(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-07-31
(45)【発行日】2024-08-08
(54)【発明の名称】心臓内の左心房およびデュアル補助システム
(51)【国際特許分類】
A61M 60/295 20210101AFI20240801BHJP
A61M 60/00 20210101ALI20240801BHJP
【FI】
A61M60/295
A61M60/00
(21)【出願番号】P 2021546002
(86)(22)【出願日】2020-02-05
(86)【国際出願番号】 US2020016848
(87)【国際公開番号】W WO2020163504
(87)【国際公開日】2020-08-13
【審査請求日】2023-02-02
(32)【優先日】2019-02-06
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-02-06
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】521348096
【氏名又は名称】インキュベート メディカル テクノロジーズ、 エルエルシー
【氏名又は名称原語表記】INQB8 MEDICAL TECHNOLOGIES, LLC
【住所又は居所原語表記】123 Church Street, Winchester, Massachusetts 01890 (US)
(74)【代理人】
【識別番号】100106297
【氏名又は名称】伊藤 克博
(72)【発明者】
【氏名】ラッツ、 ジェイ. ブレント
(72)【発明者】
【氏名】クアドリ、 アルシャド
【審査官】上石 大
(56)【参考文献】
【文献】国際公開第2008/005747(WO,A2)
【文献】米国特許出願公開第2006/0271173(US,A1)
【文献】特表2014-502860(JP,A)
【文献】特表2006-518249(JP,A)
【文献】米国特許第04902273(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61M 60/295
A61M 60/00
(57)【特許請求の範囲】
【請求項1】
心房機能不全を治療するシステムであって、
患者の心臓の左心房内に位置決めされるように構成された加圧要素と、
制御回路であって、
前記左心房の相対容積を増加させて前記左心房内の充満圧を低下させることにより、前記左心房の圧力を低下させ、かつ、心房拡張期と一致するタイミングで前記患者の肺から酸素化された血液を引き出すように、前記加圧要素を操作し、
前記左心房の前記相対容積を減少させて心房収縮期の左心房圧を上昇させることにより、前記左心房の圧力を上昇させ、かつ、心房収縮期と一致するタイミングで、前記加圧要素を操作し、心房収縮期の前記左心房圧の上昇によって、前記左心房と左心室との間の圧力差を増加させ、前記左心室の拡張期充満を改善する、
ように構成された制御回路と、
を備える、システム。
【請求項2】
前記加圧要素に結合され、前記左心房に前記加圧要素を位置決めするように構成されている心房位置決め構造をさらに備える、請求項1に記載のシステム。
【請求項3】
前記心房位置決め構造が、中隔アンカーまたは左心耳アンカーを備える、請求項2に記載のシステム。
【請求項4】
前記心房位置決め構造が、前記患者の前記心臓の右心房と前記左心房との間に経中隔的に延びるように構成されたシャフトを備える、請求項2または3に記載のシステム。
【請求項5】
前記シャフトは、前記左心房における前記加圧要素の位置決めを容易にするために、カーブまたは曲がりを有して予備成形されている、請求項4に記載のシステム。
【請求項6】
前記システムは、前記左心房における前記加圧要素の位置決めを容易にするために、前記シャフトを通って送達されるように構成された成形スタイレットをさらに備える、請求項4または5に記載のシステム。
【請求項7】
前記加圧要素がバルーンを構成し、前記左心房の圧力を上昇させるように前記加圧要素を操作することは、前記バルーンを液体または気体で満たすことを含み、前記左心房の圧力を低下させるように前記加圧要素を操作することは、前記バルーンから前記液体または前記気体を除去することを含む、請求項1~6のいずれか一項に記載のシステム。
【請求項8】
前記バルーンの遠位端部は、前記バルーンの前記遠位端部が非外傷性であるように、前記バルーン内へと凹んでいる、請求項7に記載のシステム。
【請求項9】
前記バルーンが、開口した中央ルーメンを備える、請求項7または8に記載のシステム。
【請求項10】
圧力チャンバと、前記バルーンと前記圧力チャンバとの間に配置された少なくとも1つのポンプとを備えた加圧構成部品をさらに備える、請求項7~9のいずれか一項に記載のシステム。
【請求項11】
前記加圧構成部品が、固定型外部構成部品、歩行仕様外部構成部品、または植込型構成部品であるように構成されている、請求項10に記載のシステム。
【請求項12】
前記心房位置決め構造が、中隔アンカーを備え、前記中隔アンカーが、前記患者の前記心臓の心房中隔の左側および右側に対してそれぞれ拡張するように構成された第1および第2の拡張可能部材を備え、前記加圧要素が前記第1の拡張可能部材に取り付けられている、請求項
2~6のいずれか一項に記載のシステム。
【請求項13】
前記左心房に位置決めされるように構成された前記加圧要素は、第1の加圧要素であり、前記システムは、前記患者の肺動脈内に位置決めされるように構成された第2の加圧要素をさらに備える、請求項1~12のいずれか一項に記載のシステム。
【請求項14】
肺動脈位置決め構造をさらに有し、前記第2の加圧要素は、前記肺動脈位置決め構造に結合され、前記肺動脈位置決め構造は、前記患者の前記肺動脈に前記第2の加圧要素を位置決めするように構成されている、請求項13に記載のシステム。
【請求項15】
前記制御回路は、前記第1の加圧要素および前記第2の加圧要素を操作して、前記左心房および前記肺動脈に協調された圧力変更を引き起こすようにさらに構成されている、請求項13または14に記載のシステム。
【請求項16】
前記第1の加圧要素が第1のバルーンを構成し、前記第2の加圧要素が第2のバルーンを構成する、請求項13~15のいずれか一項に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
すべての優先権出願の参照による組み込み
本出願は、2019年2月6日に出願された米国仮出願番号第62/801,819号および2019年2月6日に出願された米国仮出願番号第62/801,917号の利益を主張するものであり、それらはそれぞれ、参照することにより本明細書に組み込まれる。
【0002】
本開示は、一般に、植込型心臓装置に関し、より詳細には、心臓内左心房補助システムおよび心臓内デュアル補助システムに関する。
【背景技術】
【0003】
心不全(HF)は世界中で共通の問題であり、米国だけで650万人を超える人が罹患しているが、この数は2030年までに850万人近くに増加すると予想されている。これらの患者の多くは、慢性HFを罹患しながらも無症状で過ごすことができるが、毎年180万人の患者が急性心不全(AHF)を経験する。これは、主に呼吸困難および疲労感などの心不全症状が急激に悪化するもので、緊急処置および緊急入院を必要とする。これらの患者の生活の質への影響に加え、HFの治療および入院により、米国の医療制度に年間300億ドルを超えるコストがかかっている。AHFは、一般に、駆出率低下型心不全(HFrEF、収縮性HFとも呼ばれる)および駆出率保持型心不全(HFpEF、拡張性HFとも呼ばれる)の2つの分類に分けられる。HFrEFおよびHFpEFはともに、罹患率および死亡率に大きな影響を伴うが、HFpEFの対処はより困難であることが分かっており、この疾患の治療法を開発するために多くの努力がなされてきたが、利尿剤が、依然としてHFpEFの影響を緩和する唯一の科学的根拠に基づく治療法である。このように、HFrEFおよび心房細動(AF)の解決法を改善する機会に加えて、HFpEFに苦しむ患者にとって意味のある治療法を開発することが、満たされていない重要な臨床的ニーズである。
【0004】
HFの機構的および生理的進行のある時点で左心房の機能不全が起こり始める。左心房(LA)の壁が硬くなって、コンプライアンスが低下することにより、左心房のリザーバストレイン(充満時の拡張)およびアクティブストレイン(駆出時の圧縮)が低下する。このストレインの減少により、左心房内の圧力が上昇し、これが肺に伝わり(肺動脈楔入圧(PCWP)の上昇により測定される)、肺ガスの拡散(一酸化炭素肺拡散能(DLCO)、ならびに動脈および混合血液ガスの拡散によって測定される)を低下させ、これが肺のうっ血および呼吸困難の根本的な原因となり、AHFおよび入院につながる。
【0005】
HFrEFの治療では、左心室(LV)の収縮機能の低下が問題となる。その結果、心拍出量を維持するために、左心室が全身の圧力および収縮期血流を作り出すのを補助するいくつかの治療法が開発されている(LVADなど)。しかし、HFpEFでは収縮機能および駆出率が維持されているため、HFrEFの治療法の移行はあまり適しておらず、また効果的ではない。
【0006】
過去数年間に行われた研究では、HFpEFにおけるLAおよび左心房圧の役割が強調されている。より具体的には、研究により、左心房機能不全(例えば、左心房のリザーバストレインおよびアクティブストレインの低下)がHFpEFの死亡率に関連する独立した危険因子であることが確認されている。
【0007】
図1Aは、LAの圧力および容積の波形を示しており、これらの波形を組み合わせることで、圧力:容積の関係を「8の字」で表している(
図1B)。
【0008】
心房拡張期(心室収縮を介する)のLAの拡張は、リザーバ機能として知られており、
図1Aおよび
図1Bの(1)と標識付けられたセグメントで表されている。僧帽弁が拡張早期に開くと、LAおよびLVの圧力が等しくなり、血液はLVに受動的に駆出される。これは、導管機能として知られており、
図1Aおよび
図1Bのセグメント(2)で表されている。次に、拡張期の終わりに、僧帽弁が閉じる直前に、心房が収縮し、
図1Aおよび
図1Bのセグメント(4)および(5)で表される能動的なポンプ機能を果たす。
【0009】
うっ血性心不全(CHF)の存在下では、LAの拡張および容積の増加がスティッフネスの増加および高い圧力と結びつくため、
図1Bに示されている通常の「8の字」が右上に移動する。スティッフネスの増加により、曲線の形状も変化し、リザーバストレイン(充満時の拡張の減少)およびポンプのストレイン(心房収縮期の圧縮)が低下する。
【0010】
HFpEFは、最初はLV拡張期の充満圧の上昇およびLAを十分に駆出できないことに関連しているが、結果として流体がうっ滞してしばしば肺うっ血を引き起こし、肺高血圧症、RV-to-PC(右心室-肺循環)のアンカップリング、および右心室の過負荷または機能不全になり得る。その結果、左心不全から始まったものはしばしば右心不全へと進行し得る。右心への影響は、肺血管抵抗(PVR)、肺動脈(PA)収縮期圧(これはRV収縮期圧に相当する)の上昇、RVの仕事量および非効率性の増加、ならびに心拍出量の減少として観察されることがある。LA圧の上昇は、肺動脈楔入圧の上昇およびPVRの増加につながる。この結果、PA収縮期圧が上昇し、圧力差が小さくなるため、PA拡張期の間は心拍出量が減少する。PA収縮期圧の上昇は、収縮期のRVの仕事量を増加させ、時間の経過とともに効率を低下させることにつながる。
【発明の概要】
【発明が解決しようとする課題】
【0011】
HFpEFの症状を悪化させるLA圧の上昇の役割に対応して、LAから右心房(RA)に血液をシャントしてLA圧およびPCWPを低下させることを試みる心房内装置を提供することができる。初期の臨床研究では有望な結果が示されているが、LAのシャントは肺のうっ血を完全に解消するものではなく、心臓の右側の負担を軽減するのに役立つものでもない。むしろ、ここではRAは左側からの血液のシャントにより増加した容積に対処しなければならない。さらに、LAの圧力を低下させるだけでは、根本的な心房スティッフネスに対処せず、心周期のすべての段階でLAの機能を完全に回復させるのに役立たない。例えば、心房収縮の活性段階にLA圧を低下させてもLAとLVとの間の圧力差は大きくならない。その結果、LVの拡張終期の充満は最適化されず、むしろ、右側へと容積がシャントされているため、心拍出量は低下しやすくなる。さらに、LAシャントは、HFpEF患者に共通の状態である心房細動(AF)に苦しむ患者には効果的でないことがある。
【課題を解決するための手段】
【0012】
本開示のいくつかの態様では、加圧要素および制御回路を備えた心房機能不全を治療するシステムが開示される。加圧要素は、患者の心臓の左心房内に位置決めされるように構成され得る。制御回路は、左心房の相対容積を増加させて左心房内の充満圧を低下させることにより、心房拡張期に左心房の圧力を低下させて、患者の肺から酸素化された血液を引き出すように加圧要素を操作し、左心房の相対容積を減少させて心房収縮期の左心房圧を上昇させることにより、心房収縮期に左心房の圧力を上昇させるように加圧要素を操作するように構成され得る。心房収縮期の左心房圧の上昇によって、左心房と左心室との間の圧力差を増加させ、左心室の拡張期充満を改善する。
【0013】
いくつかの態様では、システムは、加圧要素に結合され、左心房に加圧要素を位置決めするように構成されている心房位置決め構造をさらに備えることができる。心房位置決め構造は、中隔アンカーまたは左心耳アンカーを備えることができる。心房位置決め構造が、患者の心臓の右心房と左心房との間に経中隔的に延びるように構成されたシャフトを備えることができる。シャフトは、左心房における加圧要素の位置決めを容易にするために、曲がりまたはカーブを有して予備成形され得る。いくつかの態様では、システムは、左心房における加圧要素の位置決めを容易にするために、シャフトを通って送達されるように構成された成形スタイレットをさらに備えることができる。
【0014】
いくつかの態様では、加圧要素がバルーンを構成し得る。左心房の圧力を上昇させるように加圧要素を操作することは、バルーンを液体または気体で満たすことを含むことができ、左心房の圧力を低下させるように加圧要素を操作することは、バルーンから液体または気体を除去することを含むことができる。バルーンの遠位端部は、バルーンの遠位端部が非外傷性であるように、バルーン内へと凹んでいることができる。バルーンが、開口した中央ルーメンを備えることができる。いくつかの態様では、システムは、圧力チャンバと、バルーンと圧力チャンバとの間に配置された少なくとも1つのポンプとを備えた加圧構成部品をさらに備えることができる。加圧構成部品が、固定型外部構成部品、歩行仕様外部構成部品、または植込型構成部品であるように構成され得る。
【0015】
いくつかの態様では、心房位置決め構造は、中隔アンカーを備えることができる。中隔アンカーが、患者の心臓の心房中隔の左側および右側に対してそれぞれ拡張するように構成された第1および第2の拡張可能部材を備えることができ、加圧要素が第1の拡張可能部材に取り付けられ得る。
【0016】
いくつかの態様では、左心房に位置決めされるように構成された加圧要素は、第1の加圧要素であることができる。システムは、患者の肺動脈内に位置決めされるように構成され得る第2の加圧要素をさらに備えることができる。第2の加圧要素は、肺動脈位置決め構造に結合され得、肺動脈位置決め構造は、患者の肺動脈に第2の加圧要素を位置決めするように構成され得る。制御回路は、第1の加圧要素および第2の加圧要素を操作して、左心房および肺動脈に協調された圧力変更を引き起こすようにさらに構成され得る。第1の加圧要素が第1のバルーンを構成でき、第2の加圧要素が第2のバルーンを構成できる。
【0017】
いくつかの態様では、心房機能不全を治療する方法が開示される。本方法は、患者の左心房内に加圧要素を送達することと、左心房の相対容積を増加させて左心房内の充満圧を低下させることにより、心房拡張期に左心房の圧力を低下させて、患者の肺から酸素化された血液を引き出すように加圧要素を操作することと、左心房の相対容積を減少させて心房収縮期の左心房圧を上昇させることにより、心房収縮期に左心房の圧力を上昇させるように加圧要素を操作することとを含むことができ、心房収縮期の左心房圧の上昇によって、左心房と左心室との間の圧力差を増加させ、左心室の拡張期充満を改善する。
【0018】
前述の段落の方法は以下の特徴のうちの1つまたは複数をさらに有することができる。加圧要素はバルーンであり得る。本方法は、制御回路にて、患者に通信可能に結合されたセンサから患者の心臓の心周期に対応する信号を受信することと、信号の一部に応答して、左心房の圧力を低下させるように加圧要素を操作することと、信号の追加の部分に応答して、左心房の圧力を上昇させるように加圧要素を操作することとをさらに含むことができる。センサは電気センサまたは圧力センサを構成することができる。本方法は、左心房内に加圧要素を固定することをさらに含むことができる。左心房内に送達される加圧要素は、第1の加圧要素であることができ、本方法は、患者の肺動脈に第2の加圧要素を送達することと、肺動脈収縮期に肺動脈内の圧力を低下させて、肺動脈の収縮期圧を低下させ、患者の心臓の右心室の仕事量を減少させるように第2の加圧要素を操作することと、肺動脈弁が閉じた後の肺動脈拡張期に肺動脈内の圧力を上昇させて、肺動脈拡張期圧を上昇させ、肺血管抵抗に打ち勝って心拍出量を増加させるように、第2の加圧要素を操作することとをさらに含むことができる。
【0019】
本開示の特定の態様によると、システムは、心周期の様々な部分の間、左心房の動作を支えるように操作され得る植込型流体変位要素(例えば、バルーン、タービン、ポンプまたは他の加圧要素)を備える。加圧要素は、患者の心臓の左心房内に経皮的に位置決めされ、固定され得る。植込型加圧要素は、種々のプログラム可能なタイミングスキームを用いて容積変位および圧力調整を通じて心臓の機能性を補助するように操作可能である。
【0020】
本開示の特定の態様によると、システムは、心周期の様々な部分の間、(例えば、圧力および真空を生じさせることによって)前方流および/または逆流を引き起こすように協調して操作され得る2つの植込型流体変位要素(例えば、バルーン、タービン、ポンプまたは他の加圧要素)を備える。2つの加圧要素は、患者の心臓および/または脈管構造内の2つの別個の位置に経皮的に位置決めされ、固定され得る。2つの植込型加圧要素は、同時のタイミングで(例えば、バルーンの場合、両方が拡張される、両方が収縮される)、真逆のタイミングで(例えば、バルーンの場合、一方が拡張されて他方が収縮される、または軸流ポンプの場合、一方は前方へ、他方は後方へ)、または種々のプログラム可能なタイミングスキームを用いて容積変位および圧力調整を通じて心臓の機能性を補助するために、2つの異なる要素間の先行する、もしくは遅れたタイミングで非同時に、一緒にまたは独立して機能するように操作可能および/またはプログラム可能である。
【図面の簡単な説明】
【0021】
【
図1A】心房圧と容積の関係を5段階で示す図である。
【
図1B】心房圧と容積の関係を5段階で示す図である。
【
図2】本開示の特定の態様による左心房心臓補助システムを示す図である。
【
図3】本開示の特定の態様による心周期の様々な部分に関するバルーン拡張および収縮の時系列を示す図である。
【
図4】心周期の様々な部分に関する左心房バルーンを使用した左心房圧の変化を示す図である。
【
図5】主題技術の様々な態様による様々な状態における左心房バルーンの斜視図である。
【
図6】主題技術の様々な態様による様々な状態における左心房バルーンの部分断面図である。
【
図7A】主題技術の様々な態様による、経中隔シャフトおよび中央ルーメンを有する左心房バルーンの斜視図である。
【
図7B】主題技術の様々な態様による、経中隔シャフトおよび中央ルーメンを有する左心房バルーンの部分断面図である。
【
図8】主題技術の様々な態様による植え込まれた経中隔左心房位置決め構造およびバルーンを示す図である。
【
図9】主題技術の様々な態様による植え込まれた左心耳用左心房位置決め構造およびバルーンを示す図である。
【
図10A】主題技術の様々な態様による左心房バルーンの図である。
【
図10B】主題技術の様々な態様による左心房バルーンの図である。
【
図10C】主題技術の様々な態様による左心房バルーンの図である。
【
図10D】主題技術の様々な態様による左心房バルーンの図である。
【
図12】主題技術の1つまたは複数の実施態様が実施され得るシステムを示す図である。
【
図13A】本開示のある態様による、拡張状態および収縮状態の両側心臓補助システムを示す図である。
【
図13B】本開示のある態様による、拡張状態および収縮状態の両側心臓補助システムを示す図である。
【
図14】主題技術の様々な態様による肺動脈位置決め構造の拡張状態を示す図である。
【
図15】主題技術の様々な態様による肺動脈位置決め構造の拡張状態を示す図である。
【
図16】主題技術の様々な態様による肺動脈位置決め構造の拡張状態を示す図である。
【
図17】主題技術の様々な態様による植え込まれた肺動脈位置決め構造を示す図である。
【
図18】主題技術の様々な態様による、らせん状の右心室バルーンを有するシステムを示す図である。
【発明を実施するための形態】
【0022】
以下に記述する発明を実施するための形態は、主題技術の様々な構成を説明するものであって、主題技術が実施され得る唯一の構成を示すことを意図したものではない。発明を実施するための形態は、主題技術の完全な理解をもたらすために具体的な詳細を含む。したがって、特定の態様に関して、非限定的例として寸法が提供されてもよい。しかし、当業者であれば、これらの具体的な詳細がなくても主題技術を実施できることは明らかであろう。場合によっては、周知の構造および構成部品は、主題技術の概念を不明瞭にすることを回避するためにブロック図形式で示されている。
【0023】
本開示は、主題技術の実施例を含み、添付の特許請求の範囲を限定するものではないことを理解されたい。ここで、主題技術の様々な態様が、特定の、しかし非限定的な実施例に従って開示される。本開示に記載される様々な実施形態は、異なる方法および変形で、所望の用途または実施態様に応じて実行することができる。
【0024】
以下の発明を実施するための形態では、本開示の完全な理解をもたらすために、多数の具体的な詳細が示されている。しかしながら、当業者には本開示の実施形態が一部の具体的詳細なしで実施できることが明らかになるであろう。他の場合には、本開示を不明瞭にしないために、周知の構造および技術は詳細に示されていない。
【0025】
本開示の態様は、心不全および/または心房細動を含む心房機能不全のためのシステムおよび方法に関する。システム100、600などのシステムの使用をHF用途について以下に記述するが、システムは、LAの本来の機能および拍動を回復させる能力に基づいて、非HFのAF患者の治療にも適していることを理解すべきである。今日、多くの場合メイズ手術と呼ばれるアブレーション手術を介してAFを治療することが一般的であり、それより、医師は、細動をなくすために、小切開、ラジオ波、凍結、マイクロ波または超音波エネルギーを用いて、LA内の電気回路を破壊する瘢痕組織を形成する。これは、手術でも効果があるが、現在使用されているインターベンション技術を用いた場合はそれほど効果的ではない。アブレーションが不十分だと持続性AFにつながる可能性があるが、アブレーションが過剰だとLAの壁を硬くする瘢痕化を引き起こし得、最終的にはHFにつながり得る。対照的に、後述のLAバルーン102を用いてLAの機能(拡張および収縮)を回復させることにより、電気的変動があっても、また過剰な瘢痕化を引き起こし得るアブレーションを必要とせずに、AFの症状を解消することができる。
【0026】
左心房心臓補助システム
図2は、植込型加圧要素が患者に植え込まれた例示的システム100を示す。
図2の実施例では、システム100は、例示のためにバルーンとして実装された加圧要素102を備える。図示されているように、心房位置決め構造106は、加圧要素102に結合され、患者の心臓101の左心房LAに加圧要素102を位置決めするように構成されている。
図2では見えていないが、システム100は、左心房リザーバストレインの増加および左心房の容積の相対的増加をシミュレートして左心房内の充満圧を低下させることにより、心房拡張期に左心房の圧力を低下させて、患者の肺から酸素化された血液を引き出すように加圧要素102を操作するように構成された制御回路も備える。また、制御回路は、左心房の相対容積を減少させて心房収縮期の左心房圧を上昇させることにより、心房収縮期に左心房の圧力を上昇させて、左心房のアクティブストレインの増加をシミュレートするように加圧要素102を操作する。心房収縮期の左心房圧の上昇は、左心房と左心室との間の圧力差を増加させ、左心室の拡張期充満を改善する。
【0027】
供給ライン110が示されており、これらを介して、流体または気体が、加圧要素102のバルーン実施態様の拡張または収縮のために供給または除去され得、またはこれらによって、制御信号が加圧要素102の他の実施態様の操作のために提供され得る。供給ライン110は、加圧要素102を左心房LAに送達するために使用される細長いカテーテル本体に組み込まれても、またはその一部であってもよい。例えば、バルーンおよび非バルーンの両方の実施形態において、いくつかの態様では、カテーテルまたはシースが、大腿静脈を介して経皮的アプローチで送達され、下大静脈を通って右心房RAに進み、心房中隔を越えて左心房LAに進んでもよい。加圧要素102は、細長い本体の遠位端部に配置され、LA内で拡張することができる。
図2でバルーンの近位に示されている拡張可能な心房位置決め構造106は、LA内でバルーンを固定するのを助けるために、中隔の左側および/または右側で拡張してもよい。いくつかの実施形態では、バルーンを運ぶカテーテル本体は、RAとLAとの間に配置された別個の経中隔シースを介して送達されてもよい。
【0028】
システム100は、患者の心周期の一部に対応する信号を生成する心電図(ECG)センサおよび/または圧力センサなどの1つまたは複数のセンサも備えてもよい。加圧要素102は、センサからの信号に基づいて、心周期の様々な部分に合わせて、左心房内に圧力変化(例えば、圧力上昇および/または圧力低下)を引き起こすように操作することができる。
【0029】
本開示の態様によれば、
図2の左心房補助システム100は、潜在的に右側に問題が発生する前に、心臓の左側の潜在的な機能不全に対処するために、かつ/または肺動脈楔入圧(肺うっ血の代わり)の低下および左心室の充満の改善を介して心臓の両側の機能不全を緩和するために提供される。
【0030】
心臓の右側の負担を増加させ、心拍出量を減少させるという代償を払ってLA圧のみを低下させる装置を用いたHFpEF治療とは対照的に、本明細書に記載のシステム100は、右心房に負担を加えることなく心臓の左側の負担を減少させることによって心臓を補助し、それによって潜在的に、うっ血および肺動脈楔入圧も減少させ、LV拡張期の充満を改善し、これによって心拍出量の正味の増加をもたらすことができる。これは、心臓の左側に流体/容積変位システム(例えば、左心房内の加圧要素102)を配置することによって達成される。加圧要素102がバルーンとして実装されている本明細書に記述される実施例では、バルーンの拡張および収縮は、各患者に対する補助を最適化し、心周期の間、常に血液を適切な方向に移動させ続けるような方法でタイミングがとられる。
【0031】
心房拡張期に左心房内でバルーン102を収縮させると、LAリザーバストレインの増加(例えば、充満時の容積の増加)をシミュレートして、LAの相対容積を増加させ、充満圧を低下させることによって、肺から酸素化された血液を引き出すことを助けることができる。次に、拡張期周期の活性部分(例えば、心房収縮中)にバルーン102を拡張させることにより、バルーンは、周期の活性段階の間にLAの相対容積を減少させてLA圧を上昇させ、それにより、LA対LVの圧力差を増加させ、左心室の拡張期充満を改善することによって、ポンプ/アクティブストレインの増加をシミュレートすることができる。LAバルーン102のこの操作は、スティフネスおよび壁応力が増加しつつある心臓の領域(例えば、LAおよびLV)のコンプライアンスを回復するのに役立つ。
【0032】
様々な動作シナリオにおいて、バルーン102(または、LAにおける流体/容積変位のための加圧要素の他の実施態様)は、バルーンの配置および各患者の特定のニーズに応じて操作することができる。
【0033】
バルーン102の拡張および収縮は、初期(例えば、固定)のタイミングに基づくことができ、または、心電図(例えば、EKGまたはECG)センサ、圧力センサ(例えば、LA内またはその近傍の圧力センサ)、またはそれらの組み合わせからのセンサ信号によってトリガすることができる。
【0034】
図3は、ECG信号200のタイミングに対する、LAバルーン102のバルーン拡張および収縮の可能なシーケンスを示す波形202を示す。
【0035】
図3の波形を生成できるバルーン102のタイミングの例示的な一実施態様では、LAバルーン102は、Rピークの検出時に時間遅延(例えば、Rピーク後100ミリ秒の遅延)を加えて収縮するようにトリガされる。このようにして、システムは、LAバルーンの収縮が、僧帽弁が閉じているときの心室収縮中に生じるLA圧/容積周期の自然な拡張/リザーバ機能段階と一致するように、LAバルーン102の収縮を開始する。LAバルーン102の拡張が、僧帽弁が閉じる直前の心室拡張期の終わりの心房収縮(例えば、a波のピークが発生したときの心房の圧力/容積周期の活発な収縮部分)と一致して、心房と心室の圧力差を高め、心室充満(例えば、左心室拡張末期容積、LVEDV)を増加させるように、LAバルーンの拡張は、ECGのP波ピークまたはRピークに基づき、追加の時間遅延(例えば、Rピーク後600ミリ秒の時間遅延)を加えて開始するようにトリガされてもよい。
【0036】
図4は、ECG信号のタイミングに対する、2つのLA圧波形300、312を示す。また、この図は、心周期のある時点も示す。例えば、LA収縮302、僧帽弁閉鎖304、LAの弛緩および充満306、LA満杯308、LA駆出310などである。修正されていない波形312は、LAバルーンを使用していない心臓の左心房圧波形を示し、修正された波形300は、LAバルーンを使用している心臓の左心房圧波形を示す。示されているように、修正された波形300のa波ピーク(302に相当)は、バルーンの拡張によりLAが収縮したときに、修正されていない波形312の302よりも高く、この波のブーストは、心不全および/または心房細動に関連する心房機能不全の結果として低下し得る左心房の自然な収縮性を増幅し、左心室の充満を改善して心拍出量を支えるのに役立つ。逆に、Rピーク直後にバルーンを収縮させると、修正されていない波形312と比較して、心房の充満中の圧力が低下し(306に相当)、v波のピークが低くなる(308に相当)。この充満圧の低下により、肺動脈楔入圧が低下し、肺のうっ血が減少するはずである。
【0037】
図5~
図9は、LAバルーン102および心房位置決め構造106の例示的実施形態を示す。
【0038】
一般に、バルーン102は、その関連する位置決め構造から分離されていても、または位置決め構造に組み込まれていてもよい。いずれの実施態様においても、心周期を通して心臓内でその関連するバルーンの位置を維持する位置決め構造が提供される。
図5の例示的斜視図では、LAバルーン102は、心房中隔を通って延びる部分700で経中隔的に位置決めされるように構成された心房位置決め構造106に取り付けられているドーム形の拡張可能な構造である。部分700は、心房位置決め構造とみなしてもよく、心臓内に一時的に配置される上述のカテーテル本体、またはより長期的に心臓内に配置され得るより短い経中隔シャフトを備えてもよい。心房位置決め構造106は、
図6により詳細に示される2つのディスク800および802の形態を実質的にとり得る拡張可能なワイヤメッシュ(例えば、自己拡張型、型形状固定(shape-set)ニチノール製ワイヤメッシュ)を含むドーナツ状構造を構成する。システムは、経中隔的に送達されるときに、位置決め構造106およびドーム形の拡張可能構造102の直径を制限できるシース内から展開されてもよい。遠位端部が左心房内に進入したら、バルーン102が取り付けられた遠位ディスクが左心房内で拡張できるように、シースを後退させてもよい(または、バルーンカテーテルおよび位置決め構造をシースに対して前進させてもよい)。次いで、システムを右心房に向かって引き戻し、遠位ディスクの近位面を中隔壁の左心房に面した面に接触させることができる。シースを後退させ続けると、近位ディスクは、近位ディスクの遠位面が中隔壁の右心房に面する面に接触してシステムを中隔に対して固定するように、露出し、拡張する。
図5の矢印は、どのようにバルーン102が交互に拡張および収縮され得るかを示す。
【0039】
図6は、バルーン102が位置決め構造106のLA側に組み込まれた状態で、心房中隔809の両側に拡張可能部材800および802で固定された、
図5の心房位置決め構造106およびLAバルーン102の部分側面断面図を示す。拡張可能部材800および802は、患者の心臓に(部材802については心房中隔を通って)挿入するために折り畳まれ、その後、位置決め構造106を中隔に固定するために拡張され得る。バルーン102は、抗血栓材料を含むことができる。
図6の矢印は、中隔809に固定されたバルーン102がどのようにして交互に拡張および収縮できるかを示す。ドーム形のバルーン106が
図6および
図7に示されているが、LAバルーン102は、バルーン102を通る中央ルーメンを介してLAへの経中隔アクセスを可能にするドーナツ状ループまたは他の形態として成形され得ることを理解すべきである。左心房への導管を提供する中央ルーメンは、初期送達、カテーテルの外部部分のハブからの直接圧力測定、圧力センサ(例えば、光ファイバ圧力センサ)、静脈系へのシャント経路、または左心房へのアクセスが望まれ得る任意の他の目的を容易にするガイドワイヤルーメンとして使用することができる。例えば、
図7A~
図7Bは、左心房室へのアクセスを維持するための開口した中央ルーメン900を含むマルチルーメンカテーテル902を備えたLAバルーン102の実施態様を示す。カテーテル902は、バルーン102を拡張および収縮させるために使用できる別のルーメン904を備える。
図7Aの断面図が
図7Bに示される。図示されているように、中央ルーメン900は、両矢印901によって示されるように、左心房室へのアクセスを提供する。さらに、流体ルーメン904は、第2の両矢印903で描かれているように、バルーン102へ、またバルーン102から流体を送達できる。
【0040】
いくつかの操作シナリオでは、患者のHFを一時的に治療した後、経中隔LAバルーンおよび心房固定構造は除去でき、経中隔開口部は閉鎖されても、または開いたままであってもよい。
図8は、右心房に配置された第1の固定部材800および左心房に配置された第2の固定部材802を有する経中隔アンカーとして実装されたLA位置決め構造106によってLA内に位置決めされたLAバルーン102と、左側の部材802に取り付けられたLAバルーン102とを示す。
図9は、LAバルーン102が、左心耳(LAA)に遠位端部で固定される構造106により固定される代替的実装態様を示す。LAAに(例えば、
図9に示すような拡張可能ケージを用いて)固定することは、構造106が、LAの全体的な容積を減少させ、塞栓症のリスクおよび/またはAFの影響を最小化するのに役立つように、同時にLAAの一部を閉鎖するように実施することもできる。LA固定構造106は、LAバルーン102をLAに位置決めするために他の場所に固定することができることも理解されるべきである。一実施例では、LA固定構造106は、1つまたは複数の肺静脈のオリフィスに固定するように構成された固定部材であってもよい。さらに、本明細書に記載されている実施形態のいずれかにおいて、また
図8~
図9に示されているように、供給ライン110は、点線114で図示されている上大静脈(SVC)、または実線110で図示されているように下大静脈(IVC)から、右心房を介してLAにアクセスすることができる。
【0041】
LAバルーンの別の実施態様を
図10A~
図10Dに示す。LAバルーン502の遠位端部504は、LAバルーン502内に凹んでいる。陥入している先端により、ガイドワイヤが存在しない場合を含むがこれに限定されず、バルーン502の遠位端部504を非外傷性にすることができる。バルーン502は、
図10Dに示すように、上述した同様の固定機構によって心臓に固定することができるが、
図10Cに示すように、それを必要としない。
図10Cは、LAバルーン502が、心房位置決め構造としてシャフト506を用いてLA内に位置決めされ得ることを示す。一実施態様では、シャフト506は、マルチルーメンポリマーシャフトであってもよい。シャフト506は、送達中の適切な配置および操作中の安定化を容易にするのを助けるように、約60°または様々な異なる角度の曲がりまたはカーブを有して予備成形され得る。シャフト506は、複数のルーメンを構えることができる。例えば、シャフト506は、ガイドワイヤ用の別個のルーメン、バルーン502を拡張および収縮させるための別個のフロールーメン、および光ファイバ圧力センサ用の別個のルーメンを有することができる。また、シャフト506は、カテーテルの遠位先端を安定させ、操作時にバルーンの位置を維持するための補強用スタイレットを収容するルーメンを含んでいてもよい。補強用スタイレットは、遠位先端が所望の位置まで進む前または後に挿入することができる。補強用スタイレットは、シャフト506に所望の曲がりまたはカーブを付与するために、曲がりまたはカーブを有して予備成形されていてもよい。
【0042】
様々な実施態様において、LAバルーン102、502は、球形、楕円形、円筒形、平面、ドーム形、ドーナツ状、またはLAを加圧する(例えば、制御可能な方法で圧力を上昇または低下させる)のに適した任意の他の幾何学的構成である形状を有することができる。様々な形状は、患者における配置を改善することができる。他の実施態様では、LAバルーン102、502は、患者の心臓により適した、ならびに/または拡張および/もしくは収縮時に優先的なフローパターンを提供するために、様々なサイズを有することができる。
【0043】
LAバルーン102のようなLAバルーンは、1つまたは複数の他の植込型要素と組み合わせて提供できることをさらに理解すべきである。
【0044】
図11は、
図2では見えない上述のシステム100に組み込まれてもよく、本明細書に記載されるようにLAバルーン102を操作するように構成された様々な構成部品を示す。
図11は、上述した単一のバルーンシステム、またはさらに後述するデュアルバルーンシステムで使用可能であってもよい構成部品を示す。したがって、
図11に図示された構成部品のすべてが、単一のバルーンシステムに必要とされるかまたは利用されるとは限らなくてもよい。システム100の構成部品に関するさらなる詳細は、
図14および段落[0046]を含むがこれらに限定されない、2019年2月6日に出願された米国仮出願第62/801,819号にも記載されており、その全文が参照により本明細書に組み込まれる。
図11の実施例では、システム100は、制御回路(図示せず)、電源(図示せず)、圧力チャンバまたはリザーバ1900、真空チャンバまたはリザーバ1902、およびポンプ1907を備えることができる。図示されているように、ソレノイド1908は、圧力チャンバ1900および真空チャンバ1902を流体ライン(例えば、
図2の流体ライン110の実施態様)に流体的に結合する管類に配置されてもよく、マイクロコントローラ1927の制御回路によって制御され、バルーン102の拡張および収縮を制御することができる。一実施形態では、ECGセンサ1903が患者1901に接続され、患者のECG信号はデータ収集ユニット1905に送信され、このデータ収集ユニット1905は、ECG信号のR波に相関する設定閾値を検索するようにソフトウェア1915によってプログラムされている。閾値が検出されると、データ収集ユニット1905は、マイクロコントローラ1927にパルス(例えば、方形波)を送信する。ソフトウェア1915は、データ収集ユニット1905によって送信されたパルスについてマイクロコントローラ1927を監視し、その情報を用いてECG信号のR波の間隔(R-R間隔)を連続的に計算する。LAバルーンの拡張は、計算されたR-R間隔およびパラメータ1919(拡張時間の長さ、ECG特徴1917の検出後のオフセット/遅延時間、および充満量を含む)を使用してタイミングが取られ、これらのパラメータ1919は、ユーザ入力/コントローラ1921を用いて調整され得る。次に、R-R間隔のタイミングおよびユーザ入力1921に基づいて、ソフトウェア1915は、マイクロコントローラ1927と通信してソレノイド1908を作動させ、バルーンのルーメンを、拡張のために圧力チャンバ1900へ、または収縮のために真空チャンバ1902へと、いずれかに開放する。
【0045】
システム100は、固定型の外部システム(例えば、ベッドサイド補助用)として描かれているが、
図11および上述の他の図面の構成部品は、歩行使用のために、または患者に植え込むために配置することもできる(例えば、バルーン102の駆動システムは、外部コンソール、ウェアラブルな外付けポータブルユニット内にあることができ、または完全植込型であってもよい)。システム100は、一時的な使用、短期的な使用、中期的な使用、長期的な使用、または永久的な使用のために提供され得る。一時的な場合には、LA位置決め構造106は、外傷がないように患者から取り外されるように構成される。
【0046】
所望であれば、バルーン102は、対応する空洞内の圧力データを収集する圧力センサ/モニタ1923、例えば、光ファイバ圧力センサまたは他の同様の方法を備えることができる。この圧力センサからの圧力データは、バルーンの拡張および/もしくは収縮を駆動もしくはトリガするために使用することができ、ならびに/または、出力ディスプレイ1925を介して、もしくは別個にアップロードされたときに、リアルタイムで患者、医師、もしくは他の人に情報を提供するために収集することができる。いくつかの実施形態では、センサ1923は、様々な目的でバルーン内の圧力を監視するために使用することもできる。
【0047】
本明細書では、LA加圧要素102がバルーンとして実装されている様々な実施例が説明されているが、LA補助システム100は、アクティブポンプ、軸流ポンプ、タービン、または容積および流体を変位させる他の機構など、他の加圧要素を用いて実施されてもよいことを理解すべきである。より一般的には、要素102は、患者の心臓の左側の1つまたは複数の部分と流体連通するように配置するための、生体適合性があり植込可能な加圧(例えば、圧力制御)、流体変位、および/または容積変位機構の任意の適切な組み合わせとして実装することができる。例えば、LA加圧要素102は、操作されると、左心房の容積変位を引き起こすことができる。
【0048】
図12は、主題技術の1つまたは複数の態様が実装され得る電子システムを概念的に示す。電子システムは、例えば、スタンドアロンデバイス、ポータブル電子デバイス、例えば、ラップトップコンピュータ、タブレットコンピュータ、電話、ウェアラブルデバイスもしくはパーソナルデジタルアシスタント(PDA)、または一般に、患者の心臓および/もしくは肺血管系に植え込まれた加圧装置に通信可能に接続できる任意の電子デバイスに実装された左心房補助システムのための制御回路1913であってもよく、またはその一部であってもよい。このような電子システムは、様々な種類のコンピュータ可読媒体と、他の様々な種類のコンピュータ可読媒体用のインタフェースとを備える。電子システムは、バス1008、処理ユニット1012、システムメモリ1004、読み取り専用メモリ(ROM)1010、永久記憶デバイス1002、入力デバイスインタフェース1014、出力デバイスインタフェース1006、およびネットワークインタフェース1016、またはそれらのサブセットおよび変形を備える。
【0049】
バス1008は、電子システムの多数の内部デバイスを通信可能に接続するすべてのシステムバス、周辺バスおよびチップセットバスを総称する。1つまたは複数の実施形態では、バス1008は、処理ユニット1012を、ROM1010、システムメモリ1004および永久記憶デバイス1002と通信可能に接続する。これらの様々なメモリユニットから、処理ユニット1012は、主題開示のプロセスを実行するために、実行する命令および処理するデータを取得する。処理ユニットは、異なる実施形態において、単一のプロセッサまたはマルチコアプロセッサであり得る。
【0050】
ROM1010は、電子システムの処理ユニット1012および他のモジュールが必要とする静的なデータおよび命令を格納する。一方、永久記憶デバイス1002は、読み書きメモリデバイスである。このデバイスは、電子システムがオフのときでも命令およびデータを格納する不揮発性メモリユニットである。主題開示の1つまたは複数の実施形態は、永久記憶デバイス1002として大容量記憶デバイス(例えば、磁気ディスクまたは光ディスクおよびその対応するディスクドライブ)を使用する。
【0051】
他の実施形態は、永久記憶デバイス1002として、取り外し可能な記憶デバイス(例えば、フロッピーディスク、フラッシュドライブ、およびその対応するディスクドライブ)を使用する。永久記憶デバイス1002と同様に、システムメモリ1004は、読み書きメモリデバイスである。しかし、記憶デバイス1002とは異なり、システムメモリ1004は、ランダムアクセスメモリのような揮発性の読み書き可能なメモリである。システムメモリ1004は、処理ユニット1012が実行時に必要とする命令およびデータのいずれかを格納する。1つまたは複数の実施形態では、主題開示の処理は、システムメモリ1004、永久記憶デバイス1002、および/またはROM1010に格納される。これらの様々なメモリユニットから、処理ユニット1012は、1つまたは複数の実施形態のプロセスを実行するために、実行する命令および処理するデータを取得する。
【0052】
バス1008は、入力デバイスインタフェース1014および出力デバイスインタフェース1006にも接続する。入力デバイスインタフェース1014によって、ユーザが情報および選択コマンドを電子システムに伝達すること、ならびに/またはセンサがセンサデータをプロセッサ1012に伝達することを可能にする。入力デバイスインタフェース1014と共に使用される入力デバイスとしては、例えば、英数字キーボード、ポインティングデバイス(「カーソル制御デバイス」とも呼ばれる)、カメラもしくは他のイメージングセンサ、心電センサ、圧力センサ、または一般に入力を受信できる任意のデバイスが挙げられる。出力デバイスインタフェース1006は、例えば、電子システムによって生成された画像の表示を可能にする。出力デバイスインタフェース1006と共に使用される出力デバイスとしては、例えば、プリンタ、および表示デバイス、例えば、液晶ディスプレイ(LCD)、発光ダイオード(LED)ディスプレイ、有機発光ダイオード(OLED)ディスプレイ、フレキシブルディスプレイ、フラットパネルディスプレイ、ソリッドステートディスプレイ、プロジェクタ、または情報を出力する他の任意のデバイスが挙げられる。1つまたは複数の実施形態は、タッチスクリーンなど、入力デバイスおよび出力デバイスの両方として機能するデバイスを含んでいてもよい。これらの実施形態では、ユーザに提供されるフィードバックは、任意の形態の感覚フィードバック、例えば、視覚フィードバック、聴覚フィードバック、または触覚フィードバックであってもよく、ユーザからの入力は、聴覚、音声、または触覚入力を含む任意の形態で受信され得る。出力デバイスインタフェース1006は、本明細書に記載されているように、加圧構成部品を操作する(例えば、加圧要素102を制御する)制御コマンドを出力するためにも使用することができる。
【0053】
最後に、
図12に示すように、バス1008は、ネットワークインタフェース1016を介して電子システムをネットワーク(図示せず)にも接続する。このようにして、コンピュータは、コンピュータのネットワーク(例えば、ローカルエリアネットワーク(「LAN」)、ワイドエリアネットワーク(「WAN」)、もしくはイントラネットなどのネットワーク、またはインターネットのようなネットワークのネットワーク)の一部であってもよい。電子システムの任意のまたはすべてのコンポーネントは、主題開示と組み合わせて使用することができる。
【0054】
デュアル心臓補助システム
図13A~
図13Bは、2つの植込型加圧要素が患者に植え込まれた別の例示的システム600を示す。
図13A~
図13Bの実施例では、システム600は、例示のためにバルーンとして実装された第1の加圧要素102を備える。図示されているように、心房位置決め構造106は、第1の加圧要素102に結合され、患者の心臓101の左心房LAに第1の加圧要素102を位置決めするように構成されている。上述した心房位置決め構造のいずれも、本明細書に記載のシステム600で利用することができる。図示されているように、システム600は、第2の加圧要素104と、第2の加圧要素104に結合され、患者の肺動脈PA内に第2の加圧要素104を位置決めするように構成された肺動脈位置決め構造108とをさらに備える。
図13A~
図13Bでは見えないが、システム600は、第1の加圧要素102および第2の加圧要素104を操作して、左心房および肺動脈に協調された圧力変更および/または容積変位を引き起こすように構成された制御回路をさらに備える。供給ライン110および112が示されており、これらを介して、流体または気体が、加圧要素102および104のバルーン実施態様の拡張または収縮のために供給または除去され得、またはこれらによって、制御信号が加圧要素102および104の他の実施態様の操作のために提供され得る。上述したように、供給ライン110は、加圧要素102を左心房LAに送達するために使用される細長いカテーテル本体に組み込まれても、またはその一部であってもよい。供給ライン112は、加圧要素104および肺動脈位置決め構造108を心臓の右側へと送達するために使用される細長いカテーテルに組み込まれても、またはその一部であってもよい。例えば、バルーンおよび非バルーンの両方の実施形態において、いくつかの態様では、カテーテルまたはシースが、大腿静脈を介して経皮的アプローチで送達され、下大静脈を通って、右心房RA、右心室RV、それから肺動脈PA内へと進められてもよい。加圧要素104は、細長い本体の遠位端部またはその付近に配置され、PA内で拡張することができる。
図13Aおよび
図13Bでバルーンの遠位に示されている拡張可能な肺動脈位置決め構造108は、PA内でバルーンを固定するのを助けるために、肺動脈(または他の場所)で拡張してもよい。いくつかの実施形態では、肺動脈位置決め構造108は、PAの分岐部で固定されてもよい拡張可能なケージを備える。
【0055】
システム600は、患者の心周期の一部に対応する信号を生成する心電図(ECG)センサおよび/または圧力センサなどの1つまたは複数のセンサも備えてもよい。加圧要素102および104は、センサからの信号に基づいて、心周期の様々な部分に合わせて、左心房および肺動脈にそれぞれ協調された圧力変化(例えば、圧力上昇および/または圧力低下)を引き起こすように操作することができる。
【0056】
本開示の態様によれば、
図13A~
図13Bの両側システム600は、心臓の両側の潜在的な機能不全に対処するために提供される。心臓の右側の負担を増加させ、心拍出量を減少させるという代償を払ってLA圧のみを単に低下させる装置を用いたHFpEF治療とは対照的に、本明細書に記載のシステム600は、肺の両側への負担をなくすことによって心臓を補助し、それによって、うっ血および肺動脈楔入圧を減少させ、LV拡張期の充満を改善し、心拍出量を支える。これは、心臓の左側に流体/容積変位システム(例えば、左心房内の加圧要素102)を1つ配置し、心臓の右側に流体/容積変位システム(例えば、肺動脈内の加圧要素104)をもう1つ配置することによって達成される。加圧要素102および加圧要素104がバルーンとして実装されている本明細書に記述される実施例では、バルーンの協調された拡張(
図13A参照)および収縮(
図13B参照)は、各患者に対する補助を最適化し、心周期の間、常に血液を適切な方向に移動させ続けるような方法でタイミングがとられる。
図13Aは、バルーン102、104が拡張したときを示し、
図13Bは、バルーン102、104が収縮したときを示す。
【0057】
右側では、バルーンの収縮は、
図13Bに示すように、右心室に必要な後負荷および仕事を減少させ、拡張中の肺の充満効率を改善する役割を果たすことができる。例えば、PA収縮期にPAバルーン104を能動的に収縮させると、PA収縮期圧およびRVの作業負荷が低下する。次に、肺動脈弁が閉じた後のPA拡張期に、
図13Aに示すようにPAバルーン104を拡張させることにより、PA拡張期圧が上昇し、肺血管抵抗に打ち勝ってより大きな心拍出量がもたらされるようにする。左側では、心房拡張期に左心房内でバルーン102を収縮させると、LAリザーバストレインの増加(例えば、充満時の容積の増加)をシミュレートして、LAの相対容積を増加させ、充満圧を低下させることによって、肺から酸素化された血液を引き出すことを助けることができる。次に、拡張期周期の活性部分の間(例えば、心房収縮中)にバルーン102を拡張させることにより、バルーンは、周期の活性段階の間にLAの相対容積を減少させ、LA圧を上昇させ、それにより、LA対LVの圧力差を増加させ、左心室の拡張期充満を改善することによって、LAポンプ/アクティブストレインの増加をシミュレートすることができる。LAバルーン102およびPAバルーン104のこの協調された動作は、スティッフネスおよび壁応力が増加しつつある心臓の領域(例えば、LAおよびPA)のコンプライアンスを回復するのに役立つ。
【0058】
様々な操作シナリオにおいて、バルーン102および104(または、LAおよびPAにおける流体/容積変位のための加圧要素の他の実施態様)は、バルーンの配置および各患者の特定のニーズに応じて独立して、または協調して(例えば、直接同期して、真逆の機能を以て、または心周期を通して拡張および収縮を異なる遅延タイミングを用いた重複するシーケンスで)操作することができる。
【0059】
バルーン102および104の拡張および収縮は、初期(例えば、固定)のタイミングに基づくことができ、または、心電図(例えば、EKGまたはECG)センサ、圧力センサ(例えば、LA内もしくはその近傍の圧力センサ、およびPA内またはその近傍の圧力センサ)、またはそれらの組み合わせからのセンサ信号によってトリガすることができる。
【0060】
上述したように、
図3は、ECG信号200のタイミングに対する、LAバルーン102のバルーン拡張および収縮の可能なシーケンスを示す波形202を示す。
図3は、PAバルーン104のバルーン拡張および収縮の可能なシーケンスを示す波形204も示す。
【0061】
ECG信号のRピークの検出
図3の波形を生成できるバルーン102および104のタイミングの例示的な一実施態様では、PAバルーン104は、収縮および拡張がそれぞれ、肺動脈弁の開閉と、収縮期および拡張期の開始に一致するように、ECG信号のRピークの検出時に収縮し、ECG信号のTピークの検出時(またはT波と一致するRピークからずらされた特定のタイミング)に拡張するようにトリガされる。本実施例では、LAバルーン102は、Rピークの検出時に時間遅延(例えば、Rピーク後100ミリ秒の遅延)を加えて収縮するようにトリガされる。このようにして、システムは、LAバルーン102の収縮が、僧帽弁が閉じているときの心室収縮中に生じるLA圧/容積周期の自然な拡張/リザーバ機能段階と一致するように、PAバルーン104の収縮を開始した直後にLAバルーン102の収縮を開始する。LAバルーン102の拡張が、僧帽弁が閉じる直前の心室拡張期の終わりで、心房収縮期(例えば、a波のピークが発生したときの心房の圧力/容積周期の活発な収縮部分)と一致して、心房と心室の圧力差を高め、心室充満(例えば、左心室拡張末期容積、LVEDV)を増加させるように、LAバルーン102の拡張は、ECGのP波ピークまたはRピークの検出に基づき、追加の時間遅延(例えば、Rピーク後600ミリ秒の時間遅延)を加えて開始するようにトリガされてもよい。
【0062】
その全文が本明細書に参考として組み込まれる、2019年2月6日出願の米国仮出願番号第62/801,917号の
図7は、ECG信号1604のタイミングに対して、2つの心周期にわたる大動脈圧、PA圧、心房圧、および心室圧を示す一連の波形を示す。さらに、LAバルーン102のバルーン拡張および収縮の可能なシーケンスを例示する波形1600、およびPAバルーン104のバルーン拡張および収縮の可能なシーケンスを例示する波形1602も示されている。さらに、波形1600および1602のバルーン拡張の結果としてのLAおよびPA圧力波への影響は、増強されたLA圧力波形1606および増強されたPA圧力波形1608に図示されている。
【0063】
図14~
図17に示されるように、PAバルーン104について、PA位置決め構造108は、バルーン104の遠位にあることができ、
図14に示す(例えば、血管系を通ってPAに通過する)細長い構成から、
図15に示す中間的な拡張構成を経て、
図16に示す完全に拡張された構成(例えば、結合されたトルクシャフトを反時計回りに回転させると、内部ねじに沿って遠位部から近位部を延ばし、固定構造を圧縮することができ、一方、トルクシャフトを時計回りに回転させると、固定構造の遠位端部および近位端部を接近させ、その直径を拡大することができる)へと拡張した後に、PAの壁に対して固定する拡張可能なケージとして実装することができる。また、
図16は、拡張された構成のPAバルーン104を示す。さらに
図14~
図16に示されているのは、バルーンカテーテルおよび固定システムをガイドワイヤ上の所定の位置に追跡することができるように、バルーンカテーテルおよび固定システムが導入される前に、解剖学的構造(この場合はPA)内の所望の位置に独立して挿入および前進され得るガイドワイヤ120である。その後、治療過程の間にガイドワイヤは取り外れても、または所定の位置に置かれたままでもよい。
【0064】
図14~
図17は、PAバルーン104に対して遠位に配置されたPA位置決め構造108を示しているが、PA位置決め構造108は、PAバルーン104の近位に配置されても、またはバルーンと一直線に(例えば、バルーンの周りのケージとして)組み込まれてもよいことを理解すべきである。
図16に示されるように、PA位置決め構造108は、そこを通る血流を可能にする。
【0065】
図17は、PAの上部に拡張されるケージとして実装されたPA位置決め構造108によってPA内に位置決めされたPAバルーン104を示す。
図17に示すように、供給ライン112は、実線112で示されるように、SVCまたはIVCから、右心房および右心室を経由してPAにアクセスすることができる。
【0066】
様々な実施態様において、LAバルーン102およびPAバルーン104は、同じ形状または異なる形状を有することができ、バルーンの形状は、球形、楕円形、円筒形、平面、ドーム形、ドーナツ状、またはLAおよび/もしくはPAを加圧する(例えば、制御可能な方法で圧力を上昇または低下させる)のに適した任意の他の幾何学的構成である。
【0067】
LA加圧要素102およびPA加圧要素104を有するシステム100を用いたHFpEF治療が本明細書に記載されているが、
図2に関連して説明される心周期の特徴に応じて両側の問題に対処するHFpEFおよび/またはAFの治療のための他のシステムが本明細書で企図されている。別の実施例として、
図18は、前方流ブーストを強化するためにらせん状に成形されたバルーン1702Aを示す。バルーン1702Aは、上述のようにPA内に位置決めするように構成されてもよい。他の実施形態では、PAにおいて本明細書に記載のバルーンまたは加圧要素のいずれかが、右心室RVにおける位置決めのために構成されてもよい。
【0068】
図11は、
図13A~
図13Bでは見えない上述のシステム600に組み込まれてもよく、本明細書に記載されるようにLAバルーン102およびPAバルーン104を操作するように構成された様々な構成部品を示す。システム100の構成部品に関するさらなる詳細は、
図21および段落[0057]を含むがこれらに限定されない、2019年2月6日に出願された米国仮出願第62/801,917号にも記載されており、その全文が参照により本明細書に組み込まれる。
図11の実施例では、システム600は、制御回路(図示せず)、電源(図示せず)、圧力チャンバまたはリザーバ1900、真空チャンバまたはリザーバ1902、およびポンプ1907を備えることができる。図示されているように、ソレノイド1908、1909は、圧力チャンバ1900および真空チャンバ1902を流体ライン(例えば、
図13A~
図13Bの流体ライン110および112の実施態様)に流体的に結合する管類に配置されてもよく、マイクロコントローラ1927の制御回路によって制御され、バルーン102および104の拡張および収縮を制御することができる。一実施形態では、ECGセンサ1903が患者1901に接続され、患者のECG信号はデータ収集ユニット1905(Power Lab)に送信され、このデータ収集ユニット1905は、ECG信号のR波に相関する設定閾値を検索するようにプログラムされている。閾値が検出されると、データ収集ユニット1905は、マイクロコントローラ1927にパルス(方形波)を送信する。ソフトウェア1915は、データ収集ユニット1905によって送信されたパルスについてマイクロコントローラ1927を監視し、その情報を用いてECG信号のR波の間隔(R-R間隔)を連続的に計算する。PAおよびLAバルーンの拡張は、計算されたR-R間隔およびパラメータ1919、1929(拡張時間の長さ、ECG特徴1917の検出後のオフセット/遅延時間、および充満量を含む)を使用してタイミングが取られ、これらのパラメータ1919、1929は、ユーザ入力/コントローラ1921を用いて調整される。次に、R-R間隔のタイミングおよびユーザ入力1921に基づいて、ソフトウェアは、マイクロコントローラ1927と通信してソレノイド1908、1909を作動させ、バルーンのルーメンを、拡張のために圧力チャンバ1900へ、または収縮のために真空チャンバ1902へと、いずれかに開放する。
【0069】
システム600は、固定型の外部システム(例えば、ベッドサイド補助用)として描かれているが、
図11および上述の他の図面の構成部品は、歩行使用のために、または患者に植え込むために配置することもできる(例えば、バルーン102および104の駆動システムは、外部コンソール、ウェアラブルな外付けポータブルユニット内にあることができ、または完全植込型であってもよい)。システム600は、一時的な使用、短期的な使用、中期的な使用、長期的な使用、または永久的な使用のために提供され得る。一時的な場合には、LA位置決め構造106およびPA位置決め構造108は、外傷がないように患者から取り外されるように構成される。
【0070】
所望であれば、バルーン102および/または104は、対応する空洞内の圧力データを収集する圧力センサ/モニタ1923、1931を備えることができる。これらの圧力センサからの圧力データは、バルーンの拡張および/もしくは収縮を駆動もしくはトリガするために使用することができ、ならびに/または、出力ディスプレイ1925を介して、もしくは別個にアップロードされたときに、リアルタイムで患者、医師、もしくは他の人に情報を提供するために収集することができる。いくつかの実施形態では、センサ1923、1931は、様々な目的でバルーン内の圧力を監視するために使用することもできる。
【0071】
本明細書では、LA加圧要素102およびPA加圧要素104がバルーンとして実装されている様々な実施例が説明されているが、両側補助システム600は、アクティブポンプ、軸流ポンプ、タービン、または容積および流体を変位させる他の機構など、他の加圧要素を用いて実装されてもよいことを理解すべきである。より一般的には、要素102および104はそれぞれ、患者の心臓の左側または右側の1つまたは複数の部分と流体連通するように配置するための、生体適合性があり植込可能な圧力制御、流体変位、および/または容積変位機構の任意の適切な組み合わせとして実施することができる。例えば、LA加圧要素102は、操作されると、左心房の容積変位を引き起こすことができ、PA加圧要素104は、操作されると、肺動脈の容積変位を引き起こすことができる。当業者であれば理解されるように、心臓の左側は、左心房および左心室を含み、肺から酸素に富んだ血液を受け取り、酸素に富んだ血液を身体に送り出す。当業者であれば理解できるように、心臓の右側は、右心房および右心室を含み、身体から血液を受け取り、酸素を供給するために肺に血液を送り出す。
【0072】
上述した単一バルーンシステムと同様に、
図12は、主題技術の1つまたは複数の態様が実装され得る電子システムを概念的に示す。電子システムは、例えば、スタンドアロンデバイス、ポータブル電子デバイス、例えば、ラップトップコンピュータ、タブレットコンピュータ、電話、ウェアラブルデバイスもしくはパーソナルデジタルアシスタント(PDA)、または一般に、患者の心臓および/もしくは肺血管系に植え込まれた加圧装置に通信可能に接続できる任意の電子デバイスに実装された両側心臓-肺補助システムのための制御回路1913であってもよく、またはその一部であってもよい。このような電子システムは、様々な種類のコンピュータ可読媒体と、他の様々な種類のコンピュータ可読媒体用のインタフェースとを備える。電子システムは、バス1008、処理ユニット1012、システムメモリ1004、読み取り専用メモリ(ROM)1010、永久記憶デバイス1002、入力デバイスインタフェース1014、出力デバイスインタフェース1006、およびネットワークインタフェース1016、またはそれらのサブセットおよび変形を備える。
【0073】
バス1008は、電子システムの多数の内部デバイスを通信可能に接続するすべてのシステムバス、周辺バスおよびチップセットバスを総称する。1つまたは複数の実施形態では、バス1008は、処理ユニット1012を、ROM1010、システムメモリ1004および永久記憶デバイス1002と通信可能に接続する。これらの様々なメモリユニットから、処理ユニット1012は、主題開示のプロセスを実行するために、実行する命令および処理するデータを取得する。処理ユニットは、異なる実施形態において、単一のプロセッサまたはマルチコアプロセッサであり得る。
【0074】
ROM1010は、電子システムの処理ユニット1012および他のモジュールが必要とする静的なデータおよび命令を格納する。一方、永久記憶デバイス1002は、読み書きメモリデバイスである。このデバイスは、電子システムがオフのときでも命令およびデータを記憶する不揮発性メモリユニットである。主題開示の1つまたは複数の実施形態は、永久記憶デバイス1002として大容量記憶デバイス(例えば、磁気ディスクまたは光ディスクおよびその対応するディスクドライブ)を使用する。
【0075】
他の実施形態は、永久記憶デバイス1002として、取り外し可能な記憶デバイス(例えば、フロッピーディスク、フラッシュドライブ、およびその対応するディスクドライブ)を使用する。永久記憶デバイス1002と同様に、システムメモリ1004は、読み書きメモリデバイスである。しかし、記憶デバイス1002とは異なり、システムメモリ1004は、ランダムアクセスメモリのような揮発性の読み書き可能なメモリである。システムメモリ1004は、処理ユニット1012が実行時に必要とする命令およびデータのいずれかを格納する。1つまたは複数の実施形態では、主題開示の処理は、システムメモリ1004、永久記憶デバイス1002、および/またはROM1010に格納される。これらの様々なメモリユニットから、処理ユニット1012は、1つまたは複数の実施形態のプロセスを実行するために、実行する命令および処理するデータを取得する。
【0076】
バス1008は、入力デバイスインタフェース1014および出力デバイスインタフェース1006にも接続する。入力デバイスインタフェース1014によって、ユーザは情報および選択コマンドを電子システムに伝達すること、および/またはセンサがセンサデータをプロセッサ1012に伝達することを可能にする。入力デバイスインタフェース1014と共に使用される入力デバイスとしては、例えば、英数字キーボード、ポインティングデバイス(「カーソル制御デバイス」とも呼ばれる)、カメラもしくは他のイメージングセンサ、心電センサ、圧力センサ、または一般に入力を受信できる任意のデバイスが挙げられる。出力デバイスインタフェース1006は、例えば、電子システムによって生成された画像の表示を可能にする。出力デバイスインタフェース1006と共に使用される出力デバイスとしては、例えば、プリンタ、および表示デバイス、例えば、液晶ディスプレイ(LCD)、発光ダイオード(LED)ディスプレイ、有機発光ダイオード(OLED)ディスプレイ、フレキシブルディスプレイ、フラットパネルディスプレイ、ソリッドステートディスプレイ、プロジェクタ、または情報を出力する他の任意のデバイスが挙げられる。1つまたは複数の実施形態は、タッチスクリーンなど、入力デバイスおよび出力デバイスの両方として機能するデバイスを含んでいてもよい。これらの実施形態では、ユーザに提供されるフィードバックは、任意の形態の感覚フィードバック、例えば、視覚フィードバック、聴覚フィードバック、または触覚フィードバックであってもよく、ユーザからの入力は、聴覚、音声、または触覚入力を含む任意の形態で受信され得る。出力デバイスインタフェース1006は、本明細書に記載されているように、加圧構成部品を操作する(例えば、加圧要素102および104を制御する)制御コマンドを出力するためにも使用することができる。
【0077】
最後に、
図12に示すように、バス1008は、ネットワークインタフェース1016を介して電子システムをネットワーク(図示せず)にも接続する。このようにして、コンピュータは、コンピュータのネットワーク(例えば、ローカルエリアネットワーク(「LAN」)、ワイドエリアネットワーク(「WAN」)、もしくはイントラネットなどのネットワーク、またはインターネットのようなネットワークのネットワーク)の一部であってもよい。電子システムの任意のまたはすべてのコンポーネントは、主題開示と組み合わせて使用することができる。
【0078】
他の変形および用語
上述の機能およびアプリケーションの多くは、コンピュータ可読記憶媒体(あるいは、コンピュータ可読媒体、機械可読媒体、または機械可読記憶媒体とも呼ばれる)に記録された一連の命令として指定されるソフトウェアプロセスとして実装されてもよい。これらの命令が1つまたは複数の処理ユニット(例えば、1つまたは複数のプロセッサ、プロセッサのコア、または他の処理ユニット)によって実行されると、命令において指示される行為を処理ユニットに実行させる。コンピュータ可読媒体の例としては、RAM、ROM、読み取り専用コンパクトディスク(CD-ROM)、記録可能コンパクトディスク(CD-R)、書き換え可能コンパクトディスク(CD-RW)、読み取り専用デジタル多用途ディスク(例えば、DVD-ROM、2層DVD-ROM)、様々な記録/書き換え可能DVD(例えば、DVD-RAM、DVD-RW、DVD+RWなど)、フラッシュメモリ(例えば、SDカード、mini-SDカード、micro-SDカードなど)、磁気および/またはソリッドステートハードドライブ、超高密度光ディスク、任意の他の光学または磁気媒体、およびフロッピーディスクが挙げられるが、これらに限定されない。1つまたは複数の実施形態では、コンピュータ可読媒体は、無線で、もしくは有線接続で通過する搬送波および電子信号、または任意の他の一過性の信号を含まない。例えば、コンピュータ可読媒体は、コンピュータが読み取り可能な形式で情報を格納する有形の物理的物体に完全に限定されてもよい。1つまたは複数の実施形態では、コンピュータ可読媒体は、非一時的なコンピュータ可読媒体、コンピュータ可読記憶媒体、または非一時的なコンピュータ可読記憶媒体である。
【0079】
1つまたは複数の実施形態では、コンピュータプログラムプロダクト(プログラム、ソフトウェア、ソフトウェアアプリケーション、スクリプト、またはコードとしても知られている)は、コンパイル済みまたは解釈済み言語、宣言形または手続き形言語を含む、任意の形のプログラミング言語で書かれてもよく、スタンドアロンプログラムとして、またはモジュール、コンポーネント、サブルーチン、オブジェクト、もしくはコンピューティング環境での使用に適したその他のユニットとしてを含め、任意の形で配置することができる。コンピュータプログラムは、ファイルシステム内のファイルに対応することができるが、対応する必要があるわけではない。プログラムは、その他のプログラムまたはデータを保持するファイルの一部分(例えば、マークアップ言語文書に格納された1つまたは複数のスクリプト)内に格納するか、当該プログラムに専用の単一ファイル内に格納するか、または複数の協調ファイル(例えば、1つもしくは複数のモジュール、サブプログラム、またはコードの一部を格納するファイル)内に格納することができる。コンピュータプログラムは、1つのコンピュータ上で実行するか、または1つのサイトに位置するかもしくは複数のサイトに分散されて通信ネットワークによって相互接続された複数のコンピュータ上で実行するように配置することができる。
【0080】
上述の記載では主にソフトウェアを実行するマイクロプロセッサまたはマルチコアプロセッサに言及しているが、1つまたは複数の実施形態は、特定用途向け集積回路(ASIC)またはフィールドプログラマブルゲートアレイ(FPGA)などの1つまたは複数の集積回路によって実行される。1つまたは複数の実施形態では、このような集積回路は回路自体に格納された命令を実行する。
【0081】
当業者であれば、本明細書に記載されている様々な例示的なブロック、モジュール、要素、構成部品、方法およびアルゴリズムは、電子ハードウェア、コンピュータソフトウェアまたは両方の組み合わせとして実現されてもよいことを理解するであろう。このハードウェアとソフトウェアとの互換性を例示するために、様々な例示的なブロック、モジュール、要素、構成部品、方法およびアルゴリズムは一般にそれぞれの機能性に関して上述されている。このような機能性がハードウェアとして実現されるかまたはソフトウェアとして実現されるかは、特定の用途および全体的なシステムに課された設計上の制約に依存する。当業者は、記載されている機能性をそれぞれの特定の用途のために様々な方法で実現することができる。様々な構成部品およびブロックは、いずれも主題技術の範囲を逸脱せずに、異なる配置にする(例えば、異なる順序で配置するかまたは異なる方法で区分する)ことができる。
【0082】
開示されているプロセスにおけるブロックの任意の特定の順序または階層は例示的アプローチの例であることを理解されたい。実施の好みに基づいて、プロセスにおけるブロックの特定の順序または階層を再編成できること、または例示されているすべてのブロックが実行できるわけではないことを理解されたい。任意のブロックを同時に実行することができる。1つまたは複数の実施形態では、マルチタスキングおよび並列処理が有利であり得る。さらに、上述の実施形態における様々なシステムコンポーネントの分離はすべての実施形態においてこのような分離を要求するものと理解すべきではなく、上述のプログラムコンポーネントおよびシステムは一般に単一ソフトウェアプロダクトに一緒に統合できるか、または複数のソフトウェアプロダクトにパッケージ化できることを理解されたい。
【0083】
主題技術は、例えば、上述の様々な態様に従って例示されている。本開示は、当業者が本明細書に記載された様々な態様を実践できるように提供される。本開示は、主題技術の様々な実施例を提供するものであり、主題技術はこれらの実施例に限定されない。これらの態様に対する様々な変更は、当業者には容易に明らかになり、本明細書で定義された一般的な原理は、他の態様にも適用することができる。
【0084】
単数形の要素への言及は、特に明記されていない限り、「ただ1つの」を意味するものではなく、「1つまたは複数」を意味することが意図されている。特に明記されていない限り、「いくつかの」という用語は1つまたは複数を意味する。男性形の代名詞(例えば、「his」)は、女性形および中性形(例えば、「her」および「its」)を包含しており、その逆も同様である。見出しおよび小見出しがある場合は、便宜上使用されており、本発明を限定するものではない。
【0085】
「例示的」という単語は、「一実施例または例示として機能すること」を意味するために本明細書で使用されている。「例示的」として本明細書に記載されている任意の態様または設計は、必ずしも他の態様または設計より好ましいかまたは有利であると解釈されるべきではない。一態様では、本明細書に記載された様々な代替構成および操作は、少なくとも均等であると考えられてもよい。
【0086】
本明細書で使用する場合、一連の項目に先行する、項目のいずれかを分離するために「または」という用語が付いている「~のうちの少なくとも1つ」という語句は、そのリストのそれぞれの項目ではなく、全体としてそのリストを修飾するものである。「~のうちの少なくとも1つ」という語句は、項目のうちの少なくとも1つの選択を要求するものではなく、むしろ、この語句は、項目のうちのいずれか1つの少なくとも1つ、および/または項目の任意の組み合わせのうちの少なくとも1つ、および/または項目のそれぞれのうちの少なくとも1つを含むという意味を可能にするものである。一例として、「A、BまたはCのうちの少なくとも1つ」という語句は、Aのみ、Bのみ、もしくはCのみ、またはA、BおよびCの任意の組み合わせを意味することができる。
【0087】
「態様」などの語句は、このような態様が主題技術にとって不可欠であること、またはこのような態様が主題技術のすべての構成に適用されることを意味するものではない。態様に関連する開示はすべての構成、または1つもしくは複数の構成に適用されてもよい。態様は1つまたは複数の例を提供することができる。態様などの語句は1つまたは複数の態様を意味することができ、逆もまた同様である。「実施形態」などの語句は、このような実施形態が主題技術にとって不可欠であること、またはこのような実施形態が主題技術のすべての構成に適用されることを意味するものではない。実施形態に関連する開示はすべての実施形態、または1つもしくは複数の実施形態に適用されてもよい。実施形態は1つまたは複数の例を提供することができる。実施形態などの語句は1つまたは複数の実施形態を意味することができ、逆もまた同様である。「構成」などの語句は、このような構成が主題技術にとって不可欠であること、またはこのような構成が主題技術のすべての構成に適用されることを意味するものではない。構成に関連する開示はすべての構成、または1つもしくは複数の構成に適用されてもよい。構成は1つまたは複数の例を提供することができる。構成などの語句は1つまたは複数の構成を意味することができ、逆もまた同様である。
【0088】
一態様では、特に明記しない限り、下記の特許請求の範囲を含め、本明細書に記載されているすべての測定値、値、評価、位置、大きさ、サイズおよびその他の仕様は、正確ではなく概算値である。一態様では、それらは、それらが関連する機能およびそれらが関連する技術分野で慣習的であるものと一致する合理的な範囲を有することが意図されている。
【0089】
一部またはすべてのステップ、操作またはプロセスが、ユーザの介入なしに自動的に実行されてもよいことを理解されたい。方法請求項は、様々なステップ、操作、またはプロセスの要素をサンプルの順序で提示するために提供されてもよく、提示された特定の順序または階層に限定されることを意味するものではない。
【0090】
当業者に知られている、または後に知られるようになる、本開示全体を通して記載された様々な態様の要素についてのすべての構造的および機能的均等物は、参照により本明細書に明示的に組み込まれており、添付の特許請求の範囲に包含されることが意図されている。さらに、本明細書で開示されているものは、そのような開示が特許請求の範囲に明示的に記載されているかどうかにかかわらず、公用のみに供されることが意図されたものではない。請求項の要素は、要素が「~する手段」という語句を用いて明示的に記載されない限り、または、方法の場合に要素が「~するステップ」という語句を用いて記載されない限り、米国特許法第112条(f)の規定のもとで解釈されない。さらに、「備える、含む(include)」、「有する(have)」などの用語を用いる限りにおいて、そのような用語は、「備える、含む(comprise)」が請求項で移行語句として用いられる場合に解釈されるときの用語「備える、含む(comprise)」と同様に、包括的であることが意図される。
【0091】
本開示の発明の名称、背景技術、図面の簡単な説明および特許請求の範囲は、これによって本開示に組み込まれ、限定的な説明ではなく、本開示の例示的実施例として提供されている。それらは、請求項の範囲または意味を限定するために使用されないという理解を前提にして提出されている。加えて、発明を実施するための形態において、本開示を合理化するために、その記述が例示的実施例を提供し、様々な特徴を様々な実施形態でまとめられていることが分かる。この開示方法は、請求される主題が、任意の請求項に明示的に記載されている以上の特徴をより多く必要とするという意図を反映していると解釈されるべきではない。むしろ、以下の特許請求の範囲が反映しているように、発明の主題は、開示された単一の構成または動作のすべての特徴よりも少ない特徴にある。したがって、以下の特許請求の範囲はこれにより発明を実施するための形態に組み込まれ、各請求項は別々に請求される主題を提示するものとして単独で有効である。
【0092】
請求項は、本明細書に記載された態様に限定されることが意図されておらず、請求項の文言と一致する完全な範囲が与えられ、すべての法的な均等物を包含するものとされる。それにもかかわらず、請求項のいずれも、米国特許法第101条、第102条または第103条の要件を満たさない主題を包含することを意図しておらず、そのように解釈されるべきではない。
【0093】
本開示に記載の実施態様の様々な変更は、当業者には容易に明らかになり得、また本明細書で定義された一般的な原理は、本開示の趣旨または範囲から逸脱することなく、他の実施態様に適用することができる。したがって、本開示は、本明細書で示されている実施態様に限定されることは意図されておらず、本明細書に開示される原理および特徴と一致する最も広い範囲が与えられる。本開示の特定の実施形態は、以下に記載される請求項のセットに包含されるか、または将来的に提示される。
【0094】
本開示の特定の実施形態は、本明細書の末尾に提示される請求項、または後日提示される他の請求項に包含される。追加の実施形態は、以下の番号付きの実施形態のセットに包含される。
実施形態1。加圧要素と、
加圧要素に結合され、患者の心臓の左心房に加圧要素を位置決めするように構成されている心房位置決め構造と、
制御回路であって、
左心房リザーバストレインおよび左心房の相対容積を増加させて左心房内の充満圧を低下させることにより、心房拡張期に左心房の圧力を低下させて、患者の肺から酸素化された血液を引き出すように加圧要素を操作し、
左心房の相対容積を減少させて心房収縮期の左心房圧を上昇させることにより、心房収縮期に左心房の圧力を上昇させてアクティブストレインを増加させるように加圧要素を操作し、心房収縮期の左心房圧の上昇によって、左心房と左心室との間の圧力差を増加させ、左心室の拡張期充満を改善する、
ように構成された制御回路と、
を備える、システム。
実施形態2。加圧要素がバルーンを構成し、左心房の圧力を上昇させるように加圧要素を操作することは、バルーンを液体または気体で満たすことを含み、左心房の圧力を低下させるように加圧要素を操作することは、バルーンから液体または気体を除去することを含む、実施形態1に記載のシステム。
実施形態3。心房位置決め構造が、中隔アンカーまたは左心耳アンカーを備える、実施形態2に記載のシステム。
実施形態4。圧力チャンバと、バルーンと圧力チャンバとの間に配置された少なくとも1つのポンプとを備えた加圧構成部品をさらに備える、実施形態3に記載のシステム。
実施形態5。加圧構成部品が、固定型外部構成部品、歩行仕様外部構成部品、または植込型構成部品であるように構成されている、実施形態4に記載のシステム。
実施形態6。心房位置決め構造が、中隔アンカーを備え、中隔アンカーが、患者の心臓の心房中隔の左側および右側に対してそれぞれ拡張するように構成された第1および第2の拡張可能部材を備え、バルーンが第1の拡張可能部材に取り付けられている、実施形態3に記載のシステム。
実施形態7。加圧要素がタービンを構成する、実施形態6に記載のシステム。
実施形態8。加圧要素がポンプを構成する、実施形態1に記載のシステム。
実施形態9。加圧要素は、操作されると、左心房の容積変位を引き起こす、実施形態1に記載のシステム。
実施形態10。左心房リザーバストレインおよび左心房の相対容積を増加させて左心房内の充満圧を低下させることにより、心房拡張期に左心房の圧力を低下させて、患者の肺から酸素化された血液を引き出すように患者の心臓の左心房内に配置されたバルーンを収縮させることと、
左心房の相対容積を減少させて心房収縮期の左心房圧を上昇させることにより、心房収縮期に左心房の圧力を上昇させてアクティブストレインを増加させるようにバルーンを拡張させ、心房収縮期の左心房圧の上昇によって、左心房と左心室との間の圧力差を増加させ、左心室の拡張期充満を改善することと、
を含む方法。
実施形態11。バルーンを収縮させることは、
制御回路にて、患者に通信可能に結合されたセンサから患者の心臓の心周期に対応する信号を受信することと、
信号の一部に応答してバルーンを収縮させることを含む、実施形態10に記載の方法。
実施形態12。バルーンを拡張させることは、信号の追加の部分に応答してバルーンを拡張させることを含む、実施形態11に記載の方法。
実施形態13。センサは電気センサまたは圧力センサを構成する、実施形態12に記載の方法。
実施形態14。第1の加圧要素と、
第1の加圧要素に結合され、患者の心臓の左心房に第1の加圧要素を位置決めするように構成された心房位置決め構造と、
第2の加圧要素と、
第2の加圧要素に結合され、患者の肺動脈に第2の加圧要素を位置決めするように構成された肺動脈位置決め構造と、
左心房および肺動脈に協調された圧力変更を引き起こすように第1の加圧要素および第2の加圧要素を操作するように構成された制御回路と
を備える、システム。
実施形態15。患者の心周期の一部を感知するように構成された少なくとも1つのセンサをさらに備え、制御回路が、センサからの信号に応答して協調された圧力変更を引き起こすように、第1の加圧要素および第2の加圧要素を操作するように構成されている、実施形態14に記載のシステム。
実施形態16。協調された圧力変更は、信号に応答した第1の加圧要素の操作による左心房内の圧力変化と、第1の加圧要素の操作に基づいた第2の加圧要素による肺動脈内の圧力変化とを含む、実施形態15に記載のシステム。
実施形態17。協調された圧力変更は、第1の加圧要素による圧力変化後の所定の時点にて、第1の加圧要素を用いて左心房内の圧力変化を逆戻りさせることを含む、実施形態16に記載のシステム。
実施形態18。協調された圧力変更は、少なくとも1つのセンサからの追加の信号に応答して、第1の加圧要素を用いて左心房内の圧力変化を逆戻りさせることを含む、実施形態16に記載のシステム。
実施形態19。協調された圧力変更は、信号に応答して、第1の加圧要素を用いて左心房内の圧力変化を引き起こすことと、少なくとも1つのセンサからの追加の信号に応答して、第2の加圧要素を用いて肺動脈内の圧力変化を引き起こすこととを含む、実施形態15に記載のシステム。
実施形態20。協調された圧力変更は、第1の加圧要素による圧力変化後の所定の時点にて、第1の加圧要素を用いて左心房内の圧力変化を逆戻りさせることを含む、実施形態19に記載のシステム。
実施形態21。協調された圧力変更は、少なくとも1つのセンサからのさらなる追加の信号に応答して、第1の加圧要素を用いて左心房内の圧力変化を逆戻りさせることを含む、実施形態19に記載のシステム。
実施形態22。協調された圧力変更は、第1の加圧要素を用いた心周期の間に、2つの圧力上昇期間のいずれかよりも長い圧力低下期間によって区切られた2つの圧力上昇期間を生じさせることを含む、実施形態15に記載のシステム。
実施形態23。協調された圧力変更は、第2の加圧要素を用いた心周期の間に、圧力低下期間と、圧力低下期間よりも長い圧力上昇期間とを生じさせることを含む、実施形態21に記載のシステム。
実施形態24。第1の加圧要素のための圧力低下期間および第2の加圧要素のための圧力上昇期間は、時間がずらされており、共通の時間の長さである、実施形態21に記載のシステム。
実施形態25。少なくとも1つのセンサが、患者の心電信号を感知するように構成された電気センサを構成する、実施形態15に記載のシステム。
実施形態26。少なくとも1つのセンサが、患者の心肺圧を感知するように構成された少なくとも1つの圧力センサを構成する、実施形態15に記載のシステム。
実施形態27。少なくとも1つの圧力センサが、左心房内またはその近傍にある第1の圧力センサと、肺動脈内またはその近傍にある第2の圧力センサとを含む、実施形態26に記載のシステム。
実施形態28。第1の加圧要素が第1のバルーンを構成し、第2の加圧要素が第2のバルーンを構成する、実施形態14に記載のシステム。
実施形態29。圧力チャンバと、第1のバルーンおよび第2のバルーンと圧力チャンバとの間に配置された少なくとも1つのポンプとを備えた加圧構成部品をさらに備える、実施形態28に記載のシステム。
実施形態30。制御回路が、
患者の心周期の心電図信号のRピークの検出に応答して、第2のバルーンの収縮をトリガすることと、
Rピークの検出後、第1の時間遅延後に第1のバルーンの収縮をトリガすることと、
患者の心周期の心電図信号におけるTピークの検出に応答して、第2のバルーンの拡張をトリガすることと、
Rピーク後、第2の時間遅延後に第1のバルーンの拡張をトリガすることと、
によって第1の加圧要素および第2の加圧要素を用いて協調された圧力変更を引き起こすように、加圧構成部品を操作するように構成されている、実施形態29に記載のシステム。
実施形態31。第1の時間遅延は、90ミリ秒~110ミリ秒であり、第2の時間遅延は、500ミリ秒~700ミリ秒である、実施形態30に記載のシステム。
実施形態32。Rピークの検出に応答した第2のバルーンの収縮が、患者の心臓の肺動脈弁の開放および収縮開始と一致する、実施形態30に記載のシステム。
実施形態33。Tピークの検出に応答した第2のバルーンの拡張が、患者の心臓の肺動脈弁の閉鎖および拡張開始と一致する、実施形態32に記載のシステム。
実施形態34。第1のバルーンの収縮が、患者の心臓の僧帽弁が閉じているときの心室収縮中に生じる左心房周期の自然な拡張およびリザーバ機能段階と一致する、実施形態33に記載のシステム。
実施形態35。第1のバルーンの拡張は、僧帽弁が閉じる前の心室拡張期の終わりの心房収縮と一致する、実施形態34に記載のシステム。
実施形態36。第1のバルーンの拡張が、心房-心室間の圧力差を増加させ、患者の心臓の左心室の心室充満を増加させる、実施形態35に記載のシステム。
実施形態37。制御回路が、
肺動脈収縮期に第2のバルーンを収縮させて、肺動脈の収縮期圧を低下させ、患者の心臓の右心室の仕事量を減少させ、
肺動脈弁が閉じた後の肺動脈拡張期に第2のバルーンを拡張させて肺動脈拡張期圧を上昇させて、肺血管抵抗に打ち勝って心拍出量を増加させ、
左心房リザーバストレインおよび左心房の相対容積を増加させて左心房内の充満圧を低下させることにより、患者の肺から酸素化された血液を引き出すように心房拡張期に第1のバルーンを収縮させ、
左心房の相対容積を減少させて心房収縮期の左心房圧を上昇させることにより、心房収縮期に第1のバルーンを拡張させてアクティブストレインを増加させて、
第1の加圧要素および第2の加圧要素を用いて協調された圧力変更を引き起こすように、加圧構成部品を操作するように構成されている、実施形態29に記載のシステム。
実施形態38。心房収縮期の左心房圧の上昇によって、左心房と左心室との間の圧力差を増加させ、左心室の拡張期充満を改善する、実施形態37に記載のシステム。
実施形態39。加圧構成部品が、固定型外部構成部品、歩行仕様外部構成部品、または植込型構成部品であるように構成されている、実施形態29に記載のシステム。
実施形態40。第1の加圧要素または第2の加圧要素がタービンを構成する、実施形態14に記載のシステム。
実施形態41。第1の加圧要素または第2の加圧要素がポンプを構成する、実施形態14に記載のシステム。
実施形態42。心房位置決め構造が、患者の心臓の中隔に取り付けられるように構成された中隔アンカーを備える、実施形態14に記載のシステム。
実施形態43。心房位置決め構造は、1つまたは複数の肺静脈のオリフィスに固定するように構成された左心耳アンカーまたは固定部材を備える、実施形態14に記載のシステム。
実施形態44。肺動脈位置決め構造は、第2の加圧要素と一直線に配置された拡張可能なケージを備える、実施形態14に記載のシステム。
実施形態45。第1の加圧要素は、操作されると、左心房の容積変位を引き起こす、実施形態14に記載のシステム。
実施形態46。第2の加圧要素は、操作されると、肺動脈の容積変位を引き起こす、実施形態45に記載のシステム。
実施形態47。患者の複数の心周期のそれぞれの第1の部分の間、患者の左心房内で第1のバルーンを拡張させることと、
心周期のそれぞれの第2の部分の間、患者の肺動脈内で第2のバルーンを拡張させることと、
心周期のそれぞれの第3の部分の間に第1のバルーンを収縮させることと、
心周期のそれぞれの第4の部分の間に第2のバルーンを収縮させることと、
を含む方法。
実施形態48。第3の部分および第4の部分が部分的に重なり、第1の部分および第2の部分が部分的に重なり、第2の部分および第3の部分が部分的に重なる、実施形態47に記載の方法。
実施形態49。第1の植込型流体変位要素と、
第1の植込型流体変位要素に結合され、患者の心臓の左側の一部と流体連通するように第1の植込型流体変位要素を位置決めするように構成された第1の位置決め構造と、
第2の植込型流体変位要素と、
第2の植込型流体変位要素に結合され、心臓の右側の一部と流体連通するように第2の植込型流体変位要素を位置決めするように構成された第2の位置決め構造と、
心臓の各心周期において、第1の植込型流体変位要素および第2の植込型流体変位要素を協調して動作させるように構成された制御回路と、
を備えるシステム。
実施形態50。第1の植込型流体変位要素が、加圧要素および容積変位要素のうちの少なくとも1つを構成する、実施形態49に記載のシステム。
実施形態51。第2の植込型流体変位要素が、加圧要素および容積変位要素のうちの少なくとも1つを構成する、実施形態50に記載のシステム。
実施形態52。第1の位置決め構造が、心臓の左心房内に第1の植込型流体変位要素を位置決めするように構成されている、実施形態49に記載のシステム。
実施形態53。第2の位置決め構造が、患者の肺動脈または患者の心臓の右心室に第2の植込型流体変位要素を位置決めするように構成されている、実施形態52に記載のシステム。
実施形態54。第1の植込型流体変位要素および第2の植込型流体変位要素がそれぞれ、バルーン、ポンプまたはタービンのうちの少なくとも1つを構成する、実施形態49に記載のシステム。
実施形態55。制御回路は、心周期の一部を検出するセンサからの少なくとも1つのセンサ信号に応答して、第1の植込型流体変位要素および第2の植込型流体変位要素を操作するように構成されている、実施形態49に記載のシステム。