(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-29
(45)【発行日】2024-08-06
(54)【発明の名称】抗体組成物
(51)【国際特許分類】
C12N 15/13 20060101AFI20240730BHJP
C07K 16/00 20060101ALI20240730BHJP
C12N 15/63 20060101ALI20240730BHJP
C12N 1/15 20060101ALI20240730BHJP
C12N 1/19 20060101ALI20240730BHJP
C12N 1/21 20060101ALI20240730BHJP
C12N 5/10 20060101ALI20240730BHJP
C12P 21/08 20060101ALI20240730BHJP
C07K 16/46 20060101ALI20240730BHJP
【FI】
C12N15/13
C07K16/00 ZNA
C12N15/63 Z
C12N1/15
C12N1/19
C12N1/21
C12N5/10
C12P21/08
C07K16/46
(21)【出願番号】P 2020549496
(86)(22)【出願日】2019-09-27
(86)【国際出願番号】 JP2019038421
(87)【国際公開番号】W WO2020067541
(87)【国際公開日】2020-04-02
【審査請求日】2022-07-07
(31)【優先権主張番号】P 2018185367
(32)【優先日】2018-09-28
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】000001029
【氏名又は名称】協和キリン株式会社
(74)【代理人】
【識別番号】110002000
【氏名又は名称】弁理士法人栄光事務所
(72)【発明者】
【氏名】丹羽 倫平
(72)【発明者】
【氏名】宇佐美 克明
【審査官】田ノ上 拓自
(56)【参考文献】
【文献】特表2016-528166(JP,A)
【文献】欧州特許出願公開第02728002(EP,A1)
【文献】欧州特許出願公開第03279216(EP,A1)
【文献】国際公開第2013/002362(WO,A1)
【文献】国際公開第2014/104165(WO,A1)
【文献】特表2008-511337(JP,A)
【文献】国際公開第2016/159213(WO,A1)
【文献】国際公開第2008/090959(WO,A1)
【文献】ESCOBAR-CABRERA Eric et al.,Asymmetric Fc Engineering for Bispecific Antibodies with Reduced Effector Function,Antibodies,2017年,Vol.6, No.2, 7,pp.1-16
(58)【調査した分野】(Int.Cl.,DB名)
C12N 15/00-15/90
C07K 1/00-19/00
C12N 1/15
C12N 1/19
C12N 1/21
C12N 5/10
C12P 21/08
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
第1のIgG半量体と第2のIgG半量体とからなる、互いに異なる第1の抗原及び第2の抗原に対する抗体組成物であって、
第1のIgG半量体及び第2のIgG半量体は、それぞれ、1つのイムノグロブリン軽鎖(以下、L鎖と略記する)及び1つのイムノグロブリン重鎖(以下、H鎖と略記する)からなり、H鎖はH鎖可変領域、一部または全体の置換もしくは欠失、または修飾によりジスルフィド結合が形成されないように改変されたヒンジドメイン及びCH1~CH3ドメインを含み、CH2ドメインにおいて互いに異なる第1のFcγ受容体IIIA(以下、CD16a)結合領域及び第2のCD16a結合領域のいずれかに改変を有し、
第1のIgG半量体は、第1の抗原に結合する抗原結合ドメインを含み、且つ第1のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第2のIgG半量体は、第2の抗原に結合する抗原結合ドメインを含み、且つ第2のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されず、
第1のCD16a結合領域における改変及び第2のCD16a結合領域における改変が下記(x1)~(x10)からなる群より選ばれる一の組合せである、抗体組成物。
(x1)第1のCD16a結合領域における改変がL235Rであり、第2のCD16a結合領域における改変がP329Y、P329W又はA330Pである改変
(x2)第1のCD16a結合領域における改変が下記S239Rであり、第2のCD16a結合領域における改変がK326G、L328R、P329Y、P329K、P329W又はA330Pである改変
(x3)第1のCD16a結合領域における改変がP238A及びS267Lであり、第2のCD16a結合領域における改変がP329Yである改変
(x4)第1のCD16a結合領域における改変がD265A、D265N又はD265Eであり、第2のCD16a結合領域における改変がL328R、P329Y、P329K
、P329W又はA330Pである改変
(x5)第1のCD16a結合領域における改変がS267Kであり、第2のCD16a結合領域における改変がL328R、P329Y
、P329K、P329W又はA330Pである改変
(x6)第1のCD16a結合領域における改変がE269Pであり、第2のCD16a結合領域における改変がL328R、P329W又はA330Pである改変
(x7)第1のCD16a結合領域における改変がY296Pであり、第2のCD16a結合領域における改変がL328R、P329Y
、P329W又はA330Pである改変
(x8)第1のCD16a結合領域における改変がS298Eであり、第2のCD16a結合領域における改変がP329Y、P329K、P329W又はA330Pである改変
(x9)第1のCD16a結合領域における改変がT299Aであり、第2のCD16a結合領域における改変がL328R、P329Y、P329K、P329W又はA330Pである改変
(x10)第1のCD16a結合領域における改変がA327Iであり、第2のCD16a結合領域における改変がP329Y、P329W又はA330Pである改変
【請求項2】
第1の抗原及び第2の抗原を共発現する標的細胞にのみエフェクター機能を発揮し傷害する、請求項1に記載の抗体組成物。
【請求項3】
第1のIgG半量体及び第2のIgG半量体が、EUインデックスで表される226位及び229位の少なくとも一方のアミノ酸残基が置換されたヒンジドメインを含む請求項1又は2に記載の抗体組成物。
【請求項4】
第1のIgG半量体及び第2のIgG半量体における、L鎖、H鎖のH鎖可変領域及びCH1ドメイン及びCH2ドメインのイムノグロブリンサブクラスがIgG1である、請求項1~3のいずれか1項に記載の抗体組成物。
【請求項5】
第1のIgG半量体及び第2のIgG半量体における、H鎖のCH3ドメインが、IgG1サブクラスのCH3ドメインよりもCH3ドメイン間相互作用が弱い、請求項4に記載の抗体組成物。
【請求項6】
第1のIgG半量体及び第2のIgG半量体における、H鎖のCH3ドメインのイムノグロブリンサブクラスがIgG4である、請求項5に記載の抗体組成物。
【請求項7】
第1のIgG半量体における第2のCD16a結合領域、及び第2のIgG半量体における第1のCD16a結合領域を介してCD16aに結合する請求項1~6のいずれか1項に記載の抗体組成物。
【請求項8】
第1のIgG半量体及び第2のIgG半量体における、Fc領域に結合する全N-グリコシド結合型糖鎖のうち、糖鎖還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖の割合が20%以上である、請求項1~7のいずれか1項に記載の抗体組成物。
【請求項9】
第1のIgG半量体及び第2のIgG半量体が、CH2ドメインにおいて、さらにCD16a結合活性を増強させる少なくとも1のアミノ酸残基置換を含む請求項1~8のいずれか1項に記載の抗体組成物。
【請求項10】
第1のIgG半量体及び第2のIgG半量体が、CH2ドメインにおいて、EUインデックスで表されるS298A、E333A、K334Aから選ばれる少なくとも1のアミノ酸残基置換を含む請求項9に記載の抗体組成物。
【請求項11】
以下のa)
及びb)のDNA
の組み。
a)請求項1~10のいずれか1項に記載の第1のIgG半量体のアミノ酸配列をコードするDNA
b)請求項1~10のいずれか1項に記載の第2のIgG半量体のアミノ酸配列をコードするDNA
【請求項12】
請求項11に記載のDNA
の組みを含む組換えベクター
の組み。
【請求項13】
請求項12に記載の組換えベクター
の組みが導入された形質転換体
の組み。
【請求項14】
請求項13に記載の形質転換体
の組みを培地に培養し、培養物中に請求項1~10のいずれか1項に記載の第1のIgG半量体及び請求項1~10のいずれか1項に記載の第2のIgG半量
体を蓄積させ、培養物から第1のIgG半量体及び第2のIgG半量
体を採取する工程を含む、請求項1~10のいずれか1項に記載の抗体組成物の製造方法。
【請求項15】
第1のIgG半量体及び第2のIgG半量体を含むキットであって、第1のIgG半量体及び第2のIgG半量体は、それぞれ、1つのL鎖及び1つのH鎖からなり、H鎖はH鎖可変領域、一部または全体の置換もしくは欠失、または修飾によりジスルフィド結合が形成されないように改変されたヒンジドメイン及びCH1~CH3ドメインを含み、CH2ドメインにおいて互いに異なる第1のCD16a結合領域及び第2のCD16a結合領域のいずれかに改変を有し、第1のIgG半量体は、第1の抗原に結合する抗原結合ドメインを含み、且つ第1のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、第2のIgG半量体は、第2の抗原に結合する抗原結合ドメインを含み、且つ第2のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されず、第1のCD16a結合領域における改変及び第2のCD16a結合領域における改変が下記(x1)~(x10)からなる群より選ばれる一の組合せであり、第1の抗原及び第2の抗原を共発現する標的細胞にのみエフェクター機能を誘導するための、キット。
(x1)第1のCD16a結合領域における改変がL235Rであり、第2のCD16a結合領域における改変がP329Y、P329W又はA330Pである改変
(x2)第1のCD16a結合領域における改変が下記S239Rであり、第2のCD16a結合領域における改変がK326G、L328R、P329Y、P329K、P329W又はA330Pである改変
(x3)第1のCD16a結合領域における改変がP238A及びS267Lであり、第2のCD16a結合領域における改変がP329Yである改変
(x4)第1のCD16a結合領域における改変がD265A、D265N又はD265Eであり、第2のCD16a結合領域における改変がL328R、P329Y、P329K
、P329W又はA330Pである改変
(x5)第1のCD16a結合領域における改変がS267Kであり、第2のCD16a結合領域における改変がL328R、P329Y
、P329K、P329W又はA330Pである改変
(x6)第1のCD16a結合領域における改変がE269Pであり、第2のCD16a結合領域における改変がL328R、P329W又はA330Pである改変
(x7)第1のCD16a結合領域における改変がY296Pであり、第2のCD16a結合領域における改変がL328R、P329Y
、P329W又はA330Pである改変
(x8)第1のCD16a結合領域における改変がS298Eであり、第2のCD16a結合領域における改変がP329Y、P329K、P329W又はA330Pである改変
(x9)第1のCD16a結合領域における改変がT299Aであり、第2のCD16a結合領域における改変がL328R、P329Y、P329K、P329W又はA330Pである改変
(x10)第1のCD16a結合領域における改変がA327Iであり、第2のCD16a結合領域における改変がP329Y、P329W又はA330Pである改変
【請求項16】
請求項1~10のいずれか1項に記載の抗体組成物を用いる、第1の抗原及び第2の抗原を共発現する標的細胞にのみエフェクター機能を誘導する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、抗体組成物及びその製造方法、IgG半量体並びに該IgG半量体を含むキットに関する。
【背景技術】
【0002】
今までに承認された抗体医薬は様々な作用メカニズムを有することが知られる(非特許文献1)。その代表的なものとしては、増殖因子などのリガンドと受容体の結合を阻害する中和活性、結合した受容体を活性化するアゴニスト活性、並びに抗体依存性細胞傷害(antibody-dependent cellular cytotoxicity:以下ADCC)活性及び補体依存性細胞傷害(complement-dependent cytotoxicity:以下CDC)活性など、IgGクラスの抗体分子が有するエフェクター機能などがある。これらの中でも、rituximab、trastuzumabの臨床試験のバイオマーカー解析から、ADCC活性は抗体医薬の臨床における重要な作用メカニズムであることが示唆されている(非特許文献2、3)。
【0003】
抗体は二分子の重鎖(H鎖)及び二分子の軽鎖(L鎖)、合計4分子のポリペプチド鎖からなる約150KDaの4量体タンパク質である。
図1に示すように、抗体は、抗原結合に直接関与し抗体クローンごとにアミノ酸配列が異なる相補性決定(CDR)領域を含む可変領域と、上述のエフェクター機能や血中半減期の制御を司るFc領域(以下、Fcとも略す)を含む定常領域に分けられる。FcはCH1~CH3ドメイン及びヒンジドメインを含む。
【0004】
ヒト抗体は、H鎖定常領域の配列により機能の異なるIgG、IgA、IgM、IgD、IgEの5つのクラスに分類される。さらにヒ卜IgGクラスはIgG1からIgG4までの4種のサブクラスに分かれる。
【0005】
その中でもIgG1サブクラスの抗体が最も高いADCC活性、CDC活性を有することが知られ(非特許文献4)、rituximab、trastuzumabを含む、多くの抗体医薬がIgG1である。
【0006】
一方でIgG4サブクラスはエフェクター機能が低く、また固有のヒンジ領域のアミノ酸配列を有することや、二つのCH3ドメイン間の相互作用が他のサブクラスと比較して弱いことによる、「Fab arm exchange」と呼ばれる、体内で二つのH鎖の可逆的な結合・乖離が起こることなどの特徴が知られる(非特許文献5、6)。
【0007】
ADCC活性はがん細胞表面の膜抗原に結合したIgG型の抗体のFcを、ナチュラルキラー細胞(以下NK細胞)などがFc受容体の一種FcγRIIIA(以下、CD16aとも略す)を介して認識し活性化され、その結果パーフォリンやグランザイム、Fasといった分子の発現を介して起こる細胞傷害のメカニズムである(非特許文献1)。
【0008】
X線結晶構造解析により、CD16aとヒトIgG1との結合様式は明らかとなっている(非特許文献7、8)。IgG1のFc上におけるCD16a結合領域は、Fcの構造の点対称性より二箇所存在し、実際にはFcとIgGは1:1の数比(stoichiometry)で結合する。そしてFcを構成する二つのCH2ドメインにおいては、それぞれ異なる領域(以下、CD16a結合領域)で接している。
【0009】
具体的には、CD16aは、IgG1の一方のCH2ドメイン上におけるL235、G236、G237、P238、S239、D265、V266、S267、H268、E269、E294、Q295、Y296、N297、S298、T299、R301、N325、A327、I332等と相互作用する。一方で、CD16aは、同時にIgG1のもう一方のCH2ドメイン上におけるL235、G236、G237、K326、A327、L328、P329、A330等に相互作用する(番号はEUナンバリングによるCH2ドメイン上のアミノ酸の位置を表す)(非特許文献7、8、9、10)。
【0010】
抗体医薬のCH2ドメインを人工的に改変し、CD16aとの結合能を上昇させることによってADCC活性を増強させることが可能である。実際にCH2ドメインのアミノ酸の改変によるADCC活性の増強例は数多く知られる(非特許文献11)。
【0011】
また、Fcに結合するN-結合型複合型糖鎖の糖鎖を改変することによってADCC活性を増強できることも知られている(非特許文献12)。特に糖鎖改変によるADCC活性の増強技術は、mogamulizumab(非特許文献13)、obinutuzumab(非特許文献14)といった承認済の抗体医薬に応用されている。
【0012】
バイスペシフィック抗体とは、天然の抗体とは異なり、二種類の異なる種類の抗原に結合することを可能にした人工的な改変抗体分子であり、数多くの分子形が報告されている(非特許文献15)。
【0013】
図2Aにバイスペシフィック抗体の構造の模式図を示す。バイスペシフィック抗体の医薬への応用として、例えば、がん細胞とT細胞表面のCD3とに結合し(以下、CD3バイスペシフィック抗体)、両者を架橋することによるがん細胞の傷害、二種の機能分子の中和による薬効の増強が挙げられる(非特許文献15)。
【0014】
がんや自己免疫疾患の治療において、病因細胞のがん細胞や自己反応性のリンパ球を除去するために、IgG型抗体のエフェクター機能やCD3バイスペシフィック抗体のT細胞リクルート機能を発揮する抗体医薬が用いられている。
【0015】
しかし、これらの病因細胞は本来正常な細胞由来であり、一般的には単一の表面マーカー分子では正確に正常細胞と区別できることはまれである。従ってエフェクター機能などを利用した病因細胞の除去は、多くの場合、同一の抗原分子を発現する正常細胞をも攻撃し副作用につながる恐れがある。
【0016】
例えば、リンパ腫や種々の自己免疫疾患の治療に用いられるrituximabの標的抗原であるCD20は正常B細胞に、乳がん治療に用いられるtrastuzumabの標的抗原であるHER2は心筋細胞にそれぞれ発現する。したがって、これらの抗体医薬により正常細胞が破壊されることによる副作用が懸念される。
【0017】
一方、Mazorらは個々の標的抗原に対する親和性を弱めたバイスペシフィック抗体が、両陽性細胞に対して相対的に強くエフェクター活性を発揮する例を報告している(非特許文献16)。
【先行技術文献】
【非特許文献】
【0018】
【文献】Carter P. Nat Rev Cancer 2001; 1: 118-29
【文献】Cartron G, Dacheux L, Salles G, et al. Blood 2002; 99: 754-8
【文献】Weng WK, Levy R. J Clin Oncol 2003; 21: 3940-7
【文献】Birch, J.R., Lennox, E.S. (Eds.), Monoclonal Antibodies: Principles and Applications. Wiley-Liss, Inc., New York, 1995; p. 45.
【文献】Aalberse RC and Schuurman J, Immunology 2002; 105: 9-10
【文献】Labrijn AF, Nat Biotechnol 2009; 27: 767-71
【文献】Sondermann P, Nature 2000; 406: 267-73
【文献】Radaev S, J Biol Chem 2001; 276: 16469-77
【文献】Ferrara C, Proc Natl Acad Sci 2011; 108; 12660-74
【文献】Mizushima T, Genes Cells 2011; 16: 1071-80
【文献】Strohl WR, Curr Opin Biotechnol 2009; 20: 685-91
【文献】Niwa R, J Pharm Sci 2015; 930-41
【文献】Beck A, mAbs 2012; 4: 419-25
【文献】Goede V, N Engl J Med 2014; 370: 1101-10
【文献】Byrne H, Trends Biotechnol 2013; 31: 621-32
【文献】Mazor Y, MAbs 2015; 7: 377-89
【発明の概要】
【発明が解決しようとする課題】
【0019】
上記した副作用の解決法の一つとしては、より選択性の高い病因細胞の除去のため、二種類の異なる抗原を認識して初めてエフェクター機能を発揮する、バイスペシフィック抗体による技術が考えられる。
【0020】
しかし、
図2Bに示すように、通常のバイスペシフィック抗体によるエフェクター機能を用いて標的細胞を攻撃する場合、二種の抗原を共発現する標的細胞(以下、両陽性細胞とも略す)だけでなく、一種類の標的抗原のみを発現する細胞(以下、単陽性細胞とも略す)に対してもバイスペシフィック抗体が結合して攻撃する懸念がある。また、個々の標的抗原に対する親和性に関わらず、両陽性細胞に対して選択的にエフェクター機能を発揮し傷害する抗体技術は知られていない。
【0021】
したがって、本発明者らは、互いに異なる二種の抗原を共発現する標的細胞に対してより選択的にエフェクター機能を発揮し傷害する抗体組成物を提供することを目的とする。
【課題を解決するための手段】
【0022】
本発明者らは、抗体分子の定常領域において、
図3に示すように、通常のヒトIgG1抗体と異なる以下に示す[1]~[3]の要素を有する抗体組成物により、上記課題を解決し得ることを着想した。
[1]互いに異なる第1の抗原(抗原分子X)及び第2の抗原(抗原分子Y)に対する抗原結合部位を有する抗体の半量体(第1及び第2のIgG半量体)の混合物であること。すなわち、第1のIgG半量体と第2のIgG半量体との間において、H鎖間のジスルフィド結合による共有結合が存在しない「HL体」の混合物であること。
[2]抗原分子X、Yに対するそれぞれのHL体が、抗原分子X、Yの両方を発現する標的細胞(X/Y両陽性細胞)の表面に結合した後に会合して通常のIgGと同様のH2L2体を形成し、CD16a結合領域を構成し、抗体の活性を惹起すること。
[3]単一の抗原分子のみを発現する細胞に対しては抗体の活性を惹起しないよう、抗原分子X又はYに対するHL体同士が細胞表面で会合しホモ会合体を形成しても、CD16a結合領域を構成しないこと。
【0023】
上記着想に基づき、本発明者らは、下記(1)及び(2)について見出し、本発明を完成させた。
(1)前記[1]については、
図4に示すように、IgG半量体のヒンジドメインにおける一部又は全体を置換もしくは欠失、または修飾することにより、ヒンジドメインにおいてH鎖間にジスルフィド結合が形成されないよう改変する。
(2)
図5に示すように、CD16aはFc中の二つのCH2ドメイン(
図5中、CH2-A、CH2-B)に、それぞれ別の部位(CH2-Aの領域1、CH2-Bの領域2)で接する。
したがって結合に使われていないCH2-Aの領域2、及びCH2-Bの領域1を、それぞれアミノ酸の改変等により「破壊」して結合性を減弱させた場合、そのような改変CH2-Aを有するHL体同士のホモ会合体においてはCH2-Aの領域2のみ、あるいは改変CH2-Bを有するHL体同士のホモ会合体においてはCH2-Bの領域1のみが存在しないことになる。したがって、これらのホモ会合体にはCD16aは十分な親和性を持って結合することができない。
一方、そのような改変CH2-A、改変CH2-Bをそれぞれ構成要素として有するHL体の組み合わせ(ヘテロ会合体)によれば、上記[2]及び[3]の条件を満たす抗体組成物が得られる。
【0024】
すなわち、本発明は以下に関する。
1.第1のIgG半量体と第2のIgG半量体とからなる、互いに異なる第1の抗原及び第2の抗原に対する抗体組成物であって、
第1のIgG半量体及び第2のIgG半量体は、それぞれ、1つのイムノグロブリン軽鎖(以下、L鎖と略記する)及び1つのイムノグロブリン重鎖(以下、H鎖と略記する)からなり、H鎖はH鎖可変領域、一部または全体の置換もしくは欠失、または修飾によりジスルフィド結合が形成されないように改変されたヒンジドメイン及びCH1~CH3ドメインを含み、CH2ドメインにおいて互いに異なる第1のFcγ受容体IIIA(以下、CD16a)結合領域及び第2のCD16a結合領域のいずれかに改変を有し、
第1のIgG半量体は、第1の抗原に結合する抗原結合ドメインを含み、且つ第1のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第2のIgG半量体は、第2の抗原に結合する抗原結合ドメインを含み、且つ第2のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されない、
抗体組成物。
2.第1の抗原及び第2の抗原を共発現する標的細胞にのみエフェクター機能を発揮し傷害する、前記1に記載の抗体組成物。
3.第1のCD16a結合領域及び第2のCD16a結合領域における改変がアミノ酸の置換、欠失もしくは付加、または修飾である前記1または2に記載の抗体組成物。
4.第1のCD16a結合領域が、EUインデックスで表される235位、236位、237位、238位、239位、265位、266位、267位、268位、269位、294位、295位、296位、297位、298位、299位、301位、325位、327位、332位のアミノ酸残基から選ばれる少なくとも1を含む前記1~3のいずれか1に記載の抗体組成物。
5.第1のCD16a結合領域における改変が、EUインデックスで表される235位、236位、237位、238位、239位、265位、266位、267位、268位、269位、294位、295位、296位、297位、298位、299位、301位、325位、327位、332位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記4に記載の抗体組成物。
6.第1のCD16a結合領域における改変が、EUインデックスで表される235位、238位、239位、265位、267位、269位、296位、298位、299位、327位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記5に記載の抗体組成物。
7.第1のCD16a結合領域における改変が、EUインデックスで表される235位のLeu、238位のPro、239位のSer、265位のAsp、267位のSer、269位のGlu、296位のTyr、298位のSer、299位のThr、327位のAlaから選ばれる少なくとも1のアミノ酸残基の置換である前記6に記載の抗体組成物。
8.第1のCD16a結合領域における改変が、EUインデックスで表されるL235R、P238A、S239R、D265A、D265N、D265E、S267L、S267K、E269P、Y296P、S298E、T299A、A327Iから選ばれる少なくとも1のアミノ酸残基の置換である前記7に記載の抗体組成物。
9.第2のCD16a結合領域が、EUインデックスで表される235位、236位、237位、326位、327位、328位、329位、330位のアミノ酸残基から選ばれる少なくとも1を含む前記1~8のいずれか1に記載の抗体組成物。
10.第2のCD16a結合領域における改変が、EUインデックスで表される235位、236位、237位、326位、327位、328位、329位、330位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記9に記載の抗体組成物。
11.第2のCD16a結合領域における改変が、EUインデックスで表される326位、328位、329位、330位のアミノ酸残基から選ばれる少なくとも1から選ばれる少なくとも1のアミノ酸残基の置換である前記10に記載の抗体組成物。
12.第2のCD16a結合領域における改変が、EUインデックスで表される326位のLys、328位のLeu、329位のPro、330のAlaから選ばれる少なくとも1のアミノ酸残基の置換である前記11に記載の抗体組成物。
13.第2のCD16a結合領域における改変が、EUインデックスで表されるK326W、K326G、L328V、L328R、P329Y、P329K、P329W、A330Pから選ばれる少なくとも1のアミノ酸残基置換である前記12に記載の抗体組成物。
14.第1のCD16a結合領域における改変が、EUインデックスで表される235位、238位、239位、265位、267位、269位、296位、298位、299位、327位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換であり、第2のCD16a結合領域における改変が、EUインデックスで表される326位、328位、329位、330位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記1~13のいずれか1に記載の抗体組成物。
15.第1のCD16a結合領域における改変が、EUインデックスで表される235位のLeu、238位のPro、239位のSer、265位のAsp、267位のSer、269位のGlu、296位のTyr、298位のSer、299位のThr、327位のAlaから選ばれる少なくとも1のアミノ酸残基の置換であり、第2のCD16a結合領域における改変が、EUインデックスで表される326位のLys、328位のLeu、329位のPro、330のAlaから選ばれる少なくとも1のアミノ酸残基の置換である前記14に記載の抗体組成物。
16.第1のCD16a結合領域における改変が、EUインデックスで表されるL235R、P238A、S239R、D265A、D265N、D265E、S267L、S267K、E269、P、Y296P、S298E、T299A、A327Iから選ばれる少なくとも1のアミノ酸残基の置換であり、第2のCD16a結合領域における改変が、EUインデックスで表されるK326W、K326G、L328V、L328R、P329Y、P329K、P329W、A330Pから選ばれる少なくとも1のアミノ酸残基の置換である前記15に記載の抗体組成物。
17.第1のCD16a結合領域における改変が、EUインデックスで表される238位、239位、265位、266位、267位、268位、269位、294位、295位、296位、297位、298位、299位、301位、325位、332位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記4に記載の抗体組成物。
18.第1のCD16a結合領域における改変が、EUインデックスで表される238位、265位、267位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記1~17のいずれか1に記載の抗体組成物。
19.第1のCD16a結合領域における改変が、EUインデックスで表される238位のPro、265位のAsp、267位のSerから選ばれる少なくとも1のアミノ酸残基の置換である前記18に記載の抗体組成物。
20.第1のCD16a結合領域における改変が、EUインデックスで表されるP238A、D265A、S267Lから選ばれる少なくとも1のアミノ酸残基置換である前記19に記載の抗体組成物。
21.第2のCD16a結合領域における改変が、EUインデックスで表される326位、328位、329位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記11~20のいずれか1に記載の抗体組成物。
22.第2のCD16a結合領域における改変が、EUインデックスで表される326位のLys、328位のLeu、329位のProから選ばれる少なくとも1のアミノ酸残基の置換である前記21に記載の抗体組成物。
23.第2のCD16a結合領域における改変が、EUインデックスで表されるK326W、L328V、P329Yから選ばれる少なくとも1のアミノ酸残基置換である前記22に記載の抗体組成物。
24.第1のIgG半量体及び第2のIgG半量体が、EUインデックスで表される226位及び229位の少なくとも一方のアミノ酸残基が置換されたヒンジドメインを含む前記1~23のいずれか1に記載の抗体組成物。
25.第1のIgG半量体及び第2のIgG半量体における、L鎖、H鎖のH鎖可変領域及びCH1ドメイン及びCH2ドメインのイムノグロブリンサブクラスがIgG1である、前記1~24のいずれか1に記載の抗体組成物。
26.第1のIgG半量体及び第2のIgG半量体における、H鎖のCH3ドメインが、IgG1サブクラスのCH3ドメインよりもCH3ドメイン間相互作用が弱い、前記25に記載の抗体組成物。
27.第1のIgG半量体及び第2のIgG半量体における、H鎖のCH3ドメインのイムノグロブリンサブクラスがIgG4である、前記26に記載の抗体組成物。
28.第1のIgG半量体における第2のCD16a結合領域、及び第2のIgG半量体における第1のCD16a結合領域を介してCD16aに結合する前記1~27のいずれか1に記載の抗体組成物。
29.第1のIgG半量体及び第2のIgG半量体における、Fc領域に結合する全N-グリコシド結合型糖鎖のうち、糖鎖還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖の割合が20%以上である、前記1~28のいずれか1に記載の抗体組成物。
30.第1のIgG半量体及び第2のIgG半量体が、CH2ドメインにおいて、さらにCD16a結合活性を増強させる少なくとも1のアミノ酸残基置換を含む前記1~29のいずれか1に記載の抗体組成物。
31.第1のIgG半量体及び第2のIgG半量体が、CH2ドメインにおいて、EUインデックスで表されるS298A、E333A、K334Aから選ばれる少なくとも1のアミノ酸残基置換を含む前記30に記載の抗体組成物。
32.第2のIgG半量体と併用する第1のIgG半量体であって、第1のIgG半量体及び第2のIgG半量体は、それぞれ、1つのL鎖及び1つのH鎖からなり、H鎖はH鎖可変領域、一部または全体の置換もしくは欠失、または修飾によりジスルフィド結合が形成されないように改変されたヒンジドメイン及びCH1~CH3ドメインを含み、CH2ドメインにおいて互いに異なる第1のCD16a結合領域及び第2のCD16a結合領域のいずれかに改変を有し、
第1のIgG半量体は、第1の抗原に結合する抗原結合ドメインを含み、且つ第1のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第2のIgG半量体は、第1の抗原とは異なる第2の抗原に結合する抗原結合ドメインを含み、且つ第2のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されない、第1のIgG半量体。
33.第1のIgG半量体と第2のIgG半量体とからなり、且つ互いに異なる第1の抗原及び第2の抗原に対する抗体組成物の製造に用いるための、第1のIgG半量体であって、
第1のIgG半量体及び第2のIgG半量体は、それぞれ、1つのL鎖及び1つのH鎖からなり、H鎖はH鎖可変領域、一部または全体の置換もしくは欠失、または修飾によりジスルフィド結合が形成されないように改変されたヒンジドメイン及びCH1~CH3ドメインを含み、CH2ドメインにおいて互いに異なる第1のCD16a結合領域及び第2のCD16a結合領域のいずれかに改変を有し、
第1のIgG半量体は、第1の抗原に結合する抗原結合ドメインを含み、且つ第1のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第2のIgG半量体は、第2の抗原に結合する抗原結合ドメインを含み、且つ第2のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されない、
第1のIgG半量体。
34.第1のCD16a結合領域が、EUインデックスで表される235位、236位、237位、238位、239位、265位、266位、267位、268位、269位、294位、295位、296位、297位、298位、299位、301位、325位、327位、332位のアミノ酸残基から選ばれる少なくとも1を含む前記32又は33に記載の第1のIgG半量体。
35.第1のCD16a結合領域における改変が、EUインデックスで表される235位、236位、237位、238位、239位、265位、266位、267位、268位、269位、294位、295位、296位、297位、298位、299位、301位、325位、327位、332位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記34に記載の第1のIgG半量体。
36.第1のCD16a結合領域における改変が、EUインデックスで表される238位、239位、265位、266位、267位、268位、269位、294位、295位、296位、297位、298位、299位、301位、325位、332位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記35に記載の第1のIgG半量体。
37.第1のCD16a結合領域における改変が、EUインデックスで表される235位、238位、239位、265位、267位、269位、296位、298位、299位、327位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記36に記載の第1のIgG半量体。
38.第1のCD16a結合領域における改変が、EUインデックスで表される235位のLeu、238位のPro、239位のSer、265位のAsp、267位のSer、269位のGlu、296位のTyr、298位のSer、299位のThr、327位のAlaから選ばれる少なくとも1のアミノ酸残基の置換である前記37に記載の第1のIgG半量体。
39.第1のCD16a結合領域における改変が、EUインデックスで表されるL235R、P238A、S239R、D265A、D265N、D265E、S267L、S267K、E269P、Y296P、S298E、T299A、A327Iから選ばれる少なくとも1のアミノ酸残基置換である前記38に記載の第1のIgG半量体。
40.第1のIgG半量体と併用する第2のIgG半量体であって、第1のIgG半量体及び第2のIgG半量体は、それぞれ、1つのL鎖及び1つのH鎖からなり、H鎖はH鎖可変領域、一部または全体の置換もしくは欠失、または修飾によりジスルフィド結合が形成されないように改変されたヒンジドメイン及びCH1~CH3ドメインを含み、CH2ドメインにおいて互いに異なる第1のCD16a結合領域及び第2のCD16a結合領域のいずれかに改変を有し、
第1のIgG半量体は、第1の抗原に結合する抗原結合ドメインを含み、且つ第1のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第2のIgG半量体は、第1の抗原と異なる第2の抗原に結合する抗原結合ドメインを含み、且つ第2のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されない、第2のIgG半量体。
41.第1のIgG半量体と第2のIgG半量体とからなり、且つ互いに異なる第1の抗原及び第2の抗原に対する抗体組成物の製造に用いるための、第2のIgG半量体であって、
第1のIgG半量体及び第2のIgG半量体は、それぞれ、1つのL鎖及び1つのH鎖からなり、H鎖はH鎖可変領域、一部または全体の置換もしくは欠失、または修飾によりジスルフィド結合が形成されないように改変されたヒンジドメイン及びCH1~CH3ドメインを含み、CH2ドメインにおいて互いに異なる第1のCD16a結合領域及び第2のCD16a結合領域のいずれかに改変を有し、
第1のIgG半量体は、第1の抗原に結合する抗原結合ドメインを含み、且つ第1のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第2のIgG半量体は、第2の抗原に結合する抗原結合ドメインを含み、且つ第2のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されない、
第2のIgG半量体。
42.第2のCD16a結合領域が、EUインデックスで表される235位、236位、237位、326位、327位、328位、329位、330位のアミノ酸残基から選ばれる少なくとも1を含む前記40または41に記載の第2のIgG半量体。
43.第2のCD16a結合領域における改変が、EUインデックスで表される235位、236位、237位、326位、327位、328位、329位、330位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記42に記載の第2のIgG半量体。
44.第2のCD16a結合領域における改変が、EUインデックスで表される326位、328位、329位、330位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換である前記43に記載の第2のIgG半量体。
45.第2のCD16a結合領域における改変が、EUインデックスで表される326位のLys、328位のLeu、329位のPro、330のAlaから選ばれる少なくとも1のアミノ酸残基の置換である前記44に記載の第2のIgG半量体。
46.第2のCD16a結合領域における改変が、EUインデックスで表されるK326W、K326G、L328V、L328R、P329Y、P329K、P329W、A330Pから選ばれる少なくとも1のアミノ酸残基置換である前記45に記載の第2のIgG半量体。
47.以下のa)またはb)のDNA。
a)前記32~39のいずれか1に記載の第1のIgG半量体のアミノ酸配列をコードするDNA
b)前記40~46のいずれか1に記載の第2のIgG半量体のアミノ酸配列をコードするDNA
48.前記47に記載のa)及びb)の少なくとも一方のDNAを含む組換えベクター。
49.前記48に記載の組換えベクターが導入された形質転換体。
50.前記49に記載の形質転換体を培地に培養し、培養物中に前記32~39のいずれか1に記載の第1のIgG半量体及び前記40~46のいずれか1に記載の第2のIgG半量体の少なくとも一方を蓄積させ、培養物から第1のIgG半量体及び第2のIgG半量体の少なくとも一方を採取する工程を含む抗体組成物の製造方法。
51.第1のIgG半量体及び第2のIgG半量体を含むキットであって、
第1のIgG半量体及び第2のIgG半量体は、それぞれ、1つのL鎖及び1つのH鎖からなり、H鎖はH鎖可変領域、一部または全体の置換もしくは欠失、または修飾によりジスルフィド結合が形成されないように改変されたヒンジドメイン及びCH1~CH3ドメインを含み、CH2ドメインにおいて互いに異なる第1のCD16a結合領域及び第2のCD16a結合領域のいずれかに改変を有し、
第1のIgG半量体は、第1の抗原に結合する抗原結合ドメインを含み、且つ第1のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第2のIgG半量体は、第2の抗原に結合する抗原結合ドメインを含み、且つ第2のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、
第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されない、
キット。
52.前記1~31に記載の抗体組成物を用いる、第1の抗原及び第2の抗原を共発現する標的細胞にのみエフェクター機能を誘導する方法。
【発明の効果】
【0025】
本発明の抗体組成物は、互いに異なる2種の抗原に対する抗原結合ドメインを有し、互いに異なるCD16a結合領域におけるCD16a結合活性が減弱している2種のIgG半量体である、第1及び第2のIgG半量体からなる。このことから、第1のIgG半量体同士、又は第2のIgG半量体同士によりホモ会合体の抗体構造を構成しても、CD16aと結合することはできず、抗体の有する活性を発揮し得ない。一方、第1及び第2のIgG半量体によりヘテロ会合体の抗体構造が構成されると、第1のIgG半量体における第2のCD16a結合領域と、第2のIgG半量体における第1のCD16a結合領域とを介してCD16aに対し結合可能となる。
【0026】
また、第1及び第2のIgG半量体におけるヒンジドメインは、ジスルフィド結合が形成されないように改変されている。このことにより、第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されない。したがって、第1及び第2のIgG半量体を混合した場合には、第1及び第2のIgG半量体を会合体又は半量体の平衡状態で存在させることが可能となる。このことにより、本発明の抗体組成物は、単陽性細胞と比較して、両陽性細胞に対してより選択的にエフェクター機能を発揮し傷害し得る。
【図面の簡単な説明】
【0027】
【
図1】
図1は、抗体、VHH-Fc及びscFv-Fcの構造を示す模式図である。
【
図2A】
図2Aは、一般的なバイスペシフィック抗体の構造の模式図を示す。
【
図2B】
図2Bは、一般的なバイスペシフィック抗体による結合様式の模式図を示す。
【
図3】
図3は、本発明の抗体組成物による結合様式の一態様の模式図を示す。
【
図4】
図4は、本発明の抗体組成物の構造の一態様の模式図を示す。
【
図5】
図5は、通常のヒトIgGとCD16aとの結合様式の模式図を示す。
【
図6】
図6は、本発明の抗体組成物とCD16aとの結合様式の模式図を示す。
【
図7】
図7は、通常のヒトIgG1のフォーマット上におけるアミノ酸改変の候補部位を示す模式図である。
【
図8】
図8は、CD16a結合領域を「破壊」したヒトIgG1抗CCR6抗体のADCC活性を示す図である。
【
図9】
図9は、CH2-AとCH2-Bのみにそれぞれ上記の改変を非対称に導入してADCC活性を評価するための一価抗体の模式図である。
【
図10】
図10は、CD16a結合非対称改変一価抗体のADCC活性を示す図である。
【
図11】
図11は、実施例3で用いたIgG1114_AA_AAA_D265A(/P329Y)型のIgG半量体の模式図である。
【
図12】
図12は、抗CD4及びCD70半量体のSDS-PAGEによる精製度を評価した結果である。
【
図13】
図13は、CD4単陽性細胞、CD70単陽性細胞、CD4/CD70両陽性細胞におけるCD4及びCD70の抗原発現を測定した結果である。
【
図14】
図14は、CD4単陽性細胞、CD70単陽性細胞、CD4/CD70両陽性細胞に対する抗CD4及びCD70 IgG1及び半量体のADCC活性を示す図である。
【
図15A】
図15Aは、CD4/CD70両陽性細胞(TL-Om1)、CD70単陽性細胞(MT-1)、CD4単陽性細胞(CD4/EL4)に対する各半量体添加時のADCC活性を示す図である。
【
図15B】
図15Bは、CD4/CD70両陽性細胞(TL-Om1)、CD70単陽性細胞(MT-1)、CD4単陽性細胞(CD4/EL4)に対する各半量体添加時のADCC活性を示す図である。
【
図15C】
図15Cは、CD4/CD70両陽性細胞(TL-Om1)、CD70単陽性細胞(MT-1)、CD4単陽性細胞(CD4/EL4)に対する各半量体添加時のADCC活性を示す図である。
【
図15D】
図15Dは、CD4/CD70両陽性細胞(TL-Om1)、CD70単陽性細胞(MT-1)、CD4単陽性細胞(CD4/EL4)に対する各半量体添加時のADCC活性を示す図である。
【
図15E】
図15Eは、CD4/CD70両陽性細胞(TL-Om1)、CD70単陽性細胞(MT-1)、CD4単陽性細胞(CD4/EL4)に対する各半量体添加時のADCC活性を示す図である。
【
図15F】
図15Fは、CD4/CD70両陽性細胞(TL-Om1)、CD70単陽性細胞(MT-1)、CD4単陽性細胞(CD4/EL4)に対する各半量体添加時のADCC活性を示す図である。
【
図15G】
図15Gは、CD4/CD70両陽性細胞(TL-Om1)、CD70単陽性細胞(MT-1)、CD4単陽性細胞(CD4/EL4)に対する各半量体添加時のADCC活性を示す図である。
【
図15H】
図15Hは、CD4/CD70両陽性細胞(TL-Om1)、CD70単陽性細胞(MT-1)、CD4単陽性細胞(CD4/EL4)に対する各半量体、抗CD4又はCD70IgG1添加時のADCC活性を示す図である。
【発明を実施するための形態】
【0028】
1.抗体組成物の構造
本発明において抗体分子はイムノグロブリン(以下、Igと表記する)とも称され、ヒト抗体は、分子構造の違いに応じて、IgA1、IgA2、IgD、IgE、IgG1、IgG2、IgG3、IgG4及びIgMのアイソタイプに分類される。アミノ酸配列の相同性が比較的高いIgG1、IgG2、IgG3及びIgG4を総称してIgGともいう。
【0029】
抗体分子は重鎖(heavy chain、以下H鎖と記す)及び軽鎖(light chain、以下L鎖と記す)と呼ばれるポリペプチドより構成される。抗体は2つのH鎖及び2つのL鎖からなる4量体タンパク質である。
【0030】
また、H鎖はN末端側よりH鎖可変領域(VHとも表記される)、H鎖定常領域(CHとも表記される)、L鎖はN末端側よりL鎖可変領域(VLとも表記される)、L鎖定常領域(CLとも表記される)の各領域により、それぞれ構成される。CHは各サブクラスにおいて、α、δ、ε、γ及びμ鎖がそれぞれ知られている。CLは、λ及びκが知られている。
【0031】
ドメインとは、抗体分子の各ポリペプチドを構成する機能的な構造単位をいう。また、本発明におけるFc領域(Fc)とは、ヒンジドメイン、CH2ドメイン及びCH3ドメインから成るH鎖定常領域の部分配列及び部分構造を指す。
【0032】
CHはさらに、N末端側よりCH1ドメイン、ヒンジドメイン、CH2ドメイン及びCH3ドメインの各ドメインにより構成される。本発明におけるCH1ドメイン、ヒンジドメイン、CH2ドメイン、CH3ドメイン及びFcは、EUインデックス[Kabat et al.,Sequences of Proteins of Immunological Interest,US Dept.Health and Human Services(1991)]により、N末端からのアミノ酸残基の番号で特定することができる。
【0033】
具体的には、CH1はEUインデックス118~215位のアミノ酸配列、ヒンジはEUインデックス216~230位のアミノ酸配列、CH2はEUインデックス231~340位のアミノ酸配列、CH3はEUインデックス341~447位のアミノ酸配列とそれぞれ特定される。
【0034】
本発明におけるIgGとしては、少なくとも抗原結合ドメイン及びFcを有する、IgGに機能が類似する人工的な亜種の改変分子をも含む。具体的には、IgGのアミノ酸が置換、欠失もしくは付加、または修飾された改変分子、さらにはポリペプチドやドメインの付加体等を含む。また、IgGのVH、VL、あるいはFabからなる抗原結合部位の一部もしくは全部を、他の抗原結合ドメインに置き換えたものも含む。具体的には、
図1に示されるsingle-chain Fv(scFv)-Fc、VHH-Fcなども含む(Brinkmann U et al., MABS 2017, 9: 182-212; Fernandes CFC et al., Frontiers in Immunology 2017, 8: 653)。
【0035】
本発明において抗体としては、ハイブリドーマから取得されるモノクローナル抗体の他に、遺伝子組換え技術により作製された遺伝子組換え抗体も含まれる。遺伝子組換え抗体としては、ヒト抗体定常領域を非ヒト抗体可変領域に結合させたキメラ抗体、ヒト化抗体、ヒト抗体産生動物など用いて作製されるヒト抗体が包含される。
【0036】
キメラ抗体は、モノクローナル抗体を生産する非ヒト動物細胞由来のハイブリドーマより、VH及びVLをコードするcDNAを取得し、ヒト抗体のCH及びCLをコードするDNAを有する動物細胞用発現ベクターにそれぞれ挿入してヒト型キメラ抗体発現ベクターを構築し、動物細胞へ導入することにより発現させ、製造することができる。
【0037】
ヒト化抗体とは、非ヒト抗体可変領域のH鎖及びL鎖の相補性決定領域(complementarity determining region、以下、CDRと略記する)をヒト抗体可変領域のフレームワーク領域(以下、FRと略記する)に挿入することで作製される抗体をいう。
【0038】
ヒト化抗体(又は、CDR移植抗体)は、次の方法により製造できる。非ヒト動物抗体のVHのCDRのアミノ酸配列と任意のヒト抗体のVHのFRのアミノ酸配列からなるVHのアミノ酸配列をコードするcDNAと、非ヒト動物抗体のVLのCDRのアミノ酸配列と任意のヒト抗体のVLのFRのアミノ酸配列からなるVLのアミノ酸配列をコードするcDNAを構築する。ヒト抗体のCH及びCLをコードするDNAを有する動物細胞用発現ベクターにこれらのcDNAをそれぞれ挿入してヒト化抗体発現ベクターを構築し、動物細胞へ導入することにより発現させることによりヒト化抗体を製造できる。
【0039】
ヒト抗体は、元来、ヒト体内に天然に存在し得る抗体又はヒト遺伝子によってコードされるアミノ酸配列からなる抗体をいうが、最近の遺伝子工学的、細胞工学的、発生工学的な技術の進歩により作製されたヒト抗体ファージライブラリー、不死化ヒト末梢血リンパ球のクローニング又はヒト抗体産生トランスジェニック動物から得られる抗体等も含まれる。
【0040】
ヒト抗体は、ヒトイムノグロブリン遺伝子を保持するマウス(Tomizuka K.et.al.,Proc Natl Acad Sci USA.97,722-7,2000)に所望の抗原を免疫することにより、取得することが出来る。また、ヒト由来のB細胞から抗体遺伝子を増幅したphage displayライブラリーを用いることにより、所望の結合活性を有するヒト抗体を選択することで、免疫を行わずにヒト抗体を取得することができる(Winter G. et. al., Annu Rev Immunol. 12: 433-55. 1994)。
【0041】
さらに、EBウイルスを用いてヒトB細胞を不死化することにより、所望の結合活性を有するヒト抗体を生産する細胞を作製し、ヒト抗体を取得することができる(Rosen A. et. al., Nature 267, 52-54. 1977)。
【0042】
ヒト体内に存在する抗体は、例えば、ヒト末梢血から単離したリンパ球を、EBウイルス等を感染させることによって不死化した後、クローニングすることにより、該抗体を産生するリンパ球を培養でき、培養物中より該抗体を精製することができる。
【0043】
ヒト抗体ファージライブラリーは、ヒトB細胞から調製した抗体遺伝子をファージ遺伝子に挿入することにより、Fab又はscFv等の抗体断片を表面に発現させたファージのライブラリーである。該ライブラリーより、抗原を固定化した基質に対する結合活性を指標として所望の抗原結合活性を有する抗体断片を発現しているファージを回収することができる。該抗体断片は、更に遺伝子工学的手法により、2本の完全なH鎖及び2本の完全なL鎖からなるヒト抗体分子へも変換することができる。
【0044】
ヒト抗体産生トランスジェニック動物は、ヒト抗体遺伝子が宿主動物の染色体内に組込まれた動物をいう。具体的には、マウスES細胞へヒト抗体遺伝子を導入し、該ES細胞を他のマウスの初期胚へ移植後、発生させることによりヒト抗体産生トランスジェニック動物を作製することができる。
【0045】
ヒト抗体産生トランスジェニック動物からのヒト抗体の作製方法は、通常のヒト以外の哺乳動物で行われているハイブリドーマ作製方法によりヒト抗体産生ハイブリドーマを取得し、培養することで培養物中にヒト抗体を産生蓄積させることができる。
【0046】
VH及びVLのアミノ酸配列としては、ヒト抗体のVH及びVLのアミノ酸配列、非ヒト動物抗体のVH及びVLのアミノ酸配列、非ヒト動物抗体のCDRを、ヒト抗体のフレームワークに移植したヒト化抗体のアミノ酸配列並びにヒト抗体由来のVH及びVLのアミノ酸配列のいずれでもよい。
【0047】
具体的には、ハイブリドーマ又は抗体産生細胞が産生する非ヒト動物抗体、ヒト化抗体及びヒト抗体のVH及びVLのアミノ酸配列などが挙げられる。
【0048】
CLのアミノ酸配列としては、ヒト抗体のアミノ酸配列又は非ヒト動物抗体のアミノ酸配列のいずれでもよいが、ヒト抗体のCκ又はCλのアミノ酸配列が好ましい。
【0049】
CHとしては、イムノグロブリンに属すればいかなるものでもよいが、好ましくはヒトIgGクラスに属するサブクラス、γ1(IgG1)、γ2(IgG2)、γ3(IgG3)、γ4(IgG4)のいずれも用いることができる。
【0050】
「抗原結合ドメイン」としては、抗体、リガンド及び受容体など既知の結合分子の結合ドメインを利用して組換えた結合タンパク質でもよく、具体的には各抗原に結合する抗体のCDRを含む組換えタンパク質、CDRを含む抗体可変領域、抗体可変領域及び各抗原に結合するリガンドの結合ドメインを含む組換えタンパク質などが挙げられる。なかでも、本発明においては、抗原結合ドメインは抗体可変領域であることが好ましい。
【0051】
本発明の抗体組成物は、第1のIgG半量体と第2のIgG半量体とからなる、互いに異なる第1の抗原及び第2の抗原に対する抗体組成物であって、以下の1)~4)の性質を有する。
1)第1及び第2のIgG半量体は、それぞれ、1つのL鎖及び1つのH鎖からなり、H鎖はH鎖可変領域、一部又は全体の置換もしくは欠失、または修飾によりジスルフィド結合が形成されないように改変されたヒンジドメイン及びCH1~CH3ドメインを含み、CH2ドメインにおいて互いに異なる第1及び第2のCD16a結合領域のいずれかに改変を有する。
2)第1のIgG半量体は、第1の抗原に結合する抗原結合ドメインを含み、且つ第1のCD16a結合領域におけるCD16a結合活性が改変により減弱している。
3)第2のIgG半量体は、第2の抗原に結合する抗原結合ドメインを含み、且つ第2のCD16a結合領域におけるCD16a結合活性が改変により減弱している。
4)第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されない。
【0052】
「互いに異なる第1の抗原及び第2の抗原に対する抗体組成物」とは、第1の抗原に対するIgG半量体及び第2の抗原に対するIgG半量体を含む組成物を示す。
【0053】
本発明の抗体組成物におけるIgG半量体の取り得る態様としては、例えば半量体及び2量体が挙げられる。半量体としては、例えば、第1のIgG半量体、第2のIgG半量体が挙げられる。2量体としては、例えば、第1のIgG半量体の2量体、第2のIgG半量体の2量体、第1のIgG半量体と第2のIgG半量体との2量体が挙げられる。
【0054】
本発明の「互いに異なる第1の抗原及び第2の抗原に対する抗体組成物」は、同一抗原中の第1の抗原決定基(エピトープ)に対するIgG半量体及び第2の抗原決定基(エピトープ)に対するIgG半量体を含む抗体組成物をも包含する。
【0055】
「IgG半量体」とは、1つのL鎖及び1つのH鎖からなる2量体タンパク質であり、H鎖は、H鎖可変領域及びCH1~CH3ドメインを含む。IgG半量体のH鎖のCH2ドメインには、互いに異なる2箇所のCD16a結合領域(第1及び第2のCD16a結合領域)が存する。
【0056】
また、「IgG半量体」とは、抗原結合ドメイン及びFcを有する、IgGに機能が類似する人工的な亜種の改変分子の半量体をも含む。具体的には、IgGのアミノ酸の置換、欠失もしくは付加、または修飾された改変分子の半量体、さらにはポリペプチドやドメインの付加体の半量体などを含む。また、IgGのVH、VL、あるいはFabからなる抗原結合部位の一部もしくは全部を、他の抗原結合ドメインに置き換えたものの半量体、具体的には、
図1に示されるsingle-chain Fv(scFv)-Fc、VHH-Fcなどの半量体も含む。
【0057】
「CD16a結合領域」とは、IgGのFcに存在するCD16aと結合する領域をいう。IgG1のFc上におけるCD16a結合領域はFcの構造の点対称性より二箇所存在し、Fcを構成する二つのCH2ドメインにおいてそれぞれ異なる領域でCD16aと接している。
【0058】
第1のCD16a結合領域としては、EUインデックスで表される235位、236位、237位、238位、239位、265位、266位、267位、268位、269位、294位、295位、296位、297位、298位、299位、301位、325位、327位、332位のアミノ酸残基から選ばれる少なくとも1を含む領域が挙げられる。
【0059】
CH2ドメインのイムノグロブリンサブクラスがIgG1である場合、第1のCD16a結合領域としては、EUインデックスで表される235位のLeu、236位のGly、237位のGly、238位のPro、239位のSer、265位のAsp、266位のVal、267位のSer、268位のHis、269位のGlu、294位のGlu、295位のGln、296位のTyr、297位のAsn、298位のSer、299のThr、301位のArg、325位のAsn、327位のAla、332位のIleのアミノ酸残基から選ばれる少なくとも1を含む領域が挙げられる。
【0060】
第2のCD16a結合領域としては、EUインデックスで表される235位、236位、237位、326位、327位、328位、329位、330位のアミノ酸残基から選ばれる少なくとも1を含む領域が挙げられる。
【0061】
CH2ドメインのイムノグロブリンサブクラスがIgG1である場合、第2のCD16a結合領域としては、EUインデックスで表される235位のLeu、236位のGly、237位のGly、326位のLys、327位のAla、328位のLeu、329位のPro、330位のAlaのアミノ酸残基から選ばれる少なくとも1を含む領域が挙げられる。
【0062】
「CD16a結合活性」とは、IgGのFcがCD16aに結合する活性をいう。IgG半量体のCD16a結合活性は、2分子のIgG半量体を組み合わせてIgGを構成し、遺伝子組み換えCD16aタンパク質を作製して、結合活性を測定することで確認することができる(米国特許出願公開第2004/0259150号明細書)。また、IgG半量体のFcにおいて後述するエフェクター活性(ADCC活性等)を備えさせ、該IgG半量体を2分子組み合わせたIgGを構成し、該IgGのエフェクター活性を測定することで確認することもできる。
【0063】
「CD16a結合領域におけるCD16a結合活性が減弱している」とは、Fcにおいて第1又は第2のCD16a結合領域におけるCD16a結合活性を減弱させる改変を加えたIgG半量体を2分子組み合わせたIgGのエフェクター活性(ADCC活性等)が、改変する前のIgG半量体を2分子組み合わせたIgGのエフェクター活性と比較して、低下していることをいう。
【0064】
CD16a結合領域におけるCD16a結合活性は、CD16a結合領域における改変により減弱させる。改変としては、例えば、アミノ酸残基の置換、欠失もしくは付加、または修飾が挙げられる。
【0065】
第1のCD16a結合領域におけるCD16a結合活性を減弱させる改変として、EUインデックスで表される235位、236位、237位、238位、239位、265位、266位、267位、268位、269位、294位、295位、296位、297位、298位、299位、301位、325位、327位、332位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換が挙げられ、235位、238位、239位、265位、266位、267位、268位、269位、294位、295位、296位、297位、298位、299位、301位、325位、332位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換が好ましく、235位、238位、239位、265位、267位、269位、296位、298位、299位、327位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換がより好ましい。アミノ酸残基置換の組合せとしては、例えば、238位及び265位の組合せ(以下、このような組合せを238位/265位等と表記する)、238位/267位、265位/267位、238位/265位/267位のアミノ酸残基の置換が挙げられる。
【0066】
CH2ドメインのイムノグロブリンサブクラスがIgG1である場合、第1のCD16a結合領域におけるCD16a結合活性を減弱させる改変としては、EUインデックスで表される235位のLeu、236位のGly、237位のGly、238位のPro、239位のSer、265位のAsp、266位のVal、267位のSer、268位のHis、269位のGlu、294位のGlu、295位のGln、296位のTyr、297位のAsn、298位のSer、299位のThr、301位のArg、325位のAsn、327位のAla、332位のIleから選ばれる少なくとも1のアミノ酸残基の置換が挙げられ、235位のLeu、238位のPro、239位のSer、265位のAsp、266位のVal、267位のSer、268位のHis、269位のGlu、294位のGlu、295位のGln、296位のTyr、297位のAsn、298位のSer、299位のThr、301位のArg、325位のAsn、332位のIleから選ばれる少なくとも1のアミノ酸残基の置換が好ましく、235位のLeu、238位のPro、239位のSer、265位のAsp、267位のSer、269位のGlu、296位のTyr、298位のSer、299位のThr、327位のAlaから選ばれる少なくとも1のアミノ酸残基の置換がより好ましい。具体的には例えば、L235R、P238A、S239R、D265A、D265N、D265E、S267L、S267K、E269P、Y296P、S298E、T299A、A327Iから選ばれる少なくとも1のアミノ酸残基置換が挙げられる。
【0067】
第2のCD16a結合領域におけるCD16a結合活性を減弱させる改変として、EUインデックスで表される235位、236位、237位、326位、327位、328位、329位、330位のアミノ酸残基から選ばれる少なくとも1から選ばれる少なくとも1のアミノ酸残基の置換が挙げられ、326位、328位、329位、330位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換が好ましく、326位、328位、329位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基の置換がより好ましい。アミノ酸残基置換の組合せとしては、例えば、326位/328位、326位/329位、328位/329位、326位/328位/329位のアミノ酸残基の置換が挙げられる。
【0068】
CH2ドメインのイムノグロブリンサブクラスがIgG1である場合、第2のCD16a結合領域におけるCD16a結合活性を減弱させる改変としては、EUインデックスで表される235位のLeu、236位のGly、237位のGly、326位のLys、327位のAla、328位のLeu、329位のPro、330位のAlaから選ばれる少なくとも1のアミノ酸残基の置換が挙げられ、326位のLys、328位のLeu、329位のPro、330位のAlaから選ばれる少なくとも1のアミノ酸残基の置換が好ましく、326位のLys、328位のLeu、329位のProから選ばれる少なくとも1のアミノ酸残基の置換がより好ましい。具体的には、K326W、K326G、L328V、L328R、P329Y、P329K、P329W、A330Pから選ばれる少なくとも1のアミノ酸残基置換が挙げられる。
【0069】
第1のIgG半量体のCD16a結合領域におけるCD16a結合活性を減弱させる改変と、第2のIgG半量体のCD16a結合領域におけるCD16a結合活性を減弱させる改変との組み合わせは、非対称な改変となる限り特に制限されず、適宜上記した改変を組み合わせることができる。具体的には例えば、下記アミノ酸残基の置換の組み合わせが挙げられる。
・第1のIgG半量体における265位、及び第2のIgG半量体における329位のアミノ酸残基の置換
・第1のIgG半量体における329位、及び第2のIgG半量体における265位のアミノ酸残基の置換
・第1のIgG半量体における238位/267位、及び第2のIgG半量体における329位のアミノ酸残基の置換
・第1のIgG半量体における329位、及び第2のIgG半量体における238位/267位のアミノ酸残基の置換
【0070】
第1のIgG半量体のCD16a結合領域におけるCD16a結合活性を減弱させる改変(第1の改変)と、第2のIgG半量体のCD16a結合領域におけるCD16a結合活性を減弱させる改変(第2の改変)との組み合わせは、以下の表1に記載する組み合わせが好ましく、第1の改変と第2の改変がS267KとP329Y、Y296PとP329Y、S298EとP329Y、D265AとP329YまたはS239RとP329Yとなる組み合わせがより好ましい。
【0071】
【0072】
上記した置換後のアミノ酸残基は相互に置換可能なアミノ酸としてもよい。以下に、相互に置換可能なアミノ酸の例を示す。同一群に含まれるアミノ酸は相互に置換可能である。
A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2-アミノブタン酸、メチオニン、O-メチルセリン、t-ブチルグリシン、t-ブチルアラニン、シクロヘキシルアラニン
B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸、2-アミノスベリン酸
C群:アスパラギン、グルタミン
D群:リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸、2,3-ジアミノプロピオン酸
E群:プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン
F群:セリン、スレオニン、ホモセリン
G群:フェニルアラニン、チロシン
【0073】
上記置換されるアミノ酸は天然型と非天然型とを問わない。天然型アミノ酸としては、L-アラニン、L-アスパラギン、L-アスパラギン酸、L-グルタミン、L-グルタミン酸、グリシン、L-ヒスチジン、L-イソロイシン、L-ロイシン、L-リジン、L-アルギニン、L-メチオニン、L-フェニルアラニン、L-プロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-バリン、L-システインなどが挙げられる。非天然型アミノ酸としては、アミノ基とカルボキシル基を有する種々のアミノ酸が挙げられるが、好ましくは各種天然アミノ酸の誘導体が望ましい。多くの非天然アミノ酸は、各試薬会社(Sigma-Aldrich社、TCI社)より入手できる。非天然アミノ酸については、文献(Chem.Today 2003, 65. ;Curr Opin Chem Biol. 2000, 6, 645.)に多くの開示がある。
【0074】
第1のIgG半量体においては第1のCD16a結合領域におけるCD16a結合活性が改変により減弱しており、且つ第2のIgG半量体においては第2のCD16a結合領域におけるCD16a結合領域活性が改変により減弱している。このことから、第1のIgG半量体同士、又は第2のIgG半量体同士によりホモ会合体の抗体構造を構成しても、CD16aと結合することはできず、抗体の有する活性を発揮し得ない。
【0075】
一方、第1及び第2のIgG半量体によりヘテロ会合体の抗体構造が構成されると、第1のIgG半量体における第2のCD16a結合領域と、第2のIgG半量体における第1のCD16a結合領域とを介してCD16aに対し結合可能となる。
【0076】
第1及び第2のIgG半量体は互いに異なる抗原結合ドメインを有する。したがって、第1及び第2のIgG半量体からなるヘテロ会合体の抗体構造を構成することにより、互いに異なる2種の抗原を同一細胞上に発現している標的細胞に対して結合した場合にのみ、CD16aが結合しADCC活性を選択的に発揮し得る抗体組成物となる。
【0077】
第1及び第2のIgG半量体におけるヒンジドメインが、一部又は全体の置換もしくは欠失、または修飾によりジスルフィド結合が形成されないように改変されている。このことにより、第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されない。したがって、第1及び第2のIgG半量体の併存により、第1及び第2のIgG半量体を会合体又は半量体の平衡状態で存在させることが可能となり、両陽性細胞に対する高い選択性を発揮し得る。
【0078】
第1のIgG半量体と第2のIgG半量体との間において、H鎖間におけるジスルフィド結合が形成されないような、ヒンジドメインにおける一部の置換としては、例えば、EUインデックスで表される226位及び229位の少なくとも一方のアミノ酸残基置換が挙げられる。
【0079】
上記の平衡状態で存在させるためには、第1及び第2のIgG半量体における、L鎖、H鎖のH鎖可変領域及びCH1ドメイン及びCH2ドメインのイムノグロブリンサブクラスに属するCH3ドメイン間相互作用と比較して、H鎖のCH3ドメインは、CH3ドメイン間相互作用が弱いことが好ましい。
【0080】
具体的には例えば、第1及び第2のIgG半量体におけるH鎖のCH3ドメインは、CH3ドメイン間相互作用が、IgG1サブクラスのCH3ドメイン間相互作用よりも弱いことが好ましい。
【0081】
CH3ドメイン間相互作用が、IgG1サブクラスのCH3ドメイン間相互作用よりもCH3ドメイン間相互作用の弱いCH3ドメインとしては、アミノ酸改変(アミノ酸の置換、欠失もしくは付加、または修飾等)によりCH3ドメイン間相互作用が減弱したIgG1のCH3ドメイン、IgG4のCH3ドメインが挙げられる。
【0082】
2.抗体組成物のエフェクター活性の制御
本発明の抗体組成物は、第1及び第2のIgG半量体におけるFcに依存したエフェクター活性を付与することもできる。抗体組成物のエフェクター活性は、種々の方法により制御することができる。
【0083】
例えば、第1及び第2のIgG半量体が、CH2ドメインにおいて、さらにCD16a結合活性を増強させる少なくとも1のアミノ酸残基置換を含むことにより、さらにCD16a結合活性を増強させることが好ましい。このことにより、抗体組成物のエフェクター活性を増強することができる。
【0084】
抗体組成物のCD16a結合活性を増強するためのアミノ酸残基置換は、第1及び第2のIgG半量体におけるCD16a結合活性を減弱させるために改変された領域とは異なる領域におけるアミノ酸残基置換であることが好ましい。
【0085】
エフェクター活性とは、抗体のFcを介して引き起こされる抗体依存性の活性をいい、ADCC活性、CDC活性、又はマクロファージ若しくは樹状細胞などの食細胞による抗体依存性ファゴサイトーシス(Antibody-Dependent Cellular Phagocytosis activity;ADCP活性)などが知られている。本発明においてADCC活性及びCDC活性は、公知の測定方法[Cancer Immunol. Immunother., 36, 373 (1993)]を用いて測定できる。
【0086】
ADCC活性とは、標的細胞上の抗原に結合した抗体が、抗体のFcを介して免疫細胞のFc受容体と結合することにより免疫細胞(ナチュラルキラー細胞など)を活性化し、標的細胞を傷害する活性をいう。
【0087】
Fc受容体(以下、FcRと記すこともある)とは、抗体のFcに結合する受容体であり、抗体の結合によりさまざまなエフェクター活性を誘導する。
【0088】
FcRは抗体のサブクラスに対応しており、IgG、IgE、IgA、IgMはそれぞれFcγR、FcεR、FcαR、FcμRに特異的に結合する。更にFcγRには、FcγRI(CD64)、FcγRII(CD32)及びFcγRIII(CD16)のサブタイプが存在し、それぞれFcγRIA、FcγRIB、FcγRIC、FcγRIIA、FcγRIIB、FcγRIIC、FcγRIIIA(CD16a)、FcγRIIIBのアイソフォームが存在する。これらの異なるFcγRは異なる細胞上に存在している[Annu. Rev. Immunol. 9: 457-492 (1991)]。
【0089】
ヒトにおいては、FcγRIIIBは好中球に特異的に発現しており、FcγRIIIAは、単球、Natural Killer細胞(NK細胞)及び一部のT細胞に発現している。FcγRIIIAを介した抗体の結合は、NK細胞依存的なADCC活性を誘導する。
【0090】
CDC活性とは標的細胞上の抗原に結合した抗体が血液中の補体関連タンパク質群からなる一連のカスケード(補体活性化経路)を活性化し、標的細胞を傷害する活性をいう。また、補体の活性化により生じるタンパク質断片により免疫細胞の遊走、活性化を誘導することができる。
【0091】
CDC活性のカスケードは、抗体のFcとの結合ドメインを有するC1qが、Fcに結合し、2つのセリンプロテアーゼであるC1r及びC1sと結合することでC1複合体を形成することで開始する。
【0092】
本発明の抗体組成物のエフェクター活性を制御する方法としては以下のような方法が挙げられる。
【0093】
例えば、第1及び第2のIgG半量体において、IgG1サブクラスのFcのアミノ酸配列を用いて、EUインデックス297位のAsnに結合するN結合複合型糖鎖(以下、単にコンプレックス糖鎖と略記する場合もある)の還元末端に存在するN-アセチルグルコサミン(GlcNAc)にα-1,6結合するフコース(コアフコースともいう)の量を制御する方法(国際公開第2005/035586号、国際公開第2002/31140号、国際公開第00/61739号)、又は抗体のFcのアミノ酸残基を置換することで、抗体組成物のエフェクター活性を制御することができる。
【0094】
1)糖鎖改変によるエフェクター活性の制御
第1及び第2のIgG半量体のFcに結合しているコンプレックス糖鎖の還元末端のN-アセチルグルコサミンに付加するフコースの含量を制御することで、抗体組成物のエフェクター活性を増加又は低下させることができる。
【0095】
IgG半量体のFcに結合しているN結合複合型糖鎖に付加するフコースの含量を低下させる方法としては、α1,6-フコース転移酵素遺伝子(FUT8)が欠損したCHO細胞を用いてIgG半量体を発現することで、フコースが結合していないIgG半量体を取得できる。フコースが結合していないIgG半量体からなる抗体組成物は高いADCC活性を有する。
【0096】
一方、IgG半量体のFcに結合しているN結合複合型糖鎖に付加するフコースの含量を増加させる方法としては、α1,6-フコース転移酵素遺伝子を導入した宿主細胞を用いてIgG半量体を発現させることで、フコースが結合しているIgG半量体を取得できる。フコースが結合しているIgG半量体からなる抗体組成物は、フコースが結合していないIgG半量体からなる抗体組成物よりも低いADCC活性を有する。
【0097】
IgG半量体のFcには、EUインデックス297位のAsn残基にN結合型糖鎖が結合するが、それ以外のFcのAsn残基には糖鎖は結合することは知られていない。従って、通常、抗体組成物1分子あたり2本のN-グリコシド結合糖鎖が結合している。
【0098】
N結合型糖鎖としてはハイマンノース型、コンプレックス型及びハイブリッド型が知られており、いずれのN結合型糖鎖でもフコースが結合していない糖鎖であれば、フコースが結合している糖鎖と比べて高いADCC活性を得ることができる。
【0099】
IgG半量体のFcに結合するコンプレックス糖鎖としては、コア構造(トリマンノシルコア構造)の非還元末端側のマンノース(Man)に、1つ以上のN-アセチルグルコサミン(GlcNAc)又はガラクトース-N-アセチルグルコサミン(以下、Gal-GlcNAcと表記する)がα1-2結合又はα1-4結合している糖鎖が挙げられる。
【0100】
更にGal-GlcNAcの非還元末端側にシアル酸、バイセクティングのN-アセチルグルコサミン(以下、bisecting GlcNAcと記す)などを有するコンプレックス型(複合型)糖鎖を挙げることができる。
【0101】
本発明において、コアフコース(core-fucose)又はα1,6-フコースとは、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミン(以下、GlcNAcと記す場合もある)の6位とフコース(以下、Fucと記す場合もある)の1位がα結合した糖鎖構造をいう。また、N-グリコシド結合複合型糖鎖還元末端のN-アセチルグルコサミンにフコースが結合していないことを、単にフコースが無い又はコアフコースが無い糖鎖という。
【0102】
また、本発明において、コア構造又はトリマンノシルコア構造(tri-mannosyl core structure)とは、Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc構造をいう。
【0103】
IgG半量体に結合している糖鎖として、2本鎖N-グリコシド結合コンプレックス糖鎖(バイアンテナリーコンプレックス糖鎖ともいう)は、下記化学式で示される。
【0104】
【0105】
第1及び第2のIgG半量体は、EUインデックス297位のAsnにコンプレックス型糖鎖が結合したFcを有することが好ましい。上記の糖鎖構造を有していれば、単一または複数の異なる糖鎖構造を有していてもよい。具体的には、第1及び第2のIgG半量体における、Fcに結合する全N-グリコシド結合型糖鎖のうち、糖鎖還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖(コアフコースが無い糖鎖)の割合が20%以上である抗体組成物が挙げられる。
【0106】
コアフコースが無い糖鎖の割合としては、抗体組成物のADCC活性が増加すれば、いずれの割合も含まれるが、好ましくは20%以上、より好ましくは51%~100%、更に好ましくは80%~100%、特に好ましくは90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、最も好ましくは100%の割合が挙げられる。
【0107】
コアフコースが無い糖鎖の割合が50%とは、例えば、第1及び第2のIgG半量体に結合しているN-グリコシド結合糖鎖の片方の糖鎖にフコースが結合していない分子が100%含まれる抗体組成物、又は第1及び第2のIgG半量体に結合しているN-グリコシド結合糖鎖の両方の糖鎖にフコースが結合していない分子が50%含まれ、かつ第1及び第2のIgG半量体に結合しているN-グリコシド結合糖鎖の両方の糖鎖にフコースが結合している分子が50%含まれる抗体組成物のいずれも含まれる。
【0108】
本発明において、フコースが無い糖鎖としては、上記で示された化学式中、還元末端側のN-アセチルグルコサミンにフコースが結合していなければ、非還元末端の糖鎖の構造はいかなるものであってもよい。
【0109】
本発明において、糖鎖還元末端のN-アセチルグルコサミンにフコースが結合していない(コアフコースが無い)とは、実質的にフコースが結合していないことをいう。実質的にフコースが結合していないIgG半量体とは、具体的には、後述に記載の糖鎖分析において、フコースが実質的に検出できない程度のIgG半量体である場合をいう。実質的に検出できない程度とは、測定の検出限界以下であることをいう。全ての糖鎖にコアフコースが無い第1及び第2のIgG半量体からなる抗体組成物は、最も高いADCC活性を有する。
【0110】
N-グリコシド結合複合型糖鎖が結合したFcを有するIgG半量体中における、フコースが無い糖鎖を有するIgG半量体の割合は、IgG半量体からヒドラジン分解又は酵素消化などの公知の方法[生物化学実験法23-糖蛋白質糖鎖研究法(学会出版センター)高橋禮子編(1989)]を用い、糖鎖を遊離させ、遊離させた糖鎖を蛍光標識又は同位元素標識し、標識した糖鎖をクロマトグラフィ法にて分離することによって決定することができる。
【0111】
また、コンプレックス糖鎖が結合したFcを含むIgG半量体中に含まれる、フコースが無い糖鎖が結合したIgG半量体の割合は、遊離させた糖鎖をHPAED-PAD法(J. Liq. Chromatogr., 6, 1577, 1983)によって分析することで決定することができる。
【0112】
2)アミノ酸残基置換によるエフェクター活性の制御
本発明の抗体組成物は、第1のIgG半量体及び第2の半量体におけるFcの抗体サブクラスの変換又はFcのアミノ酸残基置換により、ADCC活性、ADCP活性及びCDC活性を増加又は低下させることができる。
【0113】
IgG1サブクラスの抗体は、IgGサブクラスの中で最も高いADCC活性、CDC活性を有することが知られており、CH2ドメインのイムノグロブリンサブクラスはIgG1であることが好ましい。
【0114】
Fcのアミノ酸残基置換としては例えば、米国特許出願公開第2007/0148165号明細書に記載のFcのアミノ酸配列を用いることで、抗体のCDC活性を増加させることができる。また、米国特許第6,737,056号明細書、米国特許第7,297,775号明細書及び米国特許第7,317,091号明細書に記載のアミノ酸残基置換を行うことで、抗体組成物のADCC活性又はCDC活性を増加させることも低下させることもできる。
【0115】
ADCC活性を増強させる具体的なアミノ酸残基置換としては、P247I、A339D、F243L、R292P、Y300L、P396L、T393A、H433P、S239D、S298A、A330L、I332E、E333A及びK334Aなどが挙げられる。一方、ADCC活性を減少させる具体的なアミノ酸残基置換としては、L235E、P238A、N297A、K322A及びP331Sなどが挙げられる。
【0116】
CDC活性を増加させる具体的なアミノ酸残基置換としては、K326A、S267E、H268F、S324T、K274Q、N276K、Y296F、Y300F、K326W、K326Y、E333A、E333S、A339T、D356E、L358M、N384S、K392N、T394F、T394Y、V397M及びV422Iから選ばれる少なくとも1つのアミノ酸残基置換が挙げられる。
【0117】
いずれのアミノ酸残基置換を2つ以上組み合わせてCDC活性を増加させることもでき、目的に応じて置換するアミノ酸残基を増やすことができる。CDC活性を増加させるアミノ酸残基置換として好ましくは、N276K、A339T、T394F及びT394Yから選ばれる少なくとも1つのアミノ酸残基置換、N276K及びA339Tのアミノ酸残基置換、並びにK274Q、N276K、Y296F、Y300F、A339T、D356E、L358M、N384S、V397M及びV422Iのアミノ酸残基置換などが挙げられる。一方、CDC活性を減少させる具体的なアミノ酸残基置換としては、L235E、N297A、K322A、P329A及びP331Sなどが挙げられる。
【0118】
またT250Q、M428L、M252Y、S254T、T256Eなどのアミノ酸変異をヒトIgG1サブクラスのFcに導入することにより血中半減期を延長することができる。またN297位にアミノ酸変異を導入することによりN結合型糖鎖を除去したFc又はヒトIgG2若しくはIgG4サブクラスのFc、IgG2とIgG4のキメラFcなどを用いることにより、ADCC活性、ADCP活性、CDC活性などの細胞傷害活性を低下させることができる。
【0119】
3.抗体組成物の製造方法
本発明の抗体組成物の製造方法は、以下の工程1~3を含む製造方法が挙げられる。
工程1:IgG半量体のアミノ酸配列をコードするDNAを含む組換えベクター(以下、IgG半量体発現用組換えベクターとも略す)を細胞へ導入して形質転換体を得る工程。
工程2:工程1で得られた形質転換体を培養し、培養物中にIgG半量体を蓄積させ、培養物からIgG半量体を採取する工程。
工程3:工程2で採取されたIgG半量体からなる抗体組成物を得る工程。
以下、各工程について説明する。
【0120】
[工程1]
工程1は、第1及び第2のIgG半量体の少なくとも一方のアミノ酸配列をコードするDNAを含む組換えベクターを細胞へ導入して形質転換体を得る工程である。
工程(1)は、具体的には、以下の工程(1-1)~(1-3)を含む。
(1-1)第1のIgG半量体における第1のCD16a結合領域におけるCD16a結合活性を改変により減弱させる工程。
(1-2)第2のIgG半量体における第2のCD16a結合領域におけるCD16a結合活性を改変により減弱させる工程。
(1-3)第1及び第2のIgG半量体のヒンジドメインにおいて一部又は全体の置換もしくは欠失、または修飾を行うことにより、H鎖間におけるジスルフィド結合が形成されないように改変する工程。
【0121】
工程(1-1)については、例えば、第1のIgG半量体発現用組換えベクターの作製において、EUインデックスで表される235位、236位、237位、238位、239位、265位、266位、267位、268位、269位、294位、295位、296位、297位、298位、299位、301位、325位、327位、332位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基を置換する工程を、CH2ドメインのサブクラスに応じて適宜行うことが挙げられる。
【0122】
工程(1-2)については、例えば、第2のIgG半量体発現用組換えベクターの作製において、EUインデックスで表される235位、236位、237位、326位、327位、328位、329位、330位のアミノ酸残基から選ばれる少なくとも1のアミノ酸残基を置換する工程を、CH2ドメインのサブクラスに応じて適宜行うことが挙げられる。
【0123】
工程(1-3)については、例えば、IgG半量体発現用組換えベクターの作製において、EUインデックスで表される226位及び229位の少なくとも一方のアミノ酸残基の置換を加える工程を、ヒンジドメインのサブクラスに応じて適宜行うことが挙げられる。
【0124】
IgG半量体は、モレキュラー・クローニング第2版、カレント・プロトコールズ・イン・モレキュラー・バイオロジー、Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, 1988、Monoclonal Antibodies: principles and practice, Third Edition,Acad.Press,1993, Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press,1996等に記載された方法を用い、例えば、以下のように形質転換体中で発現させて取得することができる。
【0125】
(1)IgG半量体発現用の組換えベクターの構築
IgG半量体発現用組換えベクターとは、本発明の抗体組成物を構成するIgG半量体のアミノ酸配列をコードする遺伝子が組み込まれた動物細胞用発現ベクターである。
【0126】
組換えベクターは、動物細胞用発現ベクターにIgG半量体のアミノ酸配列をコードするDNAをクローニングすることにより構築することができる。
【0127】
DNAは、全DNAを合成してもよいし、polymerase chain reaction(PCR法)による合成も可能である(モレキュラー・クローニング第2版)。さらに、これらの手法を複数組み合わせることにより、IgG半量体をコードする遺伝子を作製することもできる。
【0128】
動物細胞を宿主として用いる場合、発現ベクターとしては、動物細胞中で機能を発揮できるものであればいずれも用いることができる。例えば、pcDNAI、pCDM8(フナコシ社製)、pAGE107[日本国特開平3-22979号公報;Cytotechnology, 3, 133 (1990)]、pAS3-3(日本国特開平2-227075号公報)、pCDM8[Nature, 329, 840 (1987)]、pcDNAI/Amp(インビトロジェン社製)、pcDNA3.1(インビトロジェン社製)、pREP4(インビトロジェン社製)、pAGE103[J. Biochemistry, 101, 1307 (1987)]、pAGE210、pME18SFL3、pKANTEX93(国際公開第97/10354号)、N5KG1val(米国特許第6,001,358号明細書)及びTol2トランスポゾンベクター(国際公開第2010/143698号)などが挙げられる。
【0129】
プロモーターとしては、動物細胞中で機能を発揮できるものであればいずれも用いることができる。例えば、サイトメガロウイルス(CMV)のimmediate early(IE)遺伝子のプロモーター、SV40の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショックプロモーター、SRαプロモーター、又はモロニーマウス白血病ウイルスのプロモーターあるいはエンハンサーが挙げられる。また、ヒトCMVのIE遺伝子のエンハンサーをプロモーターと共に用いてもよい。
【0130】
発現ベクターは、抗体H鎖及びL鎖が別々のベクター上に存在するタイプあるいは同一のベクター上に存在するタイプ(以下、タンデム型と表記する)のどちらでも用いることができる。
【0131】
(2)可変領域をコードするcDNAの取得
任意の抗体のVH及びVLをコードするcDNAは次のようにして取得できる。任意の抗体を産生するハイブリドーマ細胞から抽出したmRNAを鋳型として用い、cDNAを合成する。合成したcDNAをファージ又はプラスミド等のベクターに挿入してcDNAライブラリーを作製する。
【0132】
前記ライブラリーより、既存の抗体の定常領域又は可変領域をコードするDNAをプローブとして用い、VHをコードするcDNAを有する組換えファージ或いは組換えプラスミド及びL鎖可変領域をコードするcDNAを有する組換えファージ又は組換えプラスミドをそれぞれ単離する。組換えファージ或いは組換えプラスミド上の目的の抗体のVH及びVLの全塩基配列を決定し、塩基配列よりVH及びVLの全アミノ酸配列を推定する。
【0133】
任意の非ヒト動物抗体を生産するハイブリドーマ細胞は、抗体が結合する抗原を非ヒト動物に免疫し、周知の方法[モレキュラー・クローニング第2版、カレント・プロトコールズ・イン・モレキュラー・バイオロジー、Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory, 1988、Monoclonal Antibodies: principles and practice, Third Edition, Acad. Press, 1993、Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press,1996]に従って、免疫された動物の抗体産生細胞とミエローマ細胞とでハイブリドーマを作製する。次いでシングルセルクローニングしたハイブリドーマを選択し、これを培養し、培養上清から精製し、取得することができる。
【0134】
非ヒト動物としては、マウス、ラット、ハムスター又はウサギ等、ハイブリドーマ細胞を作製することが可能であれば、いかなるものも用いることができる。
【0135】
ハイブリドーマ細胞から全RNAを調製する方法としては、例えば、チオシアン酸グアニジン-トリフルオロ酢酸セシウム法[Methods in Enzymol., 154, 3 (1987)]、RNeasy kit(QIAGEN社製)、また全RNAからmRNAを調製する方法としては、オリゴ(dT)固定化セルロースカラム法[モレキュラー・クローニング:ア・ラボラトリー・マニュアル(Molecular Cloning: A Laboratory Manual),Cold Spring Harbor Lab. Press New York, 1989]等が挙げられる。
【0136】
また、ハイブリドーマ細胞からmRNAを調製するキットとしては、例えば、Fast Track mRNA Isolation Kit(Invitrogen社製)、Quick Prep mRNA Purification Kit(Pharmacia社製)等が挙げられる。
【0137】
cDNAの合成及びcDNAライブラリー作製法としては、常法(Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York, 1989; Current Protocols in Molecular Biology, Supplement 1-34)、又は市販のキットを用いる方法が挙げられる。市販のキットとしては、例えば、Super Script(登録商標)Plasmid System for cDNA Synthesis and Plasmid Cloning(GIBCO BRL社製)又はZAP-cDNA Synthesis Kit(Stratagene社製)が挙げられる。
【0138】
cDNAライブラリーの作製の際、ハイブリドーマ細胞から抽出したmRNAを鋳型として合成したcDNAを組み込むベクターは、該cDNAを組み込めるベクターであればいかなるものでも用いることができる。
【0139】
例えば、ZAP Express(Strategies, 5, 58, 1992)、pBluescript II SK(+)(Nucleic Acids Research,17,9494,1989)、λZAP II(Stratagene社製)、λgt10、λgt11(DNA Cloning: A Practical Approach, I, 49, 1985)、Lambda BlueMid(Clontech社製)、λExCell、pT7T3 18U(Pharmacia社製)、pcD2(Mol. Cell. Biol., 3, 280, 1983)及びpUC18(Gene, 33, 103, 1985)等を用いることができる。
【0140】
ファージ又はプラスミドベクターにより構築されるcDNAライブラリーを導入する大腸菌としては該cDNAライブラリーを導入、発現及び維持できるものであればいかなるものでも用いることができる。
【0141】
例えば、XL1-Blue MRF(Strategies, 5, 81 , 1992)、C600(Genetics, 39, 440, 1954)、Y1088、Y1090(Science, 222, 778, 1983)、NM522 ジャーナル・オブ・モレキュラー・バイオロジー(J. Mol. Biol., 166, 1, 1983)、K802(J. Mol. Biol., 16, 118, 1966)及びJM105(Gene, 38, 275, 1985)等が用いられる。
【0142】
cDNAライブラリーからの非ヒト動物抗体のVH及びVLをコードするcDNAクローンを選択する方法としては、アイソトープ又は蛍光などで標識したプローブを用いたコロニー・ハイブリダイゼーション法又はプラーク・ハイブリダイゼーション法(Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York, 1989)により選択することができる。
【0143】
また、プライマーを調製し、cDNA又はcDNAライブラリーを鋳型として、PCR(Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press New York, 1989;Current Protocols in Molecular Biology, Supplement 1-34)によりVH及びVLをコードするcDNAを調製することもできる。
【0144】
上記方法により選択されたcDNAを、適当な制限酵素などで切断後、pBluescript II SK(-)(Stratagene社製)等のプラスミドにクローニングし、通常用いられる塩基配列解析方法、例えば、Sangerらのジデオキシ法(Proc. Natl. Acad. Sci., U. S. A., 74, 5463, 1977)等の反応を行い、塩基配列自動分析装置、例えば、ABI PRISM377 DNAシークエンサー(Applied Biosystems社製)等の塩基配列分析装置を用いて分析することにより該cDNAの塩基配列を決定することができる。
【0145】
決定した塩基配列からVH及びVLの全アミノ酸配列を推定し、既知の抗体のVH及びVLの全アミノ酸配列(Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991)と比較することにより、取得したcDNAが分泌シグナル配列を含む抗体のVH及びVLを完全に含んでいるアミノ酸配列をコードしているかを確認することができる。
【0146】
さらに、抗体可変領域のアミノ酸配列又は該可変領域をコードするDNAの塩基配列がすでに公知である場合には、以下の方法を用いて製造することができる。
【0147】
アミノ酸配列が公知である場合には、コドンの使用頻度(Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991)を考慮して該可変領域をコードするDNAの塩基配列を設計し、設計したDNAの塩基配列に基づき、100~150塩基前後の長さからなる数本の合成DNAを合成し、それらを用いてPCR法を行うか、完全長のDNAを合成することで、DNAを得ることができる。塩基配列が公知である場合には、その情報を基に上述と同様にしてDNAを得ることができる。
【0148】
(3)抗体の可変領域のアミノ酸配列の解析
分泌シグナル配列を含む抗体のVH及びVLの完全なアミノ酸配列に関しては、既知の抗体のVH及びVLのアミノ酸配列(Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services,1991)と比較することにより、分泌シグナル配列の長さ及びN末端アミノ酸配列を推定でき、更には抗体が属するサブグループを知ることができる。また、VH及びVLの各CDRのアミノ酸配列についても、同様の方法で見出すことができる。
【0149】
(4)ヒト化抗体の可変領域をコードするcDNAの構築
ヒト化抗体のVH及びVLをコードするcDNAは、以下のようにして構築することができる。まず、目的の非ヒト動物抗体のVH及びVLのCDRを移植するヒト抗体のVH及びVLのフレームワーク領域(以下、FRと表記する)のアミノ酸配列を選択する。ヒト抗体のVH及びVLのFRのアミノ酸配列としては、ヒト抗体のものであれば、いかなるものでも用いることができる。
【0150】
例えば、Protein Data Bank等のデータベースに登録されているヒト抗体のVH及びVLのFRのアミノ酸配列、ヒト抗体のVH及びVLのFRの各サブグループの共通アミノ酸配列(Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991)等が挙げられる。
【0151】
その中でも、十分な活性を有するヒト化抗体を作製するためには、目的の非ヒト動物抗体のVH及びVLのFRのアミノ酸配列とできるだけ高い相同性(少なくとも60%以上)を有するアミノ酸配列を選択することが好ましい。
【0152】
次に、選択したヒト抗体のVH及びVLのFRのアミノ酸配列に目的の非ヒト動物抗体のVH及びVLのCDRのアミノ酸配列を移植し、ヒト化抗体のVH及びVLのアミノ酸配列を設計する。設計したアミノ酸配列を抗体の遺伝子の塩基配列に見られるコドンの使用頻度(Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991)を考慮してDNAの塩基配列に変換し、ヒト化抗体のVH及びVLのアミノ酸配列をコードするDNAの塩基配列を設計する。設計したDNAの塩基配列を完全合成する。
【0153】
また、両端に位置する合成DNAの5’末端に適当な制限酵素の認識配列を導入することで、上述3(1)で構築したIgG半量体発現用組換えベクターに容易にクローニングすることができる。PCR後、増幅産物をpBluescript II SK(-)(Stratagene社製)等のプラスミドにクローニングし、上述3(2)に記載の方法により、塩基配列を決定し、所望のヒト化抗体のVH及びVLのアミノ酸配列をコードするDNAの塩基配列を有するプラスミドを取得する。
【0154】
(5)ヒト化抗体の可変領域のアミノ酸配列の改変
ヒト化抗体は、非ヒト動物抗体のVH及びVLのCDRのみをヒト抗体のVH及びVLのFRに移植しただけでは、その抗原結合活性は元の非ヒト動物抗体に比べて低下してしまうことが知られている(BIO / TECHNOLOGY, 9, 266, 1991)。
【0155】
この原因としては、元の非ヒト動物抗体のVH及びVLでは、CDRのみならず、FRのいくつかのアミノ酸残基が直接的或いは間接的に抗原結合活性に関与しており、それらアミノ酸残基がCDRの移植に伴い、ヒト抗体のVH及びVLのFRの異なるアミノ酸残基へと変化してしまうことが考えられている。
【0156】
この問題を解決するため、ヒト化抗体では、ヒト抗体のVH及びVLのFRのアミノ酸配列の中で、直接抗原との結合に関与しているアミノ酸残基又はCDRのアミノ酸残基と相互作用させて、抗体の立体構造を維持し、間接的に抗原との結合に関与しているアミノ酸残基を同定し、それらを元の非ヒト動物抗体に由来するアミノ酸残基に改変し、低下した抗原結合活性を上昇させることが行われている(BIO / TECHNOLOGY, 9, 266, 1991)。
【0157】
ヒト化抗体の作製においては、それら抗原結合活性に関わるFRのアミノ酸残基を如何に効率よく同定するかが、最も重要な点であり、そのためにX線結晶解析(J. Mol. Biol., 112, 535, 1977)或いはコンピューターモデリング(Protein Engineering, 7, 1501, 1994)等による抗体の立体構造の構築及び解析が行われている。
【0158】
これら抗体の立体構造の情報は、ヒト化抗体の作製に多くの有益な情報をもたらして来た。しかしながら、あらゆる抗体に適応可能なヒト化抗体の作製法は未だ確立されていない。現状ではそれぞれの抗体について数種の改変体を作製し、それぞれの抗原結合活性との相関を検討する等の種々の試行錯誤が必要である。
【0159】
ヒト抗体のVH及びVLのFRのアミノ酸残基の改変は、改変用合成DNAを用いて3(4)に記載のPCR法を行うことにより、達成できる。PCR後の増幅産物について3(2)に記載の方法により、塩基配列を決定し、目的の改変が施されたことを確認する。
【0160】
(6)IgG半量体の発現
上述3(1)のIgG半量体発現用組換えベクターを適当な動物細胞に導入することにより一過性又は安定的に第1及び第2のIgG半量体の少なくとも一方を生産する形質転換体を得ることができる。
【0161】
(6-a)抗体組成物の一過性発現
(3)及び(6)で得られるIgG半量体発現用組換えベクター、又はそれらを改変した組換えベクターを用いて抗体組成物の一過性発現を行い、作製した多種類の抗体組成物の抗原結合活性を効率的に評価することができる。
【0162】
IgG半量体発現用組換えベクターを導入する宿主細胞には、第1及び第2のIgG半量体の少なくとも一方を発現できる宿主細胞であれば、いかなる細胞でも用いることができる。例えば、COS-7細胞[American Type Culture Collection(ATCC)番号:CRL1651]が挙げられる(Methods in Nucleic Acids Res., CRC press, 283, 1991)。
【0163】
COS-7細胞へのIgG半量体発現用組換えベクターの導入には、DEAE-デキストラン法(Methods in Nucleic Acids Res., CRC press,1991)、又はリポフェクション法(Proc. Natl. Acad. Sci. USA, 84, 7413, 1987)などを用いる。
【0164】
IgG半量体発現用組換えベクターの導入後、培養上清中のIgG半量体の発現量及び抗原結合活性は酵素免疫抗体法[Monoclonal Antibodies-Principles and practice, Third Edition, Academic Press(1996)、Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory(1988)、単クローン抗体実験マニュアル,講談社サイエンティフィック(1987)]などを用いて測定する。
【0165】
(6-b)IgG半量体の安定発現
(1)で得られたIgG半量体発現用組換えベクターを適当な宿主細胞に導入することによりIgG半量体を安定に発現する形質転換体を得ることができる。
【0166】
宿主細胞への組換えベクターの導入には、宿主細胞にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法(Cytotechnology, 3, 133, 1990)、リン酸カルシウム法(日本国特開平2-227075号公報)、リポフェクション法(Proc. Natl. Acad. Sci. U. S. A., 84, 7413, 1987)、インジェクション法[マニピュレイティング・ザ・マウス・エンブリオ・ア・ラボラトリー・マニュアル]、パーティクルガン(遺伝子銃)を用いる方法(日本国特許第2606856号明細書、日本国特許第2517813号明細書)、DEAE-デキストラン法[バイオマニュアルシリーズ4―遺伝子導入と発現・解析法(羊土社)横田崇・新井賢一編(1994)]、ウイルスベクター法(マニピュレーティング・マウス・エンブリオ第2版)等が挙げられる。
【0167】
組換えベクターを導入する宿主細胞としては、第1及び第2のIgG半量体の少なくとも一方を発現させることができる宿主細胞であれば、いかなる細胞でも用いることができる。例えば、ヒト白血病細胞ナマルバ(Namalwa)細胞、サルCOS細胞、チャイニーズ・ハムスターの細胞であるCHO細胞、HBT5637(日本国特開昭63-299号公報)、ラットミエローマ細胞、マウスミエローマ細胞、シリアンハムスター腎臓由来細胞、胚性幹細胞、受精卵細胞等が挙げられる。
【0168】
具体的には、例えば、PER.C6、CHO-K1(ATCC CCL-61)、DUKXB11(ATCC CCL-9096)、Pro-5(ATCC CCL-1781)、CHO-S(Life Technologies,Cat #11619)、Lec13細胞、ラットミエローマ細胞YB2/3HL.P2.G11.16Ag.20(ATCC番号:CRL1662、又はYB2/0ともいう)、マウスミエローマ細胞NS0、マウスミエローマ細胞SP2/0-Ag14(ATCC番号:CRL1581)、マウスP3X63-Ag8.653細胞(ATCC番号:CRL1580)、ジヒドロ葉酸還元酵素遺伝子(Dihydroforate Reductase、以下、dhfrと表記する)が欠損したCHO細胞(CHO/DG44)[Proc. Natl. Acad. Sci. USA, 77, 4216 (1980)]、シリアンハムスター細胞BHK、HBT563細胞、上述細胞株の亜株細胞及び上述細胞株を無血清培養下で馴化した細胞、非接着条件下の培養条件で馴化した細胞などが挙げられる。
【0169】
IgG半量体の生産に用いる細胞としては、FcにおけるEUインデックス297のAsnに結合する糖鎖のコアフコース量を低下又は欠損させる細胞を用いることもできる。具体的には、GDP-L-フコースの合成又はゴルジ体への輸送に関与する酵素又はコアフコースの結合に関与する酵素が低下又は欠損した細胞を選択するか、又は種々の人為的手法により得られた細胞を宿主細胞として用いることもできる。
【0170】
具体的には、コアフコース糖鎖修飾に関連する酵素活性を減少又は欠損させる方法、又はコアフコース切断酵素活性を増加させる方法など、コアフコースを制御した細胞を作製することができる。
【0171】
コアフコース糖鎖修飾に関連する酵素としては、例えば、GDP-L-フコースの合成あるいは輸送に関与する酵素又はN-グリコシド結合複合型糖鎖のコアフコースの結合に関与する酵素が挙げられる。
【0172】
GDP-L-フコースの合成又はゴルジ体への輸送に関与する酵素としては、具体的には例えば、GDP-マンノース 4,6-デヒドラターゼ(以下、GMDと表記する)、GDP-4-ケト-6-デオキシ-D-マンノース-3,5-エピメラーゼ(以下、Fxと表記する)、GDP-ベータ-L-フコース-ピロホスフォリラーゼ(GFPP)、フコキナーゼ、GDP-L-フコーストランスポーターなどが挙げられる。
【0173】
コアフコースの結合に関与する酵素としては、例えば、α1,6-フコシルトランスフェラーゼ(以下、FUT8と表記する)などが挙げられる。
【0174】
IgG半量体を生産する細胞としては、上述の1つの酵素活性を低下又は欠損させてもよいし、複数の酵素活性を組み合わせて低下又は欠損させてもいずれでもよい。
【0175】
上述の酵素活性を低下又は欠損させる方法としては、例えば、(a)酵素の遺伝子を標的とした遺伝子破壊の手法;(b)酵素の遺伝子のドミナントネガティブ体を導入する手法;(c)酵素についての突然変異を導入する手法;(d)酵素の遺伝子の転写又は翻訳を抑制する手法;(e)N-グリコシド結合糖鎖還元末端のN-アセチルグルコサミンの6位とフコースの1位がα結合した糖鎖構造を認識するレクチンに耐性である株を選択する手法などが挙げられる。
【0176】
レクチンとしては、例えば、レンズマメレクチンLCA(Lens Culinaris由来のLentil Agglutinin)エンドウマメレクチンPSA(Pisum sativum由来のPea Lectin)、ソラマメレクチンVFA(Viciafaba由来のAgglutinin)、ヒイロチャワンタケレクチンAAL(Aleuria aurantia由来のLectin)などのα1,6フコースに結合するレクチンが挙げられる。
【0177】
具体的な細胞としては、例えば、FUT8遺伝子が欠損したCHO細胞(国際公開第2005/035586号、国際公開第2002/31140号、国際公開第2000/061739号)、レクチン耐性を獲得したLec13(Somatic Cell and Molecular genetics, 12, 55, 1986)、GDP-フコーストランスポーター遺伝子が欠損した細胞(国際公開第2003/085102号)、GDP-mannose 4,6-dehydratase(GMD)遺伝子が欠損した細胞(国際公開第2002/31140号)、WGAレクチン耐性細胞及びLCAレクチン耐性細胞(国際公開第2002/31140号)などが挙げられる。
【0178】
上述の方法以外に、N結合型糖鎖の合成系に関する酵素であるmannosidase I、mannosidase IIなどの酵素を阻害することにより、high mannose型のN結合型糖鎖が結合し、コアフコース量が減少したIgG半量体を発現させることもできる。
【0179】
また、N-acetylglucosamine transferase III(GnTIII)を過剰発現させた宿主細胞を用いることで、bisecting GlcNAcが結合したコンプレックス及びハイブリッド糖鎖が結合し、かつコアフコース量が減少したIgG半量体を生産することもできる。
【0180】
組換えベクターの導入後、IgG半量体を安定に発現する形質転換体は、G418硫酸塩(以下、G418と表記する)、シクロヘキシミド(以下、CHXと略記する)、メトトレキセート(以下、MTXと略記する)などの薬剤を含む動物細胞培養用培地で培養することにより選択する(日本国特開平2-257891号公報)。
【0181】
動物細胞培養用培地としては、例えば、RPMI1640培地(インビトロジェン社製)、GIT培地(日本製薬社製)、EX-CELL301培地、EX-CELL302、EX-CELL325培地(JRH社製)、IMDM培地(インビトロジェン社製)、Hybridoma-SFM培地(インビトロジェン社製)、又はこれら培地にウシ胎児血清(以下、FBSと略記する)などの各種添加物を添加した培地などが挙げられる。
【0182】
得られた形質転換体を培地中で培養することで培養上清中にIgG半量体を発現させて蓄積させる。培養上清中のIgG半量体の発現量及び抗原結合活性はELISA法などにより測定できる。また、dhfr遺伝子増幅系(日本国特開平2-257891号公報)などを利用して、形質転換体の産生するIgG半量体の発現量を向上させることができる。
【0183】
以上、動物細胞を宿主としたIgG半量体の発現方法を示したが、酵母、昆虫細胞、植物細胞又は動物個体あるいは植物個体においても、公知技術に基づいて動物細胞と同様の方法によりIgG半量体を発現させることができる。
【0184】
酵母を宿主細胞とする場合は、サッカロミセス属、シゾサッカロミセス属、クリュイベロミセス属、トリコスポロン属、シュワニオミセス属等に属する微生物、例えば、Saccharomyces cerevisiae、Schizosaccharomyces pombe、Kluyveromyces lactis、Trichosporon pullulans、Schwanniomyces alluvius等を挙げることができる。
【0185】
組換えベクターの導入方法としては、酵母にDNAを導入する方法であればいずれも用いることができ、例えば、エレクトロポレーション法(Methods. Enzymol., 194,182,1990)、スフェロプラスト法(Proc. Natl. Acad. Sci. U. S. A, 84, 1929, 1978)、酢酸リチウム法(J. Bacteriology, 153, 163, 1983; Proc. Natl. Acad. Sci. U. S. A, 75, 1929, 1978)に記載の方法等が挙げられる。
【0186】
昆虫細胞を宿主として用いる場合には、例えば、カレント・プロトコールズ・イン・モレキュラー・バイオロジー(Baculovirus Expression Vectors, A Laboratory Manual, W. H. Freeman and Company, New York, 1992)、Bio / Technology, 6, 47, 1988等に記載された方法によって、IgG半量体を発現することができる。
【0187】
[工程2]
工程2は、工程1で得られた形質転換体を培養し、培養物中にIgG半量体を生成・蓄積させ、培養物からIgG半量体を採取し、精製する工程である。
【0188】
第1及び第2のIgG半量体は同一の形質転換体から採取してもよいし、各々を単独で発現する形質転換体から採取してもよい。通常は第1及び第2のIgG半量体は、各々を単独で発現する形質転換体から採取、精製後に混合して抗体組成物を調製する。
【0189】
工程1で調製した宿主細胞がIgG半量体を発現する能力を有する場合には、以下に示す宿主細胞にIgG半量体を導入した後に、該細胞を培養し、該培養物から目的とするIgG半量体を採取できる。
【0190】
さらに、遺伝子導入した動物又は植物の細胞を再分化させることにより、遺伝子が導入された動物個体(トランスジェニック非ヒト動物)又は植物個体(トランスジェニック植物)を造成し、これらの個体を用いてIgG半量体を採取してもよい。
【0191】
形質転換体が動物個体又は植物個体の場合は、通常の方法に従って、飼育又は栽培し、IgG半量体を生成蓄積させ、該動物個体又は植物個体より該IgG半量体を採取できる。
【0192】
動物個体を用いてIgG半量体を生産させる方法としては、例えば、公知の方法(American Journal of Clinical Nutrition, 63, 639S, 1996; American Journal of Clinical Nutrition, 63, 627S, 1996; Bio / Technology, 9, 830, 1991)に準じて遺伝子を導入して造成した動物中に目的とするIgG半量体を生産させる方法が挙げられる。
【0193】
動物個体の場合は、例えば、IgG半量体をコードするDNAを導入したトランスジェニック非ヒト動物を飼育し、IgG半量体を該動物中に生成、蓄積させ、該動物中よりIgG半量体を採取できる。
【0194】
前記動物中の生成及び蓄積場所としては、例えば、該動物のミルク(日本国特開昭63-309192号公報)又は卵等を挙げることができる。この際に用いられるプロモーターとしては、動物で発現できるものであればいずれも用いることができる。例えば、乳腺細胞特異的なプロモーターであるαカゼインプロモーター、βカゼインプロモーター、βラクトグロブリンプロモーター及びホエー酸性プロテインプロモーター等が好適に用いられる。
【0195】
植物個体を用いてIgG半量体を生産させる方法としては、例えばIgG半量体をコードするDNAを導入したトランスジェニック植物を公知の方法[組織培養,20(1994);組織培養,21(1995);Trends in Biotechnology, 15, 45 (1997)]に準じて栽培し、IgG半量体を該植物中に生成、蓄積させ、該植物中より該IgG半量体を採取する方法が挙げられる。
【0196】
IgG半量体は以下のようにして精製することができる。IgG半量体をコードする遺伝子を導入した形質転換体により製造されたIgG半量体は、例えばIgG半量体が、細胞内に可溶性タンパク質として発現した場合には、培養終了後、細胞を遠心分離により回収し、水系緩衝液に懸濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミル等により細胞を破砕し、無細胞抽出液を得る。
【0197】
前記無細胞抽出液を遠心分離することにより得られる上清から、通常の酵素の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱ケミカル社製)等レジンを用いた陰イオン交換クロマトグラフィ法、S-Sepharose FF(Pharmacia社)等のレジンを用いた陽イオン交換クロマトグラフィ法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィ法、分子篩を用いたゲルろ過法、アフィニティクロマトグラフィ法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、IgG半量体を精製できる。
【0198】
本発明においては、アフィニティクロマトグラフィとして、CH結合体又はFc結合体を用いたアフィニティクロマトグラフィが用いられる(Monoclonal Antibodies - Principles and practice, Third edition, Academic Press,1996; Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory, 1988)。
【0199】
また、IgG半量体が細胞内に不溶体を形成して発現した場合は、同様に細胞を回収後破砕し、遠心分離を行うことにより、沈殿画分としてIgG半量体の不溶体を回収する。回収したIgG半量体の不溶体をタンパク質変性剤で可溶化する。該可溶化液を希釈又は透析することにより、該IgG半量体を正常な立体構造に戻した後、上記と同様の単離精製法により該IgG半量体を精製できる。
【0200】
IgG半量体が細胞外に分泌された場合には、培養上清に該IgG半量体又はその誘導体を回収することができる。即ち、該培養物を上記と同様の遠心分離等の手法により処理することにより培養上清を取得し、該培養上清から、上記と同様の単離精製法を用いることにより、IgG半量体を精製できる。
【0201】
CH結合体又はFc結合体として、具体的には、CH又はFcに結合するものであればタンパク質、樹脂などいかなるものであってもよく、例えば、Fc結合タンパク質、抗体H鎖定常領域(CH)に結合する抗体などが挙げられる。
【0202】
Fc結合タンパク質として、例えば、Staphylococcus Aureus由来Protein A、hemolytic Streptococcus由来Protein G、Fc受容体及び該サブクラス(FcγRI、IIA、IIB、IIIA、IIIB)並びにこれらの結合部分断片などが挙げられる。
【0203】
CHに結合する抗体としては、例えば、CH1ドメイン、ヒンジドメイン、CH2ドメイン又はCH3ドメインに結合する抗体が挙げられる。
【0204】
本発明においてCH結合体としてより好ましくは、Protein A、Protein G、抗CH1抗体及び該結合部分断片が挙げられる。
【0205】
IgG半量体の精製方法として、例えば、[工程1](6)において上述した形質転換体を用いて培養した培養上清を、Protein Aカラム又はProtein Gカラムのロードした後、該カラムをリン酸バッファー(phosphate buffer saline、以下PBSと略記する)を用いて洗浄する。
【0206】
その後、低pH(pH2.0~6.0)のクエン酸バッファー等でカラムからIgG半量体を溶出させ、溶出液をアルカリ性のTrisバッファー等で中和する。中和された溶出液は十分量のPBS等で透析を行い、精製されたIgG半量体を取得することができる。
【0207】
精製したIgG半量体の分子量は、ポリアクリルアミドゲル電気泳動法[Nature, 227, 680 (1970)]、又はウェスタンブロッティング法[Monoclonal Antibodies - Principles and practice, Third edition, Academic Press (1996); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)]など用いて測定することができる。
【0208】
[工程3]
工程3は、工程2で採取、精製された、第1及び第2のIgG半量体を混合し、抗体組成物を得る工程である。第1及び第2のIgG半量体の混合割合は、抗原に対する結合活性、抗原陽性培養細胞株に対する結合活性、各々のCD16a結合領域におけるCD16a結合活性の強さ、第1のIgG半量体と第2のIgG半量体とのCH3間の相互作用等により適宜設定することが好ましい。
【0209】
4.抗体組成物の活性評価
精製したIgG半量体のタンパク質量、IgG半量体から構成される抗体組成物のFcR結合活性、C1q結合活性、抗原結合活性、又はADCC活性若しくはCDC活性等の細胞傷害活性を測定する方法としては、例えば、Molecular Cloning 2nd Edition, Current Protocols in Molecular Biology; Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory, 1988; Monoclonal Antibodies: principles and practice, Third Edition, Acad. Press, 1993; Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press, 1996等に記載の公知の方法が挙げられる。
【0210】
具体的な例としては、抗体組成物の、抗原との結合活性、抗原陽性培養細胞株に対する結合活性はELISA法及び蛍光抗体法(Cancer Immunol. Immunother, 36, 373, 1993)等により測定できる。抗原陽性培養細胞株に対する細胞傷害活性は、CDC活性、ADCC活性等を測定することにより、評価することができる(Cancer Immunol. Immunother, 36, 373, 1993;米国特許出願公開第2004/0259150号明細書)。
【0211】
抗体組成物がCD16aへの結合活性を有することは、遺伝子組み換えCD16aタンパク質を作製して、結合活性を測定することで確認することができる(米国特許出願公開2004/0259150号明細書)。
【0212】
ADCC活性を測定する方法としては、例えば、放射性同位体、蛍光物質又は色素等で標識された標的細胞、抗体組成物及びエフェクター細胞を接触させた後、傷害された標的細胞から遊離される標識物質の活性又は遊離する酵素の生理活性等を測定する方法など挙げられる。
【0213】
CDC活性を測定する方法としては、例えば、放射性同位体、蛍光物質又は色素等で標識された標的細胞、抗体組成物及び補体成分を含む血清等の生体試料を接触させた後、傷害された標的細胞から遊離される標識物質の活性又は遊離する酵素の生理活性を測定する方法など挙げられる。
【0214】
5.糖鎖構造の分析
各種細胞で発現させたIgG半量体の糖鎖構造は、通常の糖タンパク質の糖鎖構造の解析に準じて行うことができる。
【0215】
例えば、IgG半量体に結合している糖鎖はガラクトース(Gal)、マンノース(Man)若しくはフコース(Fuc)などの中性糖、N-アセチルグルコサミン(GlcNAc)などのアミノ糖又はシアル酸(Sial)などの酸性糖から構成されており、糖組成分析及び二次元糖鎖マップ法などを用いた糖鎖構造解析等の手法を用いて行うことができる。
【0216】
(1)中性糖・アミノ糖組成分析
IgG半量体の糖鎖の組成分析は、トリフルオロ酢酸等で、糖鎖の酸加水分解を行うことにより、中性糖又はアミノ糖を遊離し、その組成比を分析することができる。
【0217】
具体的な方法として、例えば、Dionex社製糖組成分析装置を用いる方法が挙げられる。BioLCはHPAEC-PAD(high performance anion-exchange chromatography-pulsed amperometric detection)法(J. Liq. Chromatogr., 6, 1577, 1983)によって糖組成を分析する装置である。
【0218】
また、2-アミノピリジンによる蛍光標識化法でも組成比を分析することができる。具体的には、公知の方法[Agric. Biol. Chem., 55(1), 283-284, 1991]に従って酸加水分解した試料を2-アミノピリジル化で蛍光ラベル化し、HPLC分析して組成比を算出することができる。
【0219】
(2)糖鎖構造解析
IgG半量体における糖鎖の構造解析は、2次元糖鎖マップ法(Anal. Biochem., 171, 73, 1988;生物化学実験法23-糖蛋白質糖鎖研究法、学会出版センター、高橋禮子編、1989年)により行うことができる。2次元糖鎖マップ法は、例えば、X軸には逆相クロマトグラフィによる糖鎖の保持時間又は溶出位置を、Y軸には順相クロマトグラフィによる糖鎖の保持時間又は溶出位置を、それぞれプロットし、既知糖鎖のそれらの結果と比較することにより、糖鎖構造を推定する方法である。
【0220】
具体的には、IgG半量体をヒドラジン分解して、IgG半量体から糖鎖を遊離し、2-アミノピリジン(以下、PAと略記する)による糖鎖の蛍光標識(J. Biochem., 95, 197, 1984)を行った後、ゲルろ過により糖鎖を過剰のPA化試薬などと分離し、逆相クロマトグラフィを行う。次いで、分取した糖鎖の各ピークについて順相クロマトグラフィを行う。これらの結果をもとに、2次元糖鎖マップ上にプロットし、糖鎖スタンダード(TaKaRa社製)、文献(Anal. Biochem., 171, 73, 1988)とのスポットの比較より糖鎖構造を推定することができる。
【0221】
さらに各糖鎖のMALDI-TOF-MSなどの質量分析を行い、2次元糖鎖マップ法により推定される構造を確認することができる。
【0222】
IgG半量体のFcのいずれの部分に糖鎖が結合しているのかは、還元アルキル化処理したIgG半量体をトリプシン、ペプシン、Lys-C、Asp-Nなどのエンドプロテアーゼで処理したものを、逆相クロマトグラフィ(LC)で分離した後に、質量分析計(MS)などで分析することにより確認できる。
【0223】
即ち、目的とするIgG半量体のFcのアミノ酸配列に基づき、プロテアーゼ処理により生成しうるペプチドの分子量及び糖鎖が結合したペプチドの分子量と、MSの分析値が一致するか否かにより、実際に糖鎖が結合しているか否かを確かめることができる。
【0224】
6.糖鎖構造の識別方法
IgG半量体におけるFcに結合する全N-グリコシド結合複合型糖鎖のうち、コアフコースの無い糖鎖の割合は、上記5.に記載の糖鎖構造の分析法を用いることにより識別できる。また、レクチンを用いた免疫学的定量方法を用いることによっても識別できる。
【0225】
レクチンを用いた免疫学的定量方法を用いたIgG半量体における糖鎖構造の識別は、文献[Monoclonal Antibodies: Principles and Applications, Wiley-Liss, Inc., (1995);酵素免疫測定法,第3版,医学書院(1987);改訂版,酵素抗体法,学際企画(1985)]等に記載のウエスタン染色、RIA(Radioimmunoassay)、VIA(Viroimmunoassay)、EIA(Enzymoimmunoassay)、FIA(Fluoroimmunoassay)、MIA(Metalloimmunoassay)などの免疫学的定量方法に準じて、例えば、以下のように行うことができる。
【0226】
IgG半量体の糖鎖構造を認識するレクチンを標識し、標識したレクチンと試料である抗体組成物を反応させる。次に、標識したレクチンと抗体組成物の複合体の量を測定する。
【0227】
IgG半量体の糖鎖構造を識別に用いられるレクチンとしては、例えば、WGA(T.vulgaris由来のwheat-germ agglutinin)、ConA(C.ensiformis由来のconcanavalin A)、RIC(R.communis由来の毒素)、L-PHA(P.vulgaris由来のleukoagglutinin)、LCA(L.culinaris由来のlentil agglutinin)、PSA(P.sativum由来のPea Lectin)、AAL(Aleuria aurantia Lectin)、ACL(Amaranthus caudatus Lectin)、BPL(Bauhinia purpurea Lectin)、DSL(Datura stramonium Lectin)、DBA(Dolichos biflorus Agglutinin)、EBL(Elderberry Balk Lectin)、ECL(Erythrina cristagalli Lectin)、EEL(Euonymus europaeus Lectin)、GNL(Galanthus nivalis Lectin)、GSL(Griffonia simplicifolia Lectin)、HPA(Helix pomatia Agglutinin)、HHL(Hippeastrum Hybrid Lectin)、Jacalin、LTL(Lotus tetragonolobus Lectin)、LEL(Lycopersicon esculentum Lectin)、MAL(Maackia amurensis Lectin)、MPL(Maclura pomifera Lectin)、NPL(Narcissus pseudonarcissus Lectin)、PNA(Peanut Agglutinin)、E-PHA(Phaseolus vulgaris Erythroagglutinin)、PTL(Psophocarpus tetragonolobus Lectin)、RCA(Ricinus communis Agglutinin)、STL(Solanum tuberosum Lectin)、SJA(Sophora japonica Agglutinin)、SBA(Soybean Agglutinin)、UEA(Ulex europaeus Agglutinin)、VVL(Vicia villosa Lectin)、WFA(Wisteria floribunda Agglutinin)が挙げられる。
【0228】
コアフコースを特異的に認識するレクチンを用いることが好ましく、具体的には、例えば、レンズマメレクチンLCA(Lens Culinaris由来のLentil Agglutinin)エンドウマメレクチンPSA(Pisum sativum由来のPea Lectin)、ソラマメレクチンVFA(Vicia faba由来のAgglutinin)及びヒイロチャワンタケレクチンAAL(Aleuria aurantia由来のLectin)を挙げることができる。
【0229】
7.本発明の抗体組成物の使用
本発明の抗体組成物は、互いに異なる抗原に対する抗原結合ドメインを有する第1及び第2のIgG半量体から構成されることで、互いに異なる2種の抗原を認識することができる。
【0230】
従って、本発明の抗体組成物は、異なる2種類の標的とする抗原に合わせた分子形体をとることができるため、該2種類の抗原を発現する両陽性細胞に対して高い選択性を有する抗体組成物医薬品となる。
【0231】
本発明の抗体組成物が結合する抗原としては、いずれの抗原であってもよく、好ましくは癌、免疫疾患、アレルギー疾患又は循環器疾患等に関する抗原分子が挙げられる。例えば、サイトカイン、ケモカイン、増殖因子及び該受容体並びにCD抗原などが挙げられる。
【0232】
サイトカイン又は増殖因子の受容体としては、例えば、インターフェロン(以下、IFNと記す)-α、IFN-β、IFN-γ、インターロイキン(以下、ILと記す)-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12、IL-13、IL-15、IL-17、IL-18、IL-21、IL-23、IL-27、顆粒球コロニー刺激因子(G-CSF)、顆粒球/マクロファージコロニー刺激因子(GM-CSF)、又はマクロファージコロニー刺激因子(M-CSF)に対する受容体などが挙げられる。
【0233】
ケモカイン受容体としては、例えば、SLC、ELC、I-309、TARC、MDC、MIP-3α、CTACKに対する受容体が挙げられる。
【0234】
増殖因子の受容体としては、例えば、Epidermal Growth Factor(EGF)、vascular endothelial growth factor(VEGF)、angiopoietin、fibroblast growth factor(FGF)、hepatocyte growth factor(HGF)、platelet-derived growth factor(PDGF)、insulin-like growth factor(IGF)、erythropoietin(EPO)、TGFβ、Iephrin、angiopoietin、Frizzled ligand、SDF-1に対する受容体などが挙げられる。
【0235】
Cluster of differentiation(以下、CDと記載する)抗原としては、CD1a、CD1c(BDCA1)、CD1d、CD2、CD3、CD4、CD5、CD6、CD7、CD8、CD10、CD11a、CD11b、CD11c、CD14、CD16、CD18、CD19、CD20、CD21、CD22、CD23、CD24、CD25、CD26(DPP-4)、CD27、CD28、CD30、CD32、CD34、CD37、CD38、CD39、CD40、CD43、CD44、CD45、CD47、CD49、CD51、CD52、CD53、CD54、CD55、CD56、CD57、CD59、CD62E、CD62L、CD62P、CD64、CD66a(CEACAM1)、CD66b(NCA-95)、CD66c(NCA-50/90)、CD66d(CGM1)、CD66e(CEA)、CD66f(PSG)、CD68、CD69、CD70、CD72、CD73、CD74、CD75、CD76、CD77、CD78、CD79a、CD79b、CD80(B7.1)、CD81、CD82、CD83、CD84(SLAMF5)、CD85a(ILT-5)、CD85b(ILT8)、CD85c(LIR8)、CD85d(ILT4)、CD85f(ILT11)、CD85g(ILT7)、CD85h(ILT1)、CD85i(LIR6a)、CD85j(ILT2)、CD85k(ILT3)、CD85m(ILT10)、CD86(B7.2)、CD87、CD89、CD94(NKG2)、CD95(Fas)、CD98、CD103、CD107a(LAMP1)、CD114(G-CSFR)、CD115(M-CSFR)、CD116(GM-CSFR)、CD117(SCF-R)、CD119(IFNGR1)、CD121a(IL-1R1)、CD122(IL-2Rb)、CD123(IL-3Ra)、CD124(IL-4Ra)、CD125(IL-5Ra)、CD126(IL-6Ra)、CD127(IL-7Ra)、CD134(OX40)、CD135(FLT3)、CD137(4-1BB)、CD138(Syndecan-1)、CD140(PDGFR)、CD146(MUC18)、CD147(EMMRRIN)、CD152(CTLA-4)、CD158a(KIR2DL1)、CD158b1(KIR2DL2)、CD158b2(KIR2DL3)、CD158c(KIR2DS6)、CD158d(KIR2DL4)、CD158e1(KIR3DL1)、CD158e2(KIR3DS1)、CD158f(KIR2DL5)、CD158g(KIR2DS5)、CD158h(KIR2DS1)、CD158i(KIR2DS4)、CD158j(KIR2DS2)、CD158k(KIR3DL2)、CD159a(NKG2A)、CD159c(NKG2C)、CD161(NKRP1A)、CD162(PSGL-1)、CD163、CD169(SIGLEC1)、CD178(FasL)、CD183(CXCR3)、CD184(CXCR4)、CD185(CXCR5)、CD191(CCR1)、CD193(CCR3)、CD194(CCR4)、CD195(CCR5)、CD196(CCR6)、CD197(CCR7)、CD198(CCR8)、CD199(CCR9)、CD200(OX2)、CD206(MMR)、CD207(Langerin),CD209(DC-SIGN)、CD212(IL-12Rβ1)、CD213a1(IL-13Ra1)、CD213a2(IL-13Ra2)、CD215(IL-15RA)、CD217(IL-17R)、CD218a(IL-18Ra)、CD218b(IL-18Rβ)、CD223(LAG3)、CD226(DNAM-1)、CD229(SLAMF3)、CD252(OX40L)、CD269(BCMA)、CD272(BTLA)、CD274(PD-L1)、CD276(B7H3)、CD278(ICOS)、CD279(PD-1)、CD281(TLR1)、CD282(TLR2)、CD283(TLR3)、CD284(TLR4)、CD286(TLR6)、CD288(TLR8)、CD289(TLR9)、CD294(CRTH2)、CD301(MGL)、CD302(DCL1)、CD303(BDCA2)、CD304(BDCA4)、CD317(BST2)、CD324(E-cadherin)、CD326(EpCAM)、CD357(GITR)、CD358(DR6)、CD360(IL-21R)、CD365(TIM-1)、CD366(TIM-3)、CD369(DECTIN-1)、CD370(CLEC9A)、human leukocyte antigen(HLA)-Class II及びHLA-Iなどが挙げられる。
【0236】
更に、腫瘍の病態形成に関わる抗原又は免疫機能を調節する抗体の抗原としては、例えば、ガングリオシドGM1、GM2、GD2、GD3、Lewis X、Lewis Y、CD3、CD4、CD40、CD40リガンド、B7ファミリー分子(例えば、CD80、CD86、CD274、B7-DC、B7-H2、B7-H3又はB7-H4)、B7ファミリー分子のリガンド(例えば、CD28、CTLA-4、ICOS、PD-1又はBTLA)、OX-40、OX-40リガンド、CD137、tumor necrosis factor(TNF)受容体ファミリー分子(例えば、DR3、DR4、DR5、BAFFR、LIGHT、TNFR1又はTNFR2)、TNF-related apoptosis-inducing ligand receptor(TRAIL)ファミリー分子、TRAILファミリー分子の受容体ファミリー(例えば、TRAIL-R1、TRAIL-R2、TRAIL-R3又はTRAIL-R4)、receptor activator of nuclear factor kappa B ligand(RANK)、RANKリガンド、CD25、葉酸受容体、Mesothelin、SIGLEC8、サイトカイン・ケモカイン受容体[例えば、IL-1RII、IL-12Rβ2、IL-17RB、IL-23R、IL-27Rα、IL-31R、IL-33Rα、IL-36R、transforming growth factor(TGF)βRII、CCR2、CCR10、CXCR1、CXCR2]、NK細胞受容体(例えば、NKG2D、E4BP4、NKp30、NKp44、NKp46、AhR)、T細胞受容体(例えば、TCRα/β、TCR Vβ11、TCRγ/δ、TSLPR、SLAM、SLAMF6、LAP,GARP、SR-A1、CD200R、DCR3、TIGIT)、B細胞受容体(例えば、BLYS、APRIL、TSLPR)、樹状細胞受容体(例えば、FCER1A、TLR7、CADM1、XCR1、BTLA、SIRPA、DCIR、TROP2、AXL、SIGLEC6、SIGLEC15、CX3CR1、S100A8、S100A9、ASGR1)などが挙げられる。
【0237】
受容体チロシンキナーゼとしては、例えば、EGF受容体、インスリン受容体、IGF-1受容体、NGF受容体、PDGF受容体、M-CSF受容体、FGF受容体、VEGF受容体及びEph受容体などが挙げられる。チロシンキナーゼ会合型受容体としては、例えば、サイトカイン受容体及びFc受容体などが挙げられる。また、細胞接着分子としては、例えば、カドヘリン及びインテグリンなどが挙げられる。Gタンパク共役型受容体としては、例えば、アデノシン受容体及びグルカゴン受容体などが挙げられる。
【0238】
具体的には、例えば受容体チロシンキナーゼとして、Epidermal Growth Factor Receptor(EGFR)、V-ERB-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog2(HER2)、V-ERB-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog3(HER3)、V-ERB-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog4(HER4)、Insulin Receptor(INSR)、Insulin-like Growth FactorI Receptor(IGF1R)、Nerve Growth Factor Receptor(NGFR)、Platelet-derived Growth Factor Receptor, Alpha(PDGFRA)、Platelet-derived Growth Factor Receptor, Beta(PDGFRB)、Colony-stimulating Factor Receptor(CSF1R)、Colony-stimulating Factor2 Receptor, Alpha(CSF2RA)、Colony-stimulating Factor3 Receptor, Granulocyte(CSF3R)、Fibroblast Growth Factor Receptor1(FGFR1)、Fibroblast Growth Factor Receptor2(FGFR2)、Fibroblast Growth Factor Receptor3(FGFR3)、Fibroblast Growth Factor Receptor4(FGFR4)、Kinase Insert Domain Receptor(KDR)、Ephrin Receptor EphA1(EPHA1)、Ephrin Receptor EphA2(EPHA2)、Ephrin Receptor EphA3(EPHA3)、などが挙げられる。
また、チロシンキナーゼ会合型受容体として、interleukin-1 receptor 1(IL-1R1)、interleukin-1 receptor accessory protein(IL-1RAP)、hepatocyte growth factor receptor(c-Met)、macrophage stimulating 1 receptor(RON)、platelet-derived growth factor receptor(PDGFR)、junctional adhesion molecule-like(JAML)、nectin-like protein 5(Necl-5)、tumor necrosis factor receptor 1(TNF-R1)、tumor necrosis factor receptor 2(TNF-R2)、TNF-related apoptosis-inducing ligand receptor 1(TRAIL-R1)、TNF-related apoptosis-inducing ligand receptor 2(TRAIL-R2)、death receptor 3(DR3)、death receptor 6(DR6)、receptor activator of NF-kB(RANK)、nerve growth factor receptor(NGFR)、lymphotoxin-beta receptor(LTβR)、OX40(TNFRSF4)、Fas(TNFRSF6)、4-1BB(TNFRSF9)、Fn14(TNFRSF12A)、TACI(TNFRSF13B)、BAFF-R(TNFRSF13C)、HVEM(TNFRSF14)、BCMA(TNFRSF17)、GITR(TNFRSF18)、TROY(TNFRSF19)、ectodysplasin A1 receptor(EDAR)、ectodysplasin A2 receptor(XEDAR)、receptor expressed in lymphoid tissues(RELT)、CD3、CD27、CD30、CD40、FcαRI、FcγRIII及びFcεRI、Fc Fragment of IgG,Receptor Transpoter,Alpha(FCGRT)、などが挙げられる。
また、細胞接着分子としては、Integrin,Alpha9(ITGA9)、P-selectin Glycoprotein Ligand-1(PSGL-1)、Cadherin11(CDH11)、Mucosal Vascular Addression Cell Adhesion Molecule1(MADCAM1)、Integrin,Alpha4(ITGA4)、Integrin,Beta4(ITGB4)、Gタンパク共役型受容体としては、Adenosine A2A Receptor(ADORA2A)、Adenosine A2B Receptor(ADORA2B)、Repulsive Guidance Moleculea(RGMA)、Glucagon Receptor(GCGR)、Prolactin Receptor(PRLR)、Glucagon-like Peptide1 Receptor(GLP1R)、などが挙げられる。
【0239】
本発明の抗体組成物を含有する医薬は、治療薬として単独で投与することも可能ではあるが、通常は薬理学的に許容される一つ又はそれ以上の担体と一緒に混合し、製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として提供するのが好ましい。
【0240】
投与経路は、治療に際して最も効果的なものを使用するのが好ましい。例えば、経口投与、又は口腔内、気道内、直腸内、皮下、筋肉内及び静脈内等の非経口投与を挙げることができ、抗体組成物製剤の場合、好ましくは静脈内投与を挙げることができる。
【0241】
投与形態としては、例えば、噴霧剤、カプセル剤、錠剤、顆粒剤、シロップ剤、乳剤、座剤、注射剤、軟膏、テープ剤等が挙げられる。
【0242】
経口投与に適当な製剤としては、例えば、乳剤、シロップ剤、カプセル剤、錠剤、散剤、顆粒剤等が挙げられる。
【0243】
乳剤及びシロップ剤のような液体調製物は、水、ショ糖、ソルビトール、果糖等の糖類、ポリエチレングリコール若しくはプロピレングリコール等のグリコール類、ごま油若しくはオリーブ油、大豆油等の油類、p-ヒドロキシ安息香酸エステル類等の防腐剤、又はストロベリーフレーバー若しくはペパーミント等のフレーバー類等を添加剤として用いて製造できる。
【0244】
カプセル剤、錠剤、散剤又は顆粒剤等は、乳糖、ブドウ糖、ショ糖若しくはマンニトール等の賦形剤、デンプン若しくはアルギン酸ナトリウム等の崩壊剤、ステアリン酸マグネシウム若しくはタルク等の滑沢剤、ポリビニルアルコール、ヒドロキシプロピルセルロース若しくはゼラチン等の結合剤、脂肪酸エステル等の界面活性剤、又はグリセリン等の可塑剤等を添加剤として用いて製造できる。
【0245】
非経口投与に適当な製剤としては、例えば、注射剤、座剤、噴霧剤等が挙げられる。
【0246】
注射剤は、塩溶液若しくはブドウ糖溶液又は両者の混合物からなる担体等を用いて調製される。又は、抗体組成物を常法に従って凍結乾燥し、これに塩化ナトリウムを加えることによって粉末注射剤を調製することもできる。
【0247】
座剤はカカオ脂、水素化脂肪又はカルボン酸等の担体を用いて調製される。
【0248】
また、噴霧剤は該抗体組成物そのもの、ないしは受容者の口腔及び気道粘膜を刺激せず、かつ該抗体組成物を微細な粒子として分散させ吸収を容易にさせる担体等を用いて調製される。
【0249】
担体として、具体的には、乳糖、グリセリン等が例示される。該抗体組成物及び用いる担体の性質により、エアロゾル、ドライパウダー等の製剤が可能である。また、これらの非経口剤においても経口剤で添加剤として例示した成分を添加することもできる。
【0250】
投与量又は投与回数は、目的とする治療効果、投与方法、治療期間、年齢、体重等により異なるが、有効成分の量として、通常成人1日当たり10μg/kg~20mg/kgである。
【0251】
また、抗体組成物の各種腫瘍細胞に対する抗腫瘍効果を検討する方法は、インビトロ実験としては、CDC活性測定法、ADCC活性測定法等が挙げられ、インビボ実験としては、マウス等の実験動物での腫瘍系を用いた抗腫瘍実験等が挙げられる。
【0252】
本発明の一態様としては、第1及び第2のIgG半量体を含むキットが挙げられる。キットには、任意で、適当な容器(例えば、ボトル、バイアル、試験管)、説明等が示されたラベル、フィルター、針、注射器、及び使用説明書を含む、その他の材料を含んでいてもよい。
【0253】
上記のキットにおいては、有効成分であるIgG半量体以外に、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、タンパク質安定剤(例えば、BSA又はゼラチンなど)、保存剤、ブロッキング溶液、反応溶液、反応停止液、試料を処理するための試薬等が必要に応じて混合されていてもよい。
【0254】
上記キットの使用態様としては、例えば、(1)第1のIgG半量体及び第2のIgG半量体を予め混合した上で投与する方法、並びに(2)第1のIgG半量体及び第2のIgG半量体を別々に投与する方法が挙げられる。前記(2)第1のIgG半量体及び第2のIgG半量体を別々に投与する方法としては、例えば、第1のIgG半量体及び第2のIgG半量体を同時に又は逐次的に投与する方法が挙げられる。第1のIgG半量体及び第2の半量体の量及び比率は適宜調整できる。
【0255】
また、本発明の一態様として、第1のIgG半量体と第2のIgG半量体とからなり、且つ互いに異なる第1の抗原及び第2の抗原に対する抗体組成物の製造に用いるための、第1のIgG半量体が挙げられる。
【0256】
本発明の別の一態様として、第1のIgG半量体と第2のIgG半量体とからなり、且つ互いに異なる第1の抗原及び第2の抗原に対する抗体組成物の製造に用いるための、第2のIgG半量体が挙げられる。
【0257】
本発明の一態様として、第2のIgG半量体と併用する、第1のIgG半量体が挙げられる。また、本発明の一態様として、第1のIgG半量体と併用する、第2のIgG半量体が挙げられる。ここで、第1のIgG半量体と第2のIgG半量体とを「併用する」とは、第1のIgG半量体と第2のIgG半量体を同時又は逐次的に投与して、第1のIgG半量体と第2のIgG半量体とからなり、かつ互いに異なる第1の抗原及び第2の抗原に対する抗体組成物とすることをいう。
【0258】
以下、本発明を実施例により具体的に説明するが、本発明は下記実施例に限定されるものではない。
【実施例】
【0259】
本発明者らは本発明の抗体分子の定常領域には、通常のヒトIgG1抗体と異なる下記の要素が必要であると着想した。
1)
図4に示すよう、異なる抗原分子X及びYに対する抗体の半量体の混合物であること、すなわちヒンジ領域におけるH鎖間のジスルフィド結合による共有結合が存在しない「HL体」であること。
2)
図3に示すように、抗原分子X、Yに対するそれぞれのHL体が、X、Yの両方を発現する標的細胞表面に結合した後に会合して通常のIgGと同様のH2L2体を形成し、CD16a結合領域を構成し、抗体の活性(例えば、ADCC活性)を惹起すること。
3)
図3に示すように、単一の抗原分子のみを発現する細胞に対しては抗体の活性を惹起しないよう、XもしくはYに対するHL体同士が細胞表面で会合しても、CD16a結合領域を構成しないこと。
【0260】
本実施例において、上記1)についてはヒンジドメインのシステインをアラニンに置換することにより試みた。
【0261】
X線結晶構造解析により、ヒトIgG1のFcとCD16aとは非対称な結合様式を示すことが知られている(Nature 2000; 406: 267-73, J Biol Chem 2001; 276: 16469-77, Mizushima T, Genes Cells 2011; 16: 1071-80)。したがって、本発明者らは、上記2)及び3)を達成するために、上記のHL体のCH2ドメインに、かかる非対称の結合様式を利用した下記に述べるアミノ酸改変を導入することを着想した。
【0262】
図5に示すように、CD16aはFc中の二つのCH2ドメインに、それぞれ別の部位で接する。仮に二つのCH2ドメインをCH2-A、CH2-Bと名付け、CH2-A上でのCD16aとの相互作用部位を領域1、CH2-B上でのCD16aとの相互作用部位を領域2とする。
【0263】
領域1としてはL235、G236、G237、P238、S239、D265、V266、S267、H268、E269、E294、Q295、Y296、N297、S298、T299、R301、N325、A327、I332等が知られる。また、領域2としてはL235、G236、G237、K326、A327、L328、P329、A330等が知られる。
【0264】
図5に示すように、Fcの構造の対称性により、実際のFcとCD16aが結合している結合領域の反対側に、CH2-Aの領域2、及びCH2-Bの領域1からなる、実際にはCD16aとの結合に使われていない結合領域がもう一つ存在する。
【0265】
図6に示すように、このCD16aとの結合に使われていないCH2-Aの領域2、及びCH2-Bの領域1を、それぞれアミノ酸改変を導入して「破壊」する。この場合、そのような改変CH2-Aを有するHL体(X)同士、あるいは改変CH2-Bを有するHL体(Y)同士がホモ会合してH2L2体を構成した場合(XX、YY)には、領域1のみ、あるいは領域2のみしか存在しないこととなる。したがって、これらのホモ会合体は、CD16aは十分な親和性を持って結合することができない可能性が考えられる。これに対し、そのような改変CH2-A、改変CH2-Bをそれぞれ構成要素として有するHL体がヘテロ会合したH2L2体(XY)は、上記2)及び3)の条件を満たす可能性が考えられる。
【0266】
[実施例1]
CD16a結合を「破壊」したヒトIgG1抗CCR6抗体の作製
CD16aの結合を減弱させることができるCH2上の部位を特定するため、上記の領域1又は領域2をアミノ酸改変によって「破壊」した抗体を作製した。すなわち、
図7に示すように、通常のヒトIgG1のフォーマット上で、候補となる部位のアミノ酸残基を改変した。
【0267】
この場合組換え抗体としてヒトIgG1を発現させるために二つのH鎖は発現ベクター上で同一の遺伝子でコードされCH2-AとCH2-Bの区別はなく両方に同時にアミノ酸残基が改変され、CD16aの結合部位は表裏の二か所が同時に破壊されるため、ADCC活性が低下する改変部位を探索することとなる。
【0268】
なお、本実施例において、特に説明の無い限り抗体分子は全てH鎖297位のアスパラギンに結合するN-結合型糖鎖のα1,6フコースを完全に除去されADCC活性が増強されているものを作製している。そのため抗体を発現するための宿主細胞には、フコース転移酵素(FUT8)ノックアウトCHO細胞(国際公開第2005/035586号、国際公開第02/31140号)を用いた。
【0269】
(1)CD16a結合を「破壊」したヒトIgG1抗CCR6抗体発現ベクターの作製
図5及び6にCH2ドメイン上の「領域1」及び「領域2」の模式図を示す。
図6に示すように、CD16aに対する結合を「破壊」するために、CH2ドメイン上の「領域1」でCD16aと結合するアミノ酸部位P238、D265、S267、CH2ドメイン上の「領域2」でCD16aと結合するアミノ酸部位K326、L328、P329に対して、アミノ酸改変を導入したヒトIgG1抗ヒトCCR6抗体(国際公開第2013/005649号)の発現ベクターを構築した。構築に用いた抗体の遺伝子配列とアミノ酸配列を表2に示す。
【0270】
【0271】
配列番号1、3、5、7に示す遺伝子配列からなる、ヒトIgG1抗ヒトCCR6抗体発現ベクターpCI-IgG1_KG1684を鋳型に用い、PrimeSTAR Max DNA Polymerase(タカラバイオ)及び改変部位を導入したプライマー(シグマオリゴ)を用い、PrimeSTAR Max DNA Polymeraseの添付文書に従いPCR反応を行った。
【0272】
PCR反応はGeneAmp PCR System 9700(Applied Biosystems)を用い、98℃、1分間にて熱変性後、98℃にて10秒間、58℃にて5秒間、72℃にて5秒間の反応を30サイクル行った。0.8%アガロースゲルを用いた電気泳動に反応液を供し、QIAquick Gel Extraction Kit(Qiagen)を用いて、増幅断片を回収した。In-Fusion HD Cloning Kit(クロンテック)を用いてプラスミドpCI vector(プロメガ)と連結反応を行い、該反応液を用いて大腸菌DH5αコンピテントセル(タカラバイオ)を形質転換した。
【0273】
得られた形質転換株のクローンより各プラスミドDNAを調製し、Big Dye Terminator Cycle Sequencing Kit v3.1(Applied Biosystems)を用いて添付の説明書に従って反応後、同社のDNAシーケンサーABI PRISM 3700 DNA Analyzerによりプラスミドに挿入されたDNAの塩基配列を解析した。
【0274】
(2)CD16a結合を「破壊」したヒトIgG1抗CCR6抗体の発現
以下の方法で、宿主細胞に(1)で作製された発現ベクターを導入した。宿主細胞には、FUT8ノックアウトCHO細胞(国際公開第2005/035586号、国際公開第02/31140号)使用した。プラスミド導入の方法は添付の説明書に従った。
【0275】
培養液量は200mLで行い、37℃、5%CO2、125rpmの設定条件下で、5日間培養した。培養後、細胞懸濁液の遠心分離を行い、0.2μmフィルター(ThermoScientific)を通して改変抗体を含む培養上清を回収した。
【0276】
各抗体の、精製した抗体サンプルの名称を表3に示す。
【0277】
【0278】
(3)CD16a結合を「破壊」したヒトIgG1抗CCR6抗体の精製
以下に示す、MabSelect SuRe(GEヘルスケア)を用いたアフィニティ精製により、改変抗体を精製した。レジンをPBSで平衡化した後、(2)で取得された培養上清をロードし、PBSで2回洗浄した。洗浄後、溶出バッファー(100mMクエン酸、pH3.5)を用いて抗体を溶出し、中和バッファー(2M Tris-HCl、pH8.0)を1/10量加えて中和した。
【0279】
続いて、Amicon Ultra-4 Centerifugal Filter Units(ミリポア)を用いて限外濾過による濃縮及びバッファー(10mMクエン酸、150mM NaCl、pH6.0)置換を行い、Nanodrop8000(ThermoScientific)を使用して280nMにおける吸光度(A280)を測定し、抗体溶液の濃度測定及び調製を行った。
【0280】
(4)CD16a結合を「破壊」したヒトIgG1抗CCR6抗体のSDS-PAGEによる精製度の評価
各種CD16結合を欠損したヒトIgG1抗CCR6抗体精製サンプルの精製度を評価するため、抗体精製サンプル約1μgを用いて、公知の方法[Nature, 227 680 (1970)]に従ってSDS変性ポリアクリルアミド電気泳動(以下、SDS-PAGEと表記する)を行った。
【0281】
その結果、還元条件下において、各種CD16結合を欠損したヒトIgG1抗CCR6抗体は、通常IgG1型と同様に、H鎖が約50キロダルトン(以下、kDaと表記する)、L鎖が約25kDa付近にバンドが認められた。また、非還元条件においては、約150kDa付近にバンドが認められたことから、作製した抗CCR6ドメイン交換抗体は目的のH鎖及びL鎖から構成されていることが確認された。
【0282】
以上の結果より、本実施例の第3項で得られた各種CD16結合を欠損したヒトIgG1抗CCR6抗体の精製サンプル中には、それぞれH鎖及びL鎖から構成される目的のIgG分子が十分な割合で含まれることが確認された。
【0283】
(5)CD16a結合領域を「破壊」したヒトIgG1抗CCR6抗体のADCC活性
エフェクター細胞としてNK細胞株であるNK-92(ATCC)にヒトCD16a (Val型)を遺伝子導入して安定的に発現させた、NK-92/CD16トランスフェクタントを、標的細胞としてヒトCCR6/CHOトランスフェクタントを用いた。培養していたそれぞれの細胞を回収・細胞をカウントし、それぞれ8x105cells/mL、2x105cells/mLになるようにRPMI培地(5%FBS/1%PSを添加したフェノールレッド不含のRPMI1640培地)を用いて調製した。
【0284】
96well plateに抗体溶液を50μL/wellずつ連続分注機で分注後、標的細胞を50μL/wellずつ分注した。エフェクター細胞を50μL/wellずつ分注し、1800rpmで2分間遠心分離し、細胞が均等に播種されていることを確認した。
【0285】
CO2インキュベーターで37℃、3時間15分間静置後、Totalコントロールに10分の1量の可溶化溶液を分注し、37℃、45分間静置した。1800rpmで2分間遠心分離後、上清50μLをELISAプレートに分注した。基質(粉)を懸濁バッファー12mLに溶かし発色溶液を作製し、発色溶液を50μL/wellずつアプライし反応させた。停止溶液50μL/well加え、プレートリーダーにて吸光度(A450)を測定した。
【0286】
なおADCC測定用キットとして、CytoTox96(R)Non-Radioactive Cytotoxicity Assay(プロメガ)を用いた。以下の式を用いてADCC活性(%)を算出した。
【0287】
ADCC活性(%)=100x(S-E-T)/(Max-T)
S=サンプル反応ウェル吸光度-培地ウェル吸光度
E=エフェクターウェル吸光度-培地ウェル吸光度
T=標的ウェル吸光度-培地ウェル吸光度
Max=100%反応ウェル-100%反応対照ウェル
【0288】
結果を
図8に示す。
図8に示されるように、CH2の領域1ではIgG1_D265A、IgG1_P238A/S267L、IgG1_D265A/S267Lからなる改変体が、標的細胞に対して顕著にADCC活性が低下することが確認された。
【0289】
またCH2の領域2では、IgG1_P329Y、IgG1_K326W/P329Y、IgG1_L328V/P329Y、IgG1_K326W/L328V/P329Yからなる改変体が、顕著にADCC活性が低下することが確認され、いずれの改変体においてもP329Y改変が含まれることがわかった。
【0290】
以上の結果より、CH2ドメイン上の「領域1」では、D265A又はP238A/S267Lのアミノ酸改変を導入することによって、CH2ドメイン上の「領域2」では少なくともP329Yのアミノ酸改変を導入することによって、CD16a結合部位を破壊できることが明らかとなった。
【0291】
[実施例2]
CD16a結合非対称改変を導入したヒトIgG1抗CCR6一価抗体の作製
実施例1において、CD16aとFcの非対称の結合部位を破壊できるアミノ酸配列の一例として、CH2-Aでは「領域1」由来のD265A又はP238A/S267L、CH2-Bでは「領域2」由来のP329Yを選択した。
【0292】
本項では、CH2-AとCH2-Bのみにそれぞれ上記の改変を非対称に導入してADCC活性を評価するために、二分子のH鎖を個別の遺伝子にコードし発現させ、それらをヘテロ会合させることができる「一価抗体」(国際公開第2011/108502号)を基本骨格に用いることとした。
図9にかかる一価抗体の一態様の模式図を示す。
図9中、前記ヘテロ会合体は、「非対称改変体#1」である。
【0293】
(1)CD16a結合非対称改変一価抗体発現ベクターの作製
CH2-A(D265A又はP238A/S267L)、CH2-B(P329Y)を非対称あるいは対称に導入したヒトIgG1抗CCR6一価抗体(国際公開第2011/108502号)の発現ベクターを構築した。
【0294】
ヒトIgG1抗CCR6一価抗体発現ベクターpCI-mvG1_KG1684を鋳型に用い、PrimeSTAR Max DNA Polymerase(タカラバイオ)及び改変部位を導入したプライマー(シグマオリゴ)を用い、PrimeSTAR Max DNA Polymeraseの添付文書に従いPCR反応を行った。
【0295】
PCR反応はGeneAmp PCR System 9700(Applied Biosystems)を用い、98℃、1分間にて熱変性後、98℃にて10秒間、58℃にて5秒間、72℃にて5秒間の反応を30サイクル行った。
【0296】
0.8%アガロースゲルを用いた電気泳動に反応液を供し、QIAquick Gel Extraction Kit(Qiagen)を用いて、増幅断片を回収した。In-Fusion HD Cloning Kit(クロンテック)を用いてプラスミドpCI vector(プロメガ)と連結反応を行い、該反応液を用いて大腸菌DH5αコンピテントセル(タカラバイオ)を形質転換した。
【0297】
得られた形質転換株のクローンより各プラスミドDNAを調製し、Big Dye Terminator Cycle Sequencing Kit v3.1(Applied Biosystems)を用いて添付の説明書に従って反応後、同社のDNAシーケンサーABI PRISM 3700 DNA Analyzerによりプラスミドに挿入されたDNAの塩基配列を解析した。
【0298】
(2)CD16a結合非対称改変一価抗体の発現
実施例1の第2項と同様の方法で、当該抗体の発現を行い、抗体を含む培養上清を回収した。各精製抗体サンプルとその改変部位を表4に示す。なお、改変部位におけるアミノ酸残基置換は実施例1と同様の方法により行った。
【0299】
【0300】
(3)CD16a結合非対称改変一価抗体の精製
実施例1の第3項と同様の方法で、当該抗体の精製を行った。溶出バッファーは100mMクエン酸、pH3.9を用いた。その後、AKTA FPLC(GEヘルスケア)及びSuperdex High-performance Column(GEヘルスケア)を用いて、該抗体溶液より単量体画分を分取した。AKTAシステム孔径0.22μmのメンブランフィルター(Millex-GV,ミリポア)で濾過滅菌することにより精製抗体を得た。Nanodrop8000(ThermoScientific)を使用して280nmにおける吸光度(A280)を測定した。
【0301】
(4)CD16a結合非対称改変を導入したヒトIgG1抗CCR6一価抗体のSDS-PAGEによる精製度の評価
各種CD16a結合非対称改変を導入したヒトIgG1抗CCR6一価抗体精製サンプルの精製度を評価するため、抗体精製サンプル約1μgを用いてSDS-PAGEを行った。
【0302】
その結果、還元条件下において、すべての改変体は、野生型一価抗体と同様に、H鎖及びFc融合L鎖が約50kDa付近にバンドが認められた。また、非還元条件においては、約100kDa付近にバンドが認められたことから、作製した非対称改変体及び対称改変体は目的のH鎖及びL鎖から構成されていることが確認された。
【0303】
以上の結果より、本実施例の第3項で得られた各種CD16a結合非対称改変を導入したヒトIgG1抗CCR6一価抗体の精製サンプル中には、それぞれH鎖及びFc融合L鎖から構成される目的の一価抗体分子が十分な割合で含まれることが確認された。
【0304】
(5)CD16a結合非対称改変一価抗体のADCC活性
実施例1の第5項と同様の方法で、ADCC活性を測定した。結果を
図10示す。
図10に示されるように、CD16a結合の非対称改変を導入した一価抗体(非対称改変体#1~4)は、抗体濃度依存的に標的細胞を傷害することが確認された。一方、CD16a結合の対称改変を導入した一価抗体(対称改変体#1~#5)は、標的細胞に対してADCC活性を示さないことが確認された。
【0305】
以上の結果より、CD16a結合の非対称改変を導入した一価抗体はヒトCD16aに対する結合性が維持され、標的細胞に対してADCC活性を発揮することできることが確認された。
【0306】
一方で両方のCH2ドメインに同じ改変を導入した場合はADCC活性が失われることから、同じ改変CH2を有する抗体が細胞表面上でホモフィリックな会合をした場合にはADCC活性が誘導されないことが確認され、本発明が目指す二つの抗原に細胞表面上でヘテロ会合して初めてADCC活性を発揮するHL抗体を構成するための改変CH2ドメインが見出された。
【0307】
[実施例3]
本実施例では、実施例1,2で得られたヘテロ会合して初めてADCC活性を誘導できる改変CH2を、異なる抗原に対する二種類の抗体の半量体(HL体)に搭載し、二種類の抗原を共発現する標的細胞選択的にADCC活性が誘導できるか否かを検証した。
【0308】
CH3ドメイン同士の相互作用はJ Immunol 2011; 187: 3238-3246で報告されている。ヒトIgG1のCH3ドメインの相互作用(KD値)は3.0×10-9M、ヒトIgG4のCH3ドメインのKD値は4.8x10-8Mで、ヒトIgG4のCH3ドメインの相互作用はIgG1よりも約6~7倍弱い。
【0309】
この性質とヒンジ領域におけるH鎖間のジスルフィド結合を切断するアミノ酸改変(C226A/C229A:AA)を利用することで抗体の半量体の作製を試みた。半量体のH鎖定常領域はヒトIgG1を基本骨格とし、CH3ドメインのみをヒトIgG4配列に交換し、さらにヒンジ領域にアミノ酸改変(AA)を加えたドメイン交換抗体(以下IgG1114_AA型と称する)を用いた。
【0310】
加えて、ADCC活性を強化するために公知のADCC活性増強アミノ酸改変をCH2ドメインに施し、さらにAsn297に結合するN-結合型糖鎖のα1,6フコースを除去、最後にCD16a結合非対称アミノ酸改変を導入した。
図11に、IgG1114_AA_AAA_D265A(/P329Y)型のIgG半量体の模式図を示す。二種類のモデル抗原として、CD4とCD70を用いた。
【0311】
上記に示す改変を組み合わせた、抗CD4抗体(J. Immunol. 1992; 149:1779-1787)及び抗CD70抗体(国際公開第2007/03637号)を以下の手順に従い作製した。IgG1114_AA型に公知のADCC活性増強アミノ酸改変(S298A/E333A/K334A:AAA)改変、CD16a結合非対称アミノ酸改変(D265AあるいはP329Y)を導入したアミノ酸配列から構成される重鎖定常領域を有する抗CD4及びCD70抗体をIgG1114_AA_AAA_D265A(/P329Y)型抗CD4半量体、IgG1114_AA_AAA_D265A(/P329Y)型抗CD70半量体とそれぞれ称する。
【0312】
設計された各種抗CD4及びCD70半量体の各ドメインが由来するサブクラス、及び重鎖定常領域のアミノ酸配列の対応を表5に示す。また、用いたCD4及びCD70に対する抗体の遺伝子配列とアミノ酸配列を表6に示す。
【0313】
【0314】
【0315】
(1)抗CD4半量体及び抗CD70半量体発現ベクターの作製
ヒトIgG1抗CD4抗体発現ベクターpCI-IgG1_CD4(ibalizumab)(配列番号5、7、41、43)あるいは、ヒトIgG1抗CD70抗体発現ベクターpCI-IgG1_CD70(2H5)(配列番号5、7、45、47)より、制限酵素NheI及びNotIを用いて、約9kbpのDNA断片を切り出し精製した。
【0316】
精製したDNA断片と、ヒトIgG1抗体のCH1ドメイン、ヒンジドメイン(C226A/C229A改変を加えたもの)、CH2ドメイン(S298A/K333A/E334A改変、D265AあるいはP329Y改変を加えたもの)、ヒトIgG4抗体のCH3ドメインからなる人工合成遺伝子とをIn-Fusion HD Cloning Kit(クロンテック)を用いて連結反応を行い、該反応液を用いて大腸菌DH5αコンピテントセル(タカラバイオ)を形質転換した。得られた形質転換株のクローンより各プラスミドDNAを調製し、ファスマックでDNAの塩基配列を解析した。
【0317】
(2)各種抗CD4IgG1抗体及び抗CD70IgG1抗体並びにこれら抗体の半量体の発現
実施例1の第2項と同様の方法で、当該抗体の発現を行い、抗体を含む培養上清を回収した。
【0318】
精製した抗体サンプルの名称を表7に示す。
【0319】
【0320】
(3)抗CD4半量体及び抗CD70半量体の精製
実施例1の第3項と同様の方法で、当該抗体の精製を行い、抗体溶液の濃度測定及び調製を行った。
【0321】
(4)抗CD4半量体及び抗CD70半量体のSDS-PAGEによる精製度の評価
調製した各種抗体サンプルの精製度を評価するため、抗体精製サンプル約1μgを用いて、SDS-PAGEを行った。結果を
図12に示す。
【0322】
図12に示すように、精製した抗体はすべて、還元条件下でH鎖が約50kDa、L鎖が約25kDa付近にバンドが認められた。また、非還元条件では、抗CD4 IgG1抗体及び抗CD70 IgG1抗体は約150kDa、抗CD4半量体及び抗CD70半量体は約75kDa付近にバンドが認められたことから、作製したCD4及びCD70 IgG1抗体は目的のH鎖及びL鎖から構成された抗体構造であること、抗CD4半量体及び抗CD70半量体は目的のH鎖及びL鎖から構成され、半量体を形成しやすい抗体構造になっていることが確認された。
【0323】
以上の結果より、本実施例の第3項で得られた抗CD4半量体及び抗CD70半量体精製サンプル中には、目的の抗体分子が十分な割合で含まれることが確認された。
【0324】
(5)抗CD4 IgG1抗体及び抗CD70 IgG1、並びにこれら抗体の半量体のCD4/CD70両陽性細胞、CD4及びCD70単陽性細胞に対するADCC活性
実施例1の第5項と同様の方法で、ADCC活性を測定した。標的細胞は、CD4単陽性細胞としてCD4/EL-4トランスフェクタント、CD70単陽性細胞としてMT-1、CD4/CD70両陽性細胞としてTL-Om1を用いた。これらの細胞におけるCD4及びCD70の発現量を、フローサイトメーターを用いて測定した結果を
図13示す。
【0325】
図13に示されるように、目的の抗原が細胞に発現していることが確認された。また、ADCC活性評価の結果を
図14に示す。ポジティブコントロール抗体として、通常IgG1型抗CD4及びCD70抗体を用いた。
【0326】
図14に示すように、予想通り、CD4/EL-4トランスフェクタントに対しては抗CD4抗体が、MT-1に対しては抗CD70抗体が、TL-Om1に対しては抗CD4抗体及び抗CD70抗体がADCC活性を発揮することが示された。
【0327】
一方、抗CD4抗体の半量体1と抗CD70抗体の半量体2を混合した抗体溶液、あるいは抗CD4抗体の半量体2と抗CD70抗体の半量体1を混合した抗体溶液は、CD4及びCD70単陽性細胞に対してはADCC活性を示さず、CD4/CD70両陽性細胞に対してのみ特異的にADCC活性を発揮することが示された。
【0328】
[実施例4]
第1のCD16a結合領域で、EUインデックスで表される235位、239位、265位、267位、269位、296位、298位、299位、327位を、第2のCD16a結合領域で、EUインデックスで表される326位、328位、329位、330位をそれぞれ置換することによりCD16a結合を破壊した改変CH2を、異なる抗原に対する二種類の抗体の半量体(HL体)に搭載し、二種類の抗原を共発現する標的細胞選択的にADCC活性が誘導できるか否かを検証した。
【0329】
設計された各種抗CD4半量体及びCD70半量体は、実施例3と同様の方法で調製し、ADCC活性を評価した。抗CD4半量体と抗CD70半量体を混合した抗体溶液は1μg/mLとなるように添加した。同じく、ポジティブコントロール抗体として使用した、通常IgG1型抗CD4抗体及び抗CD70抗体も1μg/mLとなるように添加した。設計された各種抗CD4半量体及びCD70半量体の各ドメインが由来するサブクラス、及び重鎖定常領域のアミノ酸配列の対応を表8に示す。
【0330】
【0331】
図15A~
図15Hに示されるように、第1のCD16a結合領域を改変したCH2を搭載した抗CD4半量体と、第2のCD16a結合領域を改変したCH2を搭載した抗CD70半量体を混合した抗体溶液は、CD4及びCD70単陽性細胞に対してはADCC活性を示さず、CD4/CD70両陽性細胞に対してのみ特異的にADCC活性を発揮することが示された。
【0332】
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお、本出願は、2018年9月28日付けで出願された日本特許出願(特願2018-185367)に基づいており、その全体が引用により援用される。
【配列表フリーテキスト】
【0333】
配列番号1:ヒトCCR6(KG1684)VLの塩基配列
配列番号2:ヒトCCR6(KG1684)VLのアミノ酸配列
配列番号3:ヒトCCR6(KG1684)VHの塩基配列
配列番号4:ヒトCCR6(KG1684)VHのアミノ酸配列
配列番号5:ヒトIgG1 CKの塩基配列
配列番号6:ヒトIgG1 CKのアミノ酸配列
配列番号7:ヒトIgG1 CHの塩基配列
配列番号8:ヒトIgG1 CHのアミノ酸配列
配列番号9:ヒトIgG1_P238A CHの塩基配列
配列番号10:ヒトIgG1_P238A CHのアミノ酸配列
配列番号11:ヒトIgG1_D265A CHの塩基配列
配列番号12:ヒトIgG1_D265A CHのアミノ酸配列
配列番号13:ヒトIgG1_S267L CHの塩基配列
配列番号14:ヒトIgG1_S267L CHのアミノ酸配列
配列番号15:ヒトIgG1_P238A/D265A CHの塩基配列
配列番号16:ヒトIgG1_P238A/D265A CHのアミノ酸配列
配列番号17:ヒトIgG1_P238A/S267L CHの塩基配列
配列番号18:ヒトIgG1_P238A/S267L CHのアミノ酸配列
配列番号19:ヒトIgG1_D265A/S267L CHの塩基配列
配列番号20:ヒトIgG1_D265A/S267L CHのアミノ酸配列
配列番号21:ヒトIgG1_P238A/D265A/S267L CHの塩基配列
配列番号22:ヒトIgG1_P238A/D265A/S267L CHのアミノ酸配列
配列番号23:ヒトIgG1_K326W CHの塩基配列
配列番号24:ヒトIgG1_K326W CHのアミノ酸配列
配列番号25:ヒトIgG1_L328V CHの塩基配列
配列番号26:ヒトIgG1_L328V CHのアミノ酸配列
配列番号27:ヒトIgG1_P329Y CHの塩基配列
配列番号28:ヒトIgG1_P329Y CHのアミノ酸配列
配列番号29:ヒトIgG1_K326W/L328V CHの塩基配列
配列番号30:ヒトIgG1_K326W/L328V CHのアミノ酸配列
配列番号31:ヒトIgG1_K326W/P329Y CHの塩基配列
配列番号32:ヒトIgG1_K326W/P329Y CHのアミノ酸配列
配列番号33:ヒトIgG1_L328V/P329Y CHの塩基配列
配列番号34:ヒトIgG1_L328V/P329Y CHのアミノ酸配列
配列番号35:ヒトIgG1_K326W/L328V/P329Y CHの塩基配列
配列番号36:ヒトIgG1_K326W/L328V/P329Y CHのアミノ酸配列
配列番号37:ヒトIgG1114_AA_AAA_D265A CHの塩基配列
配列番号38:ヒトIgG1114_AA_AAA_D265A CHのアミノ酸配列
配列番号39:ヒトIgG1114_AA_AAA_P329Y CHの塩基配列
配列番号40:ヒトIgG1114_AA_AAA_P329Y CHのアミノ酸配列
配列番号41:ヒトCD4(ibalizumab)VLの塩基配列
配列番号42:ヒトCD4(ibalizumab)VLのアミノ酸配列
配列番号43:ヒトCD4(ibalizumab)VHの塩基配列
配列番号44:ヒトCD4(ibalizumab)VHのアミノ酸配列
配列番号45:ヒトCD70(2H5)VLの塩基配列
配列番号46:ヒトCD70(2H5)VLのアミノ酸配列
配列番号47:ヒトCD70(2H5)VHの塩基配列
配列番号48:ヒトCD70(2H5)VHのアミノ酸配列
配列番号49:ヒトIgG1114_AA_AAA_S239R CHの塩基配列
配列番号50:ヒトIgG1114_AA_AAA_S239R CHのアミノ酸配列
配列番号51:ヒトIgG1114_AA_AAA_D265N CHの塩基配列
配列番号52:ヒトIgG1114_AA_AAA_D265N CHのアミノ酸配列
配列番号53:ヒトIgG1114_AA_AAA_D265E CHの塩基配列
配列番号54:ヒトIgG1114_AA_AAA_D265E CHのアミノ酸配列
配列番号55:ヒトIgG1114_AA_AAA_S267K CHの塩基配列
配列番号56:ヒトIgG1114_AA_AAA_S267K CHのアミノ酸配列
配列番号57:ヒトIgG1114_AA_AAA_E269P CHの塩基配列
配列番号58:ヒトIgG1114_AA_AAA_E269P CHのアミノ酸配列
配列番号59:ヒトIgG1114_AA_AAA_Y296P CHの塩基配列
配列番号60:ヒトIgG1114_AA_AAA_Y296P CHのアミノ酸配列
配列番号61:ヒトIgG1114_AA_AAA_S298E CHの塩基配列
配列番号62:ヒトIgG1114_AA_AAA_S298E CHのアミノ酸配列
配列番号63:ヒトIgG1114_AA_AAA_T299A CHの塩基配列
配列番号64:ヒトIgG1114_AA_AAA_T299A CHのアミノ酸配列
配列番号65:ヒトIgG1114_AA_AAA_L235R CHの塩基配列
配列番号66:ヒトIgG1114_AA_AAA_L235R CHのアミノ酸配列
配列番号67:ヒトIgG1114_AA_AAA_A327I CHの塩基配列
配列番号68:ヒトIgG1114_AA_AAA_A327I CHのアミノ酸配列
配列番号69:ヒトIgG1114_AA_AAA_K326G CHの塩基配列
配列番号70:ヒトIgG1114_AA_AAA_K326G CHのアミノ酸配列
配列番号71:ヒトIgG1114_AA_AAA_L328R CHの塩基配列
配列番号72:ヒトIgG1114_AA_AAA_L328R CHのアミノ酸配列
配列番号73:ヒトIgG1114_AA_AAA_P329K CHの塩基配列
配列番号74:ヒトIgG1114_AA_AAA_P329K CHのアミノ酸配列
配列番号75:ヒトIgG1114_AA_AAA_P329W CHの塩基配列
配列番号76:ヒトIgG1114_AA_AAA_P329W CHのアミノ酸配列
配列番号77:ヒトIgG1114_AA_AAA_A330P CHの塩基配列
配列番号78:ヒトIgG1114_AA_AAA_A330P CHのアミノ酸配列
【配列表】