IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ケース ウェスタン リザーブ ユニバーシティの特許一覧

特許7525754損傷のない神経組織伝導ブロック用の治療送達装置および方法
<>
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図1A
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図1B
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図2
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図3
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図4
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図5
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図6
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図7A
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図7B
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図8
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図9
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図10
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図11
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図12
  • 特許-損傷のない神経組織伝導ブロック用の治療送達装置および方法 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2024-07-22
(45)【発行日】2024-07-30
(54)【発明の名称】損傷のない神経組織伝導ブロック用の治療送達装置および方法
(51)【国際特許分類】
   A61N 1/36 20060101AFI20240723BHJP
【FI】
A61N1/36
【請求項の数】 6
【外国語出願】
(21)【出願番号】P 2024074971
(22)【出願日】2024-05-02
(62)【分割の表示】P 2023094366の分割
【原出願日】2013-06-14
【審査請求日】2024-05-20
(31)【優先権主張番号】61/660,383
(32)【優先日】2012-06-15
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】61/821,862
(32)【優先日】2013-05-10
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】500429332
【氏名又は名称】ケース ウェスタン リザーブ ユニバーシティ
【氏名又は名称原語表記】CASE WESTERN RESERVE UNIVERSITY
(74)【代理人】
【識別番号】110000176
【氏名又は名称】弁理士法人一色国際特許事務所
(72)【発明者】
【氏名】バドラ,ニロイ
(72)【発明者】
【氏名】キルゴア,ケビン エル.
(72)【発明者】
【氏名】バドラ,ネレンドラ
(72)【発明者】
【氏名】ウェインライト,ジェシー
(72)【発明者】
【氏名】ブラベック,ティナ
(72)【発明者】
【氏名】フランケ,マンフレッド
【審査官】近藤 裕之
(56)【参考文献】
【文献】特表2006-517847(JP,A)
【文献】特表2010-540205(JP,A)
【文献】特表2011-502022(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61N1/36
(57)【特許請求の範囲】
【請求項1】
波形発生器と、電極接点と、を含むシステムであって、
前記波形発生器は、神経線維の神経シグナル伝達をブロックするのに十分な振幅を有する波形の直流電流を生みだすように構成されており、
前記電極接点は、幾何学的表面積が1mm から9mm の間であり、電荷注入能力が1~5mC/cm である高電荷容量材料で少なくとも部分的に覆われたベース本体を含み、前記波形発生器に電気的に接続され、前記電極接点の前記高電荷容量材料が前記神経線維の周囲に及び/又は前記神経線維と接触するように配置されて前記神経線維に前記波形を有する前記直流電流を印加するように構成され、
前記波形を有する前記直流電流の前記神経線維への印加によって、前記神経線維に不可逆的な損傷を与えることなく、前記神経線維の神経シグナル伝達のブロックが生じる、システム。
【請求項2】
前記直流電流は、電荷で均衡を取った直流電流を含む、請求項1に記載のシステム。
【請求項3】
前記高電荷容量材料が、1mCと100mCの間のQ値を有する、請求項1~2のいずれか1項に記載のシステム。
【請求項4】
前記高電荷容量材料が、10mCのQ値を有する、請求項1~3のいずれか1項に記載のシステム。
【請求項5】
前記高電荷容量材料が、プラチナブラック、酸化イジウム、窒化チタン、タンタル、およびポリ(エチレンジオキシチオフェン)のうち、1つ以上を含む、請求項1~4のいずれか1項に記載のシステム。
【請求項6】
前記電極接点が、3~9mm 幾何学的表面積を有する、請求項1~5のいずれか1項に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
==関連出願へのクロスリファレンス==
本出願は、2012年6月15日にファイルされた米国仮特許出願第61/660,383号ならびに、2013年5月10日にファイルされた米国仮特許出願第61/821,862号の優先権の利益を主張する。上述の各出願の内容全体を、あらゆる目的で本明細書に援用する。
【0002】
本発明は、総じて、神経線維などの神経組織を介したシグナル伝達をブロックするためのシステム、装置および方法に関し、特に、直流電流を使用して、神経組織を損傷せずに神経シグナル伝達をブロックするための治療システム、装置および方法に関する。
【背景技術】
【0003】
多くの神経疾患は、重篤な症状につながる望ましくない神経活動を特徴とする。このような疾患には、痙攣、運動障害、末梢由来の慢性疼痛がある。局所的かつ可逆的な電気神経伝導ブロックは、これらの症状に対処する魅力的な方法のひとつとなるであろう。
【発明の概要】
【発明が解決しようとする課題】
【0004】
高周波交流電流(HFAC)の波形を用いると、急性動物試験における運動神経線維および感覚神経線維に対して、神経線維の損傷を認めることなく、極めて局所的で即時な、また完全な可逆的伝導ブロックが提供されることが示されてきた。しかしながら、HFACは、通電時に一過性の神経活動を生じる。この作用は、「オンセット反応」と呼ばれてきた。オンセット反応が弱まって停止するまでには、何秒もかかることがある。HFAC神経ブロックを混合神経に適用すると、オンセット反応が筋肉の収縮を伴った痛みの感覚を生じることがある。このオンセット反応がゆえ、痙攣制御などの用途に対するHFACによるブロック(以下HFACブロックとも称する)の実用化が妨げられてきた。HFACが持続するのは通常は2秒未満であるため、これを短縮する努力がなされてきた。こうした方法は、大きなHFAC振幅、高めの周波数(>20kHz)、さまざまな電極構成の使用を含む。しかしながら、1~2秒間続くオンセット反応の始まりの部分は、波形または電極設計の変更だけでは排除できていないHFACによるブロックの構成要素である。
【0005】
これとは別の電気的な神経ブロックを、直流電流(DC)で達成可能である。他の操作に加えて、DC振幅を数秒かけてゆっくりと増減させると、活動電位を引き起こさずにDCによるブロック(以下DCブロックとも称する)を生じることができる。これによって、オンセット反応のないDCによる神経ブロックが可能になる。しかしながら、DC波形の印加は、神経線維の損傷につながる。これはおそらく、電極と電解質との界面の電荷注入能力が尽き、界面に加わる電圧によって水の窓が残った後、この界面にフリーラジカルが発生することが原因であろう。水の窓は、分子酸素および分子水素を発生させるのに必要な活性化エネルギーあるいは外部の印加電圧によって制限される、各電極電解質界面の特定の電圧範囲である。DCブロックの利点は、電流振幅を徐々にランプすることで、オンセット反応を伴わずに達成可能なことである。これは、HFACブロック波形では達成されていない作用である。
【0006】
したがって、神経伝導をブロックする、より良い方法に対する需要が存在する。
【課題を解決するための手段】
【0007】
総じて、本発明は、神経組織を介したシグナル伝達をブロックするための装置および方法に関する。
【0008】
一実施形態では、本発明は、高電荷容量の材料を含む電極接点を含む治療装置を提供する。電極接点は、幾何学的表面積が少なくとも約1mmである。
【0009】
もうひとつの実施形態では、本発明は、治療送達装置を神経組織と電気通信状態にすることで、神経組織を介したシグナル伝達をブロックする方法を提供する。この治療送達装置は、高電荷容量の材料を含む電極接点を含む。この方法は、神経組織に電流を印加して、組織を損傷せずに、この組織を介したシグナル伝達をブロックすることをさらに含む。
【0010】
特定の実施形態では、神経組織はマルチフェーズDC電流を印加される。このようなマルチフェーズDC電流は、神経組織を介したシグナル伝達をブロックするよう構成された第1の極性のフェーズと、治療送達装置によって送られる正味電荷を小さくするよう構成された第2の逆の極性のフェーズと、を含む。好ましくは、以後の通電電流は、第1の通電電流と等しいが極性が反対の逆電荷を有するため、運ばれる電荷は正味でゼロになる。特定の実施形態では、マルチフェーズDC電流は、神経組織を介したシグナル伝達をブロックするよう構成された陰極フェーズと、治療送達装置によって送られる正味電荷を小さくするよう構成された陽極フェーズと、を含む。他の実施形態では、陽極フェーズは、シグナル伝達をブロックするよう構成され、陰極フェーズは、正味電荷を小さくするよう構成される。特定の実施形態では、陰極DCフェーズを適用することは、第1のDC振幅を有するDCを印加し、第1の時間をかけて、神経シグナル伝達をブロックするには不十分な第1のDC振幅を第2のDC振幅まで増し、神経シグナル伝達をブロックするのに十分な第2の時間にわたって第2のDC振幅を維持し、第2のDC振幅を第3のDC振幅まで小さくして、神経組織に運ばれる正味電荷を小さくすることを含む。正味電荷は、実質的にゼロまで下げてもよい。特定の実施形態では、第1および第2の時間をかけて第1および第2のDC振幅を与えることで、軸索における発火を防止する。再荷電フェーズの継続時間は、ブロックフェーズの継続時間とほぼ等しくてもよいし、ブロックフェーズの継続時間より長くてもよい。複数の電極接点を用いる場合、神経シグナル伝達の継続的なブロックが達成されるよう、各電極接点でマルチフェーズDCを継続的に繰り返してもよい。
【0011】
他の実施形態では、マルチフェーズDCを神経組織に印加し、この印加は、全体として、神経シグナル伝達をブロックして治療送達装置によって送られる電荷を小さくするよう構成される陰極DCフェーズと陽極DCフェーズとを含む。この方法は、マルチフェーズDCの印加前、印加中または印加後に、HFACを神経組織に印加することをさらに含む。HFACは、HFAC振幅、HFAC周波数、HFAC電流を有する。HFACは、神経シグナル伝達をブロックするよう構成される。マルチフェーズDCとHFACとの組み合わせ、ならびにマルチフェーズDCおよびHFACを印加する順番がゆえ、神経系の損傷を防止しつつ、神経組織を介したシグナル伝達のブロックに関連する神経組織におけるオンセット活動が低減される。
【図面の簡単な説明】
【0012】
本開示の上記の特徴および他の特徴は、添付の図面を参照した以下の説明を読めば、本開示が関連する当業者には明らかになろう。
図1A】本発明の一実施形態による例示的な治療送達装置である。
図1B】本発明の一実施形態によるもうひとつの例示的な治療送達装置である。
図2】本発明の一実施形態による波形の一例と、これを4つの電極接点に適用する一例を示す概略図である。グラフは、各電極接点によって経時的に流れる電流を示す。合計時間は約60秒間である。各プラトーは、長さが約5秒間である。電流を点線で示した部分は、各電極接点のゼロ電流を示す。各プラトーの典型的な電流は1~2mAである。プラトーの上のバーは、それぞれの電極接点によって神経がブロックされる時間を示す。どの時点でも、少なくとも1つの電極接点が神経をブロックしているため、神経は、継続的にブロックされる。各電極接点からのシグナルは、(電極接点番号1の点線によって示されるような)同じ波形で繰り返される。
図3図3は、DCとHFACを併用したオンセットのないブロックシステムの概略図である。図3Aは、神経に配置された電極接点の概略図である。力を測定するために、フォーストランスデューサーに腓腹筋の腱が取り付けられている。図3Bは、オンセットのないブロックを示すグラフである。一番上の線は、試験時の腱の張力をニュートンで示している。近位刺激(PS)の線は、近位刺激がなされた時点(1秒に1回)を示す。2ヘルツ(Hz)の近位刺激(PS)が試験の最初から最後まで与えられ、筋肉は、試験開始時にPSが与えられるたびに単収縮する。DCはランプダウン(陰極ブロック)し、4.5秒の時点でプラトーとなって、完全なブロックを生じる。その時点で、PSは依然として与えられているが、筋肉の力は生じない。DCブロックは、オンセット反応を生じることなく、7.5秒の時点でHFACを通電できるようにする。DCは非通電となり、ブロックはHFACによって維持される。HFACは17.5秒の時点で非通電となり、正常な伝導が回復される。図3Cは、(DCブロックが用いられていない場合の)正常なHFACオンセットを示すグラフである。
図4】電気的な神経ブロックの波形が、惹起された腓腹筋力に対しておよぼす影響を示すグラフである。図4Aは、HFACのみを印加すると、筋肉の活動が抑制される前に大きなオンセット反応が引き起こされることを示すグラフである。図4Bは、徐々に増減(ランプ)されたDC波形が、PSによって誘発される単収縮を低減し、HFAC波形によって引き起こされるオンセット反応を最小にしたことを示すグラフである。「HFAC」の下のバーは、それが通電されている時間を示している。「DC」の下のバーは、DCがゼロからブロックレベルまで徐々に減少(ランプダウン)した後、再びゼロに戻るまでを示している(ゼロDCは図示せず)。
図5】プリチャージパルスを用いたDC通電、逆の極性のブロックフェーズ、および最後の再荷電フェーズを示すグラフである。プリチャージフェーズは2秒から26秒まで続き、逆の極性のブロックフェーズは26秒から36秒まで続き、最後の再荷電フェーズは36秒から42秒まで続く。一番上の線は、神経線維(1Hzで刺激される神経線維)の不要な活動を大幅に生じることなく、この波形を達成できることを示している。結果は、ラットの坐骨神経から得られたものである。図5の「A」は、スパイクの曲線下の面積であり、Fmaxは、最大の力である。
図6】DCブロックの異なる振幅は、異なるパーセンテージでHFACオンセット反応をブロックすることを示すグラフである。図6A図6Bとで比較されるオンセット反応は、図6Aでは約12秒の時点、図6Bでは約16秒の時点で起こる単一のスパイクである。
図7A】DC波形に異なる勾配および複数の遷移を使用して、電流レベルが変化する際に筋肉の活性化を回避することを示すグラフである。遷移間の勾配がより急であれば、神経に大幅な活動が誘導される。この活動は、DC波形の遷移の勾配を小さくすることで、低減または排除可能である。下側の2つの線は、HFACおよびDCの通電時を示している。HFACおよびDCは、試験開始時(0秒)にはゼロである。
図7B】DC波形に異なる勾配および複数の遷移を使用して、電流レベルが変化する際に筋肉の活性化を回避することを示すグラフである。遷移間の勾配がより急であれば、神経に大幅な活動が誘導される。この活動は、DC波形の遷移の勾配を小さくすることで、低減または排除可能である。下側の2つの線は、HFACおよびDCの通電時を示している。HFACおよびDCは、試験開始時(0秒)にはゼロである。
図8】HFACによるオンセット反応全体をブロックするには短すぎるDCブロックを示すグラフである。下側の2つの線は、HFACおよびDCの通電時を示している。HFACおよびDCは、試験開始時(0秒)にはゼロである。
図9】本発明の一実施形態による、DCを使用して、神経の損傷なく神経シグナル伝達をブロックするためのシステムの一例を示す図である。
図10】本発明の一実施形態による、近位刺激によって生じた単収縮が台形波形のブロックフェーズ中にブロックされることを示す、DCブロック試験例である。
図11】Q値の異なるいくつかの電極接点のサイクリックボルタモグラムである。
図12】DCでの神経ブロック後の坐骨神経伝導が起こるかどうか(PS/DSは、筋力の比であり、これは急性の神経線維の損傷を判定するための出力の尺度として用いられる)を示すグラフである。
図13】HFAC神経伝導ブロックの潜在的な臨床用途の概略図である。斜頚などのジストニアの筋肉痙攣のブロックでは、標的筋肉への運動枝に1つまたは2つ以上のHFACブロック電極接点を用いてその筋肉を弛緩させることができる。神経腫の痛みのブロックとして、HFACブロック用電極接点は、神経腫に近い神経に配置可能である。この用途では、ブロックは継続的になされる。録取されたシグナルをトリガーとする運動神経ブロックは、難治性吃逆のブロックを含む。切迫(impending)吃逆は、横隔神経の大きなシグナルとして録取され、短時間だけ横隔膜の収縮を妨げるための横隔神経のHFACブロックのトリガーとなる。脳卒中、多発性硬化症および脳性麻痺における筋肉痙攣の制御は、痙攣のある筋肉と痙攣のない筋肉からの筋肉シグナルを録取することによって達成され、ユーザーの意図する動きを判断する。痙攣のある筋肉を部分的にブロックするようにして、随意制御を可能にしてもよい。
【発明を実施するための形態】
【0013】
本発明の文脈で、「患者」という用語は、ヒトなどの哺乳動物をいう。また、本明細書で使用する場合、交流電流(たとえば、HFAC)に関連する「高周波」という用語は、たとえば、約5~約50kHzなど、約1キロヘルツ(kHz)を超える周波数をいう。「電気通信」という用語は、神経線維、ニューロンまたは他のタイプの患者の神経組織を含む少なくとも1つの神経組織内および/または表面で、電場を移動できること、すなわち、神経調節作用を有する(たとえば、神経シグナル伝達をブロックする)ことをいう。本明細書で一層詳細に説明する治療送達装置は、神経組織に直接配置可能あるいは、神経組織の近辺ではあるが直接接してはいない状態で配置可能である。「高電荷容量の材料を有する電極接点」という表現は、神経組織を損傷させずに、電荷を運ぶまたは「Q値」が約100マイクロクーロン(μC)を上回る電極接点をいう。従来技術において知られているように、電極接点のQ値は、電極接点の電荷容量であり、事実上は、電極接点が不可逆的な化学反応に遷移しはじめる前に、電極接点を介して運ぶことのできる電荷の総量である。発生する不可逆な一次反応は、運ばれている電荷の極性に応じた酸素の発生または水素の発生である。また、電極材料の溶解など、他の不可逆反応も起こり得る。本明細書における開示は、電極接点の「幾何学的表面積」という用語に言及している。これは、電極接点の二次元外面の幅と長さとを乗算して計算されるものとして、電極接点の片側における平滑な表面などの電極接点の二次元の表面積をいう。電極接点の「有効表面積または真の表面積」は、電極接点のサイクリックボルタモグラムの曲線内の面積から推定される。さらに、本明細書に記載の構成要素に関して本明細書で使用する場合、「不定冠詞(a)」、「不定冠詞(an)」、「定冠詞(the)」は、特に明記しないかぎり、複数の構成要素の少なくとも1つまたは2つ以上を含む。さらに、「または」という表現は、特に明記しないかぎり、「および/または」を含む。
【0014】
総じて、本発明は、神経組織を介したシグナル伝達をブロックするための方法および治療送達装置に関する。この治療送達装置は、高電荷容量の材料を含む電極接点を含む。上述したように、電極接点は、Q値が約100μCを上回る。特定の実施形態では、電極接点は、Q値が約1から約100ミリクーロン(mC)の間である。好ましい実施形態では、Q値は、約10mCである。特定の実施形態では、高電荷容量の材料は、電荷注入能力(材料を介して安全に運ぶことのできる電荷密度)が約1から約5mC/cmである。対照的に、非高電荷容量の材料である研磨されたプラチナは、電荷注入能力が約0.05mC/cmである。高電荷容量の材料を含む電極接点を用いると、電極接点の有効表面積が幾何学的表面積より数桁大きくなる。プラチナまたはステンレス鋼で製造されるものなどの従来の刺激電極と比較して、より多くの電荷を、より長い時間、安全に神経組織に運ぶことができる。したがって、神経用単極カフ型電極接点を介して、10秒間という長い時間にわたって、神経線維の損傷なしに、DCを安全に通電できる。このように、本発明は、効果的かつ可逆的な「オンセットのない」神経ブロックを提供するためのシステム、装置、方法を提供する。
【0015】
特に図1Aおよび図1Bを参照して、一実施形態では、本発明は、電極接点12を含む治療送達装置10を提供する。電極接点12は、高電荷容量の材料を含む。電極接点12は、幾何学的表面積が少なくとも約1mmである。特定の実施形態では、電極接点12の幾何学的表面積は、約3mmから約9mmである。電極接点自体は、高電荷容量の材料で製造可能である。あるいは、電極接点は、少なくとも部分的に高電荷容量の材料で覆われ、好ましくは完全に高電荷容量の材料で覆われたベース本体を含んでもよい。高電荷容量の材料の非限定的な例は、プラチナブラック、酸化イジウム、窒化チタン、タンタル、ポリ(エチレンジオキシチオフェン)およびこれらの好適な組み合わせである。
【0016】
図1Aに示されるように、治療送達装置10Aは、神経用スパイラルカフ型電極である。図1Bに示されるように、治療送達装置10Bは、フラットインターフェイスの神経電極である。神経用カフ型電極は、スパイラルカフ、ヘリカル巻きカフ、フラットインターフェイスの神経電極あるいは、電極接点を神経または神経組織の周囲に配置する他の神経用カフ型電極の形態をとってもよい。しかしながら、治療送達装置は、メッシュ、直線のロッド形リード、パドルリードあるいは、マルチディスク接点電極を含むディスク接点電極など、他の構成を有するものであってもよい。また、治療送達装置は、突出している神経内電極など、神経にまたは神経組織の中に直接配置されるものでもよい。図1Aおよび図1Bに示されるように、治療送達装置10Aおよび10Bはそれぞれ、複数の電極接点12Aおよび12Bを含む。しかしながら、治療送達装置は、複数のある数未満の電極接点を含んでもよい。さらに、治療送達装置は、高電荷容量の材料を含まない電極接点を含んでもよい。電極接点は、単極であっても双極であってもよい。特定の実施形態では、治療送達装置は、複数の隣接した電極接点を複数含む。一例では、隣接した電極接点の数は、4である。
【0017】
総じて、本発明は、神経シグナル伝達をブロックする方法も提供する。このような方法は、短いパルス(数マイクロ秒持続)を神経組織に印加して神経シグナル伝達を活性化することとは異なる。ひとつの方法は、治療送達装置を神経組織と電気通信状態にすることを含む。特定の実施形態では、治療送達装置は、神経組織または神経組織内に直接適用される。他の実施形態では、治療送達装置は、神経組織の近くに配置されるが、神経組織と直接接触してはいない。治療送達装置は、高電荷容量の材料を含む電極接点を有する。この方法は、神経組織に電流を印加して、神経組織を損傷させずに、神経シグナル伝達をブロックすることをさらに含む。特定の実施形態では、電流は、直流電流(DC)である。他の実施形態では、電流は、DCおよびHFACである。好ましくは、HFACは、DCの後に印加される。高容量電荷の材料を使用しているため、神経組織または電極接点を損傷させずに、以前のブロック用DC波形よりも長時間にわたってDCを印加可能である。たとえば、DCは、少なくとも約10秒間印加可能である。特定の実施形態では、DCは、約1秒間から約10秒間、印加可能である。DCは、約10秒間から約600秒間、印加可能である。
【0018】
特定の実施形態では、神経組織の損傷を引き起こすことなく、神経組織に、マルチフェーズDCを印加する。マルチフェーズDCは、陰極DCフェーズと、相反的な陽極DCフェーズとを含んでもよい。陰極DCは、最初に印加する必要はない。つまり、マルチフェーズDCは、陽極DC電流を印加した後、相反的な陰極DC電流を印加することを含んで、神経組織に印加可能である。DCの一方のフェーズは、完全な、実質的に完全な、あるいは、部分的な神経ブロックさえも生じるよう構成され、他方のフェーズは、(たとえば、電流を反転させることで)治療送達装置に戻される電荷を小さくするか均衡をとるよう構成される。例示的なマルチフェーズDCは、神経組織にオンセット反応を生じさせることのできない比較的遅い電流のランプを含む。たとえば、図2を参照すると、陰極電流のゆっくりとしたランプの後にプラトー、続いて陽極方向のゆっくりとしたランプを神経組織に印加可能である。いずれかの電極接点によって運ばれる正味の総電荷については、ゼロに等しくすることもできるし、ほぼゼロに等しくすることもできる。好都合なことに、運ばれる正味電荷をゼロにすることは、神経組織にとっては、かなり安全である。図2は、治療送達装置の4つの電極接点(「1」、「2」、「3」、「4」)によって運ばれる実質的に台形の波形を示す。陰極DCフェーズおよび陽極DCフェーズは各々、ランプで始まりランプで終わる。このことが、軸索の発火を防止または実質的に防止する。陰極DCフェーズのプラトーでは、たとえば、完全な神経ブロックがなされる。上述したように、陰極DCフェーズは、神経ブロックを引き起こすことができ、このフェーズの後に、電流を反転させて(陽極DCフェーズ)、治療送達装置によって運ばれる電荷が均衡をとるようにする。陽極再荷電時間は、陰極ブロック時間とほぼ等しいか、これよりも適度に長い時間であってもよい。さらに、一切の神経系の損傷なく、長時間にわたって陰極ブロックと陽極再荷電のサイクルを連続的に神経組織に適用可能である。上述のように、DCフェーズのシーケンスを反転することも可能であり、陽極DCフェーズで神経ブロックを引き起こしてもよく、陰極DCフェーズで治療送達装置によって運ばれる電荷が均衡をとるようにしてもよい。
【0019】
場合によっては、陰極DCフェーズを以下のようにして実施する。第1のDC振幅を有するDCを、神経組織に印加可能である。次に、第1の時間をかけて、第1のDCを第2のDC振幅まで増加させる。第1の振幅を有するDCは、部分的または完全な神経ブロックを生じるには不十分である。次に、完全な神経ブロックを生じるのに十分な第2の時間にわたって、第2のDC振幅を実質的に維持する。第2の時間経過後、第2のDC振幅を、第1のDC振幅と等しいまたはほぼ等しい第3のDC振幅まで小さくする。
【0020】
方法の一実施形態では、複数の隣接した電極接点を、神経組織と電気通信状態にすることが可能である。このような構成は、陽極DCフェーズまたは陰極DCフェーズの間に神経伝導全体がブロックされないときに、有用なことがある。この場合、神経系の損傷なく連続した神経ブロックとなるように、電極接点間で陰極DCフェーズと陽極DCフェーズを連続的に繰り返すことが可能である。一例では、図2に示されるように、神経系の損傷なく連続した神経ブロックとなるように、4つの隣接した単極電極接点間で、陰極DCフェーズと陽極DCフェーズを連続的に繰り返すことが可能である。
【0021】
すでに言及したように、本発明のもうひとつの態様は、HFACの通電と組み合わせて、被験体における「オンセット反応」を低減または排除できる(上述したような)方法を含んでもよい。HFACは、安全かつ局所的で、可逆的な電気神経伝導ブロックを提供することが示されてきた。しかしながら、HFACは、その開始時に、短時間であるが激しい突発的な発火というオンセット反応を引き起こす。このHFACオンセットフェーズの間に短い時間DCを使用して神経伝導をブロックすると、オンセットの問題を排除できる。DCは神経ブロックを生じ得るが、短い時間内で神経組織の損傷を引き起こす可能性がある。
【0022】
好都合なことに、上述した方法をHFACと組み合わせて、神経系の損傷なくオンセット反応を排除することが可能である。たとえば、マルチフェーズDCを神経組織に印加してもよい。上述したように、陰極DCフェーズは、神経ブロックを生じるよう構成でき、陽極DCフェーズは、治療送達装置によって運ばれる電荷が均衡をとるよう構成でき、あるいはその逆である。マルチフェーズDCの印加前、印加中あるいは印加後に、HFACを神経組織に印加してもよい。HFACは、HFAC振幅、HFAC周波数、HFAC電流を有するものであってもよい。HFACは、神経組織において神経伝導ブロックを生じるよう構成されてもよい。このマルチフェーズDCとHFACとの組み合わせならびに、マルチフェーズDCおよびHFACの印加順序は、ここでも神経損傷を防止しつつ伝導神経ブロックを生じることに関連した神経組織におけるオンセット活動を低減する。
【0023】
特定の実施形態では、神経組織に「プリチャージ」パルスを印加する。特に、第1の極性を有するDCを神経組織に印加した後、これとは逆の第2の極性を有するDCを神経組織に印加する。第1の極性と同じ第3の極性を有するDCも神経組織に印加して、治療送達装置によって流れる正味電荷を減らすことができる。この構成では、第2のフェーズで安全に流すことのできる総電荷を、一般的なパルスにおける電荷の2倍にすることができる。
【0024】
上記の実施形態のいずれにおける電流も、シグナル伝達のブロックが望ましい好適な任意の神経組織に印加可能である。たとえば、神経組織は、末梢神経系または中枢神経系の構成要素であってもよい。末梢神経系に関しては、神経組織は、脳神経、脊髄神経、遠心性運動神経、求心性感覚神経、自律神経またはこれらの好適な任意の組み合わせを含む末梢神経であってもよい。また、脳、脊髄または神経節などのニューロンのまとまりに対して電流を印加してもよい。また、シグナル伝達がブロックされ、神経組織が損傷されないかぎり、神経の軸索、細胞体または樹状突起に電流を印加してもよい。
【0025】
これらの方法を使用して、患者における異常な機能に影響を与えることが可能である。特に、本発明の方法は、運動神経ブロック、感覚神経ブロックまたは自律神経ブロック用に使用可能である。さらに、本発明の方法の適用対象は、ブロックの制御がスイッチでなされる開ループであってもよいし、1つまたは2つ以上の生理学的センサーによってブロックが自動的に制御される閉ループであってもよい。例示的な臨床システムを図13に示す。
【0026】
運動神経ブロックでの適用は、脳卒中、脳性麻痺、多発性硬化症における筋肉の痙攣のブロックを含む。このような適用では、HFACブロックの段階性とすみやかな可逆性を利用している。Botoxまたはフェノールの注射によって得られるブロックと似たような運動活性の部分ブロックを用いて、機能を回復することができる。他の例では、HFACブロックと、検知される活性に基づいてブロックを変化させるインテリジェント制御システムとを組み合わせることで、追加の機能を提供できる。たとえば、屈筋の強烈な痙攣は、脳卒中患者が自らの手を自由意志で開くのを妨げることが多い。屈筋および伸筋の筋電シグナルを監視することで患者の意図を特定でき、手を開くことが望まれる場合に、電気刺激を用いて指の伸筋を活性化しながら指の屈筋を部分的にブロックできる。
【0027】
もうひとつの実施形態では、本発明の方法は、泌尿器括約筋の弛緩を「命令で」で引き起こすのに使用される。これが重要である用途の一例に、脊髄を損傷した個人で膀胱の排尿を生じるよう設計された電気刺激システムがある。これらのシステムでは、仙髄根の刺激が排尿のための膀胱の収縮を引き起こすが、不要な括約筋収縮も生じてしまう。本発明の方法は、両側陰部神経に適用して、膀胱の活性化時に括約筋の活動を防止することが可能である。膀胱が空になったら、ブロックを終了してコンチネンス(排泄抑制能力)を回復させることができる。電極接点のブロックを、弱い括約筋を活性化させ、コンチネンスを改善するための刺激として利用してもよい。また、仙椎部感覚根での神経伝導ブロックは、自然な膀胱収縮を防止し、よってコンチネンスを改善するのにも使用可能である。本発明の方法は、脊髄損傷における膀胱括約筋協調障害を制御するのにも使用可能である。
【0028】
本発明の方法を神経剥離術の代用として使用して、筋肉の痙攣によって生じる拘縮を緩和することも可能である。たとえば、脳性麻痺における足関節底屈筋および股関節内転筋の痙攣は、機能を制限し、衛生を保つのを困難にし、痛みのある状態にもなり得る特徴的なパターンの拘縮につながる。腱の伸長または神経剥離術による腓腹筋緊張の解消は通常、これらの手技の不可逆性がゆえ、最後の手段としてなされるのみである。本発明の方法によるHFACブロックは可逆的であるため、かなり初期的な治療方法として適用可能である。HFACブロックは、夜間を通して適用してもよいし、日中に特定の回数で適用してもよく、腓腹筋/ヒラメ筋股関節内転筋の完全な弛緩時間を生み出す。歩行運動の間、ブロックを停止して、患者が歩行のためにこれらの筋肉の随意機能を利用できるようにすることも可能である。早期の治療介入は、これらの筋肉の拘縮が進むのを防いで、不可逆的な手技の必要性をなくせることもある。
【0029】
ジストニア、舞踏病、チックなどの状態で生じる随意運動および痙攣も、本発明の方法に従って、HFAC神経ブロックによって調節できる。これらの多くの症状で、ボツリヌス毒素の注射が一般的な治療の選択肢となっている。しかしながら、数ヶ月ごとに繰り返し注射をする必要性は大きな欠点であり、極めて費用のかさむものとなり得る。症例によっては、ボツリヌス毒素を用いる治療に耐性があったり、治療を繰り返した結果、耐性になったりすると考えられる。現状、これらの症例における最終手段として、外科手術で代替することも依然としてなされている。後者の場合、本発明によるHFACブロックは、不可逆的な外科的管理より良い治療法を提供可能であり、患者によっては、繰り返しボツリヌス毒素の注射を受けるより好ましいこともある。このタイプの応用の一例である斜頚は、図13に示されており、胸鎖乳突筋のブロック、場合によっては後頸筋のブロックを伴う。
【0030】
また、本発明の方法は、横隔神経伝導をブロックすることで、難治性吃逆を軽減することにも使用可能である。切迫吃逆は、近位の横隔神経での神経シグナルの記録によって検知可能である。切迫吃逆を示す活動の大きな斉射は、横隔神経の一層遠位でHFACブロックのトリガーとして利用できる。特定の実施形態では、吃逆を遮断するために、ブロックは極めて短時間だけ適用されるため、通常の呼吸の邪魔になることはない。
【0031】
感覚神経ブロックでの用途に関して、本発明の方法を使用して、手足切断などの外傷性損傷につながる痛みのある神経腫をブロック可能である。神経腫は、極めて痛みがあり、それによって生じる身体障害は重大で治療が困難なことがある。神経線維端が(切断によって)切除されているため、神経線維は、有用な情報を運ぶことがない。よって、神経活動を完全にブロックすることが望ましい。
【0032】
本発明によるHFACブロックは、癌の痛み、ヘルペス後神経痛ならびに、腰痛症および頭痛のいくつかの症例などの、現状では神経剥離術または化学的ブロックによって治療されている痛みのあるどのような神経伝導にも有用となり得る。これらの症状のいくつかは、現在、末梢神経刺激を用いて治療されているが、これは常に効果的というわけではなく、また刺激による断続的な知覚を生じ得る。HFACブロックを用いると、神経に適用される短時間作用型の局所麻酔を用いるスクリーニング時間が、HFACの成功の予後因子となり得る。
【0033】
自律神経ブロックでの用途に関して述べる。自律神経系の特定要素の破壊を利用して、他に良好な代替治療法のない特定の状態を治療する。たとえば、胸部交感神経節の破壊を使用して、多汗症を治療する。この手技はうまくいく可能性があるが、考えられる副作用として、ホルネル症候群等があげられる。これらの部位で、本発明の方法によるHFAC神経ブロックを用いると、当該手技を可逆的に実施できる。副作用については、必要なときにのみ自律神経ブロックを活性化することで、軽減または低減できる。他の実施形態では、HFACブロックは、過剰な流涎の治療および膵臓癌の痛みの治療(現在は、極端な症例では腹腔神経叢の破壊によって治療されている)をはじめとする自律神経症に使用される。
【0034】
したがって、本発明の方法は、たとえば、痙攣に関連した神経線維を介したシグナル伝達をブロックすることで、脳性麻痺、脳卒中または多発性硬化症に罹患した患者における痙攣を低減するのに使用可能である。本発明の方法を使用して脊髄損傷における筋肉の攣縮をブロックしたり、整形外科手術後に術後的に使用して筋肉の随意収縮を防止したりすることが可能である。これらの方法は、痛みを緩和するために、急性疼痛シグナルおよび慢性疼痛シグナルなどの感覚シグナルをブロックするのに使用可能である。本発明の方法は、慢性疼痛を緩和するために、脊髄または脳における神経系の痛みの回路をブロックするのに使用可能である。本発明の方法は、筋肉への末梢神経をブロックするか、脳における神経系の回路をブロックするかのいずれかによって、パーキンソン病および関連疾患における振戦をブロックするのに使用可能である。また、本発明の方法は、自律神経系を調節するのに使用可能である。他の適用例として、喘息における気道狭窄を発生させる神経を介したシグナル伝達をブロックすることを含む、喘息患者における喘息症状の改善があげられる。
【0035】
本発明は、神経線維の損傷なくDC神経ブロックを達成するのに高電荷容量(「Hi-Q」)材料から製造される電極接点を用いたデータを含む。特に、ある例では、プラチナを被覆したPt電極接点を使用して、多数回の(>100)繰り返し印加後ですらも神経線維の損傷なく、DC神経ブロックを達成した。高電荷容量の材料は、電極接点の電荷注入能力の有意な増加につながり、Q値で定量化される。神経線維の損傷を回避するために、ブロックの時間経過後、電流駆動を反転させ、ヘルムホルツ二重層(HDL)の電荷が均衡をとるようにすることによって、蓄積電荷を回収した。
【0036】
Hi-Q DC電極接点とHFAC電極接点との組み合わせを使用して、図3に示されるように、オンセットのないブロックが成功することを実証した。この方法を用いた実験では、神経伝導を劣化させることなく、50を超える連続したブロックセッションを達成した。神経伝導の劣化なく、累積1500秒間のDC通電を行った約2時間の間に、DCブロック(2.4mA)を、繰り返し適用した。図4は、HFACとHi-Q DC神経ブロックとの組み合わせを使用して、オンセット反応の排除に成功したことを示す追加のデータを示している。
【0037】
HFACとHi-Q DC神経ブロックを併用するには、HFACのオンセット反応全体をブロックできるだけの十分な時間、DCを通電できることが必要である。これは一般に、1~10秒間続き、よって、その時間全体にわたりDCを通電すべきである。DCを安全に通電できる総プラトー時間をさらに延ばす方法は、図5に示されるような「プリチャージ」パルスを使用することである。プリチャージパルスの使用は、電極接点の最大電荷容量に達するまでの時間、所望のブロック効果とは逆の極性のDC波を運ぶことを含む。その後、DC極性を反転させ、ブロック効果を生じさせる。しかしながら、ここでのブロックは、潜在的には2倍の長さという、さらに長時間実施可能である。なぜなら、電極接点が逆の極性に「プリチャージ」されているからである。延長したブロックフェーズの終了時、極性を再び反転させてプリチャージフェーズと同じ極性に戻し、この最終フェーズの実施によって総電荷を小さくする。ほとんどの場合、この波形の正味の総電荷はゼロになるが、正味の総電荷が完全に均衡をとっていないときであっても、有利な効果を得られる。
【0038】
図6に示されるように、DCのレベルを変えることで、HFACからのオンセット反応を部分的にまたは完全にブロックすることができる。これは、有意な神経ブロックの途中であっても、小さな反応を検証することによって、神経線維の健康を評価するのに有用となり得る。DCブロックの深度は、この方法で評価可能である。
【0039】
特に、実世界の装置(real-world device)で経時的なDC電流振幅の離散的な変化(勾配)を伴う場合に、オンセット反応の回避にマルチスロープ遷移が助けになることもある。これを、図7に示す。同図は、ラットの坐骨神経で得られた結果である。これらの例では、低振幅での神経線維の発火を防ぐために、DCは低勾配で開始される。その後、勾配を増し、すみやかにブロック用の振幅に達することができる。DCブロック振幅が達成されたら、HFACのオンセット反応をブロックするのに必要な時間、ブロックを維持する。HFACは、DCがブロック用のプラトーに達したら通電される。HFACは、ブロックに必要な振幅で通電される。オンセット反応が完了したら、神経の活性化を防ぐために、最初はすみやかに、その後よりゆっくりと、DCを低下させる。次に、総電荷注入が低減される再荷電フェーズまでDCをゆっくりと遷移させる。この例では、再荷電フェーズは、低振幅であり、100秒間を超えて持続する。HFACブロックは、この時間の最初から最後まで維持可能であり、その後は、神経ブロックの継続が望ましい場合に、DC通電終了を超えて継続可能である。所望のブロックのすべての時間(場合によっては数時間になり得る)が完了したら、HFACを非通電にして、神経線維が通常の伝導状態に戻るようにすることができる。この過程は、必要に応じて何度も繰り返し、疾患を治療するため、所望の命令で(on command)神経ブロックを生じさせることができる。
【0040】
図8は、オンセット反応全体をブロックするために、HFACからのオンセット反応の時間の最初から最後までDCを維持することを示している。この例(ラットの坐骨神経)では、オンセット反応は、約30秒間持続する。DC波形(青の線)は最初、オンセット反応をブロックするが、DCがゼロにランプバックすると、(約50秒の時点で)オンセット反応が顕著になる。これは、HFACとDCブロックとを組み合わせて、オンセットのないブロックを達成する極めて長いDCブロック波形を示している。
【0041】
もうひとつの例によれば、プラチナ箔を使用して、神経用単極カフ型電極接点を製造した。次に、これらの電極接点をクロロ白金酸溶液中にてプラチナを被覆して、50から600を超えるものまで、さまざまな粗さ係数のプラチナブラックコーティングを形成した。各電極接点のサイクリックボルタモグラムを作成し、水の窓を決定した。標準的なAg/AgCl電極接点に対し-0.25Vから+0.1Vでの水素の吸着に伴う電荷を計算することによって、これらの電極接点によって安全に運ぶことのできる電荷量(「Q値」)を推定した。
【0042】
スプラーグ-ドーリーラットで急性実験を実施して、これらの電極接点を用いた場合のDC神経ブロックの有効性を試験した。麻酔下、片側の坐骨神経および腓腹筋を解体した。双極刺激用の電極接点を坐骨神経の近位および遠位に配置した。近位刺激(PS)は、筋肉の単収縮を誘発し、運動神経ブロックの定量化を可能にした。遠位刺激(DS)も筋肉の単収縮を誘発し、これらの単収縮を、DC電極接点下における神経線維の損傷の尺度として、PSの場合と比較した。図9に概略的に示すように、2つの刺激用電極接点間に単極の電極接点を配置した。プラチナ電極接点とプラチナブラック電極接点の両方を、この位置で試験した。
【0043】
ラットにおいてDC実験を実施し、さまざまな電流レベルおよび時間のDCパルスの作用を決定した。電流制御した波形発生器(Keithley Instruments, Solon, Ohio)を使用して、DC波形を発生させた。図10の下のグラフに示されるように、この波形は台形のブロックフェーズであり、これに方形の再荷電フェーズが続いた。ランプアップおよびランプダウンによって、DCからのオンセットの発火がないように保証した。DCパラメーターについては、運ばれる総電荷が所与の電極接点のQ値未満になるように選択した。次に、各陰極(ブロック)パルスの後を再荷電フェーズとして、100μAに維持された陽極パルスによって100%の電荷を電極接点に戻した。
【0044】
0.1MのHSOにおけるこれらの電極接点のうちのいくつかに対するサイクリックボルタモグラムを、図11に示す。典型的に、これらの電極接点のQ値は、2.9mCから5.6mCの範囲であった。対照的に、標準的なPt箔電極接点はQ値が0.035mCである。
【0045】
プラチナブラック電極接点を利用して、総電荷を各電極接点の最大Q値未満に維持しつつ、伝導ブロックを達成できた。図10は、ピーク振幅が0.55mAのDCを用いて完全な運動神経ブロックが得られた試験を示す。PSによって誘発された筋肉の単収縮は、DC通電のプラトーフェーズの間に完全にブロックされた。
【0046】
図12は、プラチナブラック電極接点のうち5つについて、DCの累積量の影響を、1つの標準的なプラチナ電極接点の場合と比較したものである。図10(下側のサブプロット)に示されるように、DCを通電した。DCの各サイクルにPSおよびDSを続け、若干の単収縮(図10には図示せず)を発生させた。PS/DS比は、急性の神経線維の損傷を示す尺度である。ブロック電極接点下の領域を介して神経線維が正常に伝導すると、この比はほぼ1に近くなるはずである。プラチナ電極接点は、50mC未満の通電から1分未満で神経線維の損傷を示し、神経線維はその後30分間、回復しなかった。プラチナブラック電極接点は、最大で350mCの累積電荷通電で、各実験の間、有意な神経系の損傷の兆候を示していない。さまざまなQ値の他のプラチナブラック電極接点を用いる繰り返しの実験でも、同様の結果が得られた。
【0047】
以上の説明および例は、単に本発明を例示するために示したものであり、限定することを意図したものではない。ここに開示した本発明の態様および実施形態は各々、個々に考慮されてもよいし、本発明の他の態様、実施形態、変形例との組み合わせで考慮されてもよい。さらに、本発明の実施形態の特定の特徴を、特定の図面にのみ示したものもあるが、このような特徴は、本発明の範囲内に保ちつつ、他の図に示された他の実施形態に取り入れることが可能である。また、特に明記しないかぎり、本発明の方法の工程はいずれも、特定の順番で行われるように構成されているものではない。本発明の意図および物質を取り入れた開示された実施形態の変更も、当業者には起こり得るものであり、このような変更は、本発明の範囲に包含される。さらに、本明細書に引用する参考文献はいずれも、その内容全体を本明細書に援用する。
【要約】      (修正有)
【課題】神経組織を介したシグナル伝達をブロックするための装置および方法を提供する。
【解決手段】工程は、治療送達装置を神経組織と電気通信状態にすることを含む。治療送達装置は、高電荷容量の材料を有する電極接点を含む。神経組織を損傷させずに、神経組織に、マルチフェーズ直流電流(DC)を印加可能である。マルチフェーズDCは、全体として、神経ブロックを生じて治療送達装置によって運ばれる電荷を小さくする、陰極DCフェーズと陽極DCフェーズとを含む。DCの通電を高周波数交流電流(HFAC)ブロックと組み合わせ、オンセット反応を引き起こさずに効果的かつ安全で長時間のブロックを提供するシステムを生み出す。
【選択図】図1A
図1A
図1B
図2
図3
図4
図5
図6
図7A
図7B
図8
図9
図10
図11
図12
図13