形状を変化させる動作が行われた後であって、前記アタッチメントによる土砂の形状を変化させる別の動作が行われる前に更新し、前記制御装置が更新する土砂の形状情報は、掘削された地面の形状、及び、排土された土砂の形状を含み、前記排土された土砂の形状は、予め記憶された情報に基づいて決定される。
【発明の効果】
【0007】
上述の手段により、作業対象の地面の現在の形状を認識できるショベルが提供される。
【図面の簡単な説明】
【0008】
【
図1】本発明の実施例に係るショベルの側面図である。
【
図2】
図1のショベルに搭載される姿勢検出装置を構成する各種センサの出力内容の一例を示すショベルの側面図である。
【
図3】
図1のショベルに搭載される基本システムの構成例を示す図である。
【
図4】外部演算装置の構成例を示す機能ブロック図である。
【
図5】地面形状情報取得部が取得する掘削対象地面の現在の形状に関する情報の概念図である。
【
図6】排土後地面形状取得処理の流れの一例を示すフローチャートである。
【
図7】バケット角度と土砂排土率との関係を示す図である。
【
図8】排土動作後の地面形状に関する情報の概念図である。
【
図9】
図1のショベルに搭載される駆動系の構成例を示す図である。
【
図10】再生油路及び再生解除弁の構成例を示す図である。
【
図11】開口面積調整処理の流れを示すフローチャートである。
【
図12】コントローラが再生解除弁の開口面積を調整する際の各種パラメータの時間的推移を示す図である。
【
図13】掘削対象地面の深さと基準面との関係を示す図である。
【
図14】バケット角度と掘削反力との関係を示す図である。
【
図15】姿勢自動調整処理の流れを示すフローチャートである。
【
図16】外部演算装置の構成例を示す機能ブロック図である。
【
図17】外部演算装置の構成例を示す機能ブロック図である。
【
図18】外部演算装置の構成例を示す機能ブロック図である。
【
図19】外部演算装置の構成例を示す機能ブロック図である。
【発明を実施するための形態】
【0009】
最初に、
図1を参照し、本発明の実施例に係る建設機械としてのショベルについて説明する。なお、
図1は、本発明の実施例に係るショベルの側面図である。
図1に示すショベルの下部走行体1には旋回機構2を介して上部旋回体3が搭載される。上部旋回体3にはブーム4が取り付けられる。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはバケット6が取り付けられる。作業要素としてのブーム4、アーム5、及びバケット6は、アタッチメントの一例である掘削アタッチメントを構成する。なお、アタッチメントは、床堀アタッチメント、均しアタッチメント、浚渫アタッチメント等の他のアタッチメントであってもよい。また、ブーム4、アーム5、及びバケット6は、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。また、上部旋回体3にはキャビン10が設けられ、エンジン11等の動力源が搭載される。また、上部旋回体3には通信装置M1、測位装置M2、姿勢検出装置M3、及びシリンダ圧検出装置M4が取り付けられる。
【0010】
通信装置M1は、ショベルと外部との間の通信を制御する装置である。本実施例では、通信装置M1は、GNSS(Global Navigation Satellite System)測量システムとショベルとの間の無線通信を制御する。具体的には、通信装置M1は、例えば1日1回の頻度で、ショベルの作業を開始する際に作業現場の地形情報を取得する。GNSS測量システムは、例えばネットワーク型RTK-GNSS測位方式を採用する。
【0011】
測位装置M2は、ショベルの位置及び向きを測定する装置である。本実施例では、測位装置M2は、電子コンパスを組み込んだGNSS受信機であり、ショベルの存在位置の緯度、経度、高度を測定し、且つ、ショベルの向きを測定する。
【0012】
姿勢検出装置M3は、アタッチメントの姿勢を検出する装置である。本実施例では、姿勢検出装置M3は、掘削アタッチメントの姿勢を検出する装置である。
【0013】
シリンダ圧検出装置M4は、油圧シリンダ内の作動油の圧力を検出する装置である。本実施例では、シリンダ圧検出装置M4は、ブームシリンダ7のボトム側油室の圧力(以下、「ブームボトム圧」とする。)を検出するブームボトム圧センサを含む。
【0014】
図2は、
図1のショベルに搭載される姿勢検出装置M3を構成する各種センサの出力内容の一例を示すショベルの側面図である。具体的には、姿勢検出装置M3は、ブーム角度センサM3a、アーム角度センサM3b、バケット角度センサM3c、及び車体傾斜センサM3dを含む。
【0015】
ブーム角度センサM3aは、ブーム角度θ1を取得するセンサであり、例えば、ブームフートピンの回転角度を検出する回転角度センサ、ブームシリンダ7のストローク量を検出するストロークセンサ、ブーム4の傾斜角度を検出する傾斜(加速度)センサ等を含む。ブーム角度θ1は、XZ平面において、ブームフートピン位置P1とアーム連結ピン位置P2とを結ぶ線分の水平線に対する角度である。
【0016】
アーム角度センサM3bは、アーム角度θ2を取得するセンサであり、例えば、アーム連結ピンの回転角度を検出する回転角度センサ、アームシリンダ8のストローク量を検出するストロークセンサ、アーム5の傾斜角度を検出する傾斜(加速度)センサ等を含む。アーム角度θ2は、XZ平面において、アーム連結ピン位置P2とバケット連結ピン位置P3とを結ぶ線分の水平線に対する角度である。
【0017】
バケット角度センサM3cは、バケット角度θ3を取得するセンサであり、例えば、バケット連結ピンの回転角度を検出する回転角度センサ、バケットシリンダ9のストローク量を検出するストロークセンサ、バケット6の傾斜角度を検出する傾斜(加速度)センサ等を含む。バケット角度θ3は、XZ平面において、バケット連結ピン位置P3とバケット爪先位置P4とを結ぶ線分の水平線に対する角度である。
【0018】
車体傾斜センサM3dは、ショベルのY軸回りの傾斜角θ4、及び、ショベルのX軸回りの傾斜角θ5(図示せず。)を取得するセンサであり、例えば2軸傾斜(加速度)センサ等を含む。なお、
図2のXY平面は水平面である。
【0019】
次に、
図3を参照してショベルの基本システムについて説明する。ショベルの基本システムは、主に、エンジン11、メインポンプ14、パイロットポンプ15、コントロールバルブ17、操作装置26、コントローラ30、及びエンジン制御装置(ECU)74等を含む。
【0020】
エンジン11はショベルの駆動源であり、例えば、所定の回転数を維持するように動作するディーゼルエンジンである。エンジン11の出力軸はメインポンプ14及びパイロットポンプ15の入力軸に接続される。
【0021】
メインポンプ14は、高圧油圧ライン16を介して作動油をコントロールバルブ17に供給する油圧ポンプであり、例えば、斜板式可変容量型油圧ポンプである。メインポンプ14は、斜板の角度(傾転角)を変更することでピストンのストローク長を調整し、吐出流量、すなわち、ポンプ出力を変化させることができる。メインポンプ14の斜板は、レギュレータ14aにより制御される。レギュレータ14aは、電磁比例弁(不図示)に対する制御電流の変化に対応して、斜板の傾転角を変化させる。例えば、制御電流を増加させることにより、レギュレータ14aは、斜板の傾転角を大きくして、メインポンプ14の吐出流量を多くする。また、制御電流を減少させることにより、レギュレータ14aは、斜板の傾転角を小さくして、メインポンプ14の吐出流量を少なくする。
【0022】
パイロットポンプ15は、パイロットライン25を介して各種油圧制御機器に作動油を供給するための油圧ポンプであり、例えば、固定容量型油圧ポンプである。
【0023】
コントロールバルブ17は、林業機械における油圧システムを制御する油圧制御バルブである。コントロールバルブ17は、後述するレバー又はペダル26A~26Cの操作方向及び操作量に応じた圧力変化に応じて、例えば、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、走行用油圧モータ1A(左用)、走行用油圧モータ1B(右用)、及び旋回用油圧モータ2Aのうちの一又は複数のものに対し、メインポンプ14から高圧油圧ライン16を通じて供給された作動油を選択的に供給する。なお、以下の説明では、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、走行用油圧モータ1A(左用)、走行用油圧モータ1B(右用)、及び旋回用油圧モータ2Aを集合的に「油圧アクチュエータ」と称する。
【0024】
操作装置26は、操作者が油圧アクチュエータの操作のために用いる装置である。操作装置26は、パイロットライン25を介してパイロットポンプ15から供給された作動油をパイロットライン25aを通じて、油圧アクチュエータのそれぞれに対応する流量制御弁のパイロットポートに供給する。なお、パイロットポートのそれぞれに供給される作動油の圧力は、油圧アクチュエータのそれぞれに対応するレバー又はペダル26A~26Cの操作方向及び操作量に応じた圧力とされる。
【0025】
コントローラ30は、ショベルを制御するための制御装置であり、例えば、CPU、RAM、ROM等を備えたコンピュータで構成される。コントローラ30のCPUは、ショベルの動作や機能に対応するプログラムをROMから読み出してRAMにロードしながらプログラムを実行することで、それらプログラムのそれぞれに対応する処理を実行させる。
【0026】
コントローラ30は、メインポンプ14の吐出流量の制御を行う。例えば、ネガコン弁(不図示)のネガコン圧に応じて上記制御電流を変化させ、レギュレータ14aを介してメインポンプ14の吐出流量を制御する。
【0027】
エンジン制御装置(ECU)74は、エンジン11を制御する装置である。例えば、コントローラ30からの指令に基づき、後述するエンジン回転数調整ダイヤル75により操作者が設定したエンジン回転数(モード)に応じてエンジン11の回転数を制御するための燃料噴射量等をエンジン11に出力する。
【0028】
エンジン回転数調整ダイヤル75は、キャビン10内に設けられるエンジンの回転数を調整するためのダイヤルであり、本実施形態ではエンジン回転数を5段階で切り換えできるようにする。即ち、エンジン回転数調整ダイヤル75により、Rmax、R4、R3、R2及びR1の5段階でエンジン回転数を切り換えることができるようにする。なお、
図3は、エンジン回転数調整ダイヤル75でR4が選択された状態を示す。
【0029】
Rmaxは、エンジン11の最高回転数であり、作業量を優先したい場合に選択される。R4は、二番目に高いエンジン回転数であり、作業量と燃費を両立させたい場合に選択される。R3及びR2は、三番目及び四番目に高いエンジン回転数であり、燃費を優先させながら低騒音でショベルを稼働させたい場合に選択される。R1は、最も低いエンジン回転数(アイドリング回転数)であり、エンジン11をアイドリング状態にしたい場合に選択されるアイドリングモードにおけるエンジン回転数である。例えば、Rmax(最高回転数)を2000rpm、R1(アイドリング回転数)を1000rpmとし、その間を250rpm毎に、R4(1750rpm)、R3(1500rpm)、R2(1250rpm)と多段階に設定してよい。そして、エンジン11は、エンジン回転数調整ダイヤル75で設定されたエンジン回転数で一定に回転数制御される。なお、ここでは、エンジン回転数調整ダイヤル75による5段階でのエンジン回転数調整の事例を示したが、5段階には限られず何段階であってもよい。
【0030】
また、ショベルには、運転者による運転を補助するために画像表示装置40をキャビン10の運転席の近傍に配置する。運転者は画像表示装置40の入力部42を利用して情報や指令をコントローラ30に入力できる。また、ショベルの運転状況や制御情報を画像表示装置40の画像表示部41に表示させることで、運転者に情報を提供できる。
【0031】
画像表示装置40は、画像表示部41及び入力部42を含む。画像表示装置40は、運転席内のコンソールに固定される。なお、一般的に、運転席に着座した運転者からみて右側にブーム4が配置されており、運転者はブーム4の先端に取り付けられたアーム5、バケット6を視認しながらショベルを運転することが多い。キャビン10の右側前方のフレームは運転者の視界の妨げとなる部分であるが、本実施形態では、この部分を利用して画像表示装置40を設けている。これにより、もともと視界の妨げとなっていた部分に画像表示装置40が配置されるので、画像表示装置40自体が運転者の視界を大きく妨げることは無い。フレームの幅にもよるが、画像表示装置40全体がフレームの幅に入るように、画像表示装置40は、画像表示部41が縦長となるように構成されてもよい。
【0032】
本実施形態では、画像表示装置40は、CAN、LIN等の通信ネットワークを介してコントローラ30に接続される。なお、画像表示装置40は、専用線を介してコントローラ30に接続されてもよい。
【0033】
また、画像表示装置40は、画像表示部41上に表示する画像を生成する変換処理部40aを含む。本実施形態では、変換処理部40aは、撮像装置M5の出力に基づいて画像表示部41上に表示するカメラ画像を生成する。そのため、撮像装置M5は、例えば専用線を介して画像表示装置40に接続される。また、変換処理部40aは、コントローラ30の出力に基づいて画像表示部41上に表示する画像を生成する。
【0034】
なお、変換処理部40aは、画像表示装置40が有する機能としてではなく、コントローラ30が有する機能として実現されてもよい。この場合、撮像装置M5は、画像表示装置40ではなく、コントローラ30に接続される。
【0035】
また、画像表示装置40は、入力部42としてのスイッチパネルを含む。スイッチパネルは、各種ハードウェアスイッチを含むパネルである。本実施形態では、スイッチパネルは、ハードウェアボタンとしてのライトスイッチ42a、ワイパースイッチ42b、及びウインドウォッシャスイッチ42cを含む。ライトスイッチ42aは、キャビン10の外部に取り付けられるライトの点灯・消灯を切り換えるためのスイッチである。ワイパースイッチ42bは、ワイパーの作動・停止を切り換えるためのスイッチである。また、ウインドウォッシャスイッチ42cは、ウインドウォッシャ液を噴射するためのスイッチである。
【0036】
また、画像表示装置40は、蓄電池70から電力の供給を受けて動作する。なお、蓄電池70はエンジン11のオルタネータ11a(発電機)で発電した電力で充電される。蓄電池70の電力は、コントローラ30及び画像表示装置40以外のショベルの電装品72等にも供給される。また、エンジン11のスタータ11bは、蓄電池70からの電力で駆動され、エンジン11を始動する。
【0037】
エンジン11は、上述のとおり、エンジン制御装置(ECU)74により制御される。ECU74からは、エンジン11の状態を示す各種データ(例えば、水温センサ11cで検出される冷却水温(物理量)を示すデータ)がコントローラ30に常時送信される。したがって、コントローラ30は一時記憶部(メモリ)30aにこのデータを蓄積しておき、必要なときに画像表示装置40に送信することができる。
【0038】
また、コントローラ30には以下のように各種のデータが供給され、コントローラ30の一時記憶部30aに格納される。
【0039】
まず、可変容量式油圧ポンプであるメインポンプ14のレギュレータ14aから斜板の傾転角を示すデータがコントローラ30に供給される。また、メインポンプ14の吐出圧力を示すデータが、吐出圧力センサ14bからコントローラ30に送られる。これらのデータ(物理量を表すデータ)は一時記憶部30aに格納される。また、メインポンプ14が吸入する作動油が貯蔵されたタンクとメインポンプ14との間の管路には、油温センサ14cが設けられており、その管路を流れる作動油の温度を表すデータが、油温センサ14cからコントローラ30に供給される。
【0040】
また、レバー又はペダル26A~26Cを操作した際に、パイロットライン25aを通じてコントロールバルブ17に送られるパイロット圧が、油圧センサ15a、15bで検出され、検出したパイロット圧を示すデータがコントローラ30に供給される。
【0041】
また、エンジン回転数調整ダイヤル75からは、エンジン回転数の設定状態を示すデータがコントローラ30に常時送信される。
【0042】
外部演算装置30Eは、通信装置M1、測位装置M2、姿勢検出装置M3、シリンダ圧検出装置M4、撮像装置M5等の出力に基づいて各種演算を行い、演算結果をコントローラ30に対して出力する制御装置である。本実施例では、外部演算装置30Eは蓄電池70から電力の供給を受けて動作する。
【0043】
次に、
図4を参照して外部演算装置30Eの機能について説明する。なお、
図4は、外部演算装置30Eの構成例を示す機能ブロック図である。本実施例では、外部演算装置30Eは、通信装置M1、測位装置M2、姿勢検出装置M3、シリンダ圧検出装置M4の出力を受けて各種演算を実行し、その演算結果をコントローラ30に対して出力する。コントローラ30は、例えば、その演算結果に応じた制御指令を制御弁E1に対して出力する。制御弁E1はアタッチメントの動きを制御するための弁であり、例えば、再生解除弁50、パイロット圧を調整する減圧弁、リリーフ弁等である。
【0044】
具体的には、外部演算装置30Eは、主に、地形データベース更新部31、位置座標更新部32、地面形状情報取得部33、及び地面接触判定部34を含む。
【0045】
地形データベース更新部31は、作業現場の地形情報を参照可能に体系的に記憶する地形データベースを更新する機能要素である。本実施例では、地形データベース更新部31は、例えばショベルの起動時に通信装置M1を通じて作業現場の地形情報を取得して地形データベースを更新する。地形データベースは不揮発性メモリ等に記憶される。また、作業現場の地形情報は、例えば世界測位系に基づく3次元地形モデルで記述される。
【0046】
位置座標更新部32は、ショベルの現在位置を表す座標及び向きを更新する機能要素である。本実施例では、位置座標更新部32は、測位装置M2の出力に基づいて世界測位系におけるショベルの位置座標及び向きを取得し、不揮発性メモリ等に記憶されるショベルの現在位置を表す座標及び向きに関するデータを更新する。
【0047】
地面形状情報取得部33は、作業対象の地面の現在の形状に関する情報を取得する機能要素である。本実施例では、地面形状情報取得部33は、地形データベース更新部31が更新した地形情報と、位置座標更新部32が更新したショベルの現在位置を表す座標及び向きと、姿勢検出装置M3が検出した掘削アタッチメントの姿勢の過去の推移と、シリンダ圧検出装置M4が検出したブームボトム圧とに基づいて掘削対象地面の現在の形状に関する情報を取得する。
【0048】
ここで、
図5を参照し、地面形状情報取得部33が掘削動作後の地面形状に関する情報を取得する処理について説明する。
図5は、掘削動作後の地面形状に関する情報の概念図である。なお、
図5の破線で示す複数のバケット形状は、前回の掘削動作の際のバケット6の軌跡を表す。バケット6の軌跡は、姿勢検出装置M3が過去に検出した掘削アタッチメントの姿勢の推移から導き出される。また、
図5の太実線は、地面形状情報取得部33が把握している掘削対象地面の現在の断面形状を表し、太点線は、地面形状情報取得部33が把握している前回の掘削動作が行われる前の掘削対象地面の断面形状を表す。すなわち、地面形状情報取得部33は、前回の掘削動作が行われる前の掘削対象地面の形状から、前回の掘削動作の際にバケット6が通過した空間に対応する部分を取り除くことで掘削対象地面の現在の形状を導き出す。このようにして、地面形状情報取得部33は、掘削動作後の地面形状を推定できる。また、
図5の一点鎖線で示すZ軸方向に伸びる各ブロックは3次元地形モデルの各要素を表す。各要素は例えばXY平面に平行な単位面積の上面と-Z方向に無限大の長さを有するモデルで表現される。なお、3次元地形モデルは3次元メッシュモデルで表現されてもよい。
【0049】
次に、
図6~
図8を参照し、地面形状情報取得部33が排土動作後の地面形状に関する情報を取得する処理(以下、「排土後地面形状取得処理」とする。)について説明する。
図6は排土後地面形状取得処理の流れの一例を示すフローチャートである。地面形状情報取得部33は、排土動作が行われたときに排土後地面形状取得処理を実行する。例えば、地面形状情報取得部33は、掘削動作後にバケット開き操作が行われた場合に排土後地面形状取得処理を実行する。
【0050】
最初に、地面形状情報取得部33は土砂積載量を推定する(ステップS1)。本実施例では、地面形状情報取得部33は、姿勢検出装置M3が検出する掘削アタッチメントの姿勢とシリンダ圧検出装置M4が検出するブームボトム圧とに基づいて土砂積載量を推定する。 土砂積載量は掘削動作によってバケット6に積載される土砂の量であり、例えば、バケット6に積載される土砂の容積として算出される。また、土砂積載量は所定の最大積載量によって制限される。
【0051】
例えば、地面形状情報取得部33は、ブームボトム圧参照テーブルを参照して現在の掘削アタッチメントの姿勢に対応する非積載時ブームボトム圧を取得する。非積載時ブームボトム圧は、バケット6に土砂が積載されていないときのブームボトム圧を意味する。ブームボトム圧テーブルは、ROM等に予め記憶される参照テーブルであり、実測データの分析に基づいて生成される。具体的には、ブームボトム圧テーブルは、姿勢検出装置M3によって検出されるアタッチメントの姿勢に関連付けて非積載時ブームボトム圧を記憶する。そして、現在のブームボトム圧と非積載時ブームボトム圧との差に基づいてバケット6に積載された土砂の重量を推定する。そして、その推定された土砂の重量と予め入力された土砂特性(密度、粘性等)とからバケット6に積載された土砂の容積を推定する。
【0052】
また、地面形状情報取得部33は、地面形状の変化に基づいて土砂積載量を推定してもよい。
【0053】
その後、地面形状情報取得部33は土砂排土量を算出する(ステップS2)。本実施例では、地面形状情報取得部33は、土砂積載量と土砂排土率とに基づいて土砂排土量を算出する。具体的には、地面形状情報取得部33は、土砂積載量に土砂排土率を乗じて土砂排土量を算出する。
【0054】
土砂排土量は、排土動作によってバケット6から排土される土砂の量であり、土砂積載量に土砂排土率を乗じることで算出される。なお、土砂排土量は、例えば、土砂積載量と同様に、バケット6によって排土される土砂の容積として算出される。
【0055】
土砂排土率は、土砂積載量に対する土砂排土量の比率であり、排土動作の際のアタッチメントの姿勢の推移、動作速度の推移、土砂特性等に基づいて決定される。本実施例では、地面形状情報取得部33は土砂排土率テーブルを参照して土砂排土率を決定する。土砂排土率テーブルは、ROM等に予め記憶される参照テーブルであり、実測データの分析に基づいて生成される。具体的には、土砂排土率テーブルは、姿勢検出装置M3によって検出される排土動作の際のバケット角度に関連付けて土砂排土率を記憶する。
【0056】
図7はバケット角度θ3と土砂排土率との関係を示す図である。具体的には、
図7(A)はバケット角度30°のときのバケット6の姿勢とバケット角度180°のときのバケット6の姿勢を示す。また、
図7(B)はバケット角度θ3に対する土砂排土率の推移を示す。
図7(B)に示すように、土砂排土率はバケット角度θ3が略150度以上の場合に0[%]に設定される。すなわち、地面形状情報取得部33は、バケット角度θ3が略150度以上であればバケット6内の土砂が未だ排土されていないと推定する。一方で、土砂排土率はバケット角度θ3が略150度を下回るにつれて増大し、バケット角度θ3が略50度以下となった場合に100[%]に達する。すなわち、地面形状情報取得部33は、バケット角度θ3が略50度以下であればバケット6内の土砂の全てが排土されたと推定する。
【0057】
その後、地面形状情報取得部33は排土動作後の地面形状を推定する(ステップS3)。本実施例では、地面形状情報取得部33は、土砂排土量、直近の排土動作が行われる前の地面形状、排土動作の際の地面に対するバケット6の高さ、排土動作の際のアタッチメントの姿勢の推移、動作速度の推移、土砂特性等に基づいて排土動作後の地面形状を推定する。
【0058】
図8は排土動作後の地面形状に関する情報の概念図である。
図8(A)は、排土された土砂とショベルとの位置関係を示す図であり、基準点RPは、排土動作を開始したときのバケット6の中心点をショベルが位置する水平面上に投影することで得られる点である。なお、排土動作の開始時は、例えば、バケット開き動作の開始時である。また、
図8(A)の破線で示す形状は排土動作後の地面形状のうち直近の排土動作によって更新された部分の形状(以下、「更新部分形状」とする。)を示す。なお、以下では、
図8(A)の破線で示す更新部分形状をもたらした排土動作の条件(例えば土砂排土量等を含む。)を「基準排土条件」とする。
【0059】
また、
図8(B1)~
図8(B6)のそれぞれは、排土動作の条件の違いによってもたらされる排土動作後の様々な更新部分形状を示し、各図の破線で示す更新部分形状は、
図8(A)の破線で示す更新部分形状に対応する。
【0060】
具体的には、
図8(B1)の太実線で示す更新部分形状は土砂排土量が基準排土条件のときよりも大きい場合の更新部分形状に相当する。このように、更新部分形状は、土砂排土量が大きいほど大きくなるように決定される。
【0061】
また、
図8(B2)の太実線で示す更新部分形状は直近の排土動作が行われる前の地面形状が基準点RPのところで基準排土条件のときよりも隆起している場合の更新部分形状に相当する。このように、更新部分形状は、直近の排土動作が行われる前の地面形状の隆起部分の大きさ(高さ)に応じて決定される。
【0062】
また、
図8(B3)の太実線で示す更新部分形状は直近の排土動作が行われる前の地面形状が基準点RPのところで基準排土条件のときよりも陥没している場合の更新部分形状に相当する。このように、更新部分形状は、直近の排土動作が行われる前の地面形状の陥没部分の大きさ(深さ)に応じて決定される。
【0063】
また、
図8(B4)の太実線で示す更新部分形状は直近の排土動作の際のバケット6の基準点RPに対する高さが基準排土条件のときよりも高い場合の更新部分形状に相当する。このように、更新部分形状は、直近の排土動作の際のバケット6の高さが高いほど低く且つ周囲に拡がるように決定される。
【0064】
また、
図8(B5)の太実線で示す更新部分形状は直近の排土動作で排土された土砂の粘度が基準排土条件のときよりも低い場合の更新部分形状に相当する。このように、更新部分形状は、直近の排土動作で排土された土砂の粘度が低いほど低く且つ周囲に拡がるように決定される。
【0065】
また、
図8(B6)の太実線で示す更新部分形状は直近の排土動作の際のバケット6の動作速度(開き速度)が基準排土条件のときよりも速い場合の更新部分形状に相当する。このように、更新部分形状は、直近の排土動作の際のバケット6の開き速度が速いほど基準点RPに関してバケット6の開き方向に偏るように決定される。
【0066】
また、本実施例では、地面形状情報取得部33は、更新部分形状テーブルを参照して更新部分形状を決定する。更新部分形状テーブルは、ROM等に予め記憶される参照テーブルであり、実測データの分析に基づいて生成される。具体的には、更新部分形状テーブルは、土砂排土量、直近の排土動作が行われる前の地面形状、排土動作の際のバケット6の高さ、排土動作の際のアタッチメントの姿勢の推移、動作速度の推移、土砂特性等に関連付けて更新部分形状を記憶する。
【0067】
このようにして、地面形状情報取得部33は、排土動作後の地面形状を推定できる。そのため、地面形状情報取得部33は、掘削動作後の地面形状に関する情報ばかりでなく、排土動作後の地面形状に関する情報も取得できる。すなわち、地面形状情報取得部33は、掘削動作が行われる前の掘削対象地面の形状をより正確に把握できる。このようにして取得された情報は表示装置40において表示される。また、通信装置M1を介し、複数台のショベルの稼働状況を管理する管理装置へ送信されてもよい。そして、管理装置は受信したそれら情報を表示してもよい。
【0068】
地面接触判定部34は、アタッチメントが地面と接触しているかを判定してアタッチメントを制御する機能要素である。本実施例では、地面接触判定部34は、地面形状情報取得部33が取得した掘削対象地面の現在の形状に関する情報に基づいて掘削アタッチメントが地面と接触しているかを判定して掘削アタッチメントを制御する。
【0069】
具体的には、地面接触判定部34は、姿勢検出装置M3が検出する掘削アタッチメントの現在の姿勢と、地面形状情報取得部33が取得した掘削対象地面の現在の形状に関する情報とに基づいて掘削状態を判断する。例えば、地面接触判定部34は、バケット6の爪先が掘削対象地面に接触しているかを判定する。そして、バケット6の爪先が掘削対象地面に接触していると判定した場合、地面接触判定部34は、コントローラ30に対して判定結果を出力する。その判定結果を受けたコントローラ30は、制御弁E1としての再生解除弁50に対して制御指令を出力してその開口面積を増大させる。なお、地面接触判定部34は、バケット6の爪先が掘削対象地面に接触する直前にコントローラ30に対してバケット6の爪先が掘削対象地面に接触するとの判定結果を出力してもよい。さらに、予め入力された土砂密度情報に基づいて掘削アタッチメントを制御してもよい。また、以上ではコントローラ30とは別に外部演算装置30Eを設けた例を説明したが、コントローラ30と外部演算装置30Eとは一体的に構成されてもよい。
【0070】
次に、上述した本願発明を適用した場合の制御例について説明する。
図9は、
図1のショベルに搭載される駆動系の構成例を示す図であり、機械的動力伝達ライン、高圧油圧ライン、パイロットライン、及び電気制御ラインをそれぞれ二重線、実線、破線、及び点線で示す。
【0071】
この構成例では、ショベルの駆動系は、主に、エンジン11、メインポンプ14L、14R、パイロットポンプ15、コントロールバルブ17、操作装置26、操作内容検出装置29、コントローラ30、及び外部演算装置30Eを含む。
【0072】
コントロールバルブ17は、メインポンプ14L、14Rが吐出する作動油の流れを制御する流量制御弁171~176を含む。そして、コントロールバルブ17は、流量制御弁171~176を通じ、ブームシリンダ7、アームシリンダ8、バケットシリンダ9、走行用油圧モータ1A(左用)、走行用油圧モータ1B(右用)、及び旋回用油圧モータ2Aのうちの1又は複数のものに対しメインポンプ14L、14Rが吐出する作動油を選択的に供給する。 操作装置26は、操作者が油圧アクチュエータの操作のために用いる装置である。本実施例では、操作装置26は、パイロットライン25を通じ、パイロットポンプ15が吐出する作動油を油圧アクチュエータのそれぞれに対応する流量制御弁のパイロットポートに供給する。 操作内容検出装置29は、操作装置26を用いた操作者の操作内容を検出する装置である。本実施例では、操作内容検出装置29は、油圧アクチュエータのそれぞれに対応する操作装置26のレバー又はペダルの操作方向及び操作量を圧力の形で検出し、検出した値をコントローラ30に対して出力する。なお、操作装置26の操作内容は、ポテンショメータ等、圧力センサ以外の他のセンサの出力を用いて導き出されてもよい。
【0073】
エンジン11によって駆動されるメインポンプ14L、14Rは、センターバイパス管路40L、40Rのそれぞれを経て作動油タンクまで作動油を循環させる。
【0074】
センターバイパス管路40Lは、コントロールバルブ17内に配置された流量制御弁171、173、及び175を通る高圧油圧ラインであり、センターバイパス管路40Rは、コントロールバルブ17内に配置された流量制御弁172、174、及び176を通る高圧油圧ラインである。
【0075】
流量制御弁171、172、173は、走行用油圧モータ1A(左用)、走行用油圧モータ1B(右用)、旋回用油圧モータ2Aに流出入する作動油の流量及び流れ方向を制御するスプール弁である。
【0076】
また、流量制御弁174、175、176は、バケットシリンダ9、アームシリンダ8、ブームシリンダ7に流出入する作動油の流量及び流れ方向を制御するスプール弁である。なお、本実施例では、流量制御弁175の内部に再生油路が形成される。また、流量制御弁175と作動油タンクとの間には再生解除弁50が取り付けられる。
【0077】
図10は、再生油路及び再生解除弁の構成例を示す図である。具体的には、
図10(A)は、
図9に示すコントロールバルブ17における流量制御弁175及び再生解除弁50を含む部分の拡大図である。また、
図10(B)はアーム閉じ操作時に再生解除弁50の開口面積を最小としたときの作動油の流れを示し、
図10(C)はアーム閉じ操作時に再生解除弁50の開口面積を最大としたときの作動油の流れを示す。
【0078】
再生油路175aは、アーム閉じ操作時に収縮側油室であるアームシリンダ8のロッド側油室から流出する作動油を伸張側油室であるボトム側油室に流入(再生)させる油路である。また、再生油路175aは、ボトム側油室からロッド側油室への作動油の流れを防止する逆止弁を含む。なお、再生油路175aは、流量制御弁175の外部に形成されてもよい。
【0079】
再生解除弁50は、アームシリンダ8のロッド側油室から流出して作動油タンクに流れる作動油の流量を調整する弁である。本実施例では、再生解除弁50は、コントローラ30からの制御指令に応じて動作する電磁弁であり、流量制御弁175と作動油タンクとの間の油路50aの流路面積を増減させて油路50a及び再生油路175aのそれぞれを流れる作動油の流量を調整する。
【0080】
具体的には、再生解除弁50は、
図10(B)に示すように、コントローラ30からの制御指令に応じてその開口面積を低減させて油路50aを流れる作動油の流量を低減させ且つ再生油路175aを流れる作動油の流量を増大させる。この構成により、再生解除弁50は、掘削アタッチメントを空中で動作させる場合にアーム5がその自重によって落下するのを防止できる。
【0081】
また、再生解除弁50は、
図10(C)に示すように、コントローラ30からの制御指令に応じてその開口面積を増大させて油路50aを流れる作動油の流量を増大させ且つ再生油路175aを流れる作動油の流量を低減或いは消失させる。この構成により、再生解除弁50は、掘削中であるにもかかわらず、すなわち掘削アタッチメントが地面に接触しているにもかかわらず、油路50aで無駄な圧力損失を発生させて掘削力を低減させてしまうのを防止できる。
【0082】
なお、再生解除弁50は、アームシリンダ8のロッド側油室と流量制御弁175との間に設置されてもよい。
【0083】
次に、
図11を参照し、コントローラ30が再生解除弁50の開口面積を調整する処理(以下、「開口面積調整処理」とする。)について説明する。なお、
図11は、開口面積調整処理の流れを示すフローチャートである。コントローラ30は、ショベル稼働中、所定の制御周期で繰り返しこの開口面積調整処理を実行する。
【0084】
最初に、コントローラ30は、アーム閉じ操作が行われたかを判定する(ステップS11)。本実施例では、コントローラ30は、操作内容検出装置29の出力に基づいてアーム操作レバーが閉じ方向に操作されたかを判定する。
【0085】
アーム閉じ操作が行われていないと判定した場合、コントローラ30は今回の開口面積調整処理を終了させる。
【0086】
アーム閉じ操作が行われたと判定した場合、コントローラ30は、外部演算装置30Eの演算結果に基づいて掘削アタッチメントと地面が接触しているかを判定する(ステップS12)。本実施例では、外部演算装置30Eは、姿勢検出装置M3の出力から導き出されるバケット6の爪先の現在位置と、地面形状情報取得部33が取得した掘削対象地面の現在の形状に関する情報とに基づいてバケット6の爪先が地面に接触しているか否かを判定する。なお、掘削対象地面の現在の形状に関する情報は、掘削動作後の地面形状に関する情報、及び、排土動作後の地面形状に関する情報が反映された情報である。
【0087】
そして、外部演算装置30Eにより掘削アタッチメントと地面が接触していると判定された場合、コントローラ30は、必要に応じて再生解除弁50の開口面積を増大させる(ステップS13)。本実施例では、外部演算装置30Eは、バケット6の爪先が地面に接触していると判定した場合、コントローラ30に対してその判定結果を出力する。その判定結果を受けたコントローラ30は、再生解除弁50の開口面積が所定値未満であれば、その開口面積を所定値まで増大させる。
【0088】
一方、外部演算装置30Eにより掘削アタッチメントと地面が接触していないと判定された場合、コントローラ30は、必要に応じて再生解除弁50の開口面積を低減させる(ステップS14)。本実施例では、外部演算装置30Eは、バケット6の爪先が地面に接触していないと判定した場合、コントローラ30に対してその判定結果を出力する。その判定結果を受けたコントローラ30は、再生解除弁50の開口面積が所定値より大きければ、再生解除弁50の開口面積を所定値まで低減させる。
【0089】
次に、
図12を参照し、コントローラ30が再生解除弁50の開口面積を調整する際の各種パラメータの時間的推移について説明する。なお、
図12(A)はアームシリンダ8のロッド側油室の圧力の時間的推移を表す。また、
図12(B)は地面接触フラグの時間的推移を表し、
図12(C)は再生解除弁50の開口面積の時間的推移を表す。なお、
図12(A)~
図12(C)のそれぞれの時間軸(横軸)は共通である。また、地面接触フラグは、外部演算装置30Eによる掘削アタッチメントと地面との接触の有無の判定結果を表す。具体的には、地面接触フラグの値「OFF」は、外部演算装置30Eにより「接触無し」と判定されている状態を表し、地面接触フラグの値「ON」は、外部演算装置30Eにより「接触あり」と判定されている状態を表す。また、
図12の実線で示す推移は、実際の接触と「接触あり」の判定が同時に行われた場合の推移を表す。一方で、
図12の破線で示す推移は、「接触あり」の判定が実際の接触よりも前に行われた場合の推移を表し、
図12の一点鎖線で示す推移は、「接触あり」の判定が実際の接触よりも後に行われた場合の推移を表す。
【0090】
具体的には、「接触あり」の判定が実際の接触よりも前に行われた場合、地面接触フラグは、
図12(B)の破線で示すように、時刻t1において値「OFF」から値「ON」に切り替えられる。なお、本実施例では実際の接触は時刻t2において発生する。そして、地面接触フラグを値「ON」に切り替えると、コントローラ30は、再生解除弁50の開口面積を増大させる。そのため、再生解除弁50の開口面積は、
図12(C)の破線で示すように、時刻t1において値Anから値Aw(>An)に調整される。なお、値Anはアーム5を空中で動作させる際に最適な値として予め設定される開口面積であり、値Awは掘削中にアーム5を動作させる際に最適な値として予め設定される開口面積である。その結果、アームシリンダ8のロッド側油室の圧力は、
図12(A)の破線で示すように、時刻t1において減少し始め、実際の接触が起こるまで減少し続ける。アーム5が自重で落下するためである。そして、時刻t2において実際の接触が起こった後に(時刻t2と時刻t3の間で)増加に転じ、その後は作業反力としての掘削反力に応じた値まで増大する。
【0091】
このように、コントローラ30は、「接触あり」の判定が実際の接触よりも前に行われると、アームシリンダ8のロッド側油室の圧力を一時的に急減させてしまうため、キャビテーションを発生させるおそれがある。
【0092】
一方で、「接触あり」の判定が実際の接触よりも後に行われた場合、実際の接触が起こる時刻t2では再生解除弁50の開口面積は小さいままであるため、ロッド側油室の圧力は上昇してしまう。そして、地面接触フラグは、
図12(B)の一点鎖線で示すように、時刻t3において値「OFF」から値「ON」に切り替えられる。そのため、再生解除弁50の開口面積は、
図12(C)の一点鎖線で示すように、時刻t3において値Anから値Awに調整される。その結果、アームシリンダ8のロッド側油室の圧力は、
図12(A)の一点鎖線で示すように、実際の接触が起こる時刻t2で増加し始め、時刻t3において再生解除弁50の開口面積が値Awに増大されるまで増加し続ける。掘削反力と再生解除弁50での圧力損失とによる影響を受けるためである。そして、時刻t3において再生解除弁50の開口面積が値Awに増大されると減少に転じ、その後は掘削反力に応じた値まで減少する。
【0093】
このように、コントローラ30は、「接触あり」の判定が実際の接触よりも後に行われると、アームシリンダ8のロッド側油室の圧力を一時的に増加させてしまうため、掘削アタッチメントの動きを不安定にし、且つ、作業効率を低下させてしまう。
【0094】
そこで、外部演算装置30Eは、姿勢検出装置M3が検出する掘削アタッチメントの現在の姿勢と、地面形状情報取得部33が取得した掘削対象地面の現在の形状に関する情報とに基づいて掘削アタッチメントが掘削対象地面に接触しているかを判定する。「接触あり」の判定を実際の接触と同時に行うためである。
【0095】
「接触あり」の判定が実際の接触と同時に行われた場合、地面接触フラグは、
図12(B)の実線で示すように、時刻t2において値「OFF」から値「ON」に切り替えられる。そのため、再生解除弁50の開口面積は、
図12(C)の実線で示すように、時刻t2において値Anから値Awに調整される。その結果、アームシリンダ8のロッド側油室の圧力は、
図12(A)の実線で示すように、実際の接触が起こる時刻t2で減少し始め、その後は掘削反力に応じた値まで減少する。実際の接触が起こる前に一時的に急減することはなく、実際の接触が起こった後で再生解除弁50での圧力損失による影響を受けて増加することもない。
【0096】
以上の構成により、コントローラ30は、掘削動作後の地面形状に関する情報、及び、排土動作後の地面形状に関する情報に基づいて作業対象の地面の現在の形状に関する情報を取得する。そして、取得した作業対象の地面の現在の形状に関する情報に基づいてアタッチメントを制御する。本実施例では、コントローラ30は、掘削アタッチメントの現在の姿勢と掘削対象地面の現在の形状とに基づいて再生解除弁50の開口面積を調整する。具体的には、バケット6の爪先の現在位置と掘削対象地面の現在の形状とに基づいて再生解除弁50の開口面積を調整する。そのため、バケット6の爪先が掘削対象地面に接触すると同時に、アームシリンダ8のロッド側油室から作動油タンクに流出する作動油の再生解除弁50での圧力損失を低減或いは消失させることができる。その結果、コントローラ30は、アームシリンダ圧の変化等に基づいてバケット6の爪先と掘削対象地面との接触の有無を判定する場合に比べ、より正確に接触の有無を判定でき、誤判定を抑制できる。また、接触の有無の誤判定を抑制することで操作性及び作業効率を向上できる。具体的には、バケット6の爪先が地面に接触するのと同時に、アーム5の自重落下の防止のために再生解除弁50のところで発生させていた圧力損失を低減或いは消失させることができ、圧力損失分だけ掘削に要する力が増大してしまうのを防止できる。また、地面との接触の前にアーム5が自重落下してしまうのを防止でき、キャビテーションの発生を防止できる。
【0097】
また、コントローラ30は、掘削ばかりでなく、盛土、埋め戻し等が行われた場合であっても作業対象の地面の現在の形状を正確に推定できる。そのため、バケット6の爪先が掘削対象地面に接触するタイミング等を正確に予測でき、再生解除弁50等の制御弁E1の制御タイミングをより適切に決定できる。
【0098】
なお、コントローラ30は、アームシリンダ8に関する再生解除弁50の開口面積を調整するのと同様に、ブームシリンダ7に関する再生解除弁(図示せず。)の開口面積を調整してもよく、バケットシリンダ9に関する再生解除弁(図示せず。)の開口面積を調整してもよい。
【0099】
次に、
図13~
図15を参照し、外部演算装置30Eの地面接触判定部34による掘削アタッチメント制御の別の実施例について説明する。なお、
図13は、掘削対象地面の深さと基準面との関係を示す図である。基準面は、掘削対象地面の深さを定める基準となる平面である。本実施例では、基準面はショベルの中心点Rが位置する水平面であり、中心点Rはショベルの旋回軸と下部走行体1の接地面との交点である。
【0100】
具体的には、
図13の一点鎖線で示す掘削アタッチメントは、一点鎖線で示す基準面と同じ深さの掘削対象地面を掘削する際の掘削アタッチメントの姿勢を表す。この場合、掘削対象地面の深さDは基準面の深さD0(=0)と同じである。なお、掘削対象地面の深さDは、地面形状情報取得部33が取得した掘削対象地面の現在の形状に関する情報に基づいて導き出される。また、掘削対象地面の深さDは、姿勢検出装置M3が検出した掘削アタッチメントの現在の姿勢に基づいて導き出されてもよい。
【0101】
また、
図13の破線で示す掘削アタッチメントは、破線で示す掘削対象地面を掘削する際の掘削アタッチメントの姿勢を表す。この場合、掘削対象地面の深さDは深さD1(>D0)で表される。
【0102】
また、
図13の実線で示す掘削アタッチメントは、実線で示す掘削対象地面を掘削する際の掘削アタッチメントの姿勢を表す。この場合、掘削対象地面の深さDは深さD2(>D1)で表される。
【0103】
なお、掘削対象地面は基準面よりも高い位置にあってもよい。この場合、掘削対象地面の深さDは負の値で表されてもよい。
【0104】
図14は、バケット角度θ3と掘削反力Fとの関係を示す図である。具体的には、
図14(A)は、バケット6をバケット角度30°からバケット角度180°まで閉じる際のバケット6の姿勢の推移を示す。なお、
図14(A)の破線で示すバケット6はバケット角度30°のときの姿勢を表し、
図14(A)の実線で示すバケット6はバケット角度180°のときの姿勢を表す。
【0105】
図14(B)は、掘削対象地面の深さDと所定のバケット閉じ操作が行われる場合の掘削反力Fの推移又はピーク値との対応関係を予め記憶する対応テーブルの内容の一例を示す。具体的には、
図14(B)は、バケット角度30°からバケット角度180°までバケット6を閉じる際のバケット角度θ3に対する掘削反力Fの推移を示す。なお、対応テーブルは、実測データの分析に基づいて生成されるデータテーブルであり、例えば不揮発性メモリに予め登録されている。
【0106】
また、
図14(C)はバケット角度θ3の時間的推移を示し、
図14(D)は
図14(B)の対応テーブルを用いて算出される掘削反力Fの時間的推移を示す。なお、
図14(C)及び
図14(D)のそれぞれの時間軸(横軸)は共通である。
【0107】
また、
図14(B)及び
図14(D)の一点鎖線で示す推移は、掘削対象地面の深さDが深さD0のときの推移を表す。また、破線で示す推移は、掘削対象地面の深さDが深さD1のときの推移を表し、実線で示す推移は、掘削対象地面の深さDが深さD2のときの推移を表す。
【0108】
図14(A)及び
図14(C)に示すようなバケット角度30°から180°までのバケット閉じ操作が行われた場合、掘削反力Fは、
図14(B)及び
図14(D)に示すように、バケット角度θ3がある角度(例えば100°)に至るまで増大した後で減少に転じ、バケット角度θ3が180°に達したときにゼロに至る。この傾向は、掘削対象地面の深さDにかかわらず同じである。但し、掘削反力Fのピーク値は、掘削対象地面の深さDの変化に応じて変化する。
図14(B)及び
図14(D)は、掘削対象地面の深さDが深くなるほど掘削反力Fのピーク値が大きくなる傾向を一例として示す。
【0109】
そこで、外部演算装置30Eの地面接触判定部34は、地面形状情報取得部33が取得した掘削対象地面の現在の形状に関する情報に基づいて掘削対象地面の現在の深さDを導き出す。そして、地面接触判定部34は、掘削対象地面の現在の深さDに応じて、所定のバケット閉じ操作が行われる場合の掘削反力Fのピーク値を推定する。その後、地面接触判定部34は、推定した掘削反力Fのピーク値が所定値を上回るかを判定する。そして、上回ると判定した場合には、掘削アタッチメントの動きを制御してそのピーク値が所定値を超えないようにする。掘削反力Fが大きくなり過ぎて掘削アタッチメントの動きが不安定になるのを防止するためである。例えば、地面接触判定部34は、操作者によるブーム上げ操作の有無にかかわらず、バケット閉じ動作中にブーム4を自動的に上昇させることで掘削反力Fのピーク値が所定値を超えないようにする。例えば、地面接触判定部34は、操作者が気付かない程度の上昇率(単位時間当たりのブーム4の回動角度)でブーム4を自動的に上昇させる。そのため、地面接触判定部34は、ブーム4が自動的に上昇したことを操作者に気付かせずに掘削アタッチメントの動きを滑らかにすることができ、操作感を向上させることができる。なお、この場合の地面接触判定部34の制御対象は、再生解除弁50ではなく流量制御弁176である。例えば、地面接触判定部34は、推定した掘削反力Fのピーク値が所定値を上回るとの判定結果をコントローラ30に対して出力する。この判定結果を受けたコントローラ30は、流量制御弁176のパイロット圧を増減させる制御弁E1としての電磁弁(図示せず。)に対して制御指令を出力して流量制御弁176を自動的に移動させる。
【0110】
図15は、掘削反力Fのピーク値が所定値を超えないようにコントローラ30が掘削アタッチメントの姿勢を自動的に調整する処理(以下、「姿勢自動調整処理」とする。)の流れを示すフローチャートである。コントローラ30は、ショベル稼働中、所定の制御周期で繰り返しこの姿勢自動調整処理を実行する。
【0111】
最初に、コントローラ30は、掘削操作が行われたかを判定する(ステップS21)。本実施例では、コントローラ30は、操作内容検出装置29の出力に基づいてブーム操作、アーム操作、及びバケット操作の少なくとも1つが行われたかを判定する。
【0112】
そして、掘削操作が行われたと判定した場合(ステップS21のYES)、コントローラ30は、外部演算装置30Eの演算結果に基づいて掘削アタッチメントと地面が接触しているかを判定する(ステップS22)。本実施例では、外部演算装置30Eは、姿勢検出装置M3の出力から導き出されるバケット6の爪先の現在位置と、地面形状情報取得部33が取得した掘削対象地面の現在の形状に関する情報とに基づいてバケット6の爪先が地面に接触しているか否かを判定する。
【0113】
そして、掘削アタッチメントと地面が接触していると判定した場合(ステップS22のYES)、外部演算装置30Eは、掘削反力Fのピーク値を推定する(ステップS23)。本実施例では、外部演算装置30Eは、地面形状情報取得部33が取得した掘削対象地面の現在の形状に関する情報に基づいて掘削対象地面の現在の深さDを導き出す。そして、外部演算装置30Eは、掘削対象地面の現在の深さDに応じて所定のバケット閉じ操作が行われる場合の掘削反力Fのピーク値を推定する。具体的には、外部演算装置30Eは、
図14(B)に示すような対応テーブルを参照して掘削対象地面の現在の深さDに対応する掘削反力Fのピーク値を導き出す。また、外部演算装置30Eは、掘削対象地面の現在の深さDに基づいて所定のバケット閉じ操作が行われる場合の掘削反力Fのピーク値をリアルタイムで算出してもよい。また、外部演算装置30Eは、そのピーク値を算出する際に土砂密度等を考慮してもよい。土砂密度は、車載入力装置(図示せず。)を通じて操作者が入力する値であってもよく、シリンダ圧センサ等の各種センサの出力に基づいて自動的に算出される値であってもよい。
【0114】
その後、外部演算装置30Eは、推定した掘削反力Fのピーク値が所定値Fthを上回るかを判定する(ステップS24)。
【0115】
そして、外部演算装置30Eによりピーク値が所定値Fthを上回ると判定された場合(ステップS24のYES)、コントローラ30は、バケット閉じ動作中に掘削アタッチメントの姿勢を自動的に調整する(ステップS25)。本実施例では、コントローラ30は、操作者によるブーム上げ操作の有無にかかわらず、バケット閉じ動作中にブーム4を自動的に上昇させる。具体的には、バケット角度θ3の変化に応じた所定の動作パターンでブーム4を自動的に上昇させる。
【0116】
なお、コントローラ30は、掘削操作が行われていないと判定した場合(ステップS21のNO)、外部演算装置30Eにより掘削アタッチメントと地面が接触していないと判定された場合(ステップS22のNO)、或いは、外部演算装置30Eによりピーク値が所定値Fth以下であると判定された場合には(ステップS24のNO)、掘削アタッチメントの姿勢を自動的に調整することなく、今回の姿勢自動調整処理を終了する。
【0117】
以上の構成により、外部演算装置30Eは、掘削動作後の地面形状に関する情報、及び、排土動作後の地面形状に関する情報に基づいて作業対象の地面の現在の形状に関する情報を取得する。そして、取得した作業対象の地面の現在の形状に関する情報に基づいてアタッチメントを制御する。本実施例では、外部演算装置30Eは、バケット閉じ動作中に掘削反力Fのピーク値が所定値Fthを超えないようにすることができる。そのため、掘削反力Fが過度に増大して掘削アタッチメントの動きが不安定になるのを防止し、ショベルの操作性及び作業効率を向上させることができる。また、外部演算装置30Eは、低めに設定された所定値Fthを用いることで、床堀作業、均し作業等の掘削作業以外の作業でも同様の効果を実現できる。
【0118】
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。
【0119】
例えば、上述の実施例では、外部演算装置30Eは、姿勢検出装置M3が検出する掘削アタッチメントの現在の姿勢と、地面形状情報取得部33が取得した掘削対象地面の現在の形状に関する情報とに基づいて掘削アタッチメントが掘削対象地面に接触しているかを判定する。そして、接触していると判定した場合に、コントローラ30から再生解除弁50に対して制御指令を出力させてその開口面積を増大させる。或いは、接触していると判定した場合に、所定のバケット閉じ動作が行われるときの掘削反力Fのピーク値を推定し、その推定したピーク値が所定値Fthを上回るときに、ブーム4を自動的に上昇させて実際のピーク値が所定値Fth以下となるようにする。しかしながら、本発明はこれらの構成に限定されるものではない。例えば、外部演算装置30Eは、接触していると判定した場合に、アタッチメントの駆動力(例えば掘削アタッチメントによる掘削力)を増大させてもよい。具体的には、外部演算装置30Eは、エンジン11の回転数を増大させたり、メインポンプ14L、14Rの吐出量を増大させたりしてもよい。なお、この場合の地面接触判定部34の制御対象は、再生解除弁50ではなく、エンジン11又はメインポンプ14のレギュレータである。
【0120】
また、外部演算装置30Eは、リモート運転又は自動掘削運転(無人運転)の場合であっても、掘削反力Fのピーク値が所定値Fthを上回ると判断したときにブーム4を自動的に上昇させてもよい。掘削反力Fを小さくして円滑な掘削作業を継続させるためである。
【0121】
また、上述の実施例では、地形データベース更新部31は、ショベルの起動時に通信装置M1を通じて作業現場の地形情報を取得して地形データベースを更新する。しかしながら、本発明はこの構成に限定されるものではない。例えば、地形データベース更新部31は、撮像装置が撮像したショベル周辺の画像に基づいて作業現場の地形情報を取得して地形データベースを更新してもよい。
【0122】
図16は、撮像装置M5に接続される外部演算装置30Eの構成例を示す機能ブロック図である。
図16の構成は、通信装置M1の代わりに撮像装置M5が接続される点で、
図4の構成と相違するがその他の点で共通する。そのため、共通部分の説明を省略し、相違部分を詳細に説明する。
【0123】
撮像装置M5はショベルの周辺の画像を取得する装置である。本実施例では、撮像装置M5は、ショベルの上部旋回体3に取り付けられるカメラであり、撮像した画像に基づいてショベルの周囲の地面までの距離を認識して作業現場の地形情報を取得する。なお、撮像装置M5はステレオカメラ、距離画像カメラ、3次元レーザスキャナ等であってもよい。
【0124】
また、撮像装置M5はショベルの外部に取り付けられていてもよい。この場合、外部演算装置30Eは、通信装置M1を介して撮像装置M5が出力する地形情報を取得してもよい。具体的には、撮像装置M5は、空撮用マルチコプタ、作業現場に設置された鉄塔等に取り付けられ、作業現場を上から見た画像に基づいて作業現場の地形情報を取得してもよい。また、撮像装置M5は、空撮用マルチコプタに取り付けられた場合、1時間に1回程度の頻度で或いはリアルタイムで、作業現場を上から見た画像を撮像して作業現場の地形情報を取得してもよい。撮像装置M5が取得した地形情報は地形データベースの更新に用いられる。その更新間隔は、地形情報の所得間隔が1時間以上の場合には、姿勢検出装置M3からの信号に基づく地形データベースの更新間隔よりも長い。
【0125】
図17~
図19は、撮像装置M5に接続される外部演算装置30Eの別の構成例を示す機能ブロック図である。
図17の構成は、地形データベース更新部31及び位置座標更新部32のそれぞれが撮像装置M5(特にショベルの外部にある撮像装置M5)の出力を利用する点で、
図4の構成と相違するがその他の点で共通する。
図17の実施例では、地形データベース更新部31は、例えば、1日1回の頻度で通信装置M1を通じて作業現場の地形情報を取得し、且つ、1時間に1回の頻度で或いはリアルタイムで撮像装置M5を通じて作業現場の地形情報を取得して地形データベースを更新する。また、位置座標更新部32は、測位装置M2の出力と撮像装置M5の出力を併用してショベルの現在位置を表す座標及び向きに関するデータをリアルタイムで更新する。なお、位置座標更新部32は、撮像装置M5の出力のみに基づいてショベルの現在位置を表す座標及び向きに関するデータをリアルタイムで更新してもよい。
【0126】
図18の構成は、位置座標更新部32が撮像装置M5の出力のみを利用し且つ測位装置M2が省略された点で
図4の構成と相違するがその他の点で共通する。また、
図19の構成は、地形データベース更新部31及び位置座標更新部32のそれぞれが撮像装置M5の出力のみを利用し且つ通信装置M1及び測位装置M2が省略された点で
図4の構成と相違するがその他の点で共通する。
【0127】
このように、外部演算装置30Eは、撮像装置M5の出力に基づいて作業現場の地形情報を取得して地形データベースを更新してもよく、ショベルの現在位置を表す座標及び向きに関するデータをリアルタイムで更新してもよい。
【0128】
また、上述の実施例では、外部演算装置30Eはコントローラ30の外部にある別の演算装置として説明されたが、コントローラ30に一体的に統合されてもよい。
【符号の説明】
【0129】
1・・・下部走行体 1A・・・走行用油圧モータ(左用) 1B・・・走行用油圧モータ(右用) 2・・・旋回機構 2A・・・旋回用油圧モータ 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 11a・・・オルタネータ 11b・・・スタータ 11c・・・水温センサ 14L、14R・・・メインポンプ 14a・・・レギュレータ 14b・・・吐出圧力センサ 14c・・・油温センサ 15・・・パイロットポンプ 15a、15b・・・油圧センサ 16・・・高圧油圧ライン 17・・・コントロールバルブ 25、25a・・・パイロットライン 26・・・操作装置 26A~26C・・・レバー又はペダル 29・・・操作内容検出装置 30・・・コントローラ 30a・・・一時記憶部 30E・・・外部演算装置 31・・・地形データベース更新部 32・・・位置座標更新部 33・・・地面形状情報取得部 34・・・地面接触判定部 40・・・画像表示装置 40a・・・変換処理部 40L、40R・・・センターバイパス管路 41・・・画像表示部 42・・・入力部 42a・・・ライトスイッチ 42b・・・ワイパースイッチ 42c・・・ウインドウォッシャスイッチ 50・・・再生解除弁 50a・・・油路 70・・・蓄電池 72・・・電装品 74・・・エンジン制御装置(ECU) 75・・・エンジン回転数調整ダイヤル 171~176・・・流量制御弁 175a・・・再生油路 E1・・・制御弁 M1・・・通信装置 M2・・・測位装置 M3・・・姿勢検出装置 M3a・・・ブーム角度センサ M3b・・・アーム角度センサ M3c・・・バケット角度センサ M3d・・・車体傾斜センサ M4・・・シリンダ圧検出装置 M5・・・撮像装置