(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-17
(45)【発行日】2024-07-25
(54)【発明の名称】遠隔パワービーム分割
(51)【国際特許分類】
H02J 50/30 20160101AFI20240718BHJP
H01L 31/0232 20140101ALI20240718BHJP
H01L 31/10 20060101ALI20240718BHJP
【FI】
H02J50/30
H01L31/02 D
H01L31/10
(21)【出願番号】P 2021569932
(86)(22)【出願日】2020-05-21
(86)【国際出願番号】 US2020034093
(87)【国際公開番号】W WO2020237099
(87)【国際公開日】2020-11-26
【審査請求日】2023-02-17
(32)【優先日】2019-05-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】521511058
【氏名又は名称】レーザーモーティブ インコーポレーテッド
【氏名又は名称原語表記】LASERMOTIVE,INC.
【住所又は居所原語表記】6004 S. 190th Street, Suite 101, Kent, WA 98032 (US)
(74)【代理人】
【識別番号】100105131
【氏名又は名称】井上 満
(74)【代理人】
【識別番号】100105795
【氏名又は名称】名塚 聡
(72)【発明者】
【氏名】ニュージェント,ジュニア トーマス ジェー.
(72)【発明者】
【氏名】バシュフォード,トーマス ダブリュー.
(72)【発明者】
【氏名】ヘイ,アレクサンダー
(72)【発明者】
【氏名】バッシュフォード,デービッド
【審査官】柳下 勝幸
(56)【参考文献】
【文献】国際公開第2017/179051(WO,A2)
【文献】特表2019-514325(JP,A)
【文献】国際公開第2016/187330(WO,A1)
【文献】特開2011-082256(JP,A)
【文献】米国特許第04834805(US,A)
【文献】特開2008-311408(JP,A)
【文献】特開2013-214650(JP,A)
【文献】特開2010-287715(JP,A)
【文献】特開2003-346927(JP,A)
【文献】特開2013-214030(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 50/30
H01L 31/0232
H01L 31/10
(57)【特許請求の範囲】
【請求項1】
高フラックスパワービームを出力するように構成された遠隔パワー送信機、及び、
前記高フラックスパワービームを受信するように構成された遠隔パワー受信機を含み、
前記受信機が、
前記高フラックスパワービームの光エネルギーの少なくとも一部を電気エネルギーに変換するように構成された少なくとも2つの光起電(PV)セルと、
前記少なくとも2つのPVセルに隣接する非PV構造と、
前記非PV構造から離して、前記少なくとも2つのPVセルに向かけてフラックスを誘導するように構成された光誘導構造と、を含む、遠隔パワーシステム。
【請求項2】
前記光誘導構造は前記少なくとも2つのPVセルの位置に対応する少なくとも2つの非連続領域に、隣接したパワービームを誘導するように構成される、請求項1に記載の遠隔パワーシステム。
【請求項3】
前記非PV構造は、前記少なくとも2つのPV電池の間にある、請求項1に記載の遠隔パワーシステム。
【請求項4】
前記高フラックスパワービームはレーザービームである、請求項1に記載の遠隔パワーシステム。
【請求項5】
前記少なくとも1つの非PV構造は、配線、電力変換回路、及びPVセルを支持するためのフレーム構造のうちの1つ又は複数を含む、請求項1に記載の遠隔パワーシステム。
【請求項6】
前記光誘導構造は第1の複数のレンズレットを含み、各レンズレットは、前記高フラックスパワービームと前記少なくとも2つのPVセルのPVセルとの間に少なくとも部分的に位置決めされる、請求項1に記載の遠隔パワーシステム。
【請求項7】
前記第1の複数のレンズレットの少なくとも2つのレンズレットが、エッジトゥエッジで配置される、請求項6に記載の遠隔パワーシステム。
【請求項8】
前記第1の複数のレンズレットの各レンズレットは、収束レンズである、請求項6に記載の遠隔パワーシステム。
【請求項9】
前記光誘導構造は第2の複数のレンズレットをさらに備え、前記第2の複数のレンズレットの各レンズレットは前記第1の複数のレンズレットのそれぞれのレンズレットとPV電池との間に配置される、請求項6に記載の遠隔パワーシステム。
【請求項10】
前記第2の複数のレンズレットの少なくとも2つのレンズレットが、互いに隣接して配置される、請求項9に記載の遠隔パワーシステム。
【請求項11】
前記第2の複数のレンズレットの各レンズレットは、発散レンズである、請求項9に記載の遠隔パワーシステム。
【請求項12】
前記光誘導構造は複数の反射構造をさらに含み、前記複数の反射構造の各反射構造は、PVセル上に光を反射するように配置される、請求項1に記載の遠隔パワーシステム。
【請求項13】
前記複数の反射構造のうちの反射構造は、平面反射構造である、請求項12に記載の遠隔パワーシステム。
【請求項14】
前記複数の反射構造のうちの反射構造は、湾曲した反射構造である、請求項12に記載の遠隔パワーシステム。
【請求項15】
各PVセルは長方形のPVセルであり、各PVセルは、その4つの縁部のそれぞれに隣接する複数の反射構造のうちの1つの反射構造を有する、請求項12に記載の遠隔パワーシステム。
【請求項16】
前記複数の
反射構造は、複数の全内部反射(TIR)構造をさらに含み、前記複数の反射構造の各TIR構造は、それぞれのPVセルを実質的に覆う、請求項1
2に記載の遠隔パワーシステム。
【請求項17】
前記複数の
反射構造は、個々に形成された複数のレンズレットを備える、請求項1
2に記載の遠隔パワーシステム。
【請求項18】
前記複数の
反射構造は、単一の構造として形成された複数のレンズレットを備える、請求項1
2に記載の遠隔パワーシステム。
【請求項19】
高フラックスパワービームを出力するように構成された遠隔パワー送信機、及び、
前記高フラックスパワービームを受信するように構成された遠隔パワー受信機を含み、
前記受信機は、
前記高フラックスパワービームのフラックスの少なくとも一部を電気エネルギーに変換するように構成された少なくとも2つのエネルギー変換器と、
前記少なくとも2つのエネルギー変換器に隣接する非エネルギー変換器構造と、
前記非エネルギー変換器構造から離して、前記少なくとも2つのエネルギー変換器に向けてフラックスを誘導するように構成された光誘導構造と、を含む、遠隔パワーシステム。
【請求項20】
前記光誘導構造は前記少なくとも2つのエネルギー変換器の位置に対応する少なくとも2つの非連続領域に、連続したパワービームを誘導するように構成される、請求項19に記載の遠隔パワーシステム。
【請求項21】
前記非エネルギー変換器構造は、前記少なくとも2つのエネルギー変換器の間にある、請求項19に記載の遠隔パワーシステム。
【請求項22】
送信機から高フラックスパワービームを送信することと、
少なくとも2つのエネルギー変換器と非エネルギー変換器構造を含む受信機で前記高フラックスパワービームを受信することと、
受信した前記高フラックスパワービームを前記非エネルギー変換器構造から離して、前記少なくとも2つのエネルギー変換器に向けて誘導することと、を含む、パワービームシステムを操作する方法。
【請求項23】
前記受信した高フラックスパワービームを誘導することは、前記受信したビームを、前記少なくとも2つのエネルギー変換器の位置に対応する少なくとも2つの不連続領域に誘導することを含む、請求項22に記載の方法。
【請求項24】
前記非エネルギー変換器構造は、前記少なくとも2つのエネルギー変換器の間に配置される、請求項22に記載の方法。
【請求項25】
前記少なくとも2つのエネルギー変換器は、光起電力(PV)セルである、請求項22に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は2019年5月21日に出願された米国仮特許出願第62/851,037号の米国特許法119(e)に基づく利益を主張したPCT/US20/34093の米国特許法第371条の利益を主張し、これらの開示は、本明細書と矛盾しない範囲で参照により本明細書に組み込まれる。
本発明は海軍研究局(Office of Naval Research)によって授与されたN0014-19-C-2006の下で政府の支援を受けてなされた。政府は本発明に対して所定の権利を保有している。
【背景技術】
【0002】
本開示は一般に、遠隔パワービーミングに関する。限定はしないが、より詳細には、本開示は遠隔パワーの改善された送達のために、受信機においてパワービームを分割することに関する。
【発明の開示】
【発明が解決しようとする課題】
【0003】
本開示の背景を理解する際に有用であり得る技術及び関連技術のいくつかの態様は、以下の刊行物に記載される:
-電磁放射を電気に変換するためのデバイスを記載したKareらの公開された米国特許出願第2014/0318620A1号;
-パワービーミング垂直共振器面発光レーザー(VCSEL)を記載したKareらの国際特許出願公開WO2016/187328A1;
-シングルドPVセルを有するパワー受信機を記載したBashfordらの公開された米国特許出願2019/0020304Al;
-遠隔パワー安全システムを記載したNugentらの国際特許出願公開WO2017/147206A1;
-多層型安全システムを記載したKareらの米国特許第10,634,813号;
-パワービーミングを一体化したエネルギー効率のよい車両を記載したOlssonらの米国特許第9,800,091号;
-拡散安全システムを記載したKareらの公開された米国特許出願第2018/0136335A1。
【0004】
上記文献の各々は、本明細書と矛盾しない範囲で参照により本明細書に組み込まれる。
【0005】
背景技術の項で論じた主題の全ては、必ずしも先行技術ではなく、単に背景技術の項におけるその議論の結果として先行技術であると仮定されるべきではない。これらの線に沿って、背景技術の項で論じられた、又はそのような主題に関連する従来技術における問題の認識は先行技術であると明示的に述べられていない限り、先行技術として扱われるべきではない。その代わりに、背景技術の項における任意の主題の議論は特定の問題に対する発明者らのアプローチの一部として扱われるべきであり、それ自体もまた発明的であり得る。
【0006】
以下は、いくつかの特徴及び文脈(又は、コンテキスト)の導入的な理解を提供するための本開示の概要である。この概要は、本開示の鍵となる(若しくは、重要な)又はクリティカル(若しくは、重要)な要素を識別すること、又は本開示の範囲を線引きすることを意図していない。この概要は、後に提示されるより詳細な説明の前置きとして、本開示の特定の概念を簡略化された形態で提示する。
【0007】
本開示に記載される装置、方法、及びシステムの実施形態は受信機のエネルギー変換素子へのフラックス(又は、光束)の改良された送達のために、受信機において高強度パワービームを分割する。特定の光学構造によって実行されるビーム分割は受光した光からより多くの電力を生成し、廃熱を低減することによって、パワービーミングシステムの効率を改善する。本開示の教示は自由空間パワービーミングシステム、機械的光透過性(transmissive)媒体(例えば、光ファイバケーブル)、及び他の遠隔パワービーミングシステムに適用されてもよい。
【0008】
本開示の教示は、平坦な光起電力(PV)アレイ、円形リングPVアレイ、及び他の構成のために配置された実施形態において適用されてもよい。いくつかの場合において、実施形態は、複数の光学系を備えて配置される。他の場合には、実施形態が高エネルギービームからの光を成形及び分割するような複数の機能を処理するために、単一の光学系を備えて配置される。
【0009】
本明細書に開示される特定の場合において、レンズレット(又は、小型レンズ)は、高エネルギービームからの光を成形するように配置される。レンズレットアレイは従来、ビームを(例えば、正方形の形状に)成形するために、及び/又はビームを均質化するために使用されてきたが、ビームのサブパーツが別個の光起電力(PV)セル上に個別に向けられるように、高強度レーザーパワービームを分割するために(例えば、個別に、アレイで、又は別の構成で)レンズレットを使用することは新規である。本開示の教示は、様々な方法で様々な目的のために使用される既知の太陽集光器とは区別される。
【0010】
本明細書に開示される実施形態によって提供される1つの利点は、構造材料、電子材料、又は他の材料に衝突することによって浪費されるのとは対照的に、受信機に到達するフラックスのより高い割合をPVセルに衝突させるために向けることを含む。別の利点は、実施形態の少なくともいくつかが、PVセル上で受け取られるエネルギーの強度を増加させることであり、この増加は一般に、より高いPV効率に関連する。実施形態のうちの少なくとも一部は従来のシステムよりも、個々のPVセルをより大きな距離だけ離すことを可能にし、これは、熱管理及び配線ルーティングを改善する。
【0011】
場合によっては、円形、正方形、又は他の形状のレンズのグリッドが、計画された高エネルギーパワービームスポットサイズよりも大きいサイズを有する。グリッドは、レンズレット間のギャップ(又は、隙間)を低減するように成形された個々のレンズレットセルから形成されてもよい。いくつかの実施形態では、成形されたレンズ間にギャップを有さないことが望ましく、これらの場合、例えば、レンズ表面は単位セルを満たし、これは各レンズ表面がレンズレットセル内に含まれるか、又はさもなければ支持され、未使用の空間が残される、公知のほとんどのレンズアレイとは異なる。本開示で教示される少なくともいくつかの実施形態では、各レンズレットがそのそれぞれのPVセルよりも大きな面積を有する。これらの場合、レンズレットは高エネルギーパワービームの一部を、対応するPVセルのPVアクティブエリアとほぼ同じサイズ又はそれより小さいスポットサイズに集束させ、それによって、それぞれのPVセルの境界内に、少なくともいくらかのマージンだけ(又は、少なくともいくらかは)、高エネルギーパワービーム強度のより集束された領域を生成する。
【0012】
個々のレンズレットの間のギャップが低減されたレンズレットアレイを作製するための様々な方法がある。場合によっては、個々のレンズレットが薄く、実質的に見えない結合線を備えて組み立てられる。場合によっては、個々のレンズレットが1つの小片から機械加工されるか、1つの小片に打ち出し(又は、打ち抜き、スタンプ)されるか、又はホログラフィック光学素子として作られ、さらに他の場合には個々のレンズレットが異なる方法で作られる。
【0013】
いくつかの場合において、集光レンズアレイは、本明細書に記載されるように配置される。場合によっては、発散レンズが追加され(例えば、PVセルごとに1つ)、入射角の範囲がより狭くなるように(例えば、光線が平行に近くなり、PVセルに垂直角度で入射するように)入射フラックスの角度広がりを変化させる。このような改善は例えば、パワービームの入射角のより狭い範囲でPV効率が改善される多層PVセルにおいて利点を提供する。少なくともいくつかの実施形態ではより狭い範囲はより急峻な入射角であり、場合によっては直交又は実質的に直交してもよい。
【0014】
これら及びさらに他の場合において、反射構造が屈折構造と共に、又はその代わりに、展開されてもよい。反射(例えば、ミラーリングされた)表面は、通常はPVセルに衝突しないであろう高出力ビームの部分を反射するように、PVセルの上(すなわち、送信機に近い)、PVセルの間、及び、PVセルの上とその間に配置されてもよい。反射を行うことによって、高エネルギーフラックスの一部が、フラックスをPVセルに衝突させる角度で反射されることになる。反射構造は平坦にする又は湾曲(例えば、複合放物面又は他の曲面の集光器のスタイルで)させることができ、ある場合には、ビーム分割光学系(例えば、レンズレット、プリズム又は他の光学系)も、各「ビームレット」の中心をレンズレットに入射する高フラックスパワービームの中心に対してシフトさせるように、高フラックスパワービームに対して配置することができる。この構成では、レンズレットを通過する高フラックスパワービームの部分がPVセルの所望の位置に当たるであろう。
【0015】
この概要は、発明を実施するための形態においてさらに詳細に説明される特定の概念を簡略化された形態で説明するために提供された。概要は、特許請求される主題の範囲を限定するものではなく、むしろ、特許請求の範囲の用語自体が特許請求される主題の範囲を決定する。
【図面の簡単な説明】
【0016】
非限定的かつ非網羅的な実施形態が、以下の図面を参照して記載され、ここで、特に指定されない限り、様々な図を通して同様の符号は同様の部分を指す。図面における要素のサイズ及び相対位置は、必ずしも一定の縮尺で描かれてはいない。例えば、様々な要素の形状を選択し、拡大し、配置して、図面の読みやすさを向上させる。描かれた要素の特定の形状は、図面における認識を容易にするために選択されている。説明された新規な要素に直接関連しない図示された実施形態の特徴は、明確にするために省略されてもよい。以下、添付図面を参照して、1つ以上の実施形態について説明する。
【0017】
図1A及び
図1Bは、レーザーパワービーミングシステムを介した遠隔パワー送達の一形態を示す。
図1A及び
図1Bは、本明細書ではまとめて
図1と呼ぶこともある
【0018】
【0019】
【0020】
図3Aは、集光レンズレットのアレイを含む遠隔パワービーム分割受信機の実施形態の正面側図である。
【0021】
【0022】
図4Aは、集光レンズレットのアレイと発散レンズレットのアレイとを含む別の遠隔パワービーム分割受信機の実施形態の正面側図である。
【0023】
【0024】
図5は、実質的に平坦な反射器を含む別の遠隔パワービーム分割受信機の実施形態の断面図である。
【0025】
図6は、湾曲した反射器を含む別の遠隔パワービーム分割受信機の実施形態の断面図である。
【0026】
図7は、一次反射器及び二次反射器を含む別の遠隔パワービーム分割受信機の実施形態の断面図である。
【0027】
図8は、全内部反射(TIR)材料を含む別の遠隔パワービーム分割受信機の実施形態の断面図である。
【0028】
図9は、発散レンズレットのアレイを含む別の遠隔パワービーム分割受信機の実施形態の断面図である。
【発明を実施するための形態】
【0029】
本開示は、この詳細な説明及び添付の図面を参照することによって、より容易に理解され得る。本明細書で使用される用語は特定の実施形態を説明するためだけのものであり、管轄権を有する裁判所又は受諾された機関がそのような用語が限定的であると決定しない限り、特許請求の範囲を限定するものではない。本明細書で特に定義されない限り、本明細書で使用される用語は、関連技術分野で知られているようなその伝統的な意味を与えられるべきである。
【0030】
本開示に記載される装置、方法、及びシステムの実施形態は、受信機のエネルギー変換素子(例えば、光起電力(PV)セル)へのフラックスの改良された送達のために、受信機において高強度パワービームを分割する。特定の光学構造によって実行されるビーム分割は受光からより多くの電力を生成し、熱を低減することによって、パワービーミングシステムの効率を改善する。本開示の教示は自由空間パワービーミングシステム、固体光透過性媒体(solid light transmissive mediums)(例えば、光ファイバケーブル又は他の導波路)、及び他の遠隔パワービーミングシステムに適用されてもよい。
【0031】
用語「パワービーム」、「高フラックスパワービーム」等は、本開示及び請求の範囲の全体を通して、全ての文法形式において、交換可能に使用され、一般的に方向性を有することが可能であり、好適な受信機への誘導(又は、操縦/steer)/照準のために配置することが可能な、光の場を含み得る高フラックス光透過(high-flux light transmission)に言及する。本開示で論じられるパワービームは、ワイヤ(又は、電線)などの従来の電気導管を介してパワーを通過させることなく、望ましいレベルのパワーを遠隔受信機に送達するのに十分な、高フラックスレーザーダイオード、ファイバレーザー、又は他の同様のソースによって形成されるビームを含む。
【0032】
本開示では「光」という用語が光ベースの送信機又は光ベースの受信機の一部として使用される場合、場合によっては光学素子又は準光学素子によって誘導(例えば、反射、屈折、フィルタリング、吸収、捕捉など)することができる周波数範囲内にあり、極低周波数(ELF)からガンマ線までにわたる電磁スペクトルで定義され、少なくとも紫外線、可視光、長波長、中波長及び短波長の赤外線、テラヘルツ放射、ミリメートル波、マイクロ波、ならびに他の可視光及び不可視光を含む、電磁放射を生成又は捕捉するように構成された送信機又は受信機を指す。
【0033】
本明細書では、「フラックス」という用語は、パワーを意味し、文脈上別段の指示がない限り、特に、その一部又は全部を電力に変換することができる受信機に到達する選択された量の電磁波放射などの光パワーを意味する。
【0034】
本開示において、「隣接領域(又は、連続領域/contiguous region)」という語は、パワービームに適用される場合、ビームによって照明される領域が完全に接続されることを意味する。文脈上別段の指示がない限り、2つの非隣接領域は重複しないと推定される。パワービームは「非隣接」と表現される2つの領域の間の領域を照明(又は、照射)する少量の光を含み得るが、この照明は領域の照明の強度よりも実質的に低強度であり、例えば、それらの強度の10%、それらの強度の5%、それらの強度の1%、それらの強度の0.1%、それらの強度の0.01%、又は実質的にゼロ強度である。
【0035】
図1A及び
図1Bは、レーザーパワービーミングシステム100を介した遠隔パワー送達の1つの形態を示す。光遠隔パワービーミングシステムとも呼ばれるレーザーパワービーミングシステム100は、少なくとも1つの送信機102及び少なくとも1つの受信機104を含む。
図1Aにおいて、レーザーパワービーミングシステム100は、送信機102を振り返って受信機104の視点から見られている。
図1Bにおいて、レーザーパワービーミングシステム100は、受信機104に向かって見ている送信機102の視点から見られている。
【0036】
図1の送信機102は高フラックスパワービーム106(例えば、レーザー光の高エネルギービーム)を出力するように配置された遠隔パワー送信機であり、このビームは空気又は光又は何らかの光透過性媒体(例えば、光ファイバケーブル)を通して、受信機104に向かって距離を越えて投射される。
図1の受信機104は、高フラックスパワービームを受信するように配置された遠隔パワー受信機である。受信機104は地面より上にあってもよく、又は容易に利用可能な電力がない遠隔地(例えば、水中、山上、建物の頂部、又は他の高架構造物)にあってもよく、高フラックスパワービーム106からフラックスを捕捉するように取り付けられた任意の数の光起電力(PV)セルを含む。受信機104において、PVセルは、高フラックスパワービーム106内のエネルギーから電力を生成する。次いで、電力は、電力が消費される1つ以上の回路(図示せず)に運ばれる。
【0037】
いくつかの場合には、送信機102は、必須ではないが、典型的には0.7~2.0μmの間の光スペクトル波長の近赤外(NIR)部分の光パワー(例えば、光)に電力を変換するレーザーアセンブリを含む。レーザーアセンブリは相互にコヒーレントであってもインコヒーレントであってもよい複数のレーザー又は単一のレーザーを含んでもよい。場合によっては、1つ又は複数のレーザーは、1つ又は複数の発光ダイオード(LED)、超放射ダイオード、ファイバレーザー、又は他の何らかの高強度光源によって置き換えることができる。レーザーアセンブリの光エネルギー出力は生レーザー光(又は、無処理のレザー光)を所望のサイズ、形状(例えば、円形、長方形、台形)、出力分布、及び発散のビームに変換する任意の数の光学要素(例えば、光ファイバ、レンズ、ミラー等)を通過することができる。また、レーザーアセンブリの種々の要素は、高フラックスパワービーム106を受信機104に向けるように配置することができる。
【0038】
送信機102から離れた後、高フラックスパワービーム106は自由空間又は光透過媒体(例えば、光ファイバケーブル)を通って受信機104に向かって進む。本発明で使用される「自由空間」という用語は、空気又は真空、水、気体などのような任意の合理的に透明な媒体を意味する。自由空間は、常にではないが、一般的には、全内部反射(TIR)(「全」という用語を含むにもかかわらず、特に光ファイバ又は導管が曲げられる実施形態では、一定量の光エネルギーの損失を含む可能性がある)によって、高エネルギー光ビーム又はフィールドを閉じ込めるか、又は取り囲む光ファイバ又は導管などの機械的な光透過性媒体とは区別される。本開示では、自由空間又は機械的媒体経路が高エネルギー光の特定の特性を方向転換又は変更する1つ又は複数のミラー、レンズ、プリズム、又は他の個別の光学素子を含むことができる。
【0039】
受信機104において、高フラックスパワービーム106は、受光モジュール(
図1には示されていない)に衝突する。高フラックスパワービーム106からのエネルギーは捕捉され、少なくとも部分的に、別の形態の有用なパワーに再変換される。場合によっては、受光モジュールが光を直流(DC)電気に変換する光起電力(PV)セルのアレイを含む。他の場合には、受光モジュールが他の方法で、例えば、光パワーを熱に変換し、熱エンジン(例えば、スターリングエンジン、タービン)、熱電デバイス、又は他の何らかのデバイスを駆動することによって、光を電気に変換する。
【0040】
図2Aは、従来の受信機104Aの正面側図である。
図2Bは、従来の受信機104Aの、断面線2B-2Bにおける断面図である。
【0041】
受信機104Aは、光起電力(PV)セル208のアレイと、非PV電気回路及び機械的構造210の集合体とを含む。図では単純化のために、1つのPVセル208のみが識別されており、電気回路及び機械的構造210の1つの集合体のみが識別されている。非PV電気回路及び機械的構造210は、PVセル208間の1つ又は複数の隙間に形成される。この図及び後続の図において明確にするために、断面で示されるPVセル208は、実際のパワー受信機において典型的であるよりもいくらか厚く描かれている。
【0042】
PVセル208の間にギャップがないことが理想的であるが、そのような市販のシステムは知られていない。代わりに、PVセル208間の隙間は、電子回路(例えば、発電回路、電力変換回路、データ記憶装置、プロセッサ、トランシーバ等)、PVセルフレーム、熱放散構造等に使用される。いくつかの場合において、いくつかのPVセルは互いに直接隣接して形成されるが、これらの場合でさえ、PV材料フレーム、結合材料(又は、ボンディング材料)、隣接するセル間の電気的短絡を防止する必要性などのために、少なくともいくらかのギャップ(例えば、0.25ミリメートル、0.5ミリメートル、又は他のいくらかのギャップ)が存在する。他の場合には、PVセルが「シングルド(又は、シングル葺き/重なり合うように配置/shingled」されることが知られている(すなわち、PVセルの1つの縁部の前部が別のPVセルの1つの縁部の後部に重なり、後ろにある)が、これらの場合であっても、高フラックスパワーを受け取り、そこから電気を生成するのに利用できないギャップが残る可能性がある。
【0043】
従って、経時的に送達される高フラックスパワービーム106では、ビームの中央部分が実際に均一な強度を有し得る一方で、一方のエッジから他方のエッジまで均一性が存在しない場合がある。したがって、高フラックスパワービーム106は均一な円形断面を有するように形成されてもよいが、受信機に到達する高フラックスパワービーム106は特にその周辺部において、強度にある程度の変動を有する可能性がある。これは、
図2において、より高い強度からより低い強度の領域を示す複数の円106A、106B、106Cによって示されている。
【0044】
図2Bでは、受光器を覆う任意選択のカバー112が高フラックスパワービーム106からの光をPVセル208アレイに向かって直接通す。図において簡単にするために、高フラックスパワービーム106の反射又は屈折は示されていない。高フラックスパワービーム106の第1の部分106PVは、PVセル208材料に到達する。高フラックスパワー106の第2の部分106Xは、PVセル208材料に到達しない。
【0045】
高フラックスパワービーム106部分の第2の部分106XがPV電池208材料に到達しないことを考慮して、本発明者らは、この損失が受信機104Aの効率を下げることを認識した。したがって、本開示の教示はこの欠点に対処し、
図1の受信機104などの遠隔パワー受信機の動作を改善する。本明細書で論じられるように、本開示の教示は、種々の遠隔パワービーム分割の実施形態を説明する。
【0046】
図3Aは、発明の遠隔パワービーム分割受信機104の正面側図である。
図3Bは、断面線3B-3Bにおける
図3Aの遠隔パワービーム分割受信機104の断面図である。
図3の受信機104は複数のPVセル208の一部又は全部に向かって、かつ非PV構造(例えば、電気回路及び機械的構造210)の一部又は全部から離れるようにフラックスを操縦するための複数の構造を含む。
【0047】
受信機104は、光起電力(PV)セル208のアレイと、非PV電気回路及び機械的構造210の集合体とを含む。
図3A及び
図3Bにおける単純化のために、1つのPVセル208のみが識別されており、非PV電気回路及び機械的構造210の1つの集合体のみが識別されている。非PV電気回路及び機械的構造210は、PVセル208間の1つ又は複数のギャップに形成される。
図3Bの受信機104におけるギャップは
図2の従来の受信機104AにおけるPVセル208間のギャップと同じサイズでも、より小さくても、又はより大きくてもよい。
図3Bには示されないが、一部の実装では、電気回路及び機械的構造210がPVセル208の表面より上に延在してもよい。
【0048】
図3Bでは、複数の集束/集光レンズレット302がPVセル208の個々の1つの上に配置されている。複数のレンズレットの各レンズレット302は、入ってくる高フラックスパワービーム106とそれぞれのPVセル208との間に配置される。レンズレット302は、個々のビームレット(又は、小ビーム)、光線、光子、又は高フラックスパワービーム106の任意の他の適切に命名された部分を、受信機104の非PV部分から離れて、PVセル208のPV材料に向かって集束させるか、さもなければ集光させる。
【0049】
場合によっては、個々のレンズレット302が個別に形成され、互いに隣接して配置されてもよい(例えば、エッジトゥエッジ(edge to edge)で、結合材料だけによって分離されて、結合材料とフレームだけによって分離されてもよいし、単一の材料片から形成されてもよいし、又は同様のものであってもよい)。場合によっては、個々のレンズレット302が単一の構造として形成されてもよい。収束/集光レンズレット302は当業者に明らかな方法で、注入、成形、打ち抜き、機械加工、又は他の方法で形成することができる。
【0050】
いくつかの実施形態では、PVセル208のうちの選択されたものは円形の上側形状を有するように形成される。他の実施態様において、PVセル208のうちの選択されたものは、正方形の上側形状、長方形の上側形状、六角形の上側形状、又は任意の他の好適な上側形状を有するように形成される。対応して、レンズレットは任意の適切な上側形状(円形、正方形、長方形、六角形など)で形成されてもよく、レンズレットは高フラックスパワービーム106からの光を、円形、正方形、長方形、六角形などの任意の適切な形状に屈折させるように形成されてもよい。しかしながら、少なくともいくつかの場合には、レンズレット302及び下にあるPVセル208が異なる上側形状を有する。
【0051】
図3Bの実施形態では、レンズレット302が高フラックスパワービーム106のビームレットをPVセル208に向けて収束させるように配置される。
図3において、高フラックスパワービーム106の大量の高フラックスエネルギー(又は、高フラックスエネルギーの大部分)は、PV材料を貫通するように示される。様々な強度の様々な高フラックスパワービーム部分106D、106E、106F、106Gが、
図3Aに示されている。レンズレット302によって生成される効率の大幅な向上にもかかわらず、PVセル208に到達しない高フラックスパワービーム106の一部分106Xが存在し得る。PVセル208に到達しない部分106Xは、レンズレット間の継ぎ目から反射するか、レンズレット間の継ぎ目を通過して、受信機104の非PV領域に到達するか、又はPV材料から離れる何らかの他の方向に進み得る。それにもかかわらず、
図3の実施形態は、これまでに知られている受信機を使用して可能であったものよりも大量の、PVセル208において高フラックスパワービーム106から電気エネルギーに変換されるエネルギーを提供する改良された受信機104である。特に
図2A及び
図3Aの表現において、
図2の従来の受信機104Aを
図3の改良された受信機104と区別するように、高フラックスパワービーム106からのエネルギーは、
図2のPVセル208に到達するよりも、
図3のPVセル208に到達する方が著しく多く、高フラックスパワービーム106から
図3の電気回路及び機械的構造210に到達するエネルギーは、
図2において到達するエネルギーよりも著しく少ない。
【0052】
図4Aは、別の発明の遠隔パワービーム分割受信機104Bの正面側図である。
図4Bは
図4Aの遠隔パワービーム分割受信機104B実施形態の、断面線4B-4Bによる断面図である。
図4の受信機104Bは複数のPVセル208のいくつか又はすべてに向かって、非PV構造(すなわち、電気回路及び機械的構造210)のいくつか又はすべてから離れるようにフラックスを誘導する第1の複数の構造と、第1の複数の構造を通過する高フラックスパワービームレットをPVセル208のそれぞれの表面に向かって直接(又は、真っすぐに)屈折させる第2の複数の構造とを含む。
【0053】
図3に倣って、受信機104Bは、光起電力(PV)セル208のアレイと、非PV電気回路及び機械的構造210の集合体とを含む。簡単のために、
図3Aにおけるそのような構造に倣った、
図4Aの受信機104Bの特定の特徴については、さらには論じない。
【0054】
図4Bにおいて、
図3Bに倣って、複数の集束/集光レンズレット402が、PVセル208の個々のもの上に配置される。複数のレンズレットの各レンズレット402は、流入する高フラックスパワービーム106とそれぞれのPVセル208との間に配置される。レンズレット402は、個々のビームレット、光線、光子、又は高フラックスパワービーム106の任意の他の適切に命名された部分を、受信機104Bの非PV部分から離れて、PVセル208のPV材料に向かって収束又は集光させ、場合によっては誘導(又は、操舵/方向制御/steering)する。
【0055】
図4Bの受信機104Bの実施形態では、第2の複数のレンズレット404がそれぞれのレンズレット402と特定のPVセル208との間に配置される。第2の複数のレンズレット404は入射角度の範囲がより狭くなるように、入ってくるフラックスの角度広がりを変化させるように配置された発散レンズであってもよい。第2の複数の発散レンズレット404はビームレットをより平行にし、PVセル208への垂直な入射角に近づける。少なくともいくつかの場合において、発散レンズレット404はまた、ビームレットをそれぞれのPVセル208の望ましい部分に誘導するか、さもなければ導くことができる。
【0056】
場合によっては個々のレンズレット404が個別に形成され、エッジトゥエッジで配置されてもよく、他の場合には個々の発散レンズレット404がフレーム、結合材料、材料コストを低減する設計、又は何らかの他の理由により、互いに分離されてもよい。場合によっては、個々のレンズレット404が単一の構造として形成されてもよい。発散レンズレット404は注入、成形、打ち抜き、機械加工、又は他の何らかの方法で形成することができる。
【0057】
図4Bの実施形態では、第1のレンズレット402及び第2のレンズレット404が協働して、PVセル208に向かう高フラックスパワービーム106のビームレットを収束させ、コリメートする。この配置ではコリメートされたビームレットが実質的に直交する配向でPVセル208に到達することができ、ある場合にいくつかのPVセル設計に対して、高フラックスパワービーム106のより大量の高フラックスエネルギーが実質的に均一性をもって
図4BのPV材料に浸透することを可能にするであろう。例えば、多接合PVセルは典型的には特定の配向(多くは直交であるが、必ずしもそうであるとは限らない)でPVセルに到達する光に対して、各層で吸収される光の量を等しくするように選択された各接合層間の厚さで設計される。光が、PVセルが設計されている角度とは異なる角度で到達すると、この等化が妨害される可能性がある。PVセルはまた、セルから外へ電気エネルギーを運ぶために使用される内部グリッド線を含み、垂直でない角度でセル表面に到達する光は、これらのグリッド線の遮光効果を増加させ得る。最後に、いくつかのPVセルは反射防止コーティングを用いて設計され、その反射防止効果はセルに到達する光の角度に敏感であり得る。
図3のレンズレット402の継ぎ目と同様に、
図4の第1及び第2のレンズレット402、404の継ぎ目も、フラックスの一部106XがPVセル208に到達するのを妨げ得る。
【0058】
場合によっては、本開示のPVセル208は、一辺が約2ミリメートル(2mm)から一辺が100mmまでの範囲であってもよい。もちろん、他のサイズ及び形状も考えられる。場合によっては、本開示のPVセル208がほぼ正方形又は長方形の形状であり、正方形又は長方形のアレイに配置され、任意選択で角が切られている。少なくとも1つの場合において、PVセル208は一辺が約10mmであり、いくつかの場合において、PVセル208は、一辺が約5mm~約15mmの範囲であってもよい。受信機104におけるセルのアレイは例えば、幅(又は、差し渡し/across)10cm~100cm、幅20cm~60cm、又は幅約45cmであってもよい。場合によっては、受信機104が1つのPVセル208、4つのPVセル208、100個のPVセル208、又はいくつかの他の数のPVセル208を有することができる。少なくともいくつかの場合には、受信機104がさらに多数のPVセル208を備えることが考えられる。
【0059】
少なくともいくつかの実施形態では本開示の収束/集光レンズレット302、402はPVセル208よりも大きく、集光比は約1.5倍~約50倍(50倍)であってもよい。このような場合、正方形レイアウトの場合、これは、各収束/集光レンズレット302、402の寸法が所望のスポットサイズに集光比の平方根を掛けたものであることを意味する。例えば、約(1.2×スポットサイズ)から約(7.1×スポットサイズ)までである。少なくともいくつかの場合において、受信機104は、約2~約50、約3.5~約25、又は約4~約15の範囲の収束/集光レンズレット302、402集光比を有するように形成される。1つの公知の場合において、収束/集光レンズレット302、402は約3.4cmの幅であり、一方、各PVセル208のアクティブ領域は約1センチメートル(1cm)であり、この場合、ターゲットスポットサイズは、約0.8cmであった。これらの寸法は、(3.4cm/0.8cm)2つまり約18の集光比に対応する。これらの集光比は、他の条件下で他の目的のために表面的に類似の構造を使用することができる太陽集光器の典型的な集光比と対比することができる。特に、太陽集光器は、典型的には約50×~500×の集光比を有する。これらのより高い集光比により、PVセルの材料を保存し、より好ましいエネルギーレジームで作動させるために、太陽集光器が比較的弱い太陽光を太陽PVセル上に集光することが可能になる。対照的に、本明細書に記載されるパワービーミングシステムは、PVセルを照射するためにレーザー光を使用する(場合によっては1つ以上の特定のレーザー周波数で効率のために調整されてもよい)。このレーザー光は典型的には少なくとも関心のある特定の周波数において、太陽光よりも実質的により強く、より低い集光比は、受信機システムにメルティング又は他の損傷を引き起こし得るエネルギー強度を生成することなく、レーザー光の実質的な部分をPVセル上に導くのに十分であることが見出されている。本明細書に記載される受信機は、太陽光がパワービームの領域に限定されずに広い受信機領域にわたって豊富に利用可能であるため「失われた」光をあまり懸念することなく典型的に設計される太陽集光器とは対照的に、入射レーザー光の可能な限り多く(例えば、入射レーザー光の80%超、90%超、95%超、98%超、又は実質的に全て)を集光しようと試み得る。
【0060】
本明細書に教示されるいくつかの実施形態では、レーザーパワー(又は、出力)のためのPVセル208材料がGaAs、InGaAs、Si、又はGaSbのうちの1つである。収束/集光レンズレット302、402は光学ガラス(例えば、BK7)又は公知の光学プラスチック(例えば、ポリカーボネート又はアクリル)などの材料から形成されてもよい。本明細書で教示するいくつかの実施形態では、反射構造が、支持構造を備えた、アルミニウム化マイラーなどの材料、又はアルミニウム、炭素繊維複合材、もしくはプラスチックなどの他の反射性もしくは反射性コーティング材料で形成することができる。
【0061】
図5-
図9は、さらなる受信機の実施形態を示す。受信機104C、104D、104E、104Fのさらなる実施形態は、それぞれ、高フラックスパワービーム106の部分をPVセル208のPV材料の方へ分割するか、さもなければ再誘導するように配置される。
図5-
図9には光の方向を示す矢印がわずかしか示されていないため、PVセル208の表面で終端して示されていることに留意されたい。もちろん、光は使用中に光電池に一定の距離浸透することができ、この表面での終了は、図面を明確にするためのものであることが理解されるであろう。
【0062】
図5において、反射構造502はパワー受信機104C上の、PVセル208を囲む平面構造(又は、平坦構造)である(例えば、長方形PVセル208は4つの周囲平面反射構造502を有し、六角形PVセル208は6つの周囲平面反射構造502を有する、等々)。反射構造502には、
図2に関連して上述したように、任意選択のカバーシート212が頂部に設けられている。これらの場合の少なくともいくつかでは、それぞれの長方形(例えば、正方形)のPVセル208の4つの縁部のうちの1つに隣接する、複数の反射構造502の各反射構造502は、同じPVセル208にも合致する2つの他の反射構造502にさらに隣接する。このような構成において、高フラックスパワービーム106の光のかなりの部分、又はほぼ全てが、直接的又は間接的にPVセル208に送られる。また、そのような場合、隣接する反射構造502の上側シーム(例えば、境界線(又は、接合線)に向けられる光を、そのようなシームから離れるように発散させることもできるように、様々な他の実施形態を形成することができる(
図9に関連して以下でさらに説明する)。
【0063】
各反射構造502はそれぞれのPVセル208に実質的に直交する角度で配置されてもよいが、
図5に示される反射構造502はPVセル208に正確に垂直ではない。すなわち、
図5の反射構造502は、さもなければ非PVの電気回路及び機械的構造210に当たるフラックスを、構造が再度方向付け、捕捉することを可能にする入射角を有する。場合によっては、反射構造502が法線の10度以内、法線の20度以内、法線の30度以内、又は他の何らかの位置にある。場合によっては、各反射構造502の法線からオフセットされる角度が反射構造のサイズ及び隣接するPVセル208間の空間の量に基づく。例えば、反射構造502が垂直[直交]から20度である場合、入射光が「垂直」(PVセルによって画定される表面に垂直)に入射する場合、一方の表面502から反射する光は、PV208に対して垂直から40度の角度を作るであろう。例えば、セルの幅が1cmであり、セル間のスペースが1cmであり、反射構造がPVセルの真ん中にある場合、各反射構造モジュールの幅は2cmであり、4×の集光比を作り出す。よって、法線から20度の角度を持つ平面の表面は、1.37cmの高さになるであろう(0.5cm幅/tan(20°)と計算される)。
【0064】
図6において、パワー受信機104DはPVセル208を囲む湾曲(例えば、放物線、円錐、円形、双曲線、又は他のいくつかの選択された湾曲)を有する反射構造602を含む。これらの曲線は凹状又は凸状であってもよく、
図6に示されるように、反射構造602は凹状である。
図5に倣って、反射構造602には、任意選択のカバーシート212が頂部に設けられている。場合によっては、放物面反射構造602が
図5の反射構造502と同様に(又は、
図5の反射構造502の線に沿って)、長方形のPVセル、六角形のPVセル、又は他のいくつかの配列のPVセルの周囲に配置されてもよい。いくつかの実施形態は、
図5に示されるような平坦な反射器502と、
図6に示されるような湾曲した反射器602との混合物を含み得ることが理解される。
【0065】
図7は、受信機104Eの別の実施形態を断面図で示す。この実施形態では、反射構造702がPVセル208を部分的に囲む一次反射構造であり、二次反射構造704と協働して働く。一次反射構造702は、湾曲していても平坦であってもよく、矩形のPVセル、六角形のPVセル、楕円形のPVセル、円形のPVセル、又は他の何らかの配置のPVセルの周りにさらに配置されてもよい。さらに他の実施形態も考えられる。二次構造704は、一次反射器702からの一次反射を下にあるPVセル208のPV材料に向けて再指向するように形成され、一次反射器702と協働して光をPVセル208上に反射するのに適切な任意の形状を有する。この設計は、当業者に精通していると思われる特定の光反射望遠鏡に関連している。いくつかの実施態様において、
図7に示されるように、これらの形状702、704は、同一の三次元構造の左側面及び右側面を表してもよい。場合によってはPVセル208が紙面に垂直な方向に小さなギャップのみを有して列状に配置されると都合がよく、又はこの方向に互いの上に重ねて配置されてもよく(同時係属中の共同所有の米国特許出願公開第2019/0020304号に概説されるように)、電気回路及び機械的構造210は示されるようにPVセル208の左側及び右側に配置されてもよい。あるいは、このタイプの二次元実施形態が、入射光がPVセル(複数)118上に分割されるように、レンズ軸が反射器軸に対して垂直である状態で、
図3B又は
図4Bに示されるような類似の二次元レンズ実施形態と組み合わされてもよい。
【0066】
さらに、エッジ反射構造706が、受信機104Eのエッジに形成されてもよい。エッジ反射構造706は反射構造702に対して逆の曲率を有してもよく、異なる曲率を有してもよく、又はエッジ反射構造は任意の他の適切な形状及び配向(例えば、平面であり、正確に又は実質的に直交し、平面であり、PVセル208の表面に対して異なる角度を有し、複雑な形状を有する)をとってもよい。構造702(及び存在する場合には706)の湾曲は電気回路及び機械的構造210がPVセル208の間に配置されることを可能にし、一方、さもなければ電気回路及び機械的構造210に到達するであろう光をPVセル208上に向ける。各PVセル208は、一次反射構造702、二次反射構造704、及び/又はエッジ反射構造706の混合物によって取り囲まれてもよい。
【0067】
図8において、全内部反射(TIR)材料804は、各PVセル208にわたって望ましい形状、サイズ、密度、及び他のそのような特性を有する受信機104F内に形成される。その材料及びそれに隣接する材料(通常は空気又は場合によってはそれを隣接する構造804又は側壁に付着させる接着剤)のTIR角度よりも小さい高フラックスパワービーム106の部分は、それらが底部で出るまでTIR材料804内を伝播するように拘束される。図示されるように、TIR材料804の上面及び下面は湾曲しているが、それらはまた、平坦、角度を成し、又は任意の他の光学的及び機械的に好適な形状であってもよい。
図8に示されるような配置では、高フラックスパワービーム106Lの光のほぼすべてがPVセル208に渡され、電気回路及び機械的構造210を回避する。いくつかの実施形態では、TIR材料804の出口表面が、出射光がPVセル208に到達する前に、出射光をいくらかぼかすために、ディンプル加工又はテクスチャ加工されてもよい。
【0068】
図9はさらに、断面で示される1つ以上の受信機実施形態104Gである。本実施形態では、複数の発散レンズレット素子902を有する窓が高フラックスパワービーム106と、それぞれのPVセル208の特定のエッジ(例えば、4つのエッジのうちの1つ)に隣接する、複数の反射構造502のうちの各反射構造502が、近接する第2のPVセル208に隣接する別の反射構造502に隣接する継ぎ目との間に配置される。場合によっては隣接する反射構造502間の接合線は非常に狭いが、これらの接合線は高フラックスパワービーム106の一部がPVセル208のPV材料に到達するのを反射したり、さもなければ妨げたりする可能性がある。この欠点を改善するために、発散レンズレット902を継ぎ目の上方に配置して、さもなければ失われるであろう特定の部分106MをPVセル208に向かって方向転換させることができる。場合によっては(図示のように)、発散レンズレット902はカバー窓(例えば、受信機カバー112)の裏側に形成される溝又は凹状レンズレットである。
【0069】
ある種の高フラックスパワービーム部106Iが
図5に示され、他の種々の高フラックスパワービーム部106J、106K、106Lが
図6乃至
図9に示されている。
図5~
図9の高フラックスパワービーム部106I、106J、106K、106Lの部分の数、部分の強度、入射角、反射角、及びその他の特性及び特性は例示的なものであり、限定的なものではない。多くの他の形状、向き、角度、及び他のそのような特性が考えられる。さらに、
図3~
図9の実施形態に関して、さらに他の実施形態が、別の実施形態の教示と組み合わされた1つの実施形態の教示を用いて形成され得ることが認識される。例えば、場合によっては、任意の適切な材料及び任意の単純な形状、複雑な形状、異なる形状などの反射体及び反射材料を有する実施形態を形成することができる。
【0070】
特定の実施形態では、本開示が高フラックスパワービーム106からの光を集光させるためのレンズレットを教示する。他の実施形態では、本開示が高フラックスパワービーム106からの光を発散させるレンズレットを教示する。そして、さらに他の実施形態では、本開示が反射器(平坦な反射器、湾曲した反射器、及びTIR反射器を含む)を教示して、高フラックスパワービーム106からの光の方向を変更する。本明細書に開示される様々な実施形態は、1つ以上のPVセルに到達する高フラックスパワービーム106からの光の量を増加させるために適切に組み合わされてもよい。
【0071】
別段の定義がない限り、本明細書で使用される技術用語及び科学用語は、本発明が属する技術分野の当業者によって一般に理解されるものと同じ意味を有する。本明細書に記載されるものと類似又は同等の任意の方法及び材料もまた、本発明の実施又は試験において使用され得るが、限定された数の例示的な方法及び材料が本明細書に記載される。
【0072】
本開示では要素(例えば、構成要素、回路、デバイス、装置、構造、層、材料など)が別の要素の「上にある」、「結合されている」、又は「接続されている」と称される場合、該要素は直接上にある、直接結合されている、又は互いに直接接続されている、又は介在する要素が存在することができる。対照的に、要素が別の要素の「上に直接ある」、「直接結合されている」、又は「直接接続されている」、又は「直接接続されている」と称される場合、介在する要素は存在しない。
【0073】
用語「include含む」及び「comprise含む」ならびにその派生物及びその変形はそれらの構文文脈のすべてにおいて、限定されはしないが、非限定的で(open)、包括的な意味で解釈されるべきで(例えば、「含むが、これに限定されない」)ある。用語「又は」は包含的であるか、及び/又はを意味する。「関連する」及び/又は「それに付随する」という句、及び/又はその派生物は、含む、中に含まれる、ともに相互接続する、含有する、含有される、それに又はそれと接続する、それに又はそれと連結する、又はそれと通信可能である、それと協働する、インターリーブする、並列する、それに近い、それに又はそれと結合される、有する、特性を有する、などを意味すると理解することができる。
【0074】
本明細書全体を通して、「一実施形態」又は「実施形態」、及びその変形への言及は、実施形態に関連して説明された特定の特徴、構成、又は特徴が少なくとも一つの実施形態に含まれることを意味する。したがって、本明細書全体を通して様々な場所に「一実施形態において」又は「実施形態において」という語句が現れることは、必ずしもすべて同じ実施形態を指すわけではない。さらに、特定の特徴、構造又は性質は1以上の実施形態において任意の適当な方法で組み合わせられ得る。
【0075】
本開示では第1、第2などの用語は様々な要素を説明するために使用され得るが、これらの要素は文脈がそのような限定を明確に要求しない限り、これらの用語によって限定されない。これらの用語は、単に1つの要素を別の要素から区別するために使用される。例えば、発明の概念の範囲から逸脱することなく、第1の機械は第2の機械と呼ぶことができ、同様に、第2の機械は第1の機械と呼ぶことができる。
【0076】
本開示における単数形「a」、「an」、及び「The」は内容及び文脈がそうでないことを明確に指示しない限り、複数の指示対象を含む。連結語「及びand」及び「又はor」は内容及び文脈が場合によって包含性または排他性を明確に指示しない限り、「及び/又はand/or」を含む最も広い意味で一般に使用される。本明細書において「及びand」及び「又はor」の構成は、「及び/又はand/or」として列挙される場合、それに関連する要素のすべてと、それに関連する要素のすべてより少ない要素を含む少なくとも1つ以上の代替実施形態とを含む実施形態を包含する。
【0077】
本開示では、連接リストは、オックスフォードカンマ、ハーバードカンマ、シリアルカンマ、又は別の同様の用語として知られ得るカンマを使用する。このようなリストはコンマに続くものもリストに含まれるように、単語、節、又は文を接続することを意図している。
【0078】
本明細書で提供される開示の名称及び要約は単に便宜上のものであり、本発明の範囲を表すものではなく、又は実施形態を意味するものでもない。
【0079】
ある範囲の値が与えられる場合、その間にある値各々は、特に述べない限り、該範囲の上限と下限との間の、該下限の1/10まで、及び任意の他の記載された値又は該記載された範囲内の値は、本発明の範囲内に入る。これらのより小さい範囲の上限及び下限は、独立して、より小さい範囲に含まれてもよく、記載された範囲における任意の特に除外された制限を条件として、本発明内に包含される。記載の範囲が当該制限の一方又は両方を含む場合、それらの含まれる制限のいずれか又は両方を排除する範囲も本発明に含まれる。
【0080】
一般に、特に断らない限り、本発明及び/又はその構成要素を作製するための材料は、金属、金属合金、半導体、セラミック、プラスチックなどの適切な材料から選択されてもよい。
【0081】
ビームパワー伝送システム100はさらに、オペレーティングシステム等の従来の組み込みデバイスに見られる動作ソフトウェア、I/O回路、ネットワーク回路、及び他の周辺コンポーネント回路を介して動作を方向付けるためのソフトウェアドライバを含むことができる。さらに、ビームパワー伝送システム100は、他のコンピューティング装置と通信するためのネットワークソフトウェア、データベースを構築及び維持するためのデータベースソフトウェア、及び様々なCPU間で通信及び/又は動作ワークロードを分配するためのタスク管理ソフトウェアなどの動作アプリケーションソフトウェアを含むことができる。場合によってはビームパワー伝送システム100が本明細書に列挙されたハードウェア及びソフトウェアを有する単一のハードウェアデバイスであり、他の場合にはビームパワー伝送システム100がビームパワー伝送システムの機能を実行するために一緒に働く個別のハードウェア及びソフトウェアデバイスのネットワーク化された集合である。送信機102及び受信機104の従来のハードウェア及びソフトウェアは、簡略化のために図には示されていない。
【0082】
上記の種々の実施形態は、更なる実施形態を提供するように組み合わされることが可能である。実施形態の態様は、必要に応じて、本明細書で参照される様々な特許、特許出願、及び刊行物の概念を使用して、さらなる実施形態を提供するように修正することができる。
【0083】
上記の詳細説明に照らして、上記の及び他の変形がそれらの実施形態に対して行われることが可能である。一般に、以下の特許請求の範囲において、使用される用語は特許請求の範囲を、明細書及び特許請求の範囲に開示される特定の実施形態に限定するように解釈されるべきではなく、そのような特許請求の範囲が権利を有する均等物の全範囲とともに、すべての可能な実施形態を含むように解釈されるべきである。したがって、特許請求の範囲は、本開示によって限定されない。
下記は、本願の出願当初に記載の発明である。
<請求項1>
高フラックスパワービームを出力するように構成された遠隔パワー送信機、及び、
前記高フラックスパワービームを受信するように構成された遠隔パワー受信機を含み、
前記受信機が、
前記高フラックスパワービームの光エネルギーの少なくとも一部を電気エネルギーに変換するように構成された少なくとも2つの光起電(PV)セルと、
前記少なくとも2つのPVセルに隣接する非PV構造と、
前記非PV構造から離して、前記少なくとも2つのPVセルに向かけてフラックスを誘導するように構成された光誘導構造と、を含む、遠隔パワーシステム。
<請求項2>
前記光誘導構造は前記少なくとも2つのPVセルの位置に対応する少なくとも2つの非連続領域に、隣接したパワービームを誘導するように構成される、請求項1に記載の遠隔パワーシステム。
<請求項3>
前記非PV構造は、前記少なくとも2つのPV電池の間にある、請求項1に記載の遠隔パワーシステム。
<請求項4>
前記高フラックスパワービームはレーザービームである、請求項1に記載の遠隔パワーシステム。
<請求項5>
前記少なくとも1つの非PV構造は、配線、電力変換回路、及びPVセルを支持するためのフレーム構造のうちの1つ又は複数を含む、請求項1に記載の遠隔パワーシステム。
<請求項6>
前記光誘導構造は第1の複数のレンズレットを含み、各レンズレットは、前記高フラックスパワービームと前記少なくとも2つのPVセルのPVセルとの間に少なくとも部分的に位置決めされる、請求項1に記載の遠隔パワーシステム。
<請求項7>
前記第1の複数のレンズレットの少なくとも2つのレンズレットが、エッジトゥエッジで配置される、請求項6に記載の遠隔パワーシステム。
<請求項8>
前記第1の複数のレンズレットの各レンズレットは、収束レンズである、請求項6に記載の遠隔パワーシステム。
<請求項9>
前記光誘導構造は第2の複数のレンズレットをさらに備え、前記第2の複数のレンズレットの各レンズレットは前記第1の複数のレンズレットのそれぞれのレンズレットとPV電池との間に配置される、請求項6に記載の遠隔パワーシステム。
<請求項10>
前記第2の複数のレンズレットの少なくとも2つのレンズレットが、互いに隣接して配置される、請求項9に記載の遠隔パワーシステム。
<請求項11>
前記第2の複数のレンズレットの各レンズレットは、発散レンズである、請求項9に記載の遠隔パワーシステム。
<請求項12>
前記光誘導構造は複数の反射構造をさらに含み、前記複数の反射構造の各反射構造は、PVセル上に光を反射するように配置される、請求項1に記載の遠隔パワーシステム。
<請求項13>
前記複数の反射構造のうちの反射構造は、平面反射構造である、請求項12に記載の遠隔パワーシステム。
<請求項14>
前記複数の反射構造のうちの反射構造は、湾曲した反射構造である、請求項12に記載の遠隔パワーシステム。
<請求項15>
各PVセルは長方形のPVセルであり、各PVセルは、その4つの縁部のそれぞれに隣接する複数の反射構造のうちの1つの反射構造を有する、請求項12に記載の遠隔パワーシステム。
<請求項16>
前記複数の構造は、複数の全内部反射(TIR)構造をさらに含み、前記複数の反射構造の各TIR構造は、それぞれのPVセルを実質的に覆う、請求項1に記載の遠隔パワーシステム。
<請求項17>
前記複数の構造は、個々に形成された複数のレンズレットを備える、請求項1に記載の遠隔パワーシステム。
<請求項18>
前記複数の構造は、単一の構造として形成された複数のレンズレットを備える、請求項1に記載の遠隔パワーシステム。
<請求項19>
高フラックスパワービームを出力するように構成された遠隔パワー送信機、及び、
前記高フラックスパワービームを受信するように構成された遠隔パワー受信機を含み、
前記受信機は、
前記高フラックスパワービームのフラックスの少なくとも一部を電気エネルギーに変換するように構成された少なくとも2つのエネルギー変換器と、
前記少なくとも2つのエネルギー変換器に隣接する非エネルギー変換器構造と、
前記非エネルギー変換器構造から離して、前記少なくとも2つのエネルギー変換器に向けてフラックスを誘導するように構成された光誘導構造と、を含む、遠隔パワーシステム。
<請求項20>
前記光誘導構造は前記少なくとも2つのエネルギー変換器の位置に対応する少なくとも2つの非連続領域に、連続したパワービームを誘導するように構成される、請求項19に記載の遠隔パワーシステム。
<請求項21>
前記非エネルギー変換器構造は、前記少なくとも2つのエネルギー変換器の間にある、請求項19に記載の遠隔パワーシステム。
<請求項22>
送信機から高フラックスパワービームを送信することと、
少なくとも2つのエネルギー変換器と非エネルギー変換器構造を含む受信機で前記高フラックスパワービームを受信することと、
受信した前記高フラックスパワービームを前記非エネルギー変換器構造から離して、前記少なくとも2つのエネルギー変換器に向けて誘導することと、を含む、パワービームシステムを操作する方法。
<請求項23>
前記受信した高フラックスパワービームを誘導することは、前記受信したビームを、前記少なくとも2つのエネルギー変換器の位置に対応する少なくとも2つの不連続領域に誘導することを含む、請求項22に記載の方法。
<請求項24>
前記非エネルギー変換器構造は、前記少なくとも2つのエネルギー変換器の間に配置される、請求項22に記載の方法。
<請求項25>
前記少なくとも2つのエネルギー変換器は、光起電力(PV)セルである、請求項22に記載の方法。