IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社トプコンの特許一覧

<>
  • 特許-眼科装置及びその制御方法 図1
  • 特許-眼科装置及びその制御方法 図2
  • 特許-眼科装置及びその制御方法 図3
  • 特許-眼科装置及びその制御方法 図4
  • 特許-眼科装置及びその制御方法 図5
  • 特許-眼科装置及びその制御方法 図6
  • 特許-眼科装置及びその制御方法 図7
  • 特許-眼科装置及びその制御方法 図8
  • 特許-眼科装置及びその制御方法 図9
  • 特許-眼科装置及びその制御方法 図10
  • 特許-眼科装置及びその制御方法 図11
  • 特許-眼科装置及びその制御方法 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-30
(45)【発行日】2024-08-07
(54)【発明の名称】眼科装置及びその制御方法
(51)【国際特許分類】
   A61B 3/10 20060101AFI20240731BHJP
【FI】
A61B3/10 100
【請求項の数】 10
(21)【出願番号】P 2020154556
(22)【出願日】2020-09-15
(65)【公開番号】P2022048635
(43)【公開日】2022-03-28
【審査請求日】2023-08-10
(73)【特許権者】
【識別番号】000220343
【氏名又は名称】株式会社トプコン
(74)【代理人】
【識別番号】100083116
【弁理士】
【氏名又は名称】松浦 憲三
(74)【代理人】
【識別番号】100170069
【弁理士】
【氏名又は名称】大原 一樹
(74)【代理人】
【識別番号】100128635
【弁理士】
【氏名又は名称】松村 潔
(74)【代理人】
【識別番号】100140992
【弁理士】
【氏名又は名称】松浦 憲政
(72)【発明者】
【氏名】加藤 優一
【審査官】渡戸 正義
(56)【参考文献】
【文献】特開2016-054854(JP,A)
【文献】特開2015-195808(JP,A)
【文献】特開2019-213739(JP,A)
【文献】特開2008-289642(JP,A)
【文献】特開2017-127397(JP,A)
【文献】特開2018-171168(JP,A)
【文献】中国特許出願公開第104434026(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 3/00 ー 3/18
(57)【特許請求の範囲】
【請求項1】
光源からの光を測定光と参照光とに分割し、前記測定光を被検眼に照射して、前記被検眼からの測定光の戻り光と前記参照光との干渉光を検出する干渉光学系であって、且つ前記測定光を走査する光走査部と、前記測定光及び前記参照光の少なくとも一方の光路長を変更する光路長変更部と、を有する干渉光学系と、
前記光走査部及び前記光路長変更部を制御して、前記被検眼の後眼部を前記測定光で走査する第1走査制御と、前記被検眼の前眼部を前記測定光で走査する第2走査制御と、を実行させる走査制御部と、
前記第1走査制御の下で前記干渉光学系が検出した前記干渉光の検出信号に基づき、前記後眼部の第1断層像を生成する第1断層像生成部と、
前記第2走査制御の下で前記干渉光学系が検出した前記検出信号に基づき、前記前眼部の第2断層像を生成する第2断層像生成部と、
前記被検眼に固視標を呈示する固視投影系と、
前記第1走査制御中に前記第1断層像生成部が生成した前記第1断層像を前記被検眼の固視状態を示す指標として表示部に表示させ、且つ前記第2走査制御中に前記第2断層像生成部が生成した前記第2断層像を前記被検眼の固視状態を示す指標として表示部に表示させる表示制御部と、
を備え
前記表示制御部が、前記第1走査制御中に、前記被検眼が前記固視標を固視できている場合に前記後眼部の特定部位の像が前記表示部の画面内で表示されるべき位置範囲を示すガイドラインを前記表示部に表示させる眼科装置。
【請求項2】
前記表示制御部が、前記特定部位として前記後眼部の中心窩の像が表示されるべき位置を示す前記ガイドラインを前記表示部に表示させる請求項に記載の眼科装置。
【請求項3】
前記第1断層像内から前記特定部位の像を検出する特定部位検出部を備え、
前記表示制御部が、前記第1走査制御中に、前記特定部位検出部の検出結果に基づき、前記第1断層像内の前記特定部位を識別可能に前記表示部に表示させる請求項又はに記載の眼科装置。
【請求項4】
前記第1走査制御で前記干渉光学系により検出された前記検出信号と、前記第2走査制御で前記干渉光学系により検出された前記検出信号と、前記第1走査制御及び前記第2走査制御における前記光路長の差とに基づき、前記前眼部と前記後眼部との間の眼内距離を演算する眼内距離演算部を備える請求項1からのいずれか1項に記載の眼科装置。
【請求項5】
前記眼内距離演算部が演算した前記眼内距離と、前記第1断層像生成部が生成した前記第1断層像と、前記第2断層像生成部が生成した前記第2断層像と、を前記表示部に同時表示させる同時表示制御部を備える請求項に記載の眼科装置。
【請求項6】
前記同時表示制御部が、前記眼内距離の大きさに応じて前記第1断層像と前記第2断層像との表示間隔を変更する請求項に記載の眼科装置。
【請求項7】
前記被検眼が左右眼である場合に、前記左右眼ごとに、前記走査制御部による前記第1走査制御及び前記第2走査制御と、前記第1断層像生成部による前記第1断層像の生成と、前記第2断層像生成部による前記第2断層像の生成と、前記表示制御部による前記第1断層像及び前記第2断層像の前記表示部への表示と、前記眼内距離演算部による前記眼内距離の演算と、が繰り返し実行され、
前記同時表示制御部は、前記左右眼ごとの前記眼内距離、前記第1断層像、及び前記第2断層像を前記表示部に同時表示させる請求項又はに記載の眼科装置。
【請求項8】
前記同時表示制御部が、前記左右眼ごとに前記眼内距離、前記第1断層像、及び前記第2断層像を並べて前記表示部に表示させ、且つ前記左右眼ごとに前記眼内距離の大きさに応じて前記第1断層像と前記第2断層像との表示間隔を変更する請求項に記載の眼科装置。
【請求項9】
前記後眼部が前記被検眼の眼底であり且つ前記前眼部が前記被検眼の角膜である場合、前記眼内距離演算部が、前記眼内距離として前記被検眼の眼軸長を演算する請求項からのいずれか1項に記載の眼科装置。
【請求項10】
光源からの光を測定光と参照光とに分割し、前記測定光を被検眼に照射して、前記被検眼からの測定光の戻り光と前記参照光との干渉光を検出する干渉光学系であって、且つ前記測定光を走査する光走査部と、前記測定光及び前記参照光の少なくとも一方の光路長を変更する光路長変更部と、を有する干渉光学系と、
前記被検眼に固視標を呈示する固視投影系と、
備える眼科装置の制御方法において、
前記光走査部及び前記光路長変更部を制御して、前記被検眼の後眼部を前記測定光で走査する第1走査制御と、前記被検眼の前眼部を前記測定光で走査する第2走査制御と、を実行させる走査制御ステップと、
前記第1走査制御の下で前記干渉光学系が検出した前記干渉光の検出信号に基づき、前記後眼部の第1断層像を生成する第1断層像生成ステップと、
前記第2走査制御の下で前記干渉光学系が検出した前記検出信号に基づき、前記前眼部の第2断層像を生成する第2断層像生成ステップと、
前記第1走査制御中に前記第1断層像生成ステップで生成した前記第1断層像を前記被検眼の固視状態を示す指標として表示部に表示させ、且つ前記第2走査制御中に前記第2断層像生成ステップで生成した前記第2断層像を前記被検眼の固視状態を示す指標として表示部に表示させる表示制御ステップと、
を有し、
前記表示制御ステップでは、前記第1走査制御中に、前記被検眼が前記固視標を固視できている場合に前記後眼部の特定部位の像が前記表示部の画面内で表示されるべき位置範囲を示すガイドラインを前記表示部に表示させる眼科装置の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検眼の断層像を撮影可能な眼科装置及びその制御方法に関する。
【背景技術】
【0002】
光コヒーレンストモグラフィ(Optical Coherence Tomography:OCT)を用いた被検眼の断層像撮影を行う眼科装置が知られている(特許文献1参照)。この眼科装置は、光源からの光を測定光と参照光とに分割し、測定光を被検眼に照射して、被検眼からの測定光の戻り光と前記参照光との干渉光を検出する干渉光学系を備えている。この干渉光学系には、測定光を走査する光走査部と、測定光及び参照光の少なくとも一方の光路長を変更するコーナーキューブ或いはリフレクタ等の光路長変更部と、が設けられている。これら光走査部及び光路長変更部を制御することで、被検眼の所望の部位を測定光で走査して所望の部位の断層像が得られる。そして、この眼科装置を用いることで、被検眼の前眼部と後眼部との間の眼内距離、例えば角膜頂点と眼底の中心窩との間の眼軸長を測定することができる。
【0003】
例えば特許文献2に記載の眼科装置は、干渉光学系により被検眼の角膜と眼底とをそれぞれ測定光で走査して、角膜の断層像である角膜断層像及び眼底の断層像である眼底断層像を撮影する。そして、この眼科装置は、角膜断層像及び眼底断層像と、角膜断層像及び眼底断層像の各々の撮影時の参照光の光路長(例えば光路長変更部の位置)と、に基づき被検眼の眼軸長を測定する。
【0004】
非特許文献1には、被検眼の眼軸長の測定後に、この眼軸長の測定結果と、角膜断層像と、被検眼の眼底の一点の像とをモニタに同時表示させる眼科装置が開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2019-213752号公報
【文献】特開2020-44027号公報
【非特許文献】
【0006】
【文献】“ZEISS IOLMaster 700”、[online]、[令和2年9月2日検索]、インターネット〈https://www.zeiss.com/meditec/int/product-portfolio/optical-biometers/iolmaster-700.html〉
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、上記特許文献1、特許文献2、及び非特許文献1に記載の眼科装置を用いて、被検眼の眼内距離、例えば眼軸長を正確に測定するためには、この測定中(測定光による角膜及び眼底の走査中)に被検眼の固視ができている(安定している)必要がある。しかしながら、上記特許文献1及び特許文献2に記載の眼科装置では、眼内距離(眼軸長)の測定中に被検眼の固視ができているか否か、すなわち被検眼の固視状態を確認することができない。
【0008】
また、非特許文献1に記載の眼科装置では、被検眼の眼軸長の測定後にモニタに表示される角膜断層像等に基づき測定光による角膜の走査時(角膜断層像の撮影時)の被検眼の固視状態を確認可能であるが、測定光による眼底の走査時(眼底断層像の撮影時)の被検眼の固視状態を確認することができない。従って、非特許文献1に記載の眼科装置では、測定光による眼底の走査時に、眼底の中心窩の位置があるべき位置(例えば眼底断層像の中心位置)にあるか否かを確認することができない。さらに、非特許文献1に記載の眼科装置では、被検眼の眼軸長の測定中にリアルタイムで被検眼の固視状態を確認することができない。
【0009】
本発明はこのような事情に鑑みてなされたものであり、被検眼の眼内距離の測定中に被検眼の固視状態を確認可能な眼科装置及びその制御方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の目的を達成するための眼科装置は、光源からの光を測定光と参照光とに分割し、測定光を被検眼に照射して、被検眼からの測定光の戻り光と参照光との干渉光を検出する干渉光学系であって、且つ測定光を走査する光走査部と、測定光及び参照光の少なくとも一方の光路長を変更する光路長変更部と、を有する干渉光学系と、光走査部及び光路長変更部を制御して、被検眼の後眼部を測定光で走査する第1走査制御と、被検眼の前眼部を測定光で走査する第2走査制御と、を実行させる走査制御部と、第1走査制御の下で干渉光学系が検出した干渉光の検出信号に基づき、後眼部の第1断層像を生成する第1断層像生成部と、第2走査制御の下で干渉光学系が検出した検出信号に基づき、前眼部の第2断層像を生成する第2断層像生成部と、第1走査制御中に第1断層像生成部が生成した第1断層像を表示部に表示させ、且つ第2走査制御中に第2断層像生成部が生成した第2断層像を表示部に表示させる表示制御部と、を備える。
【0011】
この眼科装置によれば、第1走査制御中及び第2走査制御中の被検眼の固視状態をリアルタイムで確認することができる。
【0012】
本発明の他の態様に係る眼科装置において、表示制御部が、第1走査制御中に、後眼部の特定部位の像が表示部の画面内で表示されるべき位置を示すガイドラインを表示部に表示させる。これにより、第1走査制御中の被検眼の固視状態を確認することができる。
【0013】
本発明の他の態様に係る眼科装置において、表示制御部が、特定部位として後眼部の中心窩の像が表示されるべき位置を示すガイドラインを表示部に表示させる。これにより、第1走査制御中に被検眼の固視ができているか否かを確認することができる。
【0014】
本発明の他の態様に係る眼科装置において、第1断層像内から特定部位の像を検出する特定部位検出部を備え、表示制御部が、第1走査制御中に、特定部位検出部の検出結果に基づき、第1断層像内の特定部位を識別可能に表示部に表示させる。これにより、第1走査制御中の被検眼の固視状態を確認することができる。
【0015】
本発明の他の態様に係る眼科装置において、第1走査制御で干渉光学系により検出された検出信号と、第2走査制御で干渉光学系により検出された検出信号と、第1走査制御及び第2走査制御における光路長の差とに基づき、前眼部と後眼部との間の眼内距離を演算する眼内距離演算部を備える。
【0016】
本発明の他の態様に係る眼科装置において、眼内距離演算部が演算した眼内距離と、第1断層像生成部が生成した第1断層像と、第2断層像生成部が生成した第2断層像と、を表示部に同時表示させる同時表示制御部を備える。これにより、第1走査制御時及び第2走査制御時の被検眼の固視状態を確認することができる。
【0017】
本発明の他の態様に係る眼科装置において、同時表示制御部が、眼内距離の大きさに応じて第1断層像と第2断層像との表示間隔を変更する。これにより、眼内距離の大きさを視覚的に示すことができる。
【0018】
本発明の他の態様に係る眼科装置において、被検眼が左右眼である場合に、左右眼ごとに、走査制御部による第1走査制御及び第2走査制御と、第1断層像生成部による第1断層像の生成と、第2断層像生成部による第2断層像の生成と、表示制御部による第1断層像及び第2断層像の表示部への表示と、眼内距離演算部による眼内距離の演算と、が繰り返し実行され、同時表示制御部は、左右眼ごとの眼内距離、第1断層像、及び第2断層像を表示部に同時表示させる。これにより、第1走査制御時及び第2走査制御時の左右眼の固視状態を同時に確認することができる。
【0019】
本発明の他の態様に係る眼科装置において、同時表示制御部が、左右眼ごとに眼内距離、第1断層像、及び第2断層像を並べて表示部に表示させ、且つ左右眼ごとに眼内距離の大きさに応じて第1断層像と第2断層像との表示間隔を変更する。これにより、左右眼ごとの眼軸長の長短を視覚的に示すことができる。
【0020】
本発明の他の態様に係る眼科装置において、後眼部が被検眼の眼底であり且つ前眼部が被検眼の角膜である場合、眼内距離演算部が、眼内距離として被検眼の眼軸長を演算する。
【0021】
本発明の目的を達成するための眼科装置の制御方法は、光源からの光を測定光と参照光とに分割し、測定光を被検眼に照射して、被検眼からの測定光の戻り光と参照光との干渉光を検出する干渉光学系であって、且つ測定光を走査する光走査部と、測定光及び参照光の少なくとも一方の光路長を変更する光路長変更部と、を有する干渉光学系を備える眼科装置の制御方法において、光走査部及び光路長変更部を制御して、被検眼の後眼部を測定光で走査する第1走査制御と、被検眼の前眼部を測定光で走査する第2走査制御と、を実行させる走査制御ステップと、第1走査制御の下で干渉光学系が検出した干渉光の検出信号に基づき、後眼部の第1断層像を生成する第1断層像生成ステップと、第2走査制御の下で干渉光学系が検出した検出信号に基づき、前眼部の第2断層像を生成する第2断層像生成ステップと、第1走査制御中に第1断層像生成ステップで生成した第1断層像を表示部に表示させ、且つ第2走査制御中に第2断層像生成ステップで生成した第2断層像を表示部に表示させる表示制御ステップと、を有する。
【発明の効果】
【0022】
本発明は、被検眼の眼内距離の測定中に被検眼の固視状態を確認することができる。
【図面の簡単な説明】
【0023】
図1】オートレフケラトメータとOCT装置とを組み合わせた眼科装置の光学系の概略図である。
図2】OCTユニットの光学系の概略図である。
図3】処理部の機能ブロック図である。
図4】眼軸長測定制御を実行する場合の主制御部の機能ブロック図である。
図5】被検眼の固視ができている場合の第1ライブ表示画面の一例を説明するための説明図である。
図6図5中の眼底断層像表示領域の拡大図である。
図7】被検眼の固視ができていない場合の第1ライブ表示画面の一例を説明するための説明図である。
図8】第2ライブ表示画面の一例を説明するための説明図である。
図9】プレビュー画面の一例を説明するための説明図である。
図10】記憶部に記憶される眼軸長測定情報の一例を示した説明図である。
図11】眼科装置による被検眼の眼軸長の測定処理の流れを示すフローチャートである。
図12】プレビュー画面生成部が生成するプレビュー画面の変形例を説明するための説明図である。
【発明を実施するための形態】
【0024】
[眼科装置の光学系の構成]
図1は、オートレフケラトメータとOCT装置とを組み合わせた眼科装置1000(複合機)の光学系の概略図である。図1に示すように、眼科装置1000は、被検眼Eの眼屈折力測定(レフ測定)及び角膜形状測定(ケラト測定)と、OCTを用いた被検眼Eの断層像の撮影及び眼内パラメータの測定と、を実行する。
【0025】
なお、眼内パラメータとしては、被検眼Eの眼軸長、角膜厚、前房深度、水晶体厚、角膜前面の強主経線曲率半径、角膜前面の弱主経線曲率半径、角膜後面の強主経線曲率半径、角膜後面の弱主経線曲率半径、水晶体前面の強主経線曲率半径、水晶体前面の弱主経線曲率半径、水晶体後面の強主経線曲率半径、及び水晶体後面の弱主経線曲率半径などが例として挙げられる。
【0026】
眼科装置1000は、アライメント系1と、ケラト測定系3と、固視投影系4と、前眼部観察系5と、レフ測定光学系(レフ測定投射系6及びレフ測定受光系7)と、OCT光学系8と、を含む。また、眼科装置1000は、これら各光学系等を収容する測定ヘッド1002(装置本体ともいう)を備える。
【0027】
(前眼部観察系5)
前眼部観察系5は、被検眼Eの前眼部の観察像P1を取得、より具体的には動画撮影する。前眼部観察系5は、前眼部照明光源50、対物レンズ51、ダイクロイックフィルタ52、絞り53(テレセン絞り)、リレーレンズ55,56、ダイクロイックフィルタ76、結像レンズ58、及び撮像素子59を備える。また、前眼部観察系5は、対物レンズ51から撮像素子59に至る観察系光路LP1を有する。
【0028】
前眼部照明光源50は、被検眼Eの前眼部に不可視光の照明光、例えば波長940nmの赤外光を照射する。前眼部により反射された照明光である観察系戻り光は、対物レンズ51を通過し、ダイクロイックフィルタ52を透過し、絞り53に形成された孔部を通過し、リレーレンズ55,56を通過し、ダイクロイックフィルタ76を透過する。
【0029】
ダイクロイックフィルタ52は、所謂ロングパスフィルタであり、前眼部観察系5で用いられる波長940nm付近の光を透過し、後述のレフ測定光学系及びOCT光学系8で用いられる波長840nm付近の光を反射する。これにより、ダイクロイックフィルタ52は、前眼部観察系5の光路からレフ測定光学系及びOCT光学系8の双方の光路を分岐(波長分離)させる。また、ダイクロイックフィルタ52は、レフ測定光学系及びOCT光学系8の双方の光路を前眼部観察系5の光路に合成する。
【0030】
なお、ダイクロイックフィルタ52における各光路を分岐及び合成する面は、対物レンズ51の光軸に対して傾斜して配置される。また、ダイクロイックフィルタ52の代わりに、波長940nm付近の光を透過し且つ波長840nm付近の光を反射(遮断)する各種の光学素子を用いてもよい。
【0031】
ダイクロイックフィルタ76は、前眼部観察系5で用いられる波長940nm付近の光を透過し、後述のレフ測定光学系及びOCT光学系8で用いられる波長840nm付近の光を反射する。これにより、ダイクロイックフィルタ76は、前眼部観察系5の光路と、この前眼部観察系5の光路から分岐したレフ測定光学系(レフ測定受光系7)の光路と、を合成する。ダイクロイックフィルタ76を透過した観察系戻り光は、結像レンズ58により撮像素子59の撮像面に結像される。
【0032】
撮像素子59は、公知のエリアセンサ(エリアイメージセンサ)であり、前眼部観察系5及びレフ測定光学系(レフ測定受光系7)とで共用される。この撮像素子59の撮像面は、前眼部観察系5を経由する光学系において瞳孔共役位置に配置されている。なお、瞳孔共役位置は、被検眼Eに対する眼科装置1000のアライメントが完了した状態での被検眼Eの瞳孔と光学的に略共役な位置であり、瞳孔と光学的に共役な位置又はその近傍を意味するものとする。撮像素子59は、結像レンズ58により撮像面に結像された観察系戻り光を所定のレートで撮像及び信号出力を行う。
【0033】
撮像素子59から出力された撮像信号(映像信号)は、後述の処理部9に入力される。処理部9は、被検眼Eの前眼部の観察時には、撮像素子59から出力された撮像信号に基づく観察像P1(前眼部像)を表示部270に表示させる。なお、観察像P1は、例えば赤外動画像である。
【0034】
表示部270は、例えばタッチパネル式の液晶モニタ等が用いられ、観察像P1の表示を行う。また、表示部270は、ユーザインターフェイス部として機能したり、或いは後述の処理部9の制御部210(図3参照)による制御の下で各種情報を表示したりする。
【0035】
(アライメント系1)
アライメント系1は、被検眼Eに対する前眼部観察系5(対物レンズ51)の光軸に平行なZ方向(前後方向、作動距離方向)におけるZアライメントと、光軸に垂直な方向[左右方向(X方向)、上下方向(Y方向)]のXYアライメントと、に用いられる。このアライメント系1は、ステレオカメラ14を含む。
【0036】
ステレオカメラ14は、一対のカメラにより構成されており、被検眼Eの前眼部を互いに異なる方向から撮影して、前眼部の一対の撮影画像であるステレオ画像P2(図4参照)を後述の処理部9に出力する。処理部9は、詳しくは後述するが、ステレオカメラ14から入力されたステレオ画像P2に基づき、被検眼Eに対する測定ヘッド1002のXYZ方向のオートアライメントを行う。なお、ステレオカメラ14を構成するカメラの数は3以上でもよい。
【0037】
(ケラト測定系3)
ケラト測定系3は、被検眼Eの角膜Crの形状測定に用いられる。ケラト測定系3は、対物レンズ51から撮像素子59までを前眼部観察系5と共用すると共に、赤外光である角膜形状測定用のパターン光(リング状光束)を角膜Crに投射するためのケラト板31及びケラトリング光源32を有する。
【0038】
ケラト板31は、対物レンズ51と被検眼Eとの間に配置されている。ケラト板31の背面側(対物レンズ51側)にはケラトリング光源32が設けられている。ケラト板31には、対物レンズ51の光軸を中心とする円周上に沿ってケラトリング光源32からの光を透過するケラトパターン(透過部)が形成されている。なお、ケラトパターンは、対物レンズ51の光軸を中心とする円弧状(円周の一部)に形成されていてもよい。ケラトリング光源32からの光でケラト板31を照明することにより、角膜Crに対して角膜形状測定用のパターン光が投射される。
【0039】
角膜Crからの反射光(ケラトリング像)は、撮像素子59により被検眼Eの前眼部の観察像P1と共に検出される。処理部9は、このケラトリング像を基に公知の演算を行うことで、角膜Crの形状を表す角膜形状パラメータを算出する。
【0040】
(レフ測定光学系:レフ測定投射系6及びレフ測定受光系7)
レフ測定光学系は、被検眼Eの屈折力値を測定するレフ測定に用いられる。このレフ測定光学系は、レフ測定投射系6及びレフ測定受光系7を含む。レフ測定投射系6は、被検眼Eの眼底Efに対して不可視光(赤外光)のリング状のパターン光を投射する。レフ測定受光系7は、被検眼Eからのパターン光の戻り光であるレフ系戻り光を受光する。
【0041】
レフ測定投射系6は、レフ測定受光系7の光路上に設けられた孔開きプリズム65によって分岐された光路に設けられる。なお、孔開きプリズム65に形成されている孔部は、瞳孔共役位置に配置される。レフ測定投射系6は、対物レンズ51及びダイクロイックフィルタ52を前眼部観察系5と共用すると共に、レフ測定光源61と、リレーレンズ62と、円錐プリズム63と、リング絞り64と、孔開きプリズム65と、ロータリープリズム66と、ダイクロイックフィルタ67と、を備える。
【0042】
レフ測定受光系7は、対物レンズ51から孔開きプリズム65までをレフ測定投射系6と共用し、且つダイクロイックフィルタ76から撮像素子59までを前眼部観察系5と共用する。また、レフ測定受光系7は、リレーレンズ71、反射ミラー72、リレーレンズ73、合焦レンズ74、及び反射ミラー75を備える。さらに、レフ測定受光系7は、観察系光路LP1の途中(ダイクロイックフィルタ52)から分岐した分岐光路LP2を有する。
【0043】
レフ測定光源61は、例えば高輝度光源であるSLD(Super Luminescent Diode)光源が用いられ、波長830nm~890nm(本実施形態では840nmとする)の不可視光(赤外光)を出射する。また、レフ測定光源61は、光軸方向に移動可能であり眼底共役位置に配置される。なお、眼底共役位置とは、アライメントが完了した状態での被検眼Eの眼底Efと光学的に略共役な位置であり、眼底Efと光学的に共役な位置又はその近傍を意味するものとする。
【0044】
レフ測定光源61から出力された光は、リレーレンズ62を通過し、円錐プリズム63の円錐面に入射する。円錐面に入射した光は偏向され、円錐プリズム63の底面から出射する。円錐プリズム63の底面から出射した光は、リング絞り64に形成されたリング状の透光部を通過する。この透光部を通過したリング状のパターン光(リング状光束)は、孔開きプリズム65の孔部の周囲に形成された反射面により反射され、ロータリープリズム66を通過し、ダイクロイックフィルタ67により反射される。
【0045】
ダイクロイックフィルタ67は、レフ測定光学系によるレフ測定時と、OCT光学系8によりOCT測定時と、において差し替えられる。ダイクロイックフィルタ67は、レフ測定時には波長840nm付近の光を反射し且つ後述の固視投影系4からの視標光を透過するフィルタが用いられ、OCT測定時には波長840nm付近の光を透過するフィルタが用いられる。これにより、ダイクロイックフィルタ67は、レフ測定光学系の光路からOCT光学系8の光路を分岐(分離)させると共に、これら両光路を合成する。
【0046】
ダイクロイックフィルタ67により反射された光は、ダイクロイックフィルタ52により反射され、対物レンズ51を通過し、被検眼Eに投射される。ロータリープリズム66は、眼底Efの血管及び疾患部位等に対するパターン光の光量分布を平均化したり、レフ測定光源61に起因するスペックルノイズを低減したりするために用いられる。
【0047】
眼底Efに投射されたリング状のパターン光の戻り光であるレフ系戻り光は、対物レンズ51を通過し、ダイクロイックフィルタ52及びダイクロイックフィルタ67により反射される。ダイクロイックフィルタ67により反射されたレフ系戻り光は、ロータリープリズム66を通過し、孔開きプリズム65の孔部を通過し、リレーレンズ71を通過し、反射ミラー72により反射され、リレーレンズ73及び合焦レンズ74を通過する。
【0048】
合焦レンズ74は、レフ測定受光系7の光軸に沿って移動可能である。合焦レンズ74を通過した光は、反射ミラー75により反射され、ダイクロイックフィルタ76により反射され、結像レンズ58により撮像素子59の撮像面に結像される。なお、撮像素子59の撮像面は、レフ測定受光系7を経由する光学系において眼底共役位置に配置される。処理部9は、撮像素子59から出力される撮像信号に基づき公知の演算を行うことで被検眼Eの屈折力値を演算する。屈折力値は、例えば球面度数、乱視度数及び乱視軸角度、又は等価球面度数を含む。
【0049】
なお、レフ測定光源61及び合焦レンズ74は、後述の処理部9の制御の下、レフ測定光学系を用いて得られた被検眼Eの屈折力値に基づき、眼底Efとレフ測定光源61と撮像素子59とが共役となるような位置に、それぞれ光軸方向に移動される(上記特許文献1参照)。
【0050】
(固視投影系4)
固視投影系4は、ダイクロイックフィルタ83により後述のOCT光学系8の光路から分岐された光路に設けられている。
【0051】
固視投影系4は、固視標を被検眼Eに呈示する。固視投影系4の光路には、固視ユニット40が配置されている。固視ユニット40は、後述の処理部9からの制御を受け、固視投影系4の光路に沿って移動可能である。固視ユニット40は、固視投影系4の光路(光軸)に沿って移動可能であり、液晶パネル41を含む。ダイクロイックフィルタ83と固視ユニット40との間に、リレーレンズ42が配置されている。
【0052】
液晶パネル41は、後述の処理部9の制御の下、固視標を表すパターンを表示する。この液晶パネル41は、固視標を表すパターンの表示位置を任意に変更可能である。これにより、被検眼Eの固視位置を変更できる。被検眼Eの固視位置としては、眼底Efの黄斑部を中心とする画像を取得するための位置、視神経乳頭を中心とする画像を取得するための位置、及び黄斑部と視神経乳頭との間の眼底中心を中心とする画像を取得するための位置などがある。
【0053】
また、液晶パネル41は、後述の処理部9の制御の下、既述のレフ測定光源61及び合焦レンズ74の移動に連動して光軸方向に移動される(特許文献1参照)。
【0054】
液晶パネル41からの視標光は、リレーレンズ42を通過し、ダイクロイックフィルタ83を透過し、リレーレンズ82を通過し、反射ミラー81により反射され、ダイクロイックフィルタ67を透過し、ダイクロイックフィルタ52により反射される。ダイクロイックフィルタ52により反射された視標光は、対物レンズ51を通過して眼底Efに投射される。これにより、被検眼Eの固視(視線方向の固定)が実行される。
【0055】
(OCT光学系8)
OCT光学系8は、本発明の干渉光学系に相当するものであり、被検眼EのOCT測定を行うための光学系である。OCT光学系8は、レフ測定光学系から分岐して設けられている。OCT光学系8は、ダイクロイックフィルタ52により前眼部観察系5の光路から分岐(波長分離)され且つダイクロイックフィルタ67によりレフ測定光学系の光路から分岐された分岐光路LP3を有する。なお、既述の固視投影系4の光路は、ダイクロイックフィルタ83によりOCT光学系8の分岐光路LP3に合成(結合)される。これにより、OCT光学系8及び固視投影系4のそれぞれの光軸を同軸で結合することができる。
【0056】
OCT光学系8は、対物レンズ51、ダイクロイックフィルタ52,67、反射ミラー81、リレーレンズ82、ダイクロイックフィルタ83、反射ミラー84、リレーレンズ85、合焦レンズ87、光スキャナー88、コリメータレンズユニット89、及びOCTユニット100を有する。
【0057】
図2は、OCTユニット100の光学系の概略図である。図2及び既述の図1に示すように、OCTユニット100のOCT光源101は、一般的なスウェプトソースタイプのOCT装置の光源と同様に出射光の波長を掃引(走査)可能な波長掃引型(波長走査型)光源であって、共振器を含むレーザー光源を含む。OCT光源101は、人眼では視認できない近赤外の波長域において、出力波長を時間的に変化させる。
【0058】
OCTユニット100には、スウェプトソースOCTを実行するための光学系が設けられている。この光学系は、干渉光学系を含む。この干渉光学系は、OCT光源101からの光L0を測定光LSと参照光LRとに分割する機能と、被検眼Eからの測定光LSの戻り光であるOCT系戻り光LS1と参照光路を経由した参照光LRとを重ね合わせて干渉光LCを生成する機能と、この干渉光LCを検出する機能とを備える。干渉光学系により得られた干渉光LCの検出結果(検出信号)は、干渉光LCのスペクトルを示す信号であり、処理部9に送られる。
【0059】
OCT光源101は、例えば出射光(光L0)の波長を、レフ測定光源61から出射される光の波長域と同一(略同一、重複、一部重複を含む)の波長域の波長860nm付近(本実施形態では840nmとする)を基準として高速で変化させる。OCT光源101から出力された光L0は、光ファイバー102により偏波コントローラ103に導かれてその偏光状態が調整される。偏光状態が調整された光L0は、光ファイバー104によりファイバーカプラー105に導かれ、ファイバーカプラー105によって測定光LSと参照光LRとに分割される。
【0060】
参照光LRは、光ファイバー110によりコリメータ111に導かれて平行光束に変換され、光路長補正部材112及び分散補償部材113を経由し、コーナーキューブ114に導かれる。光路長補正部材112は、参照光LRの光路長と測定光LSの光路長とを合わせるよう作用する。分散補償部材113は、参照光LRと測定光LSとの間の分散特性を合わせるよう作用する。
【0061】
コーナーキューブ114(リトロリフレクタ)及びコーナーキューブ移動機構115は、本発明の光路長変更部に相当する。コーナーキューブ114は、コーナーキューブ移動機構115により、参照光LRの入射方向に沿って移動自在に保持されている。コーナーキューブ移動機構115は、コーナーキューブ114を参照光LRの入射方向に沿って移動させるアクチュエータであり、それにより参照光LRの光路長を変更する。
【0062】
コーナーキューブ114を経由した参照光LRは、分散補償部材113及び光路長補正部材112を経由し、コリメータ116によって平行光束から集束光束に変換され、光ファイバー117に入射する。光ファイバー117に入射した参照光LRは、偏波コントローラ118に導かれてその偏光状態が調整され、光ファイバー119によりアッテネータ120に導かれて光量が調整され、光ファイバー121によりファイバーカプラー122に導かれる。
【0063】
一方、ファイバーカプラー105により生成された測定光LSは、光ファイバーf1により導かれてコリメータレンズユニット89により平行光束に変換される。平行光束に変換された測定光LSは、合焦レンズ87、リレーレンズ85、及び反射ミラー84を経由し、ダイクロイックフィルタ83により反射される。
【0064】
合焦レンズ87は、光軸方向(対物レンズ51の光軸方向、OCT光学系8の光軸方向)に移動可能である。合焦レンズ87は、後述の処理部9の制御の下、合焦レンズ74の移動に連動して光軸方向に移動される。また、合焦レンズ87は、OCT測定よりも前に実施された被検眼Eのレフ測定結果に基づき、光ファイバーf1の端面が計測部位(眼底Ef又は前眼部)と光学系に共役となるように位置調整される。
【0065】
光スキャナー88は、本発明の光走査部に相当するものであり、例えば、MEMS(Micro Electro Mechanical Systems)スキャナー、ガルバノミラー、ポリゴンミラー、回転ミラー、ダボプリズム、ダブルダボプリズム、及びローテーションプリズムなどが用いられる。この光スキャナー88は、測定光LSを2次元的に偏向、例えばOCT光学系8の光軸に直交する水平方向及び垂直方向に撮影部位(角膜Cr、眼底Ef等)を走査(スキャン)するように測定光LSを偏向する。このような測定光LSの走査態様としては、例えば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、及び螺旋スキャンなどがある。
【0066】
ダイクロイックフィルタ83により反射された測定光LSは、リレーレンズ82を通過し、反射ミラー81により反射され、ダイクロイックフィルタ67を透過し、ダイクロイックフィルタ52により反射され、対物レンズ51により屈折されて被検眼Eに入射する。被検眼Eからの測定光LSの戻り光であるOCT系戻り光LS1(本発明の戻り光に相当)は、往路と同じ経路を逆向きに進行してファイバーカプラー105に導かれ、さらに光ファイバー128を経由してファイバーカプラー122に到達する。
【0067】
ファイバーカプラー122は、光ファイバー128を介して入射されたOCT系戻り光LS1と、光ファイバー121を介して入射された参照光LRとの干渉光LCを生成する。また、ファイバーカプラー122は、所定の分岐比(例えば1:1)で干渉光LCを分岐することにより、一対の干渉光LCを生成する。一対の干渉光LCは、それぞれ光ファイバー123,124を通じて検出器125に導かれる。
【0068】
検出器125は、例えばバランスドフォトダイオードである。バランスドフォトダイオードは、一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを含み、これらフォトディテクタにより得られた一対の検出結果の差分を出力する。検出器125は、この出力(検出信号)をデータ収集機器(Data Acquisition System)であるDAQ130に送る。
【0069】
DAQ130には、OCT光源101からクロックKCが供給される。OCT光源101は、所定の波長範囲内で掃引される光L0の各波長の出力タイミングに同期してクロックKCを生成する。OCT光源101は、例えば、各出力波長の光L0を分岐することにより得られた2つの分岐光の一方を光学的に遅延させた後、これらの合成光を検出した結果に基づいてクロックKCを生成する。DAQ130は、検出器125から入力される検出信号をクロックKCに基づきサンプリングする。
【0070】
また、DAQ130は、検出器125からの検出信号のサンプリング結果を処理部9の演算処理部220(図3参照)に送る。演算処理部220は、例えば一連の波長走査毎に(Aライン毎に)、サンプリングデータに基づくスペクトル分布にフーリエ変換等を施すことにより、各Aラインにおける反射強度プロファイルを形成する。更に、演算処理部220は、各Aラインの反射強度プロファイルを画像化することにより画像データ(Bスキャン像)を形成する。
【0071】
[処理部9の構成]
図3は、処理部9の機能ブロック図である。
【0072】
図3に示すように、処理部9は、各種のプロセッサ(Processor)及びメモリ等から構成された演算回路を備える。各種のプロセッサには、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、及びプログラマブル論理デバイス[例えばSPLD(Simple Programmable Logic Devices)、CPLD(Complex Programmable Logic Device)、及びFPGA(Field Programmable Gate Arrays)]等が含まれる。なお、処理部9の各種機能は、1つのプロセッサにより実現されてもよいし、同種または異種の複数のプロセッサで実現されてもよい。この処理部9は、不図示の記憶回路又は記憶装置に格納されているプログラムを読み出し実行することで、制御部210及び演算処理部220として機能する。
【0073】
また、処理部9には、既述の眼科装置1000の各部の他に、移動機構200と、移動機構40D,80Dと、移動機構61D,74Dと、操作部280と、通信部290と、が接続されている。
【0074】
(移動機構200)
移動機構200は、本発明の相対移動機構に相当するものであり、被検眼Eに対して測定ヘッド1002をXYZ方向(前後左右上下方向)に相対移動させる。この移動機構200には、測定ヘッド1002を移動するための駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構と、が設けられている。アクチュエータは、例えばパルスモータにより構成される。伝達機構は、例えば歯車の組み合わせ或いはラックアンドピニオンなどによって構成される。移動機構200は、制御部210(主制御部211)の制御の下、測定ヘッド1002の移動を行う。
【0075】
(移動機構40D,80D,61D,74D)
移動機構40Dは、固視ユニット40(液晶パネル41)を固視投影系4の光軸方向(対物レンズ51の光軸方向)に移動させる。移動機構80Dは、OCT光学系8の合焦レンズ87をOCT光学系8の光軸方向(対物レンズ51の光軸方向)に移動させる。移動機構61Dは、レフ測定投射系6のレフ測定光源61をその光軸方向に移動させる。移動機構74Dは、レフ測定受光系7の合焦レンズ74をその光軸方向に移動させる。
【0076】
各移動機構40D,80D,61D,74Dは、移動機構200と同様に、駆動力を発生するアクチュエータと、この駆動力を伝達する伝達機構とを含む。各移動機構40D,80D,61D,74Dは、具体的な説明は省略するが、制御部210(主制御部211)の制御の下、固視ユニット40、合焦レンズ87、レフ測定光源61、及び合焦レンズ74の移動をそれぞれ行う(上記特許文献1参照)。
【0077】
(操作部280)
操作部280は、眼科装置1000の各種操作の入力を受け付ける。操作部280は、眼科装置1000に設けられた各種のハードウェアキー(操作レバー、ボタン、及びスイッチなど)を含む。また、操作部280には、タッチパネル式の表示部270の表示画面に表示される各種のソフトウェアキー(ボタン、アイコン、及びメニューなど)も含まれる。
【0078】
(通信部290)
通信部290は、図示しない外部装置と通信するための機能を有する。通信部290は、外部装置との接続形態に応じた通信インターフェイスを備える。外部装置の例として、レンズの光学特性を測定する眼鏡レンズ測定装置がある。また、外部装置は、任意の眼科装置、記録媒体から情報を読み取る装置(リーダ)、或いは記録媒体に情報を書き込む装置(ライタ)などでもよい。さらに、外部装置は、病院情報システム(Hospital Information System:HIS)サーバ、DICOM(Digital Imaging and Communications in Medicine)サーバ、医師端末、モバイル端末、個人端末、及びクラウドサーバなどでもよい。さらにまた、外部装置は眼科装置1000の遠隔操作を行う遠隔操作装置であってもよい。なお、通信部290は、例えば処理部9に設けられていてもよい。
【0079】
(制御部210)
制御部210は、既述のプロセッサを含み、眼科装置1000の各部を制御する。制御部210は、主制御部211と、記憶部212と、を含む。記憶部212は、眼科装置1000を制御するためのコンピュータプログラムと、各種のデータと、を記憶する。
【0080】
記憶部212に記憶されるコンピュータプログラムには、眼科装置1000の各部の作動を制御する制御プログラムと、眼科装置1000に各種測定及び計測を実行させるための制御プログラムと、演算処理部220による演算処理用の制御プログラムと、が含まれる。このようなコンピュータプログラムに従って主制御部211が動作することにより、制御部210は制御処理を実行する。
【0081】
また、記憶部212に記憶されるデータとしては、例えば他覚測定の測定結果(屈折力値、角膜形状)、断層像の画像データ、眼底像の画像データ、及び被検眼情報などがある。被検眼情報は、患者ID(identification)及び氏名などの被検者に関する情報と、被検眼Eが左右眼のいずれであるかを示す左右眼情報などの被検眼Eに関する情報を含む。
【0082】
さらに本実施形態の記憶部212には、被検眼Eの眼軸長の測定結果を示す後述の眼軸長測定情報320(図10参照)が記憶される。
【0083】
主制御部211は、眼科装置1000の各種制御を行う。この各種制御には、被検眼Eに対する測定ヘッド1002のアライメントに係るアライメント制御、被検眼Eの角膜形状の測定(ケラト測定)に係るケラト測定制御、被検眼Eの眼屈折力の測定(レフ測定)に係るレフ測定制御、及び被検眼EのOCT測定(断層像撮影及び眼内パラメータ演算)に係るOCT測定制御などの公知の制御が複数含まれる。なお、ケラト測定制御及びレフ測定制御については公知技術(例えば特許文献1参照)であるので、ここでは具体的な説明は省略する。
【0084】
(アライメント制御)
主制御部211は、OCT測定前にアライメント系1及び移動機構200を制御して、アライメント制御を行う。例えば、主制御部211は、アライメント系1のステレオカメラ14による被検眼Eの前眼部の撮影を実行させ、ステレオカメラ14により撮影されたステレオ画像P2に基づき被検眼Eの3次元位置を公知の手法(例えば特開2013-248376号公報参照)で検出するアライメント検出を行う。そして、主制御部211は、アライメント検出結果に基づき移動機構200を駆動して、測定ヘッド1002を前後左右上下に移動させることで、被検眼Eに対する測定ヘッド1002のオートアライメントを実行させる。
【0085】
(OCT測定制御)
主制御部211は、オートアライメントの完了後、OCT光学系8及び演算処理部220を制御して被検眼EのOCT測定を行うOCT測定制御を行う。なお、主制御部211は、OCT測定制御を開始する前に、固視投影系4の液晶パネル41を制御して固視標を被検眼Eに呈示する。また、主制御部211は、コーナーキューブ移動機構115を駆動してコーナーキューブ114を移動させることで、参照光LRの光路長を、例えば眼底Efの断層像の撮影に対応した光路長に変更したり、或いは角膜Crの断層像の撮影に対応した光路長に変更したりする。
【0086】
主制御部211は、OCT光学系8を制御して、OCTユニット100のOCT光源101を点灯させると共に、光スキャナー88の動作を開始させることで、被検眼Eの所定の部位(前眼部、眼底Ef、又は両者)を測定光LSで走査させる。また、主制御部211は、OCT光学系8を制御して、検出器125による一対の干渉光LCの検出及び検出信号の出力と、DAQ130による検出信号のサンプリングとを実行させた後、この検出信号のサンプリング結果を演算処理部220に入力させる。さらに、主制御部211は、演算処理部220に対して、検出信号のサンプリング結果に基づく断層像の形成及び眼内パラメータの演算を実行させる。
【0087】
(演算処理部220)
演算処理部220は、眼屈折力演算部221Aと、角膜形状演算部221Bと、画像形成部222と、データ処理部223と、眼内距離演算部224と、を含む。
【0088】
眼屈折力演算部221Aは、主制御部211の制御の下、被検眼Eのレフ測定時に撮像素子59により撮像された眼底Efの撮影画像(リング像)を公知の手法で解析して、被検眼Eの屈折力値(球面度数、乱視度数、及び乱視軸角度)を演算する。また、角膜形状演算部221Bは、主制御部211の制御の下、被検眼Eのケラト測定時に撮像素子59により撮像された観察像P1を公知の手法で解析して、被検眼Eの角膜形状(角膜屈折力、角膜乱視度、及び角膜乱視軸角度)を演算する。
【0089】
画像形成部222は、主制御部211の制御の下、OCT測定時に検出器125及びDAQ130を経て入力された検出信号のサンプリング結果に基づき、従来のスペクトラルドメインタイプのOCTと同様のフィルタ処理及び高速フーリエ変換処理などを実行して、被検眼Eの断層像の画像データ(Bスキャン像)を形成する。
【0090】
データ処理部223は、主制御部211の制御の下、画像形成部222により形成された断層像に対して各種のデータ処理(画像処理)及び解析処理を施す。例えば、データ処理部223は、各断層像に対して輝度補正及び分散補正等の補正処理を実行する。また、データ処理部223は、前眼部観察系5を用いて得られた被検眼Eの前眼部の観察像P1に対しても各種の画像処理及び解析処理を施す。
【0091】
眼内距離演算部224は、主制御部211の制御の下、被検眼Eの前眼部(角膜Cr)の任意領域(部位)と後眼部(眼底Ef)の任意領域との眼内距離の演算を行う。この眼内距離には、角膜Crの角膜頂点と眼底Efの中心窩Fc(図5参照)との間の距離である眼軸長が含まれる。従って、上述の主制御部211によるOCT測定制御には、被検眼Eの眼内パラメータとして被検眼Eの眼軸長を測定する眼軸長測定制御が含まれる。
【0092】
図4は、眼軸長測定制御を実行する場合の主制御部211の機能ブロック図である。なお、図4では、眼軸長測定制御に直接的に関係の無い眼科装置1000の構成及び主制御部211及び演算処理部220の機能については図示を省略している。
【0093】
図4に示すように、主制御部211は、眼軸長測定制御を実行する場合、すなわち操作部280等で被検眼Eの眼軸長の測定開始操作がなされた場合に、画像取得部300、アライメント制御部302、走査制御部304、断層像生成制御部306、特定部位検出部308、表示制御部310、及びプレビュー画面生成部312として機能する。なお、測定開始操作には、被検眼情報(患者ID、左右眼の識別情報)の入力操作も含まれる。
【0094】
画像取得部300は、被検眼Eの眼軸長の測定開始操作に応じて前眼部観察系5から被検眼Eの前眼部の観察像P1を取得して表示制御部310へ出力する。以下、画像取得部300は、被検眼Eの眼軸長の測定が完了するまでの間、前眼部観察系5からの観察像P1の取得と、表示制御部310への観察像P1の出力とを実行する。
【0095】
アライメント制御部302は、被検眼Eの眼軸長の測定開始操作に応じて、上記のアライメント制御に記載した通り、ステレオカメラ14からのステレオ画像P2の取得と、アライメント検出と、オートアライメントと、を実行する。また、アライメント制御部302は、被検眼Eの眼軸長の測定が完了するまでの間、ステレオカメラ14からのステレオ画像P2の取得と、表示制御部310へのステレオ画像P2の出力とを実行する。
【0096】
走査制御部304は、OCT光学系8の制御、すなわち測定光LSによる被検眼Eの走査を制御する。走査制御部304は、測定ヘッド1002のオートアライメント完了後、コーナーキューブ移動機構115及び光スキャナー88を制御して、測定光LSにより眼底Efを走査(Bスキャン)する第1走査制御と、測定光LSにより角膜Crを走査(Bスキャン)する第2走査制御と、を順番に実行する。第1走査制御では、OCT光学系8が眼底Efに対する測定光LSの走査(Bスキャン)と干渉光LCの検出とを複数回実行する。また、第2走査制御では、OCT光学系8が角膜Crに対する測定光LSの走査(Bスキャン)と干渉光LCの検出とを複数回実行する。
【0097】
なお、第1走査制御及び第2走査制御(コーナーキューブ114の移動による参照光LRの光路長変更を含む)については公知技術であるので、ここでは具体的な説明は省略する(例えば特許文献2等参照)。また、第1走査制御後に第2走査制御を実行する代わりに、第2走査制御後に第1走査制御を実行してもよい。
【0098】
断層像生成制御部306は、既述の画像形成部222と共に本発明の第1断層像生成部及び第2断層像生成部として機能する。
【0099】
具体的には断層像生成制御部306は、第1走査制御が開始された場合には、検出器125及びDAQ130を経て入力された検出信号のサンプリング結果に基づき、画像形成部222を制御して眼底Efの断層像である眼底断層像P3(本発明の第1断層像に相当)の生成を行う。これにより、第1走査制御において測定光LSによる眼底Efの走査(Bスキャン)が実行されるごとに、画像形成部222により新たな眼底断層像P3が生成される。眼底断層像P3は、画像形成部222から表示制御部310へ逐次出力される。
【0100】
また、断層像生成制御部306は、第2走査制御が開始された場合には、検出器125及びDAQ130を経て入力された検出信号のサンプリング結果に基づき、画像形成部222を制御して角膜Crの断層像である角膜断層像P4(本発明の第2断層像に相当)の生成を行う。これにより、第2走査制御において測定光LSによる角膜Crの走査(Bスキャン)が実行されるごとに、画像形成部222により新たな角膜断層像P4が生成される。角膜断層像P4は、画像形成部222から表示制御部310へ逐次出力される。
【0101】
特定部位検出部308は、第1走査制御時において、画像形成部222により眼底断層像P3が生成されるごとに、公知の画像解析法を用いて、眼底断層像P3内から被検眼E(眼底Ef)の特定部位の像である中心窩Fc(図5参照)の像を検出する。なお、中心窩Fcは視神経乳頭よりも小さな陥凹形状であるので、眼底断層像P3から小さな窪み形状を検出することで中心窩Fcの像を容易に検出可能である。そして、特定部位検出部308は、眼底断層像P3内から中心窩Fcの像を検出するごとに、眼底断層像P3内での中心窩Fcの像の位置及び範囲を示す中心窩検出情報を表示制御部310へ出力する。
【0102】
[第1ライブ表示画面400A]
表示制御部310は、第1走査制御が開始された場合には、第1走査制御中の被検眼Eの状態を示す第1ライブ表示画面400Aを生成して表示部270に表示させる。具体的には表示制御部310は、操作部280から入力される被検眼情報と、画像取得部300から逐次入力される観察像P1と、アライメント制御部302から逐次入力されるステレオ画像P2と、断層像生成制御部306から逐次入力される眼底断層像P3と、特定部位検出部308から眼底断層像P3ごとに入力される中心窩検出情報と、に基づき、第1ライブ表示画面400Aを生成して表示部270に表示させる。
【0103】
図5は、被検眼Eの固視ができている場合(アライメントが適切である場合)の第1ライブ表示画面400Aの一例を説明するための説明図である。図6は、図5中の眼底断層像表示領域408の拡大図である。図7は、被検眼Eの固視ができていない場合の第1ライブ表示画面400Aの一例を説明するための説明図である。図5から図7と、既述の図4とに示すように、第1ライブ表示画面400Aは、左右眼情報領域402と、観察像表示領域404と、ステレオ画像表示領域406と、眼底断層像表示領域408と、を含む。
【0104】
左右眼情報領域402は、被検眼Eが左右眼のいずれであるかを表示する領域である。表示制御部310は、操作部280から入力された被検眼情報に基づき、左右眼情報領域402の表示を制御する。ここで、図5及び図7中の左右眼情報領域402は、被検眼Eが右眼であることを示している。なお、左右眼情報領域402の表示態様については、被検眼Eが左右眼のいずれであるかを判別可能であれば特に限定はされない。
【0105】
観察像表示領域404は、観察像P1を表示する領域である。表示制御部310は、画像取得部300から逐次入力される観察像P1に基づき、観察像表示領域404に観察像P1をライブ表示させる。これにより、第1走査制御中の観察像P1(前眼部)をリアルタイムで確認することができる。
【0106】
ステレオ画像表示領域406は、ステレオ画像P2を表示する領域である。表示制御部310は、アライメント制御部302から逐次入力されるステレオ画像P2に基づき、ステレオ画像表示領域406にステレオ画像P2をライブ表示させる。これにより、第1走査制御中のステレオ画像P2(前眼部)をリアルタイムで確認することができる。
【0107】
眼底断層像表示領域408は、眼底断層像P3を表示する領域である。表示制御部310は、断層像生成制御部306から逐次入力される眼底断層像P3に基づき、眼底断層像表示領域408に眼底断層像P3をライブ表示させる。これにより、第1走査制御中の眼底断層像P3をリアルタイムで確認することができる。
【0108】
この際に表示制御部310は、特定部位検出部308から眼底断層像P3ごとに入力される中心窩検出情報に基づき、眼底断層像P3内の中心窩Fcの位置を示す指標410を、眼底断層像表示領域408内の眼底断層像P3上に重畳表示させる。これにより、眼底断層像表示領域408に表示される眼底断層像P3内の中心窩Fcの像を容易に識別することができる。
【0109】
なお、表示制御部310が、眼底断層像表示領域408内の眼底断層像P3上に指標410を重畳表示させる代わりに、中心窩Fcを識別可能な各種表示態様で眼底断層像表示領域408内の眼底断層像P3の表示を行ってもよい。
【0110】
また、表示制御部310は、眼底断層像表示領域408内に2種類の第1ガイドライン412及び第2ガイドライン414を表示させる。
【0111】
第1ガイドライン412は、本発明のガイドラインに相当するものであり、眼底断層像表示領域408内(表示部270の画面内)で中心窩Fcの像が表示されるべき位置、例えば眼底断層像表示領域408の中央部を示す。これにより、眼底断層像P3内の中心窩Fcの像の位置が、第1ガイドライン412で規定される位置範囲内にあるか(図5及び図6参照)或いはこの位置範囲外にあるか(図7参照)に基づき、第1走査制御中の被検眼Eの固視ができているか否か、すなわち固視状態を容易に確認することができる。
【0112】
第2ガイドライン414は、眼底断層像表示領域408を上下方向に2分割したラインである。眼底断層像表示領域408内で眼底断層像P3(眼底Efの断面を示す領域)が第2ガイドライン414よりも上方に位置するように眼底断層像P3の撮影を行うことで、眼底断層像P3の画質が良好になる。このため、第2ガイドライン414は、眼底断層像表示領域408内で眼底断層像P3が表示されるべき位置を示す。
【0113】
[第2ライブ表示画面400B]
図8は、第2ライブ表示画面400Bの一例を説明するための説明図である。図8及び既述の図4に示すように、表示制御部310は、第2走査制御が開始された場合には、第2走査制御中の被検眼Eの状態を示す第2ライブ表示画面400Bを生成して表示部270に表示させる。具体的には表示制御部310は、操作部280から入力される被検眼情報と、画像取得部300から逐次入力される観察像P1と、アライメント制御部302から逐次入力されるステレオ画像P2と、断層像生成制御部306から逐次入力される角膜断層像P4と、に基づき、第2ライブ表示画面400Bを生成して表示部270に表示させる。
【0114】
第2ライブ表示画面400Bは、第1ライブ表示画面400Aと同様の左右眼情報領域402、観察像表示領域404、及びステレオ画像表示領域406の他に、角膜断層像表示領域420と、を含む。
【0115】
角膜断層像表示領域420は、角膜断層像P4を表示する領域である。表示制御部310は、断層像生成制御部306から逐次入力される角膜断層像P4に基づき、角膜断層像表示領域420に角膜断層像P4をライブ表示させる。これにより、第2走査制御中の角膜断層像P4をリアルタイムで確認することができる。その結果、観察像P1及び角膜断層像P4に基づき、第2走査制御中の被検眼Eの固視ができているか否か、すなわち固視状態を容易に確認することができる。
【0116】
なお、図示は省略するが、角膜断層像表示領域420に角膜断層像P4をライブ表示させる場合に、角膜断層像P4内の特定部位の像、例えば角膜頂点の像を識別可能に表示させてもよい。この場合には、画像形成部222により角膜断層像P4が生成されるごとに、特定部位検出部308が角膜断層像P4内から角膜頂点の像の検出を行う。
【0117】
また、図示は省略するが、角膜断層像表示領域420内に、例えば角膜頂点の像が表示されるべき位置を示す第1ガイドライン412と、角膜断層像表示領域420内で角膜断層像P4が表示されるべき位置を示す第2ガイドライン414と、を表示させてもよい。
【0118】
[眼内距離演算部224]
図4に戻って、眼内距離演算部224は、第1走査制御及び第2走査制御の完了後に、被検眼Eの眼軸長を演算する。眼内距離演算部224は、第1走査制御でOCT光学系8により検出されたBスキャンごとの検出信号(眼底断層像P3)と、第2走査制御でOCT光学系8により検出されたBスキャンごとの検出信号(角膜断層像P4)と、第1走査制御における参照光LRの光路長及び第2走査制御における参照光LRの光路長の光路長差(コーナーキューブ114の移動量)と、を取得する。そして、眼内距離演算部224は、これらの取得結果に基づき、被検眼Eの眼軸長を演算する。なお、眼軸長の具体的な演算方法については公知技術(例えば上記特許文献2参照)であるので、ここでは説明は省略する。
【0119】
被検眼Eが左右眼(両眼)である場合には、左右眼ごとに、主制御部211の各部(画像取得部300から表示制御部310)と眼内距離演算部224とが繰り返し作動する。これにより、左右眼ごとに、既述のオートアライメントと、第1走査制御及び第2走査制御と、眼底断層像P3及び角膜断層像P4の生成と、中心窩Fcの像の検出と、第1ライブ表示画面400A及び第2ライブ表示画面400Bの表示と、眼軸長の演算と、が繰り返し実行される。
【0120】
[プレビュー画面生成部312及びプレビュー画面500]
プレビュー画面生成部312は、表示制御部310と共に本発明の同時表示制御部として機能する。このプレビュー画面生成部312は、眼内距離演算部224による被検眼E(左右眼)の眼軸長の演算完了後に作動して、眼内距離演算部224による左右眼の眼軸長の演算結果と、画像形成部222により形成された左右眼ごとの眼底断層像P3及び角膜断層像P4とに基づき、プレビュー画面500を生成する。そして、プレビュー画面生成部312は、表示制御部310を介して、表示部270にプレビュー画面500を表示させる。
【0121】
図9は、プレビュー画面500の一例を説明するための説明図である。図9に示すように、プレビュー画面500は、被検眼Eである左右眼ごとに、眼軸長と眼底断層像P3と角膜断層像P4とを同時表示した画面である。このプレビュー画面500は、右眼用表示領域500Rと左眼用表示領域500Lとを含む。
【0122】
右眼用表示領域500Rには、画面上方から画面下方に向かって、左右眼情報領域502Rと、眼軸長表示領域504Rと、右眼の角膜断層像P4と、右眼の眼底断層像P3とが並べて表示される。また、左眼用表示領域500Lには、画面上方から画面下方に向かって、左右眼情報領域502Lと、眼軸長表示領域504Lと、左眼の角膜断層像P4と、左眼の眼底断層像P3とが並べて表示される。
【0123】
左右眼情報領域502Rには、被検眼Eが「右眼」であることを示す表示(例えば「R」)がなされる。また、左右眼情報領域502Lには、被検眼Eが「左眼」であることを示す表示(例えば「L」)がなされる。
【0124】
眼軸長表示領域504Rには、被検眼E(右眼)の眼軸長の演算結果が表示される。また、眼軸長表示領域504Lには、被検眼E(左眼)の眼軸長の演算結果が表示される。
【0125】
このようにプレビュー画面500において、被検眼E(左右眼)ごとに眼軸長の演算結果と角膜断層像P4と眼底断層像P3とを並べて表示することで、左右眼ごとに第1走査制御時及び第2走査制御時の被検眼Eの固視状態を確認することができる。その結果、左右眼ごとの眼軸長が精度よく測定された否かを確認することができる。
【0126】
図10は、記憶部212に記憶される眼軸長測定情報320の一例を示した説明図である。図10及び既述の図4に示すように、主制御部211は、表示部270によるプレビュー画面500の表示後に、操作部280において被検眼E(左右眼)の眼軸長の測定結果の記憶操作がなされると、左右眼ごとの眼軸長、眼底断層像P3、及び角膜断層像P4を記憶部212内の眼軸長測定情報320に記憶させる。具体的には主制御部211は、既述の被検眼情報(患者ID及び左右眼情報)と、左右眼ごとの眼軸長、眼底断層像P3、及び角膜断層像P4とを対応付けて眼軸長測定情報320に記憶させる。これにより、被検眼Eの眼軸長測定時の眼底断層像P3及び角膜断層像P4が後で確認可能になる。
【0127】
[眼科装置の作用]
図11は、上記構成の眼科装置1000による被検眼Eの眼軸長の測定処理の流れを示すフローチャートである(本発明の眼科装置の制御方法に相当)。
【0128】
被検者の顔が不図示の顔支持部に支持された後、検者が操作部280に対して被検眼E(左右眼の一方)の眼軸長の測定開始操作を入力すると、主制御部211が、画像取得部300、アライメント制御部302、走査制御部304、断層像生成制御部306、特定部位検出部308、表示制御部310、及びプレビュー画面生成部312として機能する(ステップS1)。これにより、画像取得部300が、前眼部観察系5からの観察像P1の取得と、表示制御部310への観察像P1の出力とを繰り返し実行する。
【0129】
また、測定開始操作に応じて、アライメント制御部302が、ステレオカメラ14からのステレオ画像P2の取得と、アライメント検出と、移動機構200による測定ヘッド1002のオートアライメントと、を実行する(ステップS2)。なお、アライメント制御部302は、オートアライメントの完了後もステレオカメラ14からのステレオ画像P2の取得と、表示制御部310へのステレオ画像P2の出力とを繰り返し実行する。
【0130】
オートアライメントが完了すると、走査制御部304が、OCT光学系8の各部を制御して、公知のオートオプティマイズ(眼底オートフォーカス及びOCT撮影位置の最適化)を実行した後(ステップS3)、測定光LSにより眼底Efを走査(Bスキャン)する第1走査制御を開始する(ステップS4、本発明の走査制御ステップに相当)。これにより、検出器125による干渉光LCの検出及び検出信号の出力と、DAQ130による検出信号のサンプリングとが実行される(ステップS5)。
【0131】
そして、断層像生成制御部306が、検出器125及びDAQ130を経て入力された検出信号のサンプリング結果に基づき、画像形成部222を制御して眼底断層像P3を生成すると共に、この眼底断層像P3を表示制御部310へ出力する(ステップS6、本発明の第1断層像生成ステップに相当)。この際に、特定部位検出部308が眼底断層像P3内から中心窩Fcの像を検出して、その検出結果である中心窩検出情報を表示制御部310へ出力する。
【0132】
次いで、表示制御部310が、既述の図5から図7に示したように、被検眼情報と、観察像P1と、ステレオ画像P2と、眼底断層像P3と、中心窩検出情報と、に基づき、第1ライブ表示画面400Aを生成して表示部270に表示させる(ステップS7、本発明の表示制御ステップに相当)。この際に、表示制御部310は、眼底断層像表示領域408内の眼底断層像P3に対して中心窩Fcの位置を示す指標410を重畳表示させると共に、眼底断層像表示領域408内に第1ガイドライン412及び第2ガイドライン414を表示させる。これにより、第1ライブ表示画面400A(特に眼底断層像表示領域408)に基づき、第1走査制御中の被検眼Eの固視状態(アライメント状態)を容易に確認することができる。
【0133】
以下、第1走査制御が完了するまでの間、上述のステップS5からステップS7の処理が繰り返し実行される(ステップS8でNO)。
【0134】
第1走査制御が完了すると(ステップS8でYES)、走査制御部304がコーナーキューブ移動機構115を駆動して、コーナーキューブ114を眼底断層像P3のOCT撮影に対応した位置から角膜断層像P4のOCT撮影に対応した位置に移動させて、参照光LRの光路長を変更する(ステップS9)。
【0135】
コーナーキューブ114の移動完了後、走査制御部304が、OCT光学系8の各部を制御して、測定光LSにより角膜Crを走査(Bスキャン)する第2走査制御を開始する(ステップS10、本発明の走査制御ステップに相当)。これにより、検出器125による干渉光LCの検出及び検出信号の出力と、DAQ130による検出信号のサンプリングとが実行される(ステップS11)。
【0136】
そして、断層像生成制御部306が、検出器125及びDAQ130を経て入力された検出信号のサンプリング結果に基づき、画像形成部222を制御して角膜断層像P4を生成すると共に、この角膜断層像P4を表示制御部310へ出力する(ステップS12、本発明の第2断層像生成ステップに相当)。
【0137】
次いで、表示制御部310が、既述の図8に示したように、被検眼情報と、観察像P1と、ステレオ画像P2と、角膜断層像P4と、に基づき、第2ライブ表示画面400Bを生成して表示部270に表示させる(ステップS13、本発明の表示制御ステップに相当)。これにより、第2ライブ表示画面400B(特に観察像P1及び角膜断層像P4)に基づき、第2走査制御中の被検眼Eの固視状態(アライメント状態)を容易に確認することができる。
【0138】
以下、第2走査制御が完了するまでの間、上述のステップS11からステップS13の処理が繰り返し実行される(ステップS14でNO)。
【0139】
第2走査制御が完了すると、眼内距離演算部224が、第1走査制御でOCT光学系8により検出されたBスキャンごとの検出信号(眼底断層像P3)と、第2走査制御でOCT光学系8により検出されたBスキャンごとの検出信号(角膜断層像P4)と、既述の光路長差と、に基づき、被検眼Eの眼軸長を演算する(ステップS15)。以上で左右眼の一方の眼軸長の測定が完了する。
【0140】
次いで、左右眼の他方についても上述のステップS1からステップS15の処理を経て眼軸長が測定される(ステップS16でNO)。
【0141】
左右眼の眼軸長の測定が完了すると、プレビュー画面生成部312が、既述の図9に示したように、被検眼E(左右眼)の眼軸長の演算結果と、左右眼の眼底断層像P3及び角膜断層像P4とに基づき、プレビュー画面500を生成する。そして、プレビュー画面生成部312は、表示制御部310を介して、表示部270にプレビュー画面500を表示させる(ステップS17)。これにより、左右眼の眼軸長の測定結果(演算結果)を眼軸長測定情報320に記憶させる前においても、第1走査制御中及び第2走査制御中の被検眼Eの固視状態を左右眼ごとに確認することができる。その結果、必要に応じて被検眼E(左右眼)の眼軸長の再測定の実施を検者に促すことができる。
【0142】
そして、操作部280にて被検眼E(左右眼)の眼軸長の測定結果の記憶操作がなされると、既述の図10に示したように、主制御部211が、左右眼ごとの眼軸長の演算結果、角膜断層像P4、及び眼底断層像P3を記憶部212内の眼軸長測定情報320に記憶させる(ステップS18)。
【0143】
以上のように本実施形態では、被検眼Eの眼軸長の測定のために第1走査制御と第2走査制御とを行う場合に、第1走査制御中には眼底断層像P3を含む第1ライブ表示画面400Aを表示部270に表示し且つ第2走査制御中には角膜断層像P4を含む第2ライブ表示画面400Bを表示部270に表示することができる。その結果、被検眼Eの眼軸長の測定中(第1走査制御中及び第2走査制御中)の被検眼Eの固視状態(アライメント状態)を容易に確認することができる。
【0144】
また、本実施形態では、被検眼E(左右眼)の眼軸長の測定が完了した場合に、左右眼ごとの眼軸長と眼底断層像P3と角膜断層像P4とを含むプレビュー画面500を表示部270に表示することで、被検眼Eの眼軸長の測定時の固視状態を容易に確認することができる。その結果、左右眼ごとの眼軸長の測定結果を記憶部212に記憶させるか、或いは眼軸長の測定をやり直すかを決定することができる。
【0145】
[プレビュー画面500の変形例]
図12は、プレビュー画面生成部312が生成するプレビュー画面500の変形例を説明するための説明図である。既述の図9に示したように上記実施形態のプレビュー画面500では、被検眼E(左眼)に対応する角膜断層像P4及び眼底断層像P3の表示間隔と、被検眼E(右眼)に対応する角膜断層像P4及び眼底断層像P3の表示間隔と、が等間隔である。
【0146】
これに対して、図12に示すように、プレビュー画面生成部312が、プレビュー画面500を生成する場合に、左右眼ごとの眼軸長に応じて左右眼ごとの角膜断層像P4と眼底断層像P3との表示間隔を変更させてもよい。これにより、被検眼E(右眼)の眼軸長の長短に応じて右眼に対応する角膜断層像P4及び眼底断層像P3の表示間隔が増減する。また、被検眼E(左眼)の眼軸長の長短に応じて左眼に対応する角膜断層像P4及び眼底断層像P3の表示間隔が増減する。その結果、プレビュー画面500により、左右眼ごとの眼軸長の長短を視覚的に示すことができる。
【0147】
[その他]
上記実施形態では、コーナーキューブ114を移動させて参照光LRの光路長を変更することで第1走査制御と第2走査制御とを切り替えているが、各種の光路長変更部を用いて測定光LSの光路長を変更したり或いは測定光LS及び参照光LRの双方の光路長を変更したりすることで、第1走査制御と第2走査制御とを切り替えてもよい。
【0148】
上記実施形態では、第1ライブ表示画面400Aにおいて眼底断層像P3の他に観察像P1及びステレオ画像P2のライブ表示を行っているが、少なくとも眼底断層像P3のライブ表示が可能であればその表示態様は特に限定はされない。また、第2ライブ表示画面400Bについても同様に少なくとも角膜断層像P4のライブ表示が可能であればその表示態様は特に限定はされない。
【0149】
上記実施形態では、被検眼E(左右眼)の眼軸長の測定完了後にプレビュー画面500の生成及び表示を行っているが、左眼の眼軸長の測定完了後と右眼の眼軸長の測定完了とにそれぞれプレビュー画面500の生成及び表示を行ってもよい。この場合にプレビュー画面生成部312は、例えば、左眼に対応するプレビュー画面500として既述の左眼用表示領域500Lの生成及び表示制御を行い、右眼に対応するプレビュー画面500として既述の右眼用表示領域500Rの生成及び表示制御を行う(図9及び図12参照)。さらに眼軸長(眼内距離)に応じて眼底断層像P3と角膜断層像P4との表示間隔を変更してもよい(図12参照)。
【0150】
上記実施形態では、被検眼Eの眼内距離として眼軸長の測定を行っているが、被検眼Eの前眼部の任意領域の前眼部断層像と後眼部の任意領域の後眼部断層像とを取得して、前眼部の任意領域と後眼部の任意領域との間の眼内距離を測定する場合にも本発明を適用可能である。また、この場合には、特定部位検出部308が後眼部断層像内から中心窩Fc以外の特定部位の像を検出して、この検出結果に基づき表示制御部310が後眼部断層像内の特定部位の像を識別可能に表示してもよい。
【0151】
上記実施形態では、レフ測定及びOCT測定を行う眼科装置1000を例に挙げて説明したが、少なくともOCT測定が可能な眼科装置であって且つ被検眼Eの眼内距離(眼軸長等)の測定に用いられる眼科装置であればその種類は特に限定はされない。
【符号の説明】
【0152】
1 アライメント系
3 ケラト測定系
4 固視投影系
5 前眼部観察系
6 レフ測定投射系
7 レフ測定受光系
8 OCT光学系
9 処理部
14 ステレオカメラ
31 ケラト板
32 ケラトリング光源
40 固視ユニット
40D 移動機構
41 液晶パネル
42 リレーレンズ
50 前眼部照明光源
51 対物レンズ
52 ダイクロイックフィルタ
53 絞り
55 リレーレンズ
56 リレーレンズ
58 結像レンズ
59 撮像素子
61 レフ測定光源
61D 移動機構
62 リレーレンズ
63 円錐プリズム
64 リング絞り
65 孔開きプリズム
66 ロータリープリズム
67 ダイクロイックフィルタ
71 リレーレンズ
72 反射ミラー
73 リレーレンズ
74 合焦レンズ
74D 移動機構
75 反射ミラー
76 ダイクロイックフィルタ
80D 移動機構
81 反射ミラー
82 リレーレンズ
83 ダイクロイックフィルタ
84 反射ミラー
85 リレーレンズ
87 合焦レンズ
88 光スキャナー
89 コリメータレンズユニット
100 OCTユニット
101 OCT光源
102 光ファイバー
103 偏波コントローラ
104 光ファイバー
105 ファイバーカプラー
110 光ファイバー
111 コリメータ
112 光路長補正部材
113 分散補償部材
114 コーナーキューブ
115 コーナーキューブ移動機構
116 コリメータ
117 光ファイバー
118 偏波コントローラ
119 光ファイバー
120 アッテネータ
121 光ファイバー
122 ファイバーカプラー
123 光ファイバー
124 光ファイバー
125 検出器
128 光ファイバー
200 移動機構
210 制御部
211 主制御部
212 記憶部
220 演算処理部
221A 眼屈折力演算部
221B 角膜形状演算部
222 画像形成部
223 データ処理部
224 眼内距離演算部
270 表示部
280 操作部
290 通信部
300 画像取得部
302 アライメント制御部
304 走査制御部
306 断層像生成制御部
308 特定部位検出部
310 表示制御部
312 プレビュー画面生成部
320 眼軸長測定情報
400A 第1ライブ表示画面
400B 第2ライブ表示画面
402 左右眼情報領域
404 観察像表示領域
406 ステレオ画像表示領域
408 眼底断層像表示領域
410 指標
412 第1ガイドライン
414 第2ガイドライン
420 角膜断層像表示領域
500 プレビュー画面
500L 左眼用表示領域
500R 右眼用表示領域
502L 左右眼情報領域
502R 左右眼情報領域
504L 眼軸長表示領域
504R 眼軸長表示領域
1000 眼科装置
1002 測定ヘッド
Cr 角膜
E 被検眼
Ef 眼底
Fc 中心窩
KC クロック
L0 光
LC 干渉光
LP1 観察系光路
LP2 分岐光路
LP3 分岐光路
LR 参照光
LS 測定光
LS1 OCT系戻り光
P1 観察像
P2 ステレオ画像
P3 眼底断層像
P4 角膜断層像
f1 光ファイバー
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12