IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ スミダ・コンポーネンツ・アンド・モジュールズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングの特許一覧

特許7525616電気車両を充電するための非接触型エネルギー伝送システムのための共振器回路、及び電気車両を充電するための非接触型エネルギー伝送システム
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-22
(45)【発行日】2024-07-30
(54)【発明の名称】電気車両を充電するための非接触型エネルギー伝送システムのための共振器回路、及び電気車両を充電するための非接触型エネルギー伝送システム
(51)【国際特許分類】
   H02J 50/12 20160101AFI20240723BHJP
   H02J 7/00 20060101ALI20240723BHJP
   H01F 38/14 20060101ALI20240723BHJP
   B60L 53/122 20190101ALI20240723BHJP
   B60L 5/00 20060101ALI20240723BHJP
   B60M 7/00 20060101ALI20240723BHJP
【FI】
H02J50/12
H02J7/00 P
H02J7/00 301D
H01F38/14
B60L53/122
B60L5/00 B
B60M7/00 X
【請求項の数】 14
(21)【出願番号】P 2022543657
(86)(22)【出願日】2021-01-20
(65)【公表番号】
(43)【公表日】2023-03-15
(86)【国際出願番号】 EP2021051172
(87)【国際公開番号】W WO2021148453
(87)【国際公開日】2021-07-29
【審査請求日】2022-09-12
(31)【優先権主張番号】102020200579.6
(32)【優先日】2020-01-20
(33)【優先権主張国・地域又は機関】DE
【前置審査】
(73)【特許権者】
【識別番号】507125295
【氏名又は名称】スミダ・コンポーネンツ・アンド・モジュールズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング
(74)【代理人】
【識別番号】100134832
【弁理士】
【氏名又は名称】瀧野 文雄
(74)【代理人】
【識別番号】100165308
【弁理士】
【氏名又は名称】津田 俊明
(74)【代理人】
【識別番号】100115048
【弁理士】
【氏名又は名称】福田 康弘
(72)【発明者】
【氏名】ウチェルコ マルコ
(72)【発明者】
【氏名】レンシュ フィレモン
【審査官】山口 大
(56)【参考文献】
【文献】特開2016-167973(JP,A)
【文献】特開2017-184487(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 50/12
H02J 7/00
H01F 38/14
B60L 53/122
B60L 5/00
B60M 7/00
(57)【特許請求の範囲】
【請求項1】
電気車両を充電するための非接触型エネルギー伝送システムのための共振器回路(400,500)であって、
前記共振器回路(400,500)は、第1の端子(A2;A4)と、第2の端子(A1,A2)と、複数の巻線(160)と、複数のコンデンサと、第1のスイッチング素子(440;540)と、第2のスイッチング素子(450;550)とを備え、
前記共振器回路(400;500)は、前記第1の端子(A2;A4)及び前記第2の端子(A1,A2)を介して、電源回路又は整流器に接続可能であり、
前記複数の巻線(160)は、巻線の第1のグループ(422;522)と巻線の第2のグループ(432;532)とに分けられており、
第1の接続ノード(460;560)が、前記巻線の第1のグループ(422;522)と、前記巻線の第2のグループ(432;532)と、前記第1のスイッチング素子(440;540)とのうちのそれぞれ2つの間に配置され、これにより、前記第1の接続ノード(460;560)は、前記第1のスイッチング素子(440;540)を介して前記第1の端子(A2;A4)に接続され、前記巻線の第1のグループ(422;522)を介して前記第2の端子(A1;A3)に接続され、
前記第1の接続ノード(460;560)は星形に形成されており、
前記第2のスイッチング素子(450;550)は、前記巻線の第2のグループ(432;532)と前記第1の端子(A2;A4)との間に配置され、
巻線の第3のグループと、これに直列に接続された第3のスイッチング素子とをさらに備え、
前記巻線の第3のグループと、これに直列に接続された前記第3のスイッチング素子とは、前記巻線の第2のグループ(432;532)と並列に、前記第1の接続ノード(460;560)に接続される、共振器回路(400;500)。
【請求項2】
前記第1のスイッチング素子(440;540)及び前記第2のスイッチング素子(4
50;550)が、第2の接続ノード(465;565)を介して前記第1の端子(A2;A4)に接続され、
前記第2の接続ノード(465;565)は、前記第1のスイッチング素子(440;540)と前記第2のスイッチング素子(450;550)との間に配置される、請求項1に記載の共振器回路(400;500)。
【請求項3】
記第2の接続ノード(465;565)は、さらに、前記第1のスイッチング素子(440;540)と、前記第2のスイッチング素子(450;550)と、前記第1の端子(A2;A4)との間に星形に形成され、
前記巻線の第3のグループ及び前記第3のスイッチング素子は、前記第2のグループ(432;532)及び前記第1のスイッチング素子(440;540)と並列に、前記第1の接続ノード(460;560)と前記第2の接続ノード(465;565)との間に接続される、請求項に記載の共振器回路(400;500)。
【請求項4】
前記第2の接続ノード(465;565)は、前記第1のスイッチング素子(440
;540)と、前記第2のスイッチング素子(450;550)と、前記第1の端子(A2;A4)との間に星形に形成される、請求項又はに記載の共振器回路(400;500)。
【請求項5】
巻線の第4のグループ及び第4のスイッチング素子を有するさらなる回路部をさらに備え、
前記さらなる回路部は、前記第2の接続ノード(465;565)に、前記巻線の第2のグループ(432;532)と並列に接続される、請求項に記載の共振器回路(400;500)。
【請求項6】
前記第2の接続ノード(465;565)は、さらに、前記第1のスイッチング素子(440;540)と、前記第2のスイッチング素子(450;550)と、前記第1の端子(A2;A4)との間に星形に形成され、
前記さらなる回路部は、前記第2のグループ(432;532)及び前記第1のスイッチング素子(440;540)と並列に、前記第1の接続ノード(460;560)と前記第2の接続ノード(465;565)との間に接続される、請求項に記載の共振器回路(400;500)。
【請求項7】
前記2つのスイッチング素子(440,450;540,550)は、前記第1のスイッチング素子(440;540)が閉じている限り、前記第2のスイッチング素子(450;550)が開いており、前記第1のスイッチング素子(450;550)が開いているときのみ、前記第2のスイッチング素子(450;550)が閉じているように構成されている、請求項1~のいずれか一項に記載の共振器回路(400;500)。
【請求項8】
前記複数の巻線(160)は、板状フェライトコア(110)上にハイブリッド二重Dソレノイドコイル(150)として設けられている、請求項1~のいずれか一項に記載の共振器回路(400;500)。
【請求項9】
前記巻線の第1のグループ(422)及び/又は前記巻線の第2のグループ(432)は、並列に接続された2つの電気的に同一の巻線パッケージ(L1.1,L1.2;L2.1,L2.2)からそれぞれ形成されている、請求項1~のいずれか一項に記載の共振器回路(400;500)。
【請求項10】
前記巻線の第1のグループ(422;522)は、5ターンから20ターンの範囲の第1のターン数を有し、前記巻線の第2のグループ(432;532)は、1ターンから10ターンの範囲の第2のターン数を有し、
前記第1のターン数は、前記第2のターン数よりも大きい、請求項1~のいずれか一項に記載の共振器回路(400;500)。
【請求項11】
一次共振器装置及び二次共振器装置を用いて電気車両を充電するための非接触型エネルギー伝送システムであって、
前記一次共振器装置及び前記二次共振器装置のうちの少なくとも1つが、請求項1~10のいずれか一項に記載の共振器回路(400;500)として構成された共振器回路を備える、非接触型エネルギー伝送システム。
【請求項12】
前記巻線の第2のグループ(432)は、並列に接続された2つの電気的に同一の巻線パッケージ(L2.1,L2.2)から形成され、
前記巻線の第2のグループ(432)における前記並列に接続された前記巻線パッケージ(L2.1,L2.2)の各々は、それぞれ、関連する追加のコンデンサ(C_S2.1,C_S2.2)と直列に接続され、
前記巻線の第2のグループ(432)の前記巻線パッケージ(L2.1,L2.2)に関連する前記追加のコンデンサ(C_S2.1,C_S2.2)は、
前記第2のグループ(432)の前記並列の巻線パッケージ(L2.1,L2.2)と前記関連する追加のコンデンサ(C_S2.1,C_S2.2)との相互接続が、前記非接触型エネルギー伝送システムの動作周波数よりも大きい共振周波数をもたらし、一方で、前記巻線の第1及び第2のグループ(422,432)の直列接続のための、前記関連するコンデンサ(C_S1,C_S2.1,C_S2.2,C_S3)を有する前記共振器回路(400)の共振周波数が、前記非接触型エネルギー伝送システムの動作周波数にほぼ等しい共振周波数であるように、構成されている、請求項11に記載の非接触型エネルギー伝送システム。
【請求項13】
前記非接触型エネルギー伝送システムの動作周波数は、80kHzから90kHzの範囲である、請求項11又は12に記載の非接触型エネルギー伝送システム。
【請求項14】
前記第2のグループ(432)の前記並列の巻線パッケージ(L2.1,L2.2)と前記関連する追加のコンデンサ(C_S2.1,C_S2.2)との前記相互接続によりもたらされる前記共振周波数が、90kHzよりも大きい、請求項1113のいずれか一項に記載の非接触型エネルギー伝送システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気車両を充電するため、特に、電気車両の駆動用バッテリ若しくはトラクションバッテリを充電するための非接触型エネルギー伝送システムのための共振器回路、及び電気車両を充電するための非接触型エネルギー伝送システムに関する。
【背景技術】
【0002】
再生可能エネルギー源から生成される電力の割合の増加、及び温室効果ガスを削減するための広範に及ぶ国際条約により、電気モータ車両、即ち、電気駆動を有するモータ車両は、ますます重要になっている。電気自動車は、例えば地下鉄列車や電気駆動装置を備えた自転車等の乗用車及び貨物車を含む電気モータ車両の例である。一般に、電気自動車は、いわゆる電気駆動装置である電気モータによって駆動され、その移動に必要な電気エネルギーを相互接続された複数のバッテリセル又はセルブロックから構成されるトラクションバッテリに格納する、少なくとも4つの車輪を有する乗客を運ぶための自動車であると理解される。これらの自動車自体は動作中に関連する汚染物質を排出しないため、燃料駆動自動車と比較して排気ガスフリーな自動車に分類される。
【0003】
電子制御された電気モータは、停止状態ですでに最大トルクを送達し、したがって、内燃機関を使用する駆動装置とは異なりマニュアルトランスミッションは通常必要ではなく、また、電気モータは、有害な排出ガスを直接排出することなく内燃機関と比べて静かで運転中の振動がほとんどないが、比較的低開発で規制が不均一な充電インフラストラクチャと、その結果もたらされる、より長い旅行を自発的に管理する電気車両のユーザにとって低いレベルの柔軟性とにより、市場の受け入れの障害となっている。
【0004】
電気自動車と燃料駆動自動車のさらなる大きな違いは、エネルギーストレージを満たすための燃料補給時間と充電時間との比較である。例えば、数分間の燃料補給時間は、現在、電気車両の駆動用バッテリ又はトラクションバッテリを充電するために数十分間(現在、高性能DC充電ステーションで80%のバッテリ充電のための約30分間)要する。
【0005】
但し、全ての充電システムは電気自動車の充電に関しては1つの基準に基づいているが、電気車両専用に作られた異なる種類の充電プラグが存在する。その結果、現在、様々な充電オプションが利用可能であるが、但しそれは製造業者及びモデルに大きく依存している。
【0006】
燃料駆動車両と比較して、有利には、「電気充填ステーション」又は充電ステーションを、多くの車両がその不使用時でも収容される場所、例えば、車庫又は永久的に割り当てられた駐車スペース又は社用車のための社用駐車場に配置することが可能である。ほぼ全ての電気自動車は、通常の家庭用コンセントで充電することができるが、しかしながら、家庭において典型的な16Aのヒューズを有する家庭用標準単相プラグ接続では、可能なのは最大3.6kW(16A×230V=3680W)の伝送であり、家庭用コンセントでの電気自動車の充電には、通常、数時間を要すると考えられる。さらに、家庭用コンセントで充電する場合には、他のコンシューマが家庭用コンセントの電気回路の回路に既に接続されている可能性があること、及び、特に電気自動車の充電のために数時間にわたって家庭用コンセントにおいて主電源に継続的に負荷をかけることに関し制限が生じることにも注意すべきである。
【0007】
電気自動車の受け入れの増加は、とりわけ、エレクトロモビリティの増加にリンクしており、電気車両のユーザ利便性の改善が大きな影響を及ぼす可能性があると仮定することは、合理的と思われる。
【0008】
改善に対する1つのアプローチは、例えば、電気車両に搭載された充電式バッテリを充電するための誘導を介して、車に、運転されているか駐車されているときに、エネルギーが非接触で伝送される、開接点なしの非接触充電を提供する。ユーザによるプラグ及び充電ケーブルの取り扱いがなくなるので、市場の受け入れを増加させる機会が生じる。
【0009】
電気自動車用の非接触型充電システムは、一般に、電気エネルギーを出力するように構成された一次共振器装置と、一次共振器装置から出力される電気エネルギーを受け取るように構成された二次共振器装置とを含む。
【0010】
ワイヤレスエネルギー伝送の場合、基本的に、物理的特性が異なる2つの原理があり、即ち、1つ目として、非放射結合とも呼ばれる近距離場におけるワイヤレスエネルギー伝送がある。これには、例えば、一次共振器装置内で生成され、二次共振器装置によって検出される磁束に基づく誘導結合が含まれる。2つ目として、電磁波に基づく、放射エネルギー伝送とも呼ばれる遠距離場におけるエネルギー伝送である。
【0011】
近距離場におけるワイヤレスエネルギー伝送(上記の1つ目参照)は、エネルギー伝送が及ぶのがエネルギー伝送放射線の波長と比べて近い距離であるという観点から制限される。
【0012】
遠距離場におけるエネルギー伝送は、いわゆる自由空間経路損失(即ち、追加の減衰媒体からの干渉又は反射からの干渉なしに自由空間における電磁波の伝搬における出力密度の低減)によって、1%未満の非常に低い程度の効率のみが可能となることから、比較的小さい出力の伝送に限定される。
【0013】
したがって、電気車両の非接触充電のために、現在の電流充電システムは、主に誘導結合による電磁エネルギーの近距離場伝送に向けられており、当該伝送においては、一次コイル又は送信コイルは、地面、例えば歩道又は駐車場に埋め込まれ、二次コイル又は受信コイルは、電気車両に、例えば、アンダーボディに取り付けられる。プライベートセクタでは地面上での取り付けも可能であり、この場合、一次又は送信コイルは少なくとも部分的に地面から突出している。
【0014】
一次コイル及び/又は二次コイルについての知られているコイル構成を、図1a、図1b及び図1cを参照して以下に説明する。
【0015】
図1aは、いわゆる「二重Dコイル設計」を有するコイル1aの平面図を模式的に示す。巻線5aは、図示の構成によれば磁心3a上に配置されており、特に、巻線5aの個々のターン(巻き)は磁心3aの周囲に巻かれていない。
【0016】
図1bは、いわゆる「ソレノイドコイル設計」を有するコイル1bを模式的に示したものであり、これによれば、巻線5bの個々のターンが磁心3bの周囲に巻かれるように巻線5bが磁心3bの上に配置されている。
【0017】
電気車両のワイヤレス充電のための装置は、例えば、文献WO2016/114893A1に記載されている。
【0018】
非接触電力伝送装置は、文献DE102017205215A1から公知である。
【0019】
エレクトロモビリティの向上に鑑みて、目的は、概して、同時にコンパクトなコイル設計を維持しつつ、例えば7kW以上の改善された出力電力を改善された高効率で伝送することができる例えば電気自動車などの電気車両を誘導充電するための特定のコイル設計を提供することである。さらに、目的の1つは、放熱損失により自己発熱を少なくとも低減するコイル設計を提供することである。
【0020】
充電システムの開発において、フレームワーク条件は、一般に、例えば、利用可能な設置空間、所定の最小効率、所定の最小伝送電力、所定の最小絶縁耐力、安定性に関する要件などの他のアスペクトに関して遵守されるべきである。
【0021】
図1cは、電気自動車の非接触充電のための公知のシステム10を概略的に示す。システム10は、巻線14を有する一次共振器装置13を地面側に備え、二次共振器装置15を車両側に備える。巻線14は、図1aに示す二重D構成にしたがって形成される。デカルト座標系x,y,zは、空間における向きを示す。
【0022】
駆動用バッテリ又はトラクションバッテリのための十分な充電電力を得るために、公知のシステムでは10kWの電力の伝送が要求される。しかしながら、最適なエネルギー伝送は、地面側の一次共振器装置13に対する二次共振器装置15の最適配置でのみ起こる。二次共振器装置15の配置は一次共振器装置13に対する電気自動車の駐車位置に依存するので、一次共振器装置13に対する二次共振器装置15の最適配置は多くの場合確保されない。二次共振器装置15の最適配置位置に対する現在の駐車位置における二次共振器装置15のオフセットは、典型的には、例えば、x方向に沿ったオフセットVx及び/又はy方向に沿ったオフセットVyが存在すると仮定される。地面側の一次共振器装置13に対する二次共振器装置15の最適配置に対するオフセットVx及び/又はオフセットVyは、一次共振器装置13と二次共振器装置15との間の結合を減少させ、これによりエネルギー伝送の効率が損なわれる。
【0023】
システム10は、一次共振器装置13と二次共振器装置15との間の相対的な高さ(即ちz方向に沿った距離)が電気自動車の車両クラスに依存することから、充電される電気自動車の車両クラスに応じてオフセットVzをさらに有することができる。システム10は、一次共振器装置13と二次共振器装置15との間の特定の高さ、即ち、一次共振器装置13と二次共振器装置15との間の特定の高さにおけるシステム10の動作周波数(即ち、電気自動車を非接触充電するためにシステム10が動作する周波数)が、一次共振器装置13と二次共振器装置15の配置の共振周波数に等しいように設計される。車両側の二次共振器装置15が特定の高さ(この高さで共振が最適なエネルギー伝送を意味する)に対してオフセットVzして配置された状態で電気自動車が充電される場合、システム10は動作周波数で共振しない。
【0024】
本発明の目的は、オフセットを有しながら、共振を伴って良好な効率で動作することができるシステムを設計することである。使用する共振器、インダクタンス及びコンデンサが過熱したりエネルギー源が過負荷になったりしないようにするには、さまざまな負荷要件に注意する必要がある。
【0025】
図1dは、図1cのシステム10の概略的な回路図を示す。同図の一次共振器装置13は、インダクタンスL1,L2及びコンデンサC1を有する入力フィルタ13aと、直列接続されたインダクタンスL3及び補償コンデンサC2を有する一次共振器13bと、を備えている。二次共振器装置15は、インダクタンスL4及びこれに直列接続された補償コンデンサC3を有する二次共振器15aと、ダイオードD1~D4を有する整流器15bと、バッテリ抵抗R1及びバッテリ容量C4で表される充電すべき電気車両(図示せず)の駆動用バッテリ15cと、を備える。入力フィルタには、電源(図示せず)への結合部が設けられている。
【0026】
図1eは、図1dに示す回路図の簡略化した等価回路図を示す。一次共振器装置13と二次共振器装置15との間の誘導結合は、結合共振回路13cによって、図1eの単純化された等価回路図に示されており、ここで、相互インダクタンスMは結合を示し、特に相互インダクタンスMは一次共振器装置13と二次共振器装置15の結合kに比例する。図1dの等価回路図から導かれる全インピーダンスは、Mに間接的に比例する。図1eのインダクタンスL3-MとL4-Mがおよそ結合kに依存しないと仮定すると、相互インダクタンスMと結合kの間の比例関係が仮定できる。したがって、図1eの等価回路図から導かれる全インピーダンスもまた、kに間接的に比例する。これは、同じ電力消費が与えられると、エネルギー供給源(図示せず)から取り出される電流が増加することを意味する。電流と電圧の比は結合に強く依存し、特に、図1cのシステム10の大きな入力電圧が小さい結合には必要であり、非常に大きな電流の流れが大きい結合で生じる。図1cのシステム10の全インピーダンスは入力フィルタ13aの実効インダクタンスに比例するので、入力フィルタ13aを介して大きな全インピーダンスが導入され、それによって電流制限が生じ、これは結合が大きい場合に有利である。
【0027】
共振器の出力電力に対する入力フィルタ13aの放熱損失の比は、M(即ちk)に比例するので、結合が大きい場合、入力フィルタ13aにおける電力損失と出力電力との比は極めて大きくなる。所望の出力電力を達成するためには非常に大きな入力電流が必要であり、同時に、効率において深刻な損失を生じる。
【0028】
図1cのシステム10の相互インダクタンスMの変化は、図1cのシステム10の必要な入力電圧に非常に強い影響を及ぼすことが分かる。オフセットが存在する場合、以下に図1fを参照して説明するように、相互インダクタンスに大きなばらつきが存在する。
【0029】
図1fは、本発明者らによって行われた比較測定の結果をグラフで表す。左側の縦座標は、一次共振器及び二次共振器のインダクタンスの結合kへの依存度を、縦座標を参照して表す。相互インダクタンスMの結合kへの依存度を、図1fの右側の縦座標を参照して示す。相互インダクタンスMは結合kの変化とともに広い範囲でばらつくことが分かった。したがって、図1cに示すシステム10では、相互インダクタンスMの強い変化のために作動範囲全体をカバーすることは、図1dのシステム10を同時に効率的に作動させようとするとすると、不可能である。
【0030】
以上の説明を鑑み、回路構造に大きな変更を加えることなく、エネルギー伝送の効率を犠牲にせずに、考え得るオフセットを補償することが目的である。
【0031】
上記の課題及び目的は、独立請求項1に記載の電気車両を充電するための非接触型エネルギー伝送システムのための共振器回路によって本発明の範囲内で解決及び達成され、そのさらなるより有利な発展形態が従属請求項2~11に記載され、そして独立請求項12に記載の電気車両を充電するための非接触型エネルギー伝送システムによって特定され、そのさらなるより有利な発展形態が従属請求項13~15に記載される。
【0032】
第1の態様において、本発明は、電気車両を充電するための非接触型エネルギー伝送システムのための共振器回路を提供する。例示的な実施形態では、共振器回路は、第1の端子と、第2の端子と、複数の巻線と、複数のコンデンサと、第1のスイッチング素子と、第2のスイッチング素子とを備える。共振器回路は、第1の端子及び第2の端子を介して電源回路又は整流器に接続可能である。したがって、共振器回路は、共振器回路が非接触型エネルギー伝送システムにエネルギーを供給する電源回路に接続されているときに、一次共振器装置において使用することができ、エネルギーを一次共振器装置から二次共振器装置に非接触で伝送することができ、あるいは、共振器回路が非接触型エネルギー伝送システムによって充電される少なくとも1つのバッテリ装置、特に充電される電気車両の駆動用バッテリ又はトラクションバッテリを表す負荷に接続されているときに二次共振器装置において使用することができる。
【0033】
複数の巻線は、巻線の第1のグループと巻線の第2のグループとに分けられている。したがって、本明細書におけるいくつかの例示的な実施形態では、関連する巻線のグループと直列に接続された複数のコンデンサのうちの少なくとも1つのコンデンサを、巻線の各グループに関連付けることができる。共振器回路の共振は、各グループに関連付けられたコンデンサによって特定の共振周波数に設定することができ、ここで、巻線のグループに関連付けられた各コンデンサにより、それ自体でグループに関連付けられた特定の共振周波数が設定される。
【0034】
さらに、第1の接続ノードは、巻線の第1のグループと巻線の第2のグループとの間に配置されるとともに、巻線の第1のグループと、巻線の第2のグループと、第1のスイッチング素子とのうちのそれぞれ2つの間に配置され、そして、第1の巻線のグループを介して第1の端子に接続され、これにより、第1の接続ノードが星形に形成される。巻線のグループ、巻線の第2のグループ及び第1のスイッチング素子の各々は、第1の接続ノードに直接接続することができ、特に、第1の接続ノードと、巻線の第1のグループ、巻線の第2のグループ及び第1のスイッチング素子の各々との間にさらなる要素を有さずに接続することができる。第1及び第2のスイッチング素子は、巻線の第1及び第2のグループをオフに切り替えることを可能にする。例えば、巻線の第1及び第2のグループをオフにするか、又は巻線の第2のグループを、巻線の第1のグループ及び巻線の第2のグループの直列接続から排除することができる。巻線の第2のグループは、第1接続ポイントで回路に接続され続けるので、巻線の第2のグループは、第2のスイッチング素子を開くことによってオフに切り替えられたにもかかわらず、規定の電位を有し、電位差による損傷を防止することができる。本明細書における例では、巻線の第1及び第2のグループは第1の接続ノードに直接接続することができ、第1の接続ノードと巻線の各グループとの間にさらなる要素は配置されないので、規定の電位が常に巻線の各グループに適用される。例示的な実施形態では、巻線の各グループは、関連するコンデンサと第1の接続ノードとの間に配置することができる。
【0035】
第1の態様のいくつかの例示的な実施形態では、共振器回路は、巻線の第3のグループと、これに直列に接続された第3のスイッチング素子とをさらに備え、巻線の第3のグループと、これに直列に接続された第3のスイッチング素子とは、巻線の第2のグループと並列に、第1の接続ノードに接続される。巻線の第3のグループと第3のスイッチング素子で構成される直列接続により、共振器回路のさらなる調整オプションが可能となる。例示的な実施形態では、第1の接続ノードは、少なくとも3つの脚又はビームを有する星形に形成される。巻線の各グループは、第1の接続ノードに直接接続することができ、特に、第1の接続ノードと巻線の各グループとの間にさらなる要素を設けずに接続することができる。
【0036】
第1の態様のいくつかの例示的な実施形態において第1のスイッチング素子と第2のスイッチング素子との間には第2の接続ノードが配置され、第2の接続ノードを介して、第1のスイッチング素子及び第2のスイッチング素子が第1の端子に接続され、第2の接続ノードは、第1のスイッチング素子と第2のスイッチング素子と第1の端子との間に星形に形成される。共振器回路はまた、巻線の第4のグループとこれに直列に接続された第4のスイッチング素子とを有するさらなる回路部を備えることができ、当該さらなる回路部は、巻線の第2のグループと並列に、第2の接続ノードに接続される。さらに、第2の接続ノードもまた、第1のスイッチング素子、第2のスイッチング素子及び第1の端子の間に星形に形成することができ、第1の接続ノードと第2の接続ノードとの間の回路部を、第2のグループ及びこれに直列に接続された第1のスイッチング素子と並列に接続することができる。第2の接続ノードは、並列に接続された巻線のグループについての共通の下端として設けられており、これは、第1の端子にガルバニック接続されている間に第2のスイッチング素子によって巻線の第2のグループから選択的に絶縁することができる。例示的な実施形態によれば、第2の接続ノードは、少なくとも3本の脚又はビームを有する星形に形成されている。巻線のグループの各々は、これらの間に配置されたスイッチング素子を介してのみ第2の接続ノードに接続することができ、特に、スイッチング素子のうちの関連するスイッチング素子は第2の接続ノードと巻線の各グループとの間に配置されている。本明細書におけるいくつかの例では、第2のスイッチング素子は、第2の接続ノードと巻線の第2のグループとの間に配置することができ、第1のスイッチング素子は、第1の接続ノードと第2の接続ノードとの間に配置され、これにより、第1のスイッチング素子は、巻線の第2のグループ及び第2のスイッチング素子と並列に接続される。換言すれば、第1のスイッチング素子は、第1の接続ノードと第2の接続ノードとの間の第1の回路部に配置され、巻線の第2のグループ及び第2のスイッチング素子は、第1の回路部と並列に接続される第2の回路部に配置される。第1及び第2の回路部は、各々、巻線の第1のグループ及び第1の接続ノードと直列に接続される。
【0037】
第1の態様のいくつかの例示的な実施形態では、2つのスイッチング素子は、第1のスイッチング素子が閉じている限り、第2のスイッチング素子が開き、第1のスイッチング素子が開いているときにのみ第2のスイッチング素子が閉じているように構成することができる。この構成によれば、有利な動作モードが実現され、これに応じて、巻線の第2のグループのターンを選択的にオン又はオフに切り替えることができ、これにより、共振器回路内のターン数を、第1のグループのターン数又は複数の巻線の総ターン数の間で切り替えることができる。
【0038】
第1の態様のいくつかの例示的な実施形態では、複数の巻線は、板状のフェライトコアの上にハイブリッド二重Dソレノイドコイルとして設けることができる。この場合、ハイブリッド二重Dソレノイドコイルに基づくコイル構造によって、一次共振器装置と二次共振器装置の互いに対する大きな距離及び/又はオフセットに対して比較的大きな結合が可能となる。
【0039】
第1の態様のいくつかの例示的な実施形態では、巻線の第1のグループは、並列に接続された2つの電気的に同一の巻線パッケージから形成することができる。電気的に同一の巻線パッケージにおいて並列に接続された巻線パッケージの電流値と電圧値は同一であり、並列に接続された巻線パッケージ間の均等化電流が防止される。第1の巻線パッケージの電流容量は、並列に接続された巻線パッケージを使用することによって増加させることができる。
【0040】
第1の態様のいくつかの例示的な実施形態では、巻線の第2のグループは、並列に接続された2つの電気的に同一の巻線パッケージから形成することができる。並列に接続された巻線パッケージを使用することにより、巻線の第2のグループにおけるオフに切り替えられた巻線の未使用ターンの誘導電圧を部分的に又は完全に除去することができる。並列に接続された巻線パッケージを使用することにより、巻線の第2のグループの電流容量も向上させることができる。
【0041】
第1の態様の例示的な実施形態では、巻線の第1のグループは、5ターンから20ターンの範囲の第1のターン数を有し、巻線の第2のグループは、1ターンから10ターンの範囲の第2のターン数を有し、第1のターン数は、第2のターン数よりも大きい。これにより、有利なエネルギー伝送効率を有するコンパクトな共振器回路が可能となる。
【0042】
第2の態様では、電気車両を充電するための非接触型エネルギー伝送システムは、一次共振器装置と二次共振器装置とを備え、一次共振器装置及び二次共振器装置の少なくとも一方は、第1の態様の共振器回路による共振器回路を備える。
【0043】
第2の態様のいくつかの例示的な実施形態では、巻線の第2のグループは、並列に接続された2つの電気的に同一の巻線パッケージから形成され、巻線の第2のグループにおける並列に接続された巻線パッケージの各々は、それぞれ、関連する追加のコンデンサと直列に接続されてもよい。さらに、巻線の第2のグループの巻線パッケージに関連する追加のコンデンサは、第2のグループの並列の巻線パッケージと関連する追加のコンデンサとの相互接続が、非接触型エネルギー伝送システムの動作周波数よりも大きい共振周波数をもたらし、一方で、巻線の第1及び第2のグループの直列接続のための、関連するコンデンサを有する共振器回路の共振周波数が、非接触型エネルギー伝送システムの動作周波数にほぼ等しい共振周波数であるように、構成することができる。このようにして、巻線の第2のグループのオフに切り替えられたターンのインピーダンスを高くし、均等化電流を抑制することができる。さらに、第2のスイッチング素子が開いているとき、巻線の第2のグループの巻線パッケージの並列接続は、巻線の第2のグループの巻線パッケージが互いに非並列となるように切り替えられた直列接続に変わる。これにより、巻線の第2のグループにおけるターンにおいて生じる電圧が相殺されることが保証される。共振器回路の各動作モードにおいて、共振器回路を非接触型エネルギー伝送システムの動作周波数と共振状態に保つことができる。例えば、非接触型エネルギー伝送システムの動作周波数は80kHzから90kHzの範囲とすることができ、この範囲において良好なエネルギー伝送効率を得ることができる。さらなる例では、第2のグループの並列の巻線パッケージと関連する追加のコンデンサとの前記相互接続によりもたらされる共振周波数を、90kHzよりも大きくすることができ、これにより、第2のグループの並列巻線パッケージと関連する追加のコンデンサとの相互接続の共振周波数を、非接触型エネルギー伝送システムの動作周波数から十分に離すことができる。
【0044】
上述の第2の態様の例示的な実施形態では、共振器回路は、非接触型エネルギー伝送システムにおける一次共振器装置及び/又は二次共振器装置として構成することができ、これによって、電気車両のトラクションバッテリを充電するための有利な一次充電システム及び/又は二次充電システムが提供される。
【0045】
上述の態様では、相互インダクタンスは、共振器回路の共振挙動、特にその共振周波数が変化しないままか又は実質的に変化しないまま、調整される。スイッチング素子のスイッチング構成に関係なく、巻線はシステム内に磁気的に残存する。
【0046】
上記及び下記の実施形態において、接続ノードは、複数の線が接続される規定のノードを表す。
【0047】
上述の本発明の態様のさらなる利点及び例示的な実施形態を、添付の図面を参照して以下に説明する。
【図面の簡単な説明】
【0048】
図1a】公知のコイル設計を概略的に示す。
図1b】公知のコイル設計を概略的に示す。
図1c】電気自動車の非接触充電のための公知のシステムを概略的に示す。
図1d図1cに示す電気自動車の非接触充電のためのシステムの回路図を概略的に示す。
図1e図1dに示す回路図の簡略化した等価回路図を示す。
図1f】比較測定の結果をグラフで示す。
図2】いわゆる「ハイブリッド二重Dソレノイドコイル設計」によるコイルを模式的に示す。
図3a】本発明のいくつかの例示的な実施形態による、非接触型充電システムのための誘導性部品を示す。
図3b図3aに示す誘導性部品の底面図を示す。
図3c図3a及び図3bに示す誘導性部品の内側断面図を示す。
図3d図3aから図3cに関する巻線本体を有するフェライトコアの側面断面図を示す。
図4】本発明の例示的な実施形態による、電気車両の非接触充電のためのシステムを概略的に示す。
図5】本発明の例示的な実施形態による非接触型エネルギー伝送システムのための共振器回路の概略的な回路図を示す。
図6】本発明のさらなる例示的な実施形態による非接触型エネルギー伝送システムのための共振器回路の概略的な回路図を示す。
図7】本発明の例示的な実施形態による共振器回路のためのインダクタンスと結合の関係をグラフで示す。
【発明を実施するための形態】
【0049】
図2は、いわゆる「ハイブリッド二重Dソレノイドコイル設計」によるコイル1cを概略的に示す。図示のコイル1cのコイル設計は、二重Dコイル設計(図1aに図示するような二重Dコイル設計)と、ソレノイドコイル設計(図1bに図示するようなソレノイドコイル設計)と、の間のハイブリッドを表している。
【0050】
図2の概略図によれば、コイル1cは、磁心3cの上に巻線5cを備え、巻線5cはターン(巻き)5c1とさらにターン5c2を備え、ターン5c1及び5c2は、磁心3cに対してある角度を付けて巻回されている。これは、各ターン5c1,5c2の巻線軸(Windungsachse)、即ち、各ターン5c1,5c2が配置される平面に垂直な軸が、それぞれ厚さdに沿った方向から45°未満の角度でずれることを意味する。比較において、図1bに示すソレノイドコイル設計は、巻線5bの巻線軸は、磁心3bの厚さに沿った方向と略垂直に配向され(したがって、図2の「d」は、図1bについても画定されるべきである)、特に、巻線5bの巻線軸、即ち、巻線5bのターンが配置される平面に垂直な軸は、磁心3bの厚さに沿った方向に対して45°を超える角度に配向されていることが分かる。
【0051】
本発明の様々な例示的な実施形態による非接触充電のためのシステムのための誘導性部品100を、図3aから図3dを参照して以下に詳細に説明するが、誘導性部品100は、いわゆる「ハイブリッド二重Dソレノイドコイル設計」に対応して形成される。誘導性部品100は、本発明による非接触型エネルギー伝送システムの例示的な実施形態を表すことができる。
【0052】
図3aは、誘導性部品100の上側の上面図を示す。以下において、「上側」との用語は、誘導性部品100の「下側」と反対の側に配置される誘導性部品100の側を指すものとし、この「下側」は、電気車両(図示せず)の非接触充電のためのシステムのさらなる誘導性部品(図示せず)に向いている。
【0053】
例示的な実施例では、誘導性部品100は、電気車両(図示せず)に取り付けることができる。さらに、誘導性部品100は、上側が車両アンダーボディに向き、下側が、歩道、駐車場床、車庫床などの地面(図示せず)に向くように、取り付けることができる。
【0054】
別の例示的な例では、誘導性部品100は、例えば、歩道、駐車場床、車庫床など、地面(図示せず)の上又は中に配置することができ、例えば、その中に埋め込むことができる。その場合は下側は、電気車両(図示せず)の車両アンダーボディ(図示せず)に向いているであろう。
【0055】
誘導性部品100は、板状フェライトコア110と、板状フェライトコア110の上方に配置され、複数のターン160を有するハイブリッド二重Dソレノイドコイル150とを備える。複数のターン160は、多数のターン(即ち、少なくとも4つのターン)から形成される。図3aでは、一例としてのターンが参照符号166で示されている。したがって、参照符号「166」は、一例としての複数のターン160の1つのターンを表し、ターン166の非限定的な例を表す。
【0056】
複数のターン160は複数のグループにグループ化され、各グループは、以下でさらに詳細に説明されるように、複数の間を置かず連続するターンから構成される。
【0057】
図3aに示すように、板状フェライトコア110は、互いに接合されて板状フェライトコア110を形成する複数の個々のフェライト板111,113,115から形成されている。代替的に、板状フェライトコア110は一体的に形成することができ、特に、単一の板状フェライト素子から形成することができ、その場合、図3aのイラストとは逆に、板状フェライトコア110に接合部は存在しない。
【0058】
いくつかの例示的な実施形態では、一例として図3aに例示されているように、板状フェライトコア110には、例えば誘導性部品の端子122,124などが省スペースで収容される横方向凹部114が設けられており、ここでは誘導性部品の横方向寸法が小さく保たれている。加えて又は代替的に、少なくとも1つのコンデンサなどの容量性部品(図示せず)を凹部114内に収容することができる。
【0059】
一例として図3aに図示されるように、例示的な実施形態によれば、凹部114はフェライトコア110のテーパ部に設けられ、ここでは、図3a及び図3bにおいて参照符号Lで示されるフェライトコア110の長手方向に関し、凹部114内のフェライトコア110の横方向寸法は、凹部114の外のフェライトコア110の横方向寸法よりも小さい。長手方向Lに垂直な方向は幅方向と呼ばれ、図3aから図2dにおいて参照符号Bで示される。
【0060】
本発明の例示的な実施形態では、長手方向L及び幅方向Bの寸法については、L>B、L≒B又はL<Bである。
【0061】
方向L及び方向Bに垂直な方向を図3c及び図2dにおいて厚さ方向Dと呼ぶ。厚さ方向Dに関し、フェライトコア110は、方向L及び方向Bに沿った寸法よりも小さい寸法を有し、即ち、D<L,Bである。
【0062】
特定の例示的な実施形態では、D<L/10、及び/又は、D<B/10とすることができる。好ましい実施形態では、D<L/20、及び/又は、D<B/20である。特定の例示的な実施例によれば、D<L/30、及び/又は、D<B/30とすることができる。DとL,Bとに関する結果としてのアスペクト比は、フェライトコア110が「板状フェライトコア」であることを明確に示し、厚さに沿った方向は、凹部、例えば凹部114などを考慮しない状態で「板状フェライトコア」が最小延在部分を有する方向とされる。
【0063】
例示的な実施形態では、ハイブリッド二重Dソレノイドコイル150は、第1の巻線152及び第2の巻線154を備え、その各々が複数の(特に2つ又は3つ以上の)ターンを備える。図3aに示される誘導性部品100の上側の上面図において、第1の巻線152が、幅方向Bに関して、第2の巻線154に対向して配置される板状フェライトコア110の端部に配置されるか、又は、第1の巻線152の複数のターン部分(例えば、図2aのターン166)が、それぞれ、長手方向Lに略平行な板状フェライトコア110の少なくとも最大部分にわたって延在する。図3aは、図3aに示される図において第1の巻線152のターン部分が板状フェライトコア110の上に直接延在する限り、第1の巻線152のターン部分が長手方向Lに平行に板状フェライトコア110の上に延在する特別な場合を示しており、このとき、板状フェライトコア110の側方へのターン部分は弧状プロファイルを有し、ターン部分は、図3aに示される図に関して、誘導性部品100の下側に向かって板状フェライトコア110の後ろに延在される。第2の巻線154についても同様である。しかしながら、これは、いかなる限定もするものではなく、ターン部分の異なる向き、例えば長手方向Lに対して角度をなす向きなどを採用することもできる。
【0064】
第1の巻線152は、端子接点157,158を介して誘導性部品の端子122,124に電気的及び機械的に接続され、端子接点157及び158は、それぞれの引き出し部分163及び164を介して第1の巻線152の複数のターンに接続される。端子接点157,158及び端子122,124は、例えば、クリンプ接続、ねじ接続、プラグ接続、半田接続等の任意の手段により、互いに電気的及び機械的に接続することができる。したがって、第2の巻線154は、端子接点155,156を介して端子122,124に接続され、端子接点155は、引き出し部分161を介して第1の巻線154の複数のターンに接続され、端子接点156は、引き出し部分162を介して第2の巻線154の複数のターンに接続される。
【0065】
例示的な実施形態では、引き出し部分161,162,163,164は、板状フェライトコア110の側面において幅方向Bに略平行に延在して、内側に配置されるように延在し、ここで、例示的な実施形態では、引き出し部分161,162,163,164は、板状フェライトコア110の側面まで、第1及び第2の巻線152,154の複数のターンにおける最も遠いターン部分よりも小さな距離で、長手方向Lに沿って延在する。あるいは、引き出し部分161,162,163,164は、第1及び第2の巻線152,154の複数のターンにおける最も外側のターン部分よりも、板状フェライトコア110から遠い距離に配置されてもよく、これによって、その場合、引き出し部分161~164は外側引き出し部分として提供される。後者の場合(図示せず)、引き出し部分161~164には、第1及び第2の巻線152,154の複数のターンのターン部分が重ならない。
【0066】
図3bを参照すると、誘導性部品100の下側の上面図が、図3aの図による上側の上面図とは逆に示されている。図3aと図3bを比較すると、図3a及び図3bの上面図において板状フェライトコア110の上に直接延在する第1及び第2の巻線152,154のターンのターン部分は、図3aの上側の場合、第1及び第2の巻線152,154のターンの傾斜位置によって、幅方向Bに関して、例えば、下側を示す図3bの図の場合よりも互いに遠く離れて配置することができ、図3bでは、第1及び第2の巻線152,154のターンのターン部分は、幅方向Bに沿って、例えば図3aと比べてより近い距離で配置することができ、これにより、板状フェライトコア110のポール部分141,143,145が、板状フェライトコア110における幅方向Bの一方の端部の側に形成され、かつ、幅方向Bに関して露出したポール部分147,148,149とは反対側の端部に形成され、一方で、図3aの上側の上面図では、図3bに示されるようにポール部分141,143,145とポール部分147,148,149との間に配置された接続部分111,113,115において、板状フェライトコア110のみが露出する。
【0067】
図3cを参照すると、図3a及び図3bに示す誘導性部品100の側面図が示されており、例えば、図3bに示される誘導性部品100は紙面から立ち上がるように傾いており、したがって、端子122は側面側から垂直方向に見えている。幅方向Bに対する第1及び第2の巻線152,154のターンの傾斜位置は、図3c示される側面図において見ることができ、即ち、第1の巻線152のターンによって形成される面に対する法線が幅方向Bに対して斜角で配向されており、このことは、図3cにおいてnによって指定される法線に対する概略的な巻線面WEによって示されており、ここで、角度αは、法線nと幅方向Bとの間の角度を示す。角度αは、0°と等しくなく、特定の例示的な実施形態では、例えば、5°以上(α≧5°)であるが、これは本発明を限定するものではない。同じことが第2の巻線154にも当てはまり、第1の巻線と第2の巻線は、第1の巻線と第2の巻線との間にある厚さ方向Dに平行な対称軸に対して鏡面対称に巻回されてもよい。
【0068】
例示的な実施形態では、図3aから図3cに示されるように、誘導性部品100は、第1の巻線152を収容し支持するように構成された第1の支持部材132と、第2の巻線を収容し支持するように構成された第2の支持部材134と、を有する巻線要素130を備える。支持部材132は、例えば、長手方向Lに沿ってフェライトコア110を少なくとも部分的に覆い、射出成形等によって電気絶縁材料から形成される長尺の板状形状を有することができる。
【0069】
図3dを参照すると、図3cに示される板状フェライトコア110は、端子122並びに端子接点を有する第1及び第2の巻線152,154を伴わずに示されている。図3dに示す図では、特に板状フェライトコア110と巻線要素130のみが側面図で示されている。
【0070】
本発明の例示的な実施例によれば、図3dに例示的に示されるように、板状フェライトコア110は、第1の段部171及び第2の段部172を備える。段部171では、ポール部分141の露出表面は、接部分111に対して厚さ方向Dに沿ってオフセットして配置され、即ち、オフセットV1が、段部171によって、ポール部分141の露出ポール表面と接続部分111の同様に配向された表面との間に形成される。したがって、ポール部分147は、段部172によって接続部分111に対してオフセットされ、オフセットは、特に、ポール部分147の露出ポール表面と接続部分111の同様に配向された表面との間に形成される。これは、本発明の限定ではなく、2つの段部171,172の代わりに段部171,172のうちの1つのみが形成されてもよい。代替的に、段部171及び172は、段部171に関連するオフセットが第2の段部172に関連するオフセットとは異なるように形成することができる。
【0071】
図3dの例示的な図によれば、巻線要素130は支持部材132,133,134,135を備え、支持部材133,135は対応する段部171,172の隣に形成され、これにより、支持部材133,135は、それぞれ、接続部分111に部分的に重なるが、ポール部分141又はポール部分147の各々には、支持部材135又は133はそれぞれ重ならない。一方、支持部材132,134は、段部171,172に板状フェライトコア110の上側の支持部材132,134が重なるように形成されている。
【0072】
支持部材132は、図3cに示すように、第2の巻線のターン数に対応する複数の溝132nを備える。支持部材133は、第2の巻線154のターン数に応じ、かつ支持部材132の溝132nの数に応じた複数の溝133nを備える。同じことが、図3cの図からの第1の巻線152に関して、支持部材135及び134に当てはまる。
【0073】
溝132n,133n,134n,135nは、各々、板状フェライトコア110の上側又は下側のターン部分をそれぞれ収容し、そして、板状フェライトコア110の上側又は下側に沿って、それぞれ、隣接するターン部分を互いに絶縁し、これにより、例えば、ターン部分のシースが省かれる場合においてターン間の短縮を防ぐことができるように構成されている。さらに、支持部材132,133,134,135は、第1及び第2の巻線152,154の機械的固定及び安定化に寄与する。
【0074】
図3dは、支持部材133,135の一部の溝がより深くないか又はより低い高さの隔壁を有する巻線要素130の例示的な実施形態を示す。これらの例示的な実施形態は、単に、設置空間に関する支持部材133,135の構成オプションを例示するものであり、本発明のいかなる限定を構成するものではない。あるいは、支持部材133及び/又は135の溝は、可能な限り均一としてもよい(即ち、可能な限り均一な深さ又は均一な高い隔壁を有してもよく、ここで、「可能な限り」とは、製造公差の範囲における理想的な場合からの許容可能な偏差、例えば、所定のサイズからの約5%又は約10%の偏差を意味する)。
【0075】
誘導性部品100の端子122,124への第1及び第2の巻線152,154の接続構成を、図3cを参照して説明する。第1の巻線152は、この場合、端子接点157,158を介して端子122,124に電気的に接続され(第1の巻線152の端子接点に関して図3aを参照)、第2の巻線154は、端子接点155,156を介して誘導性部品100の端子122,124に電気的に接続される。第1の巻線152内及び第2の巻線154内の誘導性部品100の端子122,124に電圧が印加されると、第1の回転方向に第1の巻線152のターン方向にしたがって第1の巻線152を流れる電流が動作中に生じ、一方、第2の巻線154を通る流れは、第2の回転方向に第2の巻線154のターン方向にしたがって流れ、ここで、第1の回転方向及び第2の回転方向は互いに逆向きである。これによって、図3cに模式的に描かれた磁場Bの磁力線BLによって示されるように、磁場が生じる。具体的には、磁場Bの磁力線BLは、第1及び第2の巻線152,154における電流の向きによって決定されるように、ポール部分141,147の一方から出て、ポール部分141,147の他方に入る。板状フェライトコア110において、磁場Bの磁力線BLのバックアイアンが、図3aから図2dにより説明される誘導性部品100のポール部分141,147の間にある。したがって、誘導性部品100は、さらなる誘導性部品(図示せず)への良好な結合特性を示し、ここで、図1aに示されるような公知のコイル設計によるコイル設計と比較して2つの誘導性部品の横方向オフセットには鈍感であり、図1b及び図1cにおけるコイル設計と比較して有利な結合挙動を示す。
【0076】
ここで、図4を参照して、電気車両312の非接触充電のための充電システム300を説明する。システム300100は、本発明による非接触型エネルギー伝送システムのための別の例示的な実施形態を表すことができる。
【0077】
図4の例によると、充電システム300には、一次側に誘導性部品304a,304bを有する一次共振器装置302a及び302bが設けられており、これらは、例えば駐車場又は車庫内に配置されるか、あるいは地面に埋め込まれてもよい。一次共振器装置302a,302bは、それぞれの接続ライン308,310を介して電力分配装置330に接続され、電力分配装置は、ライン332を介して電力グリッドに接続され、一次共振器装置302a,302b自体が、電気車両312を充電するための一次充電システムの要素を提供する。電力分配装置330は、例えば、1つ又は複数の外部制御ユニット(図示せず)と通信することができる通信ユニット334を備えることができる。本明細書に記載の実施例では、上述の図3aから図3dを参考して記載した誘導性部品100によって、一次共振器装置302aを提供することができる。
【0078】
車両側のエネルギー貯蔵装置318は、電気車両312内に設けられ、例えば、充電式バッテリ又は充電式バッテリセルで構成される充電式システムに設けられ、これは、充電コントローラ314を介して二次共振器装置316、特に駆動用バッテリ又はトラクションバッテリに接続される。12ボルト又は48ボルトの車両電気システムで動作する電気車両の車載電子機器のためのエネルギー貯蔵装置とは対照的に、電気車両の駆動用バッテリは、例えば300Vを超える範囲の数百ボルトDCの電圧を有し、その結果、エネルギー貯蔵装置318の要件及びエネルギー貯蔵装置318の性能は、他のエネルギー貯蔵装置と比較して、何倍も高くなる。
【0079】
二次共振器装置316は、例えば、図3aから図3b(誘導性部品100と200を比較する)に関して上で記載したように、誘導性部品が収容されるハウジング317を備えることができ、これは、電気車両312を充電するための二次充電システムの要素として提供することができる。ハウジング317は、例えば、電気車両312上に機械的に設置するために、電気車両312のアンダーボディ上に形成することができる。二次共振器装置316は、誘導性部品とともに電磁共振器回路を形成する容量性部品さらに備えることができる。本明細書のいくつかの例示的な実施例では、二次共振器装置316は、図3aから図3dを参照して上で説明した誘導性部品100によって提供することができる。
【0080】
本発明のいくつかの例示的な実施形態では、地面側の一次共振器装置302aは、それぞれが13ターンを有する並列に接続された2つの巻線を有するコイル構造を備えることができる。車両側の二次共振器装置316は、一次共振器装置302aと同一の構造又はそれに類似した構造を有する共振器装置を表すことができ、ターン数が17.5で、コアにおけるフェライト体積がより小さい。
【0081】
非接触型エネルギー伝送システムのフレームワーク条件を規定する確立された規格は現在存在しないが、軽量電気車両及び電気プラグイン車両のワイヤレス充電のための相互運用性、電磁両立性、EMF、最小電力、安全性及び試験に関する許容基準を規定する業界全体の仕様が確立されている。これに基づいて、各々が地面からの距離(いわゆる地面クリアランス又は「GC」が)が異なる3つの車両クラスが定められており、さらに、一次共振器装置と二次共振器装置との間の許容オフセットが定めされている。距離GCは、100mmから250mmの間でさまざまであってもよく、許容オフセットは、0/0(x方向/y方向)から±75mm/±100mmの範囲内とすることができる。
【0082】
一次共振器装置302a,302bのうちの1つの上に電気車両312を駐車する場合、充電プロセスは、例えば、充電コントローラ314と通信ユニット334を介する電力分配装置330との間の通信によって開始することができ、上に電気車両312が駐車された一次共振器装置、図4の例では一次共振器装置302aが動作する。近距離伝送として、一次共振器装置302aと二次共振器装置316との間の誘導結合が確立され、二次共振器装置316は一次共振器装置302aから電磁エネルギーを受信し、充電コントローラ314(例えば、適切な整流回路を含む)を介してエネルギー貯蔵装置318を充電する。エネルギー貯蔵装置318の充電状態は充電コントローラ314によって監視することができ、充電プロセスは、所望の充電状態に達したときに、電力分配装置330との通信によって終了させることができる。充電システム300は、二次共振器装置316と一次共振器装置302a又は302bとの間に存在する物体又は生物の有無をそれぞれ検出するように構成されており、したがって、ポジティブ事象(「一次共振器装置の上又は近くに物体又は生物が存在する」)の検出時に充電プロセスを停止することができる。
【0083】
電気車両312が最適結合での配置と比較してオフセットを有する配置で駐車された場合、図1cから図1fに関して上で記載したように、一次共振器装置と二次共振器装置との間のオフセットに起因してシステムのフレームワーク条件に変更が生じる。例えば、一次共振器装置及び二次共振器装置のインダクタンスは、磁気結合k及び相互インダクタンスMと同様に、オフセットの増加と共に減少する。
【0084】
本発明の例示的な実施形態による図5を参照して、電気車両(図示せず)を充電するための非接触型エネルギー伝送システムのための共振器回路400の概略的な回路図が提示される。共振器回路400の概略的な回路図は、非接触型エネルギー伝送システムにエネルギーを供給するための電源回路(図示せず)又は整流回路(図示せず)に接続することができる2つの端子A1及びA2を備える。端子A1及びA2の下流には、インダクタンスL_F1.1及びL_F1.2を有する入力フィルタ装置410並びにコンデンサC_Fが接続される。さらに、図5の例では、巻線の第1のグループ422及び巻線の第2のグループ432によって提供される複数の巻線が設けられている。さらに、巻線の第1のグループ422に関連するコンデンサC_S1及び巻線の第2のグループ432に関連するコンデンサC_S3などの複数のコンデンサが設けられている。例示的な実施例では、コンデンサC_S1は巻線の第1のグループ422に直列に接続され、コンデンサC_S3は巻線の第2のグループ432に直列に接続される。共振器回路400の概略的な回路図は、2つのスイッチング素子440及び450をさらに含む。巻線の第1のグループ422と巻線の第2のグループ432との間には、スイッチング素子440を介して端子A2に接続される接続ノード460が配置され、接続ノード460は、巻線の第1のグループ422を介して端子A1に接続される。さらに、スイッチング素子450は、巻線の第2のグループ432と端子A2との間に配置され、スイッチング素子440及び450の両方は、接続ノード465において星形(sternformig)に接続され、接続ノードは、スイッチング素子440及び450と端子A2との間に星形に配置される。言い換えれば、引き出し線が、接続ノード465から発する脚又はビーム(Strahlen)として形成され、スイッチング素子440及び450並びに端子A2にそれぞれ接続される。図示の実施形態では、スイッチング素子440及びスイッチング素子450のみが設けられており、これによって回路の複雑化が回避される。接続ノード465は、スイッチング素子440とスイッチング450との間に配置され、スイッチング素子440とスイッチング素子450は、各々、接続ノード465を介して端子A2に接続されている。特に、接続ノード465は、星形に形成され、引き出し線が、接続ノード465から発する脚又はビームとして形成され、それぞれ、スイッチング素子440及び450並びに端子A2に接続される。
【0085】
本明細書におけるいくつかの例示的な実施例では、2つのスイッチング素子440,450は、スイッチング素子440が閉じている限りは、スイッチング素子450が開くように構成される。この場合、スイッチング素子450は、スイッチング素子440が開いているときにのみ閉じられる。これにより、スイッチング素子440,450の構成が、これらの例示的な実施例において定められる。
【0086】
いくつかの例示的な実施形態では、巻線の第1のグループ422及び巻線の第2のグループ432を含む複数の巻線は、図2及び図3aから図3dに関して上で記載したように、板状フェライトコア(図示せず)の上にハイブリッド二重Dソレノイドコイルとして設けられる。ハイブリッド二重Dソレノイドコイルに基づくコイル構造は、一次共振器装置及び二次共振器装置の互いに対する距離及び/又はオフセットが大きくても比較的大きな結合を可能にする。
【0087】
図5の例を参照すると、巻線の第1のグループ422は、並列に接続された2つの電気的に同一の巻線パッケージL1.1及びL1.2から形成されてもよい。この場合、巻線の第1のグループの電流容量を増加させることができ、並列に接続された巻線パッケージL1.1及びL1.2の電流値及び電圧値は、電気的に同一の巻線パッケージ内で同一であり、これにより、並列に接続された巻線パッケージ間の均等化電流が防止されるように構成されている。並列に接続された巻線パッケージを使用することによる。
【0088】
さらに図5に示されるように、巻線の第2のグループ432は、追加的に又は代替的に、並列に接続された2つの電気的に同一の巻線パッケージL2.1及びL2.2から形成されてもよい。並列に接続された巻線パッケージL2.1及びL2.2を使用することにより、スイッチング素子450が開いているときに、一部又は全体が排除されるようにオフに切り替えられた巻線の第2のグループの未使用ターンに誘導電圧が生じることができる。並列に接続された巻線パッケージL2.1及びL2.2の使用により、巻線の第2のグループ432の電流容量を増加させることもできる。本明細書のいくつかの例示的な実施例では、並列に接続された巻線の第2のグループ432の巻線パッケージL2.1及びL2.2の各々は、関連する追加のコンデンサC_S2.1及びC_S2.2と直列に接続することができる。たとえば、巻線の第2のグループ432の巻線パッケージL2.1及びL2.2に関連する追加のコンデンサC_S2.1及びC_S2.2は以下のように構成することができ、即ち、第2のグループ432の並列巻線パッケージL2.1及びL2.2と関連する追加のコンデンサC_S2.1及びC_S2.2との相互接続が、非接触型エネルギー伝送システムの動作周波数よりも大きい共振周波数を有し、一方で、関連するコンデンサC_S1,C_S2.1,C_S2.2及びC_S3を有する直列接続された巻線の第1及び第2のグループ422,432についての共振器回路400の共振周波数が、非接触型エネルギー伝送システムの動作周波数と実質的に等しい共振周波数を有するように構成することができる。「実質的に(略)」という用語は、本明細書において、30%未満、好ましくは15%未満、より好ましくは10%未満、例えば5%未満、又はさらに1%未満の逸脱を意味する。こうして、オフに切り替えられた巻線の第2のグループ432のターンのインピーダンスが高くなり、均等化電流が抑制される。第2のスイッチング素子450が開くと、巻線の第2のグループ432の巻線パッケージL2.1及びL2.2の並列接続は直列接続になり、巻線の第2のグループ432の巻線パッケージL2.1及びL2.2が互いに非並列となるよう切り替えられる。これにより、巻線の第2のグループ432のターンにおいてそれぞれ生じる電圧が相殺されることが保証される。
【0089】
共振器回路400の各動作モードにおいて、共振器回路400が非接触型エネルギー伝送システムの動作周波数で共振状態に保たれることを達成することができる。例えば、非接触型エネルギー伝送システムの動作周波数は、良好なエネルギー伝送効率が得られる80kHzから90kHzの範囲とすることができる。さらなる例では、巻線の第2のグループ432の並列巻線パッケージL2.1及びL2.2と、コンデンサC_S3だけでなくさらに関連する追加のコンデンサC_S2.1及びC_S2.2と、の相互接続の共振周波数を、90kHzよりも大きくすることができ、これにより、巻線の第2のグループ432の並列巻線パッケージL2.1及びL2.2と、関連する追加のコンデンサC_S2.1及びC_S2.2と、の相互接続の共振周波数を、非接触型エネルギー伝送システムの動作周波数から十分に離すことができる。
【0090】
本発明のいくつかの例示的な実施形態では、巻線の第1のグループ422は、5ターンから20ターンの範囲の第1のターン数を有することができ、巻線の第2のグループ432は、1ターンから10ターンの範囲の第2のターン数を有することができる。ここで、第1のターン数は、第2のターン数よりも大きくすることができる。これにより、有利なエネルギー伝送効率を有するコンパクトな共振器回路が可能になる。
【0091】
例示的な実施例では、第1のターン数は、7ターンから12ターンとすることができ、例えば、8ターン又は9ターン又は10ターン又は11ターンとすることができる。第2のターン数は、2ターンから6ターンとすることができ、例えば3ターン又は4ターン又は5ターンとすることができる。しかしながら、これは本発明の限定を構成するものではなく、第1のターン数及び第2のターン数に関し任意の数を考慮することができる。
【0092】
本明細書のいくつかの例示的な実施形態では、共振器回路400は、電気車両(図示せず)を充電するための一次充電システム(図示せず)内の一次共振器装置であってよく、それによって有利な一次共振器装置を提供してもよく、あるいは、電気車両(図示せず)を充電するための二次充電システム(図示せず)内の二次共振器装置であってもよい。
【0093】
図5に示される共振器回路400は、例えば、共振器回路の複数の巻線のターン数を動作中に変更する、例えば、減らしたり増やしたりすることを可能にし、例えば、スイッチング素子440が閉じておりかつスイッチング素子450が開いているときにターン数を減らしたり、あるいは、スイッチング素子440が開いておりかつスイッチング素子450が閉じているときにターン数を増やしたりすることができる。
【0094】
入力フィルタ410に関して、結合チョークを有するLCフィルタ配置が、端子A1及びA2と、巻線のグループ422及び432との間で両方の電源ライン内に配置される。
【0095】
巻線の第1のグループ422に関して、これは、関連するコンデンサC_S1(例えば、直列に接続される)によって補償される。
【0096】
巻線の第2のグループ432に関して、1つのコンデンサC_S3がここでは関連付けられている。さらに、図5の例では、コンデンサC_S2.1及びC_S2.2がさらに設けられており、これにより、並列巻線パッケージL2.1及びL2.2を有する巻線の第2のグループ432が3つのコンデンサC_S2.1,C_S2.2及びC_S3によって補償されるように構成されている。
【0097】
複数の巻線の全てのターンが使用される動作モードでは、スイッチング素子440は開いており、スイッチング素子450は閉じている。この場合、巻線パッケージL2.1及びL2.2は並列であり、コンデンサC_S2.1,C_S2.2及びC_S3の組み合わせによって補償される。コンデンサC_S2.1及びC_S2.2の電気容量は、コンデンサの並列接続として合計される。全体として、コンデンサは、システムが動作周波数(例えば、85kHz)で共振的に振る舞うように設計される。
【0098】
上記の動作モードに対してターン数が減少されるような動作モードでは、スイッチング素子440は閉じられ、スイッチング素子450は開かれる。これにより、巻線の第2のグループ432は関連するコンデンサと共にバイパスされる。スイッチング素子450を開くことによって、巻線の第2のグループ432の巻線パッケージL2.1及びL2.2の並列接続は、直列接続に転じ、巻線パッケージL2.1及びL2.2の誘導電圧は互いに相殺される。コンデンサC_S2.1及びC_S2.2は、この動作モードにおける巻線の第2のグループ432の共振が動作周波数から大きく離れるように設けられる。その結果、作用するインピーダンスが高く、非常に小さな均等化電流しか流れることができなくなる。図5に示されるように、切り離された巻線の第2のグループ432のターンは、この動作モードにおいて、接続ポイント460で回路に接続され続け、その結果、それらは規定の電位を有し、電位差によって引き起こされる損傷が防止される。
【0099】
接続ノード460が3本の脚を有する星形の態様で示されている図5を参照して例示的な実施形態を記載したが、これは本発明のいかなる限定も構成しない。代替的な実施形態(図示せず)では、接続ノード460は、3つより多い脚又はビームを有する星形の様式で示されてもよく、3つの脚又はビームは図5に示されるように形成され、星形の接続ノードから発するこれらの3つの脚又はビームに関する各追加の脚又はビームは、接続ノードから、一定のターン数を有するインダクタンスに進み、その後、追加のスイッチング素子(図示せず)を介してこのインダクタンスに接続され、図5の接続ノード465に対応する接続ノードに接続されている。したがって、インダクタンスを選択的にオン又はオフに切り替えることによって、異なる巻線数を連続して設定することが可能である。加えて又は代替的に、複数のインダクタンスを互いに並列に接続して、並列に接続されたインダクタンスから形成される回路において効率的なインダクタンスを提供することができる。これにより、回路のインダクタンスをより細かく調整することができる。
【0100】
図示されていないこれらの例示的な実施形態では、電気車両を充電するための非接触型エネルギー伝送システムには、第1及び第2の端子と、複数の巻線と、複数のコンデンサと、第1のスイッチング素子と、第2のスイッチング素子と、を備える共振器回路が設けられており、共振器回路は、第1及び第2の端子を介して電源回路又は整流器に接続することができ、複数の巻線は、巻線の第1のグループと、巻線の第2のグループと、少なくとも巻線の第3のグループとに分けられ、巻線の各グループは、関連する巻線のグループに直列に接続される、複数のコンデンサのうちの少なくとも1つのコンデンサに関連付けられ、共振器回路は、巻線の第1のグループと、巻線の第2のグループと、少なくとも第3の巻線グループとを星形に接続する接続ノードをさらに備え、その結果、接続ノードは、第1に、巻線の第1のグループと巻線の第2のグループとの間に配置され、接続ノードは第1のスイッチング素子を介して第1の端子に接続され、第2に、接続ノードは、巻線の第1のグループと巻線の第3のグループとの間に配置され、巻線の第3のグループに関連するさらなる(第3の)スイッチング素子を介して第1の端子に接続され、接続ノードは、巻線の第1のグループを介して第2の端子に接続され、第2のスイッチング素子が巻線の第2のグループと第1の端子との間に配置され、巻線の第3のグループに関連するさらなるスイッチング素子が第1の端子に接続される。星形の接続ノードに接続される、関連するさらなる(第4の)スイッチング素子を有する巻線の第4のグループを設けることができ、接続ノードは、巻線の第1のグループと巻線の第4のグループとの間に配置され、巻線の第4のグループに関連するさらなる(第4の)スイッチング素子を介して第1の端子に接続される。これを所望に応じて継続することができ、概して、n個(n>1)の巻線グループが設けられ、ここで、n番目の巻線グループがn番目のスイッチング素子に関連付けられ、そして、n番目の巻線グループが接続ノードに接続されて、接続ノードが巻線の第1のグループとn番目の巻線グループとの間に配置されかつn番目のスイッチング素子を介して第1の端子に接続されるように構成される。しかしながら、いずれの場合も、接続ノードは、巻線の第1のグループを介して第2の端子に接続され、接続ノードはさらに、第1のスイッチング素子を介して第1の端子に接続される。これは、例えば、3つの脚又はビームを有する星形接続ノード460又は465の場合には、2つの脚又はビームが、それぞれ、巻線グループ及びスイッチング素子によって形成される直列回路部に接続されるように形成されることを説明する。これは、3つの脚又はビームを有する星形接続ノードについて、2つの脚又はビームがそれぞれ直列回路部に接続されるか、あるいは一般に、n個の脚又はビームを有する星形接続ノードについて、(n-1)個の脚又はビームがそれぞれ直列回路部に接続されることを意味する。
【0101】
本発明のさらなる例示的な実施形態による、非接触型エネルギー伝送システムのための共振器回路500の概略的な回路図が、図6を参照して示されている。共振器回路500の概略的な回路図は、非接触型エネルギー伝送システムにエネルギーを供給するための電源回路(図示せず)又は整流回路(図示せず)に接続することができる2つの端子A3及びA4を備える。
【0102】
図5に示す共振器回路400と同様に、端子A3及びA4は、入力フィルタ装置(図示せず)を下流に有することができ、この入力フィルタ装置は、図5に示す入力フィルタ装置410にしたがって構成することができる。
【0103】
さらに、図6の例では、巻線の第1のグループ522と巻線の第2のグループ532とによって提供される複数の巻線が設けられている。巻線の第1のグループ522がコンデンサC4及びC5に関連付けられ、巻線の第2のグループ532がコンデンサC3に関連付けられるように、複数のコンデンサがさらに設けられる。例示的な実施例では、コンデンサC4及びC5は巻線の第1のグループ522に直列に接続され、コンデンサC_3は巻線の第2のグループ532に直列に接続される。
【0104】
共振器回路500の概略的な回路図は、図6の例では、2つのスイッチング素子540及び550をされに備える。図示する実施形態では、スイッチング素子440及びスイッチング素子450のみが設けられており、これによって回路の複雑化が回避される。巻線の第1のグループ522と巻線の第2のグループ532との間には、スイッチング素子540を介して端子A4に接続される接続ノード560が配置されている。接続ノード560はさらに、巻線の第1のグループ522を介して端子A3に接続され、そして、スイッチング素子550が、巻線の第2のグループ532と端子A4との間に配置される。また、接続ノード565を介してスイッチング素子540及びスイッチング素子550の各々が端子A4に接続され、接続ノード565はスイッチング素子540とスイッチング素子550との間に配置されている。
【0105】
本明細書におけるいくつかの例示的な実施例では、2つのスイッチング素子540,550は、スイッチング素子540が閉じている限りは、スイッチング素子550が開くように構成される。この場合、スイッチング素子550は、スイッチング素子540が開いているときにのみ閉じられる。これにより、スイッチング素子540,550の構成が、これらの例示的な実施例において定められる。
【0106】
いくつかの例示的な実施形態では、巻線の第1のグループ522及び巻線の第2のグループ532を含む複数の巻線は、図2及び図3aから図3dに関して上で記載したように、板状フェライトコア(図示せず)の上にハイブリッド二重Dソレノイドコイルとして設けられる。ハイブリッド二重Dソレノイドコイルに基づくコイル構造は、一次共振器装置及び二次共振器装置の互いに対する距離及び/又はオフセットが大きくても比較的大きな結合を可能にする。
【0107】
本発明の例示的な実施形態では、巻線のグループ532に関連するコンデンサC3は以下のように構成されており、即ち、巻線のグループ532と関連するコンデンサC3との接続により、非接触型エネルギー伝送システムの動作周波数よりも大きい共振周波数が得られるように構成され、一方、巻線の第1及び第2のグループ522,532と関連するコンデンサC3-C5との直列接続についての共振器回路400の共振周波数は、非接触型エネルギー伝送システムの動作周波数に実質的に等しい共振周波数を有する。「実質的に(略)」という用語は、本明細書において、30%未満、好ましくは15%未満、より好ましくは10%未満、例えば5%未満、又はさらに1%未満の逸脱を意味する。こうして、オフに切り替えられた巻線の第2のグループ532のターンのインピーダンスが高くなり、均等化電流が抑制される。
【0108】
共振器回路500の各動作モードにおいて、共振器回路500が非接触型エネルギー伝送システムの動作周波数で共振状態に保たれることを達成することができる。例えば、非接触型エネルギー伝送システムの動作周波数は、良好なエネルギー伝送効率が得られる80kHzから90kHzの範囲とすることができる。さらなる例では、巻線の第2のグループ532と関連するコンデンサC3とを合わせたものの共振周波数は、90kHzよりも大きくすることができ、その結果、巻線の第2のグループ532と関連するコンデンサC3の相互接続の共振周波数は、非接触型エネルギー伝送システムの動作周波数から十分離れたものとなる。
【0109】
本発明のいくつかの例示的な実施形態では、巻線の第1のグループ522は、5ターンから20ターンの範囲の第1のターン数を有することができ、巻線の第2のグループ532は、1ターンから10ターンの範囲の第2のターン数を有することができる。ここで、第1のターン数は、第2のターン数よりも大きくすることができる。これにより、有利なエネルギー伝送効率を有するコンパクトな共振器回路が可能になる。
【0110】
例示的な実施例では、第1のターン数は、7ターンから12ターンとすることができ、例えば、8ターン又は9ターン又は10ターン又は11ターンとすることができる。第2のターン数は、2ターンから6ターンとすることができ、例えば3ターン又は4ターン又は5ターンとすることができる。しかしながら、これは本発明の限定を構成するものではなく、第1のターン数及び第2のターン数に関し任意の数を考慮することができる。
【0111】
本明細書のいくつかの例示的な実施形態では、共振器回路500は、電気車両(図示せず)を充電するための一次充電システム(図示せず)内の一次共振器装置であってよく、それによって有利な一次共振器装置を提供してもよく、あるいは、電気車両(図示せず)を充電するための二次充電システム(図示せず)内の二次共振器装置であってもよい。図5の文脈で説明される共振器回路400は、以下でより詳細に説明されるように、相互インダクタンスの調整をもたらすが、共振周波数の調整は行われないか又は実質的に行われない。スイッチング素子のスイッチング構成にかかわらず、巻線はシステム内に磁気的に残存する。特に、図5に関する上述の説明からわかるように、巻線L2.1及びL2.2の並列構造設計は、特にスイッチング素子450が開いているときに「オフに切り替えられた」場合に、巻線L2.1及びL2.2における放熱損失を低減することができる。
【0112】
図6に示されるように、開スイッチング素子550を有する動作モードの場合、巻線の第2のグループ532の切り離されたターンは接続ポイント560で回路に接続され続け、その結果、それらは明確な電位を有し、電位差によって生じる損傷が防止される。
【0113】
接続ノード560が3つの脚を有する星形の態様で示されている図5を参照して例示的な実施形態を記載したが、これは本発明のいかなる限定も構成しない。代替的な実施形態(図示せず)では、接続ノード560は、3つより多い脚又はビームを有する星形の様式で示されてもよく、3つの脚又はビームは図5に示されるように形成され、このとき、星形の接続ノードから発するこれらの3つの脚又はビームに関する各追加の脚又はビームは、接続ノードから、一定のターン数を有するインダクタンスに進み、その後、追加のスイッチング素子(図示せず)を介してこのインダクタンスに接続され、図6の接続ノード565に対応する接続ノードに接続される。したがって、インダクタンスを選択的にオン又はオフに切り替えることによって、異なる巻線数を連続して設定することが可能である。加えて又は代替的に、複数のインダクタンスを互いに並列に接続して、並列に接続されたインダクタンスから形成される回路において効率的なインダクタンスを提供することができる。これにより、回路のインダクタンスをより細かく調整することができる。
【0114】
図示されていないこれらの例示的な実施形態では、電気車両を充電するための非接触型エネルギー伝送システムには、第1及び第2の端子と、複数の巻線と、複数のコンデンサと、第1のスイッチング素子と、第2のスイッチング素子とを備える共振器回路が設けられ、共振器回路は、第1及び第2の端子を介して電源回路又は整流器に接続することができ、複数の巻線は、巻線の第1のグループ及び巻線の第2のグループと、少なくとも巻線の第3のグループとに分けられ、各巻線グループは、関連する巻線グループに直列に接続される、複数のコンデンサのうちの少なくとも1つのコンデンサに関連付けられ、共振器回路は、巻線の第1のグループと、巻線の第2のグループと、少なくとも巻線の第3のグループとを星形に接続する接続ノードをさらに備え、その結果、接続ノードは、第1に、巻線の第1のグループと巻線の第2のグループとの間に配置され、接続ノードが第1のスイッチング素子を介して第1の端子に接続され、第2に、接続ノードは、巻線の第1のグループと巻線の第3のグループとの間に配置され、巻線の第3のグループに関連するさらなる(第3の)スイッチング素子を介して第1の端子に接続され、接続ノードは、巻線の第1のグループを介して第2の端子に接続され、第2のスイッチング素子が巻線の第2のグループと第1の端子との間に配置され、巻線の第3のグループに関連するさらなるスイッチング素子が第1の端子に接続される。星形の接続ノードに接続された関連するさらなる(第4の)スイッチング素子を有する巻線の第4のグループも設けることができ、これを星形の接続ノードに接続することができ、接続ノードは、巻線の第1のグループと巻線の第4のグループとの間に配置され、巻線の第4のグループに関連するさらなる(第4の)スイッチング素子を介して第1の端子に接続される。これを所望に応じて継続することができ、概して、n個(n>1)の巻線グループが設けられ、ここで、n番目の巻線グループがn番目のスイッチング素子に関連付けられ、そして、n番目の巻線グループが接続ノードに接続されて、接続ノードが巻線の第1のグループとn番目の巻線グループとの間に配置されかつn番目のスイッチング素子を介して第1の端子に接続されるように構成される。しかしながら、いずれの場合も、接続ノードは、巻線の第1のグループを介して第2の端子に接続され、接続ノードはまた、第1のスイッチング素子を介して第1の端子に接続される。これは、例えば、3つの脚又はビームを有する星形接続ノード560及び/又は565の場合には、2つの脚又はビームが、それぞれ、巻線グループ及びスイッチング素子によって形成される直列回路部に接続されるように形成されることを説明する。これは、3つの脚又はビームを有する星形接続ノードについて、2つの脚又はビームがそれぞれ直列回路部に接続されるか、あるいは一般に、n個の脚又はビームを有する星形接続ノードについて、(n-1)個の脚又はビームがそれぞれ直列回路部に接続されることを意味する。
【0115】
図7を参照して、本発明の例示的な実施形態による非接触型エネルギー伝送システムにおける測定結果を示す。図7は、共振器装置のインダクタンス(図7の左縦軸)と一次及び二次共振器装置との間の結合(図7の横軸)との間の測定された関係と、共振器装置の相互インダクタンス(図7の右縦軸)と結合(図7の横軸)との間の関係をグラフで示す。相互インダクタンスMの変化量は、図1fの比較例と比較すると、比較的小さな動作範囲に制限できることが分かる。
【0116】
また、図5に示す接続ノード460が3つ以上の脚を有する星形の態様で形成される実施形態(図示せず)では、より多数の巻線の分割を接続することができ、回路の相互インダクタンスMも、多数のインダクタンスの並列接続で微調整できることが分かる。図7を参照すると、このことは、図7に示されている1つのステップが、いくつかのより小さなステップに置き換えられることを意味し、したがって、相互インダクタンスMの変化量は、この場合、図7に示されているものよりもさらに小さな動作範囲に制限することができる。
【0117】
要約すると、大きなエアギャップ及び変化する結合条件を伴う伝送システムにおける相互インダクタンスの変化は、機能上重要な変数に関して補償される。いくつかの例示的な実施形態では、相互インダクタンス適応と大きな達成可能結合との組み合わせを有するハイブリッド二重Dソレノイドコイルシステムのさらなる利点が利用され、その結果、全ての動作ポイントにおいて大電力を効率的に伝送することができる。システムの機能を損なうことなく、又は大きな追加の損失を引き起こすことなく、共振器回路の特定のターン数を切り離すことを可能にし、相互インダクタンスの変化を制限する回路構造が提供された。本発明の例示的な実施形態では、非接触型エネルギー伝送のための共振器のコイルのコイル構造が可能であり、共振器間の結合に大きなばらつきがあるにもかかわらず、相互インダクタンス適応によって良好な効率が達成される。
図1a
図1b
図1c
図1d
図1e
図1f
図2
図3a
図3b
図3c
図3d
図4
図5
図6
図7