IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ローレンス・リバモア・ナショナル・セキュリティー・エルエルシーの特許一覧 ▶ ザ・リージエンツ・オブ・ザ・ユニバーシテイー・オブ・カリフオルニアの特許一覧

特許75263113D付加製造のためのコンピュータアキシャルリソグラフィ(CAL)のためのシステムおよび方法
<>
  • 特許-3D付加製造のためのコンピュータアキシャルリソグラフィ(CAL)のためのシステムおよび方法 図1A
  • 特許-3D付加製造のためのコンピュータアキシャルリソグラフィ(CAL)のためのシステムおよび方法 図1B
  • 特許-3D付加製造のためのコンピュータアキシャルリソグラフィ(CAL)のためのシステムおよび方法 図1C
  • 特許-3D付加製造のためのコンピュータアキシャルリソグラフィ(CAL)のためのシステムおよび方法 図1D
  • 特許-3D付加製造のためのコンピュータアキシャルリソグラフィ(CAL)のためのシステムおよび方法 図2A
  • 特許-3D付加製造のためのコンピュータアキシャルリソグラフィ(CAL)のためのシステムおよび方法 図2B
  • 特許-3D付加製造のためのコンピュータアキシャルリソグラフィ(CAL)のためのシステムおよび方法 図3
  • 特許-3D付加製造のためのコンピュータアキシャルリソグラフィ(CAL)のためのシステムおよび方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-23
(45)【発行日】2024-07-31
(54)【発明の名称】3D付加製造のためのコンピュータアキシャルリソグラフィ(CAL)のためのシステムおよび方法
(51)【国際特許分類】
   B29C 64/129 20170101AFI20240724BHJP
   B29C 64/241 20170101ALI20240724BHJP
   B29C 64/386 20170101ALI20240724BHJP
【FI】
B29C64/129
B29C64/241
B29C64/386
【請求項の数】 24
(21)【出願番号】P 2023063965
(22)【出願日】2023-04-11
(62)【分割の表示】P 2022013962の分割
【原出願日】2018-03-27
(65)【公開番号】P2023089102
(43)【公開日】2023-06-27
【審査請求日】2023-05-09
(31)【優先権主張番号】15/593,947
(32)【優先日】2017-05-12
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】520222092
【氏名又は名称】ローレンス・リバモア・ナショナル・セキュリティー・エルエルシー
(73)【特許権者】
【識別番号】507127440
【氏名又は名称】ザ・リージエンツ・オブ・ザ・ユニバーシテイー・オブ・カリフオルニア
(74)【代理人】
【識別番号】110001173
【氏名又は名称】弁理士法人川口國際特許事務所
(72)【発明者】
【氏名】ブレット・ケリー
(72)【発明者】
【氏名】ロバート・パナス
(72)【発明者】
【氏名】マクシム・シュステフ
(72)【発明者】
【氏名】クリストファー・スパダッチーニ
(72)【発明者】
【氏名】ヘイデン・テイラー
(72)【発明者】
【氏名】インドラセン・バタチャリア
【審査官】坂本 薫昭
(56)【参考文献】
【文献】特開平04-267132(JP,A)
【文献】国際公開第2016/172805(WO,A1)
【文献】米国特許出願公開第2016/0107380(US,A1)
【文献】韓国公開特許第10-2016-0110938(KR,A)
【文献】SHUSTEFF,M et al.,ADDITIVE FABRICATION OF 3D STRUCTIURES BY HOLOGRAPHIC LITHOGRAPHY,Annual International Solid Freeform Fabrication Symposium,2016年,the 27th,p.1183-1192
(58)【調査した分野】(Int.Cl.,DB名)
B29C 64/10,64/106,64/124,64/129,
64/20,64/241,64/264,64/386,
64/393
B33Y 10/00,30/00,50/02
(57)【特許請求の範囲】
【請求項1】
材料コンテナ内に収容される光応答性材料の体積から3次元(3D)物体を形成するためのシステムであって、システムは、
制御装置と、
光応答性材料の体積を収容する材料コンテナのまわりに周方向に配置され、制御装置と通信するように適合された複数の光学投影サブシステムとを備え、
複数の光学投影サブシステムが、光応答性材料の体積を通って複数の角度θで光学投影を向けるように制御装置によって制御され、光学投影はさらに、光応答性材料の体積を通って延びるz軸のまわりに向けられ、
複数の光学サブシステムはさらに、光応答性材料の体積の1つ以上の選択した部分を硬化させ、他の部分を変更せず残すのに十分である、固定された時間の曝露期間にわたって作用する、計算された3次元強度分布を光学投影のそれぞれに提供して、3D物体を形成するように制御装置によって制御され、
制御装置が、
z軸を通って延びる複数のz平面の各1つについて、各角度θでの特定のz平面に対する1次元(1D)強度パターンを生成することと、
各z平面について特定の角度θに対する1D強度パターンを、その角度θからの2次元(2D)イメージ投影に組み立てて、これを各角度θについて行うことと
によって、複数の角度θで生成される光学投影を制御する、システム。
【請求項2】
光学サブシステムが、複数の角度θで、かつ、3D強度関数を空間内に生成するために光学投影を同時に重ね合わせる方法で、光学投影を向けるように制御装置によって制御される、請求項1に記載のシステム。
【請求項3】
光学サブシステムが、OLEDアレイを備える、請求項1に記載のシステム。
【請求項4】
光学サブシステムのそれぞれがさらに、マイクロレンズを含む、請求項3に記載のシステム。
【請求項5】
光学サブシステムが、それぞれが関連するマイクロレンズを有する有機発光ダイオード(OLED)のアレイを備え、
複数の角度θでの光学投影の生成が、光学投影のそれぞれがOLEDの1つまたはサブセットに関連する特定の角度θから生成されるように光学投影を生成させることを含む、請求項1に記載のシステム。
【請求項6】
制御装置が、フィルタ補正逆投影法(FBP)技術を含むフーリエドメインメソッドを使用して、光学サブシステムに、複数の角度θで光学投影を送達させるように構成されている、請求項1に記載のシステム。
【請求項7】
制御装置が、フィルタ補正逆投影法(FBP)技術または反復最適化ベース技術のうちの少なくとも1つを含むフーリエドメインメソッドを使用して、光学サブシステムに、複数の角度θで光学投影を送達させるように構成されている、請求項1に記載のシステム。
【請求項8】
材料コンテナをさらに備える、請求項1に記載のシステム。
【請求項9】
材料コンテナが、光学的に透明な材料コンテナを備える、請求項に記載のシステム。
【請求項10】
光学的に透明な材料コンテナを収容するための第2のコンテナをさらに備え、第2のコンテナは、光応答性材料の屈折率に適合する屈折率を有する流体で満たされるように適合されている、請求項に記載のシステム。
【請求項11】
複数の光学サブシステムのうちの少なくとも1つが、光学投影の振幅を制御する空間光変調器(SLM)を備える、請求項1に記載のシステム。
【請求項12】
複数の光学サブシステムのうちの少なくとも1つが、光学投影の位相を制御する空間光変調器(SLM)を備える、請求項1に記載のシステム。
【請求項13】
材料コンテナ内に収容される光応答性材料の体積から3次元(3D)物体を形成するためのシステムであって、システムは、
それぞれが、独立した光学投影サブシステムを形成し、光応答性材料の体積を収容する材料コンテナのまわりに少なくとも部分的に周方向に構成される、複数のOLEDアレイを備え、
複数のOLEDアレイは、光応答性材料の体積を通って複数の異なる角度θで光学投影を向けるように構成され、
複数のOLEDアレイはさらに、光応答性材料の体積の1つ以上の選択した部分を硬化させ、他の部分を変更せず残すのに十分である、固定された時間の曝露期間にわたって作用する、計算された3次元強度分布を光学投影のそれぞれに提供して、3D物体を形成する、システム。
【請求項14】
光学投影が、光応答性材料の体積を通って延びるz軸のまわりに向けられる、請求項13に記載のシステム。
【請求項15】
前記OLEDアレイのそれぞれがマイクロレンズを含む、請求項13に記載のシステム。
【請求項16】
材料コンテナ内に収容される光応答性材料の体積から3次元(3D)物体を形成するためのシステムであって、システムは、
材料コンテナに向けられる複数の2次元(2D)光学投影を生成させるための光学投影サブシステムと、
複数の2D光学投影を受け、複数の2D光学投影を光応答性材料の体積の方に向けるように構成された複数のミラーを有する回転アーム組立体であって、複数の2D光学投影のうちのこのようなものは、材料コンテナに収容される光応答性材料の体積に対して複数の異なる角度θで向けられて、光応答性材料の少なくとも選択した部分を硬化させる、回転アーム組立体とを備える、システム。
【請求項17】
光学的に透明な材料コンテナを収容するための第2のコンテナをさらに備え、第2のコンテナは、光応答性材料の屈折率に適合する屈折率を有する流体で満たされるように適合されている、請求項16に記載のシステム。
【請求項18】
光学投影サブシステムが、静止状態に保持され、材料コンテナだけが、回転アーム組立体によって回転される、請求項16に記載のシステム。
【請求項19】
2D光学投影を受け、2D光学投影を回転アーム組立体の複数のミラーに送るための静止ミラーと、
材料コンテナを支持するためのマウントとを備え、
マウントが、2D光学投影が光応答性材料の方に向けられている間、材料コンテナを回転させるために回転される、請求項16に記載のシステム。
【請求項20】
材料コンテナをさらに備える、請求項16に記載のシステム。
【請求項21】
材料コンテナが、光学的に透明な材料コンテナを備える、請求項20に記載のシステム。
【請求項22】
材料コンテナのz軸を通って延びる複数のz平面の各1つについて、各角度θでの特定のz平面に対する1次元(1D)強度パターンを生成することと、
各前記z平面について特定の角度θに対する1D強度パターンを、各前記特定の角度θからの2次元(2D)イメージ投影に組み立て、1D強度パターンの組み立てを各前記角度θについて繰り返すことと
によって、複数の角度θで生成される2D光学投影を制御するように構成された制御装置をさらに備える、請求項16に記載のシステム。
【請求項23】
制御装置が、フィルタ補正逆投影法(FBP)技術または反復最適化ベース技術のうちの少なくとも1つを含むフーリエドメインメソッドを使用して、光学投影サブシステムに、複数の角度θで2D光学投影を送達させるように構成されている、請求項22に記載のシステム。
【請求項24】
光学投影サブシステムが、空間光変調器を備える、請求項16に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2017年5月12日に出願された米国特許出願第15/593,947号のPCT国際出願である。上記出願の開示全体は、引用により本明細書に組み込まれる。
【0002】
政府の権利の陳述
米国政府は、ローレンスリバモア国立研究所の運営のために、米国エネルギ省とローレンスリバモアナショナルセキュリティLLCとの間の契約番号DE-AC52-07NA27344に従って、本発明において権利を有する。
【0003】
分野
本開示は、付加製造を実行するためのシステムおよび方法に関し、より詳細には、コンピュータ断層撮影(CT)技術を使用する体積製造(volumetric fabrication)に向けられたシステムおよび方法に関する。
【背景技術】
【0004】
この段落は、必ずしも先行技術ではない本開示に関係する背景情報を提供する。
【0005】
付加製造(AM)の製造方法は、急速に拡大しており、フォトポリマベースのアプローチは、最も顕著な方法の幾つかを含む。これらのステレオリソグラフィ技術は、解像度、ビルド速度、処理制御、および資本コストの有用なバランスを提供する。しかしながら、これらのシステムメトリックは、典型的には、互いにトレードオフされなければならない。速度制限、表面粗さ(階段状アーチファクト)、および、サポート構造のための要件を解決することは、これらの将来の技術の進歩における次の主要なステップを提供するであろう。
【0006】
付加製造(AM)技術が重要性かつ多用性を獲得するにつれて、ほとんど全てのAMアプローチに対する1つの制約が、低次元ユニット動作をシリアルに繰り返すこと、構造をボクセルバイボクセルまたはレイヤバイレイヤで構築することに依存する。これは、利点になり得、著しい処理の柔軟性をもたらす場合があるが、多くの場合、欠点であって、表面仕上げの不足および寸法の制限を課す。例えば、滑らかに湾曲するジオメトリを作り出すことは不可能である。幾つかのアプローチは、平面スライシングを必要とせずに3D構造を生成する能力を実証したが、特に、ヒューズリサーチラボラトリーズの格子状光線(latticed light-beam)による格子の製造(T.A.Schaedlerらの「Ultralight Metallic Microlattices」、Science、334巻、6058号、962-965頁、2011年11月を参照のこと)、および、干渉リソグラフィによって作り出されたフォトニック結晶(Y.Lin、A.Harb、K.Lozano、D.Xu、および、K.P.Chen、「Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element」、Opt.Express、17巻、19号、16625頁、2009年9月を参照のこと)である。しかしながら、これらのアプローチは、周期構造に限定されており、寸法の1つが他の2つよりも実質上小さくなっている。Carbon3Dの「連続的な」液体界面処理(J.R.Tumblestonらの「Continuous liquid interface production of 3D objects」、Science、347巻、6228号、1349-1352頁、2015年3月を参照のこと)でさえ、2D離散化に基づく順次的な製造を依然として必要とする。
【0007】
AM技術ベースを拡張して、任意のジオメトリを有する3D形状を生成する3Dユニット動作による製造(「ボリュームアトワンス」)を含めることは、非常に望ましい。そういったアプローチは、それらの初期にある。最初の「ボリュームアトワンス」フォトポリマベースの製造は、The 26th Annual International Solid Freeform Fabrication Symposiumの予稿集、テキサス州オースティン2016年1183-1192頁のM.Shusteffらの「Additive Fabrication of 3D Structures by Holographic Lithography」で述べられたように、最近実証された。このアプローチは、位相限定(phase-only)液晶オンシリコン(LCoS)空間光変調器(SLM)によって生成されたホログラフィック形状の光線場を使用した。Shusteffらのアプローチによって達成可能なジオメトリは、3つの直交方向の個々に沿って一定の断面を有するのが原因で制限される。この制限は、それらの比較的大きいピクセルサイズ(最小で約4μm、より一般的には、8μmまたはそれより大きい)のせいで、先端技術のSLMから利用可能な小さい回折角に大きく生じる。
【先行技術文献】
【非特許文献】
【0008】
【文献】T.A.Schaedlerらの「Ultralight Metallic Microlattices」、Science、334巻、6058号、962-965頁、2011年11月
【文献】Y.Lin、A.Harb、K.Lozano、D.Xu、および、K.P.Chen、「Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element」、Opt.Express、17巻、19号、16625頁、2009年9月
【文献】J.R.Tumblestonらの「Continuous liquid interface production of 3D objects」、Science、347巻、6228号、1349-1352頁、2015年3月
【文献】The 26th Annual International Solid Freeform Fabrication Symposiumの予稿集、テキサス州オースティン2016年1183-1192頁のM.Shusteffらの「Additive Fabrication of 3D Structures by Holographic Lithography」
【文献】S.W.Smithの「The Scientist & Engineer’s Guide to Digital Signal Processing」第1版.,カリフォルニア州サンディエゴ:California Technical Pub,1997年
【文献】T.Bortfeld、J.Burkelbach、R.Boesecke、および、W.Schlegel、「Methods of image reconstruction from projections applied to conformation radiotherapy」Phys.Med.Biol、35巻10号、1423-1434頁、1990年10月
【文献】R.Bracewell「Strip Integration in Radio Astronomy」、Aust.J.Phys.9巻、2号、198頁、1956年
【文献】R.N.Bracewell、「Numerical Transforms」、Science,248巻、4956号、697-704頁、1990年5月
【文献】D.Dendukuri、P.Panda、R.Haghgooie、J.M.Kim、T.A.Hatton、および、P.S.Doyle、「Modeling of Oxygen-Inhibited Free Radical Photopolymerization in a PDMS Microfluidic Device」、Macromolecules,41巻、22号、8547-8556頁、2008年11月
【文献】「Digital Light Field Photography」(博士論文、スタンフォード大学)Lanman,D.およびLuebke,D.、2013年 「Near-eye light field displays」(ACM Transactions on Graphics (TOG))、32巻、6号、220頁
【発明の概要】
【課題を解決するための手段】
【0009】
この段落は、本開示の一般概要を提供しており、その全範囲またはその特徴の全てについての包括的な開示ではない。
【0010】
本開示の1つの態様は、3次元(3D)物体を形成する方法に関する。方法は、光学的に透明な樹脂コンテナ内に収容される光硬化性樹脂の体積を提供することと、光硬化性樹脂の体積を通して複数の角度θで光学サブシステムからの光学投影を同時に方向付けることとを含むことがある。光学投影は、光硬化性樹脂の体積を通って延びるz軸まわりに更に方向付けられることがある。光学投影の個々は、固定された時間的な曝露期間にわたって作用する計算された3次元強度分布を提供されることがある。1つまたは複数の角度からの投影がその間において提供される固定された時間期間にわたって、正味の曝露線量は、所望の3D部品を形成するために、光硬化性樹脂の体積の選択された部分を硬化させると共に他の部分を未硬化のままにするのに十分である。
【0011】
別の態様では、本開示は、光学的に透明な樹脂コンテナ内に収容される光硬化性樹脂の体積を提供することによって3次元(3D)物体を形成する方法に関する。z軸は、光硬化性樹脂の体積を通って延び、r軸は、z軸に垂直に延びる。光学的に透明な樹脂コンテナは、z軸まわりに回転され、同時に、光学投影は、z軸に対して異なった角度θに沿って樹脂コンテナで順次的な様式で静止光学サブシステムからx’方向に方向付けられることがある。光学投影の2次元(2D)投影関数は、各角度θで制御されることがある。この投影関数は、制御された3D曝露線量を送達することがある。複数の角度θからの投影を含む、固定された時間的な曝露期間にわたって、正味の合計3D曝露線量は、樹脂体積に生成されることがある。合計3D曝露線量は、光硬化を所望の領域に生じさせ、不所望の領域には生じさせない、のに十分であることがある。
【0012】
更に別の態様では、本開示は、3次元(3D)物体を形成する方法に関する。方法は、光学的に透明な樹脂コンテナ内に収容される光硬化性樹脂の体積と、光硬化性樹脂の体積を通って延びるz軸と、z軸に垂直に延びるx’軸とを提供することを含むことがある。方法は、3D強度マップを生成する光学2次元(2D)投影関数を生成する光学サブシステムを使用することを更に含むことがある。方法は、光硬化性樹脂の体積を通して方向付けられた光学2D投影を維持しながら、光硬化性樹脂の体積の完全な周囲のまわりに光学2D投影を受けるために、2D投影または樹脂コンテナの少なくとも一方を他方に対して回転させることを更に含むことがある。2D投影の2次元(2D)投影関数は、固定された時間的な曝露期間にわたって制御された3D曝露線量を送達するために、各角度θで制御されることがあり、複数の2D投影は、複数の角度θから生成される。不所望の領域に光硬化を生じさせるのに不十分でありながら所望の領域に光硬化を生じさせるのに十分である3D曝露線量を樹脂体積に作り出すために複数の2D投影は合計されることがある。
【0013】
適用可能性の更なる範囲は、本明細書で提供される説明から明らかになるであろう。この概要の説明および特定の例は、例証だけの目的を意図されており、本開示の範囲を限定することを意図していない。
【0014】
本明細書で説明される図面は、全ての可能な実装ではなく、選択された実施形態の例証目的だけのためであり、本開示の範囲を限定することを意図していない。
【図面の簡単な説明】
【0015】
図1A】光学投影を計算に設計するために使用される基礎にある数学的な関係の概要を提供する複数の図である。これらの光学投影は、ターゲット強度分布を作成するために本開示の様々な実施形態によって物理的に生成される場合がある。
図1B】様々な実施形態の説明を助けるために本開示で使用される座標系を例証する図である。
図1C】様々な実施形態の説明を助けるために本開示で使用される座標系を例証する図である。
図1D】様々な実施形態の説明を助けるために本開示で使用される座標系を例証する図である。
図2A】各角度θで投影を同時に生成するためにターゲット樹脂体積のまわりに周方向に配置された光源およびレンズや他の光学系のシステムを利用する本開示に従ったシステムの1つの実施形態を示す図である。全ての投影から発出される3D強度マップの同時重ね合わせは、1つの動作ステップで樹脂の選択された部分を硬化するために使用される。
図2B】様々な光学投影が異なる角度θで樹脂のターゲット体積を通過する図2Aの実施形態の3D表示を示す図である。
図3】ターゲット樹脂体積コンテナが回転マウントまたはステージによって回転され、他方、光学投影生成構成要素が固定された時間で単一の投影を提供する本開示の別の実施形態の高水準図である。この投影は、体積に3D強度場を作成する。樹脂体積が時間と共に回転して角度θが変化すると、投影が更新される。
図4】ターゲット樹脂体積コンテナが静止状態に維持され、回転アーム組立体が変わる角度θから光学投影を方向付ける本開示の別の実施形態の高水準図である。
【発明を実施するための形態】
【0016】
対応する参照番号は、図面の幾つかの図を通して対応する部分を示す。
【0017】
実施形態例は、今から添付の図面を参照して更に十分に説明されるであろう。
【0018】
本発明の開示で説明されるアプローチは、コンピュータ断層撮影(CT)技術を逆に適用することによって、即ち、フォトポリマ樹脂体積を3D光線場で複数の角度から曝露すること、および光線場を各角度で更新することにより構造体を製造することによって、体積製造を達成する。必要な光線場は、空間的および/または時間的に多重化され、それにより、ターゲット樹脂体積内のそれらのエネルギ線量合計が、ユーザにより定義されたジオメトリに樹脂をクロスリンクさせる。これらの光線場は、静的または動的であることがあり、また、任意の適切な機構、例えば、空間光変調器(SLM)によって生成されることがある。SLMは、必要な強度分布を提供するために、光線場の位相または振幅、あるいは、おそらく双方を制御する。各角度θでの光線場は、時間的に同時または順次に生成されることがある。順次的なケースでは、それらは、任意の順序で生成されることがある。本開示は、この範囲の処理可能性を大幅に前進させ、所与の体積内での3D放射線量分布を生成するための手段を提供し、フォトポリマ硬化における殆ど任意の構造体を可能にする。
【0019】
本開示は、感光性樹脂浴体積に関する3次元(3D)光学光線場の空間的および/または時間的な多重化に基づく。多重化は、以下の段落の特定の実施形態および方法において説明される方法を含むいくつかの方法で達成することができるが、それらに限定されない。多重化は、樹脂の選択領域に制御された曝露線量を送達することによって、3Dのユーザにより設計されたジオメトリをイン・サイチュでフォトポリマビルド体積に硬化させることに関して実現されることがある。
【0020】
概念的に、本開示の教示は、十分に発達したコンピュータ断層撮影(CT)の分野に基づく。CTは、一般に、複数の角度からの3D体積のイメージングを指し、殆どの場合、体積を透過したX線によるものであり、各イメージは、方位角的にアレイ化された方向からの照明によって順次に生成される。3D体積は、次に、様々の知られている計算技術によって再構築される。そういった知られている計算技術は、フィルタ補正逆投影法(FBP)技術や反復最適化ベース技術などのフーリエドメインメソッドを含むことがある。例えば、S.W.Smithの「The Scientist & Engineer’s Guide to Digital Signal Processing」第1版.,カリフォルニア州サンディエゴ:California Technical Pub,1997年、を参照のこと。3D幾何学的情報のキャプチャおよび記録に役立つCTアプローチを用いて、コンピュータアキシャルリソグラフィ(CAL)は、概念を逆にして、複数の角度からのフォトポリマの曝露から3Dジオメトリを生成する。本明細書で説明される実施形態は、「ボリュームアットワンス」機能を保持し、同時に、従来の離散化「階段状」アーチファクトを排除する3ビームホログラフィックリソグラフィアプローチ(上記Shusteffら)の幾何学的柔軟性を大幅に改善する。
【0021】
癌治療の目的のために、CT最適化は使用されて、強度変調放射線治療(IMRT)を送達し、患者の生理機構内の特定領域に放射線量のターゲット3D分布を送達し、同時に、非ターゲット領域の線量を最小化した。例えば、T.Bortfeld、J.Burkelbach、R.Boesecke、および、W.Schlegel、「Methods of image reconstruction from projections applied to conformation radiotherapy」Phys.Med.Biol、35巻10号、1423-1434頁、1990年10月を参照のこと。3Dリソグラフィ製造の制約は、概して厳しくなく、同様に規定された放射線の3D線量分布が、感光性樹脂をクロスリンクさせるために使用される場合があることを示唆している。
【0022】
断層撮影イメージ計算
ターゲットの3D部分ジオメトリと、計算された投影との間の関係を理解するために、図1Aならびに図1B-1Dの座標系指定を考慮する。以下の議論に関して、グローバルデカルト座標系(x、y、z)を採用して、3Dビルド体積と、考慮される投影の角度θに向きが依存する回転されたデカルト座標系(x’、y’、z’)とを参照することが便利である。これらの座標系では、zは、体積10のまわりの角度θでの曝露の方位角的アレイ化のための軸である。各角度θに関して、投影が計算される。特定の角度θで、ターゲット体積内で生成される3次元強度マップIθ(x、y、z)を完全に決定する2次元関数Pθ(y’、z)として、投影を定義する(Pθは角度θに依存するが、2つの空間的次元を有するので、2次元関数と呼ばれることに留意すべきである)。最も単純なケースでは、投影は、樹脂体積をx’方向に伝播する(y’、z)ドメインの2次元イメージと考えられ得る場合がある。この理想的なケースでは、投影によって生成された3D強度プロファイルは、x’方向にターゲット体積を通して押し出された(y’、z)ドメインイメージのように見える。この近似は、照明投影がコリメートされる場合、物理的に良好に有効である。医療イメージング用途では、これは、平行ビーム断層撮影に類似する。本開示に関して、これは、光学的構成が長い焦点深度(特に、現在のSLM技術で利用可能な小さな回折角に関連する)を有するときはいつでも、十分に良好な近似である。一般的なケースでは、光の伝搬および減衰モデルは、特定の角度で2D投影関数から生成される3D強度マップを表す。この説明と図1Aでは、本方法の説明を簡単にするために理想的なケースを考慮する。
【0023】
断層撮影イメージ計算の目的は、各投影から生成された3D光線場の重ね合わせから生成された3D強度マップが、ターゲット3D強度マップを詳しくまたは正確に近似するように、ある範囲の角度θから2D投影イメージのセットP(y’、z、θ)を設計することである。我々は今から、知られているターゲット3D強度マップから、投影の設計を考慮する。説明をより簡略化するために、3D強度マップのための2D投影のセットを生成する問題を、2D強度マップI(x、y)の1D投影のセットP(y’、θ)を生成する問題に、縮小する。繰り返すと、このケースでは、1Dは、1つの空間次元y’を指す。物理的な(x、y、z)樹脂体積システムでは、2D強度マップは、真の3D強度マップの水平方向一定のzスライスと考えることができる。最終的に、所与の角度θでの2D投影Pθ(y’、z)は、次にその特定の角度に対して各z平面で計算された1D投影の個々を積み重ねることによって生成される場合がある。
【0024】
CTイメージ再構築を達成する多くのやり方のうち、製造のための線量最適化に容易に役立つ2つの主要なアプローチは、フィルタ補正逆投影(FBP)および反復最適化ベースのアルゴリズムである。ここでは、先ず、FBPアプローチおよびその制限を考慮して、最適化アルゴリズムの有用な開始パラメータを提供するために、どのようにそれが使用され得るかを説明する。
【0025】
zの所与の値について(x、y)平面内の2D光学密度分布を再構築するためのFBPアプローチは、M個の角度サンプル(θ=θ、θ、...θ)の個々での数学的1D投影を計算することから始まる。これらの一緒に取られた投影は、2Dイメージのラドン変換から成る。投影スライスの定理から、その両者がここに引用により本開示に組み込まれる、R.Bracewell「Strip Integration in Radio Astronomy」、Aust.J.Phys.9巻、2号、198頁、1956年、および、R.N.Bracewell、「Numerical Transforms」、Science,248巻、4956号、697-704頁、1990年5月、で議論されているように、特定の角度θでの各1D投影のフーリエ変換が、元の2D密度分布のフーリエ変換の1Dサンプルに正確に等しいことが知られている。この1Dサンプルは、フーリエドメインの原点を通る線に沿って在り、また、角度θで傾斜する。これは、図1Aに示される。フーリエドメインでの十分に密なサンプリングが、正確なCTイメージの再構築に必要とされる。フーリエドメインでサンプル数Mを適切に選択するために、1つの可能な保守的なヒューリスティックは、スライス間の最大距離が径方向のN個のサンプルポイントの分離より大きくないことを確実にすることである。これは、180度の角度範囲内でπN/2の角度サンプルをもたらす。
【0026】
各2Dz平面のリソグラフィ製造は、CTイメージング処理の、アルゴリズムによる時間反転に従うことができる。スライスI(x、y)のターゲット2D強度マップは、フーリエドメインに変換され、次に、M個の方位角の個々に沿ってサンプリングされ、M個の1D強度分布、または、各角度θ、θ、...θに1つの投影Pθ(y’)を生成する。これらの分布の個々は、その特定の角度からそのそれぞれのパターンでターゲット平面を曝露するために使用され、それは、スライスから原点を通してフーリエドメインにサンプルを構築することに対応する。CT再構築に対するFBPは、中央スライシングアプローチに固有の低周波数オーバーサンプリングを重要でなくする目的で、逆投影の前のハイパス空間フィルタリングに依存する。これを説明するための同等のやり方は、径方向に増加するランプフィルタとしてであろう。このフィルタは、通常、逆投影イメージに負の偏位をもたらし、それらはリソグラフィにとって物理的でない。負の値を除去してリソグラフィに適したイメージを作り出す幾つかのヒューリスティックなアプローチは、課せられた正値性制約または計算されたイメージをオフセットすることを含む。そういったヒューリスティックの結果は、計算された線量分布のコントラストおよび解像度間にトレードオフを課す;しかしながら、それらは、制約付き最適化手順の初期線量推定値として使用される場合がある。
【0027】
簡潔には、最適化手順は、その開始点として、樹脂モノマクロスリンクを受けた光エネルギ線量に関係付ける順方向処理モデルを取る。そういったモデルの様々な2Dバージョンは、D.Dendukuri、P.Panda、R.Haghgooie、J.M.Kim、T.A.Hatton、および、P.S.Doyle、「Modeling of Oxygen-Inhibited Free Radical Photopolymerization in a PDMS Microfluidic Device」、Macromolecules,41巻、22号、8547-8556頁、2008年11月、で議論されているなどがあり、その教示が引用により本明細書に組み込まれ、利用することができ、3D類似物への進展は限定的である。モデル化された硬化(全ての角度からの合計線量分布によって引き起こされる)の度合いを所望の部品ジオメトリと比較して、誤差関数が生成され、それが逆変換されて初期線量推定値を修正するために使用される。このサイクルは、ビルド体積全体のエッジシャープネス、コントラスト、または合計エラーなどの特定のエラー基準を満たすのに十分な数のサイクルで繰り返される。最適化手順は、強度の吸収などの処理の非線形性を正確にモデル化してイメージ生成で考慮するための手段を提供する。これは、特徴の品質の観点から著しく有利である。2D平面から3Dへの拡張は、簡単であり、各z平面からの1D強度パターンは、特定のx’伝搬方向に対応する全ての角度θでの投影のために2Dy’-zイメージに組み立てられる。実際上、これは、各角度θでの全てのz平面の計算されたラドン変換の物理的な投影であり、所望の3D線量体積を再構築する。
【0028】
上で説明された方法を実行する1つの特定の実施形態は、図2Aに示されるシステム24である。システム24は、特定の選択された角度θ、θ、...θでの光学投影P(y’、z、θ)のセットが、光学的に透明なコンテナ29a内に収容された樹脂29のターゲット体積のまわりに生成されるように配置された、複数の光学サブシステム26を含むことがある。光学サブシステム26の1つの可能な設計は、樹脂29の3Dターゲット体積を囲むマイクロレンズ28によってカバーされたOLEDアレイ27を含むことがある。OLEDアレイ27は、制御装置26aによって部分的に制御されることがある。光学サブシステム26の異なったグループは、図2Bに示されるように、ターゲット樹脂体積29を通って投影する、それぞれ異なった角度θ、θ、θ等々での、投影Pθ(y’、z)および対応する3D強度マップIθ(x、y、z)26、26、26等々を同時に生成する。投影Pθ(y’、z)および強度マップIθ(x、y、z)は、段落[0015]で説明されたものと類似する。図2Bは、光学投影26、26、26の個々の2D性質を例証する。投影26、26、26は、z軸(図2B)まわりのM個(即ち、2つ以上)の異なった角度θから同時に樹脂コンテナ29a内に収容されたターゲット樹脂体積29に送達される。ターゲット樹脂体積29の360度全周のまわりの全角度からの3D強度場26、26、26等々の同時の重ね合わせは、図2Aに示すように、3D強度関数I(x、y、z)を空間内に生成する。この強度関数は、固定された時間的な曝露期間にわたって作用する。曝露中、材料の形成が望まれる領域は、光硬化による固化を引き起こすのに十分な光エネルギ線量を受け、他方、形成(即ち、硬化)が望まれない領域は、不十分な線量を受ける。曝露期間後、樹脂コンテナ29aは、光硬化を達成するのに不十分な線量の光エネルギを受けた3D部品の領域から未硬化樹脂を除去するためにリンスされることがある。
【0029】
光線場写真および3D表示に関する更なる基礎的な情報は、Ng,R.2006年に見出すことができる。「Digital Light Field Photography」(博士論文、スタンフォード大学)Lanman,D.およびLuebke,D.、2013年 「Near-eye light field displays」(ACM Transactions on Graphics (TOG))、32巻、6号、220頁、それらの開示は、引用により本明細書に組み込まれる。この情報は、マイクロレンズによってカバーされたLEDのアレイから必要な光学サブシステムを作成する可能性に関連する。システム24は、こうして多数の視点からイメージを同時に生成し、樹脂29のターゲット体積全体を投影26、26、26に各角度θから同時に曝露する手段を形成する。各投影26、26、26が体積に同時に作用するという理由で、最終的な3D部品は、単一ステップで印刷できる。
【0030】
単一ステップで印刷し、シリアルなレイヤバイレイヤ印刷を回避することによって、既存のAM方法で起こり得る幾つかの潜在的な課題が、対処され得る。これらは、オーバーハングジオメトリを印刷すること、ならびに、粗末な表面仕上げや機械的な異方性などのレイヤアーチファクトを回避することの困難さを含む。このアプローチの追加の利点は、構築されている構造が流体媒体に対して移動せずに、低体積含有率ヒドロゲルスカフォールドなどの非常に従順または脆弱な構成要素の製造を可能にすることである(溶媒交換、その後の、超臨界CO2乾燥などの適切なリンス/乾燥のアプローチと組み合わせて)。
【0031】
図3を参照すると、システム30が示されており、それは、z軸42のまわりの樹脂32のターゲット体積の物理的回転により、固定された時間期間にわたる3D曝露線量分布を生成し、デジタル光処理(DLP)プロジェクタまたは他のイメージ生成光学システム34からの単一2D光学投影の時間的な操作と、制御装置31を介して同期化されている。本明細書で先に説明されたような実現では、イメージ生成光学システム34は、樹脂32のターゲット体積に衝突する、軸x’41に沿った単一の方向からの、コリメートされた光学イメージまたは投影36を作り出す。イメージが幾らかの発散(即ち、コリメートされていない)も有し得ること、および、それらを設計するためのアルゴリズムがそれに応じて更新できることが、理解されるであろう。
【0032】
投影36の入射光と樹脂32のターゲット体積との間の相対角度θは、異なった平面イメージ(y’、z)が連続投影されるとき、時間につれて変化する。以前に説明されて図1B、1C、および1Dに示された座標系の取り決めに従って、(x、y、z)システムは、z軸のまわりを回転し、そのとき、樹脂32のターゲット体積は、回転し、(x’、y’、z)システムは、空間に固定されたままである。こうして、樹脂32のターゲット体積が回転すると、x軸とx’軸との間の角度θは変化する。1つの例では、樹脂32のターゲット体積を保持する樹脂閉じ込め容器38は、回転マウントまたはステージ40にマウントされる。回転ステージは、z軸42のまわりを回転し、DLPプロジェクタ34の動作は、制御装置31によってマウント40の回転と同期される。閉じ込め容器38は、樹脂32と同一(または類似)の屈折率を有する流体46を収容する第2の閉じ込め容器44内に沈められることがある。これは、平らな界面を提供し、そこでは屈折率が変化し、適合しない屈折率の湾曲した界面でなら起こったであろうレンズ効果を軽減する。上のシステムの説明で留意すべきことは、x’軸が静止し、他方、(x、y、z)座標系が樹脂閉じ込め容器38と共に回転する、というような座標表記であることである。
【0033】
図3に示されたシステム30の別の実施形態は、複数の光学2D投影を生成するために、第2の閉じ込め容器44の4つの鉛直側面の個々に面するように位置決めされた複数のDLPプロジェクタ34(即ち、複数の光学サブシステム)の使用を伴うことがある。更に別の実施形態は、図3に示されたシステム30の修正例を伴うことがあり、それにおいては、閉じ込め容器38および第2の閉じ込め容器44の双方は、静止状態に保持され、他方、DLPプロジェクタ34(即ち、光学サブシステム)は、複数の光学2D投影を作り出すために、閉じ込め容器38の全周まわりのドーナツ形状の支持体34a上を回転する。
【0034】
図3に示された実施形態の更に別の変形例は、樹脂の代わりに光分解性(即ち、光応答性)材料を使用することを伴うことがある。例えば、本明細書で説明されるように、光分解性材料の固体3Dブロックから開始し、光学2D投影を使用して、固体3Dブロックの特定の部分だけを除去して所望の3D部品を作り出すかもしれない。そういった材料は、例えば、ティッシュエンジニアリングで使用される。
【0035】
図4を参照すると、本開示の別の実施形態に従ったシステム50が示される。システム50の場合、樹脂体積52は、静止コンテナ54内に収容される。第2のコンテナ55は、樹脂体積52と同一(または類似)の屈折率を有する追加量の流体55aを保持するために使用されることがある。光学サブシステム56は、x軸(静止ターゲット体積に対して固定された)に沿って光学投影58を作り出す。投影によって生成された3D強度マップは、回転アーム組立体50aを介して樹脂体積52(即ち、z軸60のまわりで回転するx’軸61に沿って伝播する)のまわりを回転する。静止ミラー62は、投影58を受け、それを回転アーム組立体50a内に収容されたミラー64-68の集まりに送る。ミラー64-68は、樹脂体積を照らすために投影58を方向付けする。アームが回転すると、y’-z平面イメージは、全周まわりの多くの角度θで投影される。他の実施形態と同様に、1回転にわたって全ての投影から生成される3D強度分布の合計からの正味の曝露線量は、材料の形成が望まれる領域が樹脂を光クロスリンクさせるのに十分な線量を受ける一方で、他の領域が不十分な線量を受けるようなものである。各角度θでの投影58の空間的および時間的な変調(即ち、投影される2D(y’-z)イメージのイメージ強度の変調)は、例えば、図2A2Bに関して、空間光変調器(SLM)70またはDLPプロジェクタを用いて、上で説明されたのと同じやり方で制御される。システム50は、流体運動の考慮事項が排除されるので、図3に関連して説明された方法論と比較して潜在的に遥かに速い回転速度を可能にする。図2A-2Bに関連して説明された方法論と比較して、システム50は、従来技術に基づいたより単純な光学システムの利点を提供する。図4に示された提案された構成は、1つまたは複数の同時回転する光学投影に適用することができる。図2Aおよび2Bに関連して説明された方法論と同様に、樹脂コンテナ54は、製造中に流体に対して移動せず、したがって、より壊れやすい、繊細な、または従順な構造の形成が可能である。
【0036】
最後に、コンピュータアキシャルリソグラフィを達成するのに必要な光信号多重化は、上で説明された実施形態のどれかまたは全ての特徴を共有するシステムによって実行することができる。1つの例として、360度の角度の投影全体に広がらない光線場投影ディスプレイ(図2A-2B)は、角度範囲を拡大する目的で、図3のシステム30で使用されるものと同様に回転バイアルと組み合わせることができる。例えば、図2Aおよび2Bに示されるような湾曲したディスプレイの使用を考慮すると、これは、円筒形状を有する代わりに、半円筒または円筒の小さめの角度セクションのように見える。それは、複数の角度から同時にイメージを依然として投影するが、角度の範囲は、360度(半円筒のケースでは、180度である)よりも小さく広がる。しかし、そのディスプレイが樹脂体積のまわりを回転し、投影が時間的に更新される場合に、図4に示された実施形態で、達成され得る可能性があるものよりも更に速く、360度全体に広がることが可能である。そういった実施形態は、図2の実施形態と同じように速くは印刷しないであろうが、製造するのがより容易になることがある。同様に、樹脂のターゲット体積は、静止したままである場合があり、その間、360度未満の投影ディスプレイは、体積のまわりを回転する。
【0037】
本開示のシステムおよび方法は、その幾何学的な柔軟性においてホログラフィック光線場を使用する最近報告された体積非周期的(volumetric aperiodic)な3次元(3D)構造の製造に勝る。同様に、本開示の本質的に体積ベースのアプローチは、従来のレイヤバイレイヤ「2 1/2D」印刷技術に対して製造速度における桁違いの改善を提供する。最後に、レイヤバイレイヤ製造によって課される表面粗さの課題は、完全に除去されないとしても、実質上減少する。
【0038】
本開示のシステムおよび方法は、幾つかの用途での有用性を見出すことが期待される。例えば、本開示のシステムおよび方法は、より迅速な部品生成、改善された表面品質(例えば、層化からの「階段状」アーチファクトなし)、および、2Dレイヤスライシングおよび単純化された後処理から生じる幾何学的な制約の軽減などの幾つかの重要な態様におけるフォトポリマベースの付加製造に対する改善を提供する。本明細書で説明された様々な実施形態および方法の潜在的な用途は、高品質の表面仕上げを備えたAM生成光学系と、中空またはオーバーハング構造と、広いダイナミックレンジのメソスケールAM構造と、樹脂に浸漬された事前製造された3D構造の印刷/製造と、柔らかい、柔軟な、または、もろいポリマと幾何学的に繊細な/壊れやすい構造(印刷中に相対的な構造/流体の動きがないので)の処理とを伴うことがある。
【0039】
実施形態の先の説明は、例証および説明の目的のために提供された。網羅的であること、即ち、本開示を限定することは、意図されていない。特定の実施形態の個々の要素または特徴は、一般にその特定の実施形態に限定されないが、該当する場合には、交換可能であり、また、たとえ具体的に示されないかまたは記述されなくても、選択された実施形態において使用される場合がある。同じことは、多くのやり方で変えられることもある。そういった変形例は、本開示からの逸脱とみなされるべきではなく、全てのそういった変更は、本開示の範囲内に含まれることが意図される。
図1A
図1B
図1C
図1D
図2A
図2B
図3
図4