(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-05
(45)【発行日】2024-08-14
(54)【発明の名称】燃料電池用膜電極接合体及び固体高分子形燃料電池
(51)【国際特許分類】
H01M 4/86 20060101AFI20240806BHJP
H01M 4/96 20060101ALI20240806BHJP
H01M 8/10 20160101ALI20240806BHJP
H01M 8/1004 20160101ALI20240806BHJP
【FI】
H01M4/86 M
H01M4/86 H
H01M4/96 H
H01M4/96 M
H01M8/10 101
H01M8/1004
(21)【出願番号】P 2020208802
(22)【出願日】2020-12-16
【審査請求日】2023-11-27
(73)【特許権者】
【識別番号】000003193
【氏名又は名称】TOPPANホールディングス株式会社
(74)【代理人】
【識別番号】100105854
【氏名又は名称】廣瀬 一
(74)【代理人】
【識別番号】100116012
【氏名又は名称】宮坂 徹
(72)【発明者】
【氏名】盛岡 弘幸
【審査官】山本 雄一
(56)【参考文献】
【文献】特開2019-083112(JP,A)
【文献】特開2006-216385(JP,A)
【文献】特開2007-273467(JP,A)
【文献】特開2003-151565(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/86- 4/98
H01M 8/00- 8/0297
H01M 8/08- 8/2495
(57)【特許請求の範囲】
【請求項1】
高分子電解質膜を一対の電極触媒層で挟持し、当該電極触媒層との間にガス流路を形成する一対のセパレータで前記一対の電極触媒層を外側から挟持した燃料電池用の膜電極接合体であって、
前記一対の電極触媒層のうち少なくとも一方の電極触媒層は、前記高分子電解質膜と対向する第一の電極触媒部と第二の電極触媒部とを有し、
前記第一の電極触媒部は前記ガス流路の入口側用の電極触媒部であり、前記第二の電極触媒部は前記ガス流路の出口側用の電極触媒部であって、
前記第一の電極触媒部及び前記第二の電極触媒部のそれぞれは、触媒が担持されたカーボン粒子からなる触媒担持粒子と、繊維状物質と、高分子電解質と、を含み、
前記繊維状物質は疎水性繊維状物質と親水性繊維状物質とで構成され、
前記繊維状物質に対する前記疎水性繊維状物質の質量比は、前記第二の電極触媒部の前記質量比が、前記第一の電極触媒部の前記質量比よりも大きいことを特徴とする燃料電池用膜電極接合体。
【請求項2】
前記第一の電極触媒部における前記質量比は、0.1以上0.45以下の範囲内であり、
前記第二の電極触媒部における前記質量比は、0.55以上0.9以下の範囲内であることを特徴とする請求項1に記載の燃料電池用膜電極接合体。
【請求項3】
前記疎水性繊維状物質及び前記親水性繊維状物質を含む繊維状物質の平均繊維長が0.7μm以上30μm以下の範囲内であることを特徴とする請求項1又は請求項2に記載した燃料電池用膜電極接合体。
【請求項4】
前記疎水性繊維状物質の質量と前記親水性繊維状物質の質量とを合わせた繊維質量は、前記触媒担持粒子における担体の質量の0.05倍以上0.4倍以下の範囲内であることを特徴とする請求項1から請求項3のいずれか一項に記載の燃料電池用膜電極接合体。
【請求項5】
前記高分子電解質の質量は、前記触媒担持粒子における担体の質量の0.3倍以上1.0倍以下の範囲内であることを特徴とする請求項1から請求項4のいずれか一項に記載の燃料電池用膜電極接合体。
【請求項6】
請求項1から請求項5のいずれか一項に記載の燃料電池用膜電極接合体と、
前記燃料電池用膜電極接合体を挟持する一対のガス拡散層と、
対向して設けられ前記燃料電池用膜電極接合体及び前記一対のガス拡散層を挟持する一対のセパレータと、
を備えることを特徴とする固体高分子形燃料電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料電池用膜電極接合体及び固体高分子形燃料電池に関する。
【背景技術】
【0002】
燃料電池は、水素を含有する燃料ガスと酸素を含む酸化剤ガスとを用いて、触媒を含む電極で水の電気分解の逆反応を起こさせ、熱と同時に電気を生み出す発電システムである。この発電システムは、従来の発電方式と比較して高効率で低環境負荷、低騒音などの特徴を有し、将来のクリーンなエネルギー源として注目されている。燃料電池は、燃料電池に用いるイオン伝導体の種類によってタイプがいくつかあり、プロトン伝導性高分子膜を用いた燃料電池は、固体高分子形燃料電池と呼ばれる。
【0003】
燃料電池のなかでも固体高分子形燃料電池は、室温付近で使用可能なことから、車載用電源や家庭据置用電源などへの使用が有望視されており、近年、様々な研究開発が行われている。固体高分子形燃料電池は、高分子電解質膜の両面に一対の電極触媒層を配置させた膜電極接合体(Membrane Electrode Assembly:以下、MEAと称すことがある)を、一対のセパレータで挟持した電池である。
【0004】
一方のセパレータには、電極の一方に水素を含有する燃料ガスを供給するためのガス流路が形成されており、他方のセパレータには、電極の他方に酸素を含む酸化剤ガスを供給するためのガス流路が形成されている。
ここで、燃料ガスが供給される上述した一方の電極を燃料極、酸化剤ガスが供給される上述した他方の電極を空気極とする。これらの電極は、高分子電解質、白金系の貴金属などの触媒を担持したカーボン粒子(触媒担持粒子)を有する電極触媒層、及びガス通気性と電子伝導性とを兼ね備えたガス拡散層を備えている。これらの電極を構成するガス拡散層は、セパレータと対向するように、すなわち電極触媒層とセパレータとの間に配置される。
【0005】
電極触媒層に対しては、燃料電池の出力密度を向上させるため、ガス拡散性を高める取り組みがなされてきた。その一つが電極触媒層中の細孔に関するものである。電極触媒層中の細孔は、セパレータからガス拡散層を通じた先に位置し、複数の物質を輸送する通路の役割を果たす。細孔は、燃料極では、酸化還元の反応場である三相界面に燃料ガスを円滑に供給するだけでなく、生成したプロトンを高分子電解質膜内で円滑に伝導させるための水を供給する機能を果たす。細孔は、空気極では、酸化剤ガスの供給と共に、電極反応で生成した水を円滑に除去する機能を果たす。
【0006】
固体高分子形燃料電池では、燃料極及び空気極における物質輸送の妨げにより発電反応が停止する、いわゆる「フラッディング」と呼ばれる現象を防止する必要がある。このため、これまで排水性を高める構成が検討されてきた(例えば、特許文献1、特許文献2、特許文献3及び特許文献4を参照)。
【0007】
また、固体高分子形燃料電池の実用化に向けての課題は、出力密度や耐久性の向上などが挙げられるが、最大の課題は低コスト化(コスト削減)である。
この低コスト化の手段の一つに、加湿器の削減が挙げられる。膜電極接合体の中心に位置する高分子電解質膜には、パーフルオロスルホン酸膜や炭化水素系膜が広く用いられている。そして、優れたプロトン伝導性を得るためには飽和水蒸気圧雰囲気に近い水分管理が必要とされており、現在、加湿器によって外部から水分供給を行っている。そこで、低消費電力やシステムの簡略化のために、加湿器を必要としないような、低加湿条件下であっても、十分なプロトン伝導性を示す高分子電解質膜の開発が進められている。
【0008】
しかしながら、排水性を高めた電極触媒層では、低加湿条件下において高分子電解質がドライアップするため、電極触媒層構造の最適化を行い、保水性を向上させる必要がある。これまで、低加湿条件下における燃料電池の保水性を向上させるため、例えば、電極触媒層とガス拡散層の間に、湿度調整フィルムを挟み込む方法が考案されている。
例えば、特許文献5には、導電性炭素質粉末とポリテトラフルオロエチレンから構成された湿度調整フィルムが、湿度調節機能を示してドライアップを防止する方法が記載されている。
【0009】
また、特許文献6には、高分子電解質膜と接する触媒電極層の表面に溝を設ける方法が記載されている。特許文献6に記載の方法では、触媒電極層の表面に0.1~0.3mmの幅を有する溝を形成することで、低加湿条件下における発電性能の低下を抑制している。
【先行技術文献】
【特許文献】
【0010】
【文献】特開2006-120506号公報
【文献】特開2006-332041号公報
【文献】特開2007-87651号公報
【文献】特開2007-80726号公報
【文献】特開2006-252948号公報
【文献】特開2007-141588号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながら、これらの特許文献に記載された電極触媒層の発電性能では不十分であり、発電性能のさらなる向上が望まれていた。
本発明は、固体高分子形燃料電池に用いられた場合に、電極反応で生成した水の除去を阻害せずに低加湿条件下での保水性が改善され、低加湿条件下でも高い発電性能を示す電極触媒層を有した燃料電池用膜電極接合体を提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明の一態様によれば、高分子電解質膜を一対の電極触媒層で挟持し、電極触媒層との間にガス流路を形成する一対のセパレータで一対の電極触媒層を外側から挟持した燃料電池用の膜電極接合体であって、一対の電極触媒層のうち少なくとも一方の電極触媒層は、高分子電解質膜と対向する第一の電極触媒部と第二の電極触媒部とを有し、第一の電極触媒部はガス流路の入口側用の電極触媒部であり、第二の電極触媒部はガス流路の出口側用の電極触媒部であって、第一の電極触媒部及び第二の電極触媒部のそれぞれは、触媒が担持されたカーボン粒子からなる触媒担持粒子と、繊維状物質と、高分子電解質と、を含み、繊維状物質は疎水性繊維状物質と親水性繊維状物質とで構成され、繊維状物質に対する疎水性繊維状物質の質量比は、第二の電極触媒部の質量比が、第一の電極触媒部の質量比よりも大きい、燃料電池用膜電極接合体が提供される。
【0013】
また、本発明の他の態様によれば、上記態様の燃料電池用膜電極接合体と、燃料電池用膜電極接合体を挟持する一対のガス拡散層と、対向して設けられ燃料電池用膜電極接合体及び一対のガス拡散層を挟持する一対のセパレータと、を備える、固体高分子形燃料電池が提供される。
【発明の効果】
【0014】
本発明によれば、固体高分子形燃料電池に用いられた場合に、高い発電特性を示す電極触媒層を備えることができる。
【図面の簡単な説明】
【0015】
【
図1】本発明の一実施形態に係る燃料電池用膜電極接合体の一例を示す分解斜視図であって、燃料電池用電極触媒層を有する膜電極接合体の構造を模式的に示す分解斜視図である。
【
図2】本発明を適用した固体高分子形燃料電池の構造の一例を模式的に示す分解斜視図である。
【発明を実施するための形態】
【0016】
<実施形態>
以下に、本開示の実施形態について添付図面を参照して説明する。
ここで、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。また、以下に示す実施形態は、本開示の技術的思想を具体化するための構成を例示するものであって、本開示の技術的思想は、構成部品の材質、形状、構造等が下記のものに特定されるものではない。本開示の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
【0017】
〔膜電極接合体〕
まず、本実施形態に係る膜電極接合体11について説明する。
図1に示すように、膜電極接合体11は、高分子電解質膜1と、高分子電解質膜1を高分子電解質膜1の上下各面から狭持する電極触媒層2(
図1中、上側に示す)及び電極触媒層3(
図1中、下側に示す)とを備える。さらに、膜電極接合体11の2つの電極触媒層2、3は、高分子電解質膜1の平面方向に2つの領域に分けられている。より詳細には、
図1中上側に示す電極触媒層2は、電極触媒層2に流入するガスの入口側に配置される第一の電極触媒部2aと、ガスの出口側に配置される第二の電極触媒部2bとを有する。同様に、図中下側に示す電極触媒層3は、電極触媒層3に流入するガスの入口側に位置する第一の電極触媒部3aと、ガスの出口側に位置する第二の電極触媒部3bとを有する。
【0018】
2つの電極触媒層2、3の少なくとも一方は、下記の構成(a)及び(b)を有する。2つの電極触媒層2、3が共に下記構成(a)及び(b)を満たすことが好ましい。
(a)触媒担持粒子と、繊維状物質と、高分子電解質と、を含む。繊維状物質は疎水性繊維状物質と親水性繊維状物質で構成される。
(b)第二の電極触媒部2b(又は3b)における、繊維状物質に対する疎水性繊維状物質の質量比は、第一の電極触媒部2a(又は3a)における、繊維状物質に対する疎水性繊維状物質の質量比よりも大きい。
疎水性繊維状物質及び親水性繊維状物質を含む繊維状物質全体の平均繊維長が0.7μm以上30μm以下の範囲内に含まれることが好ましく、10μm以上20μm以下の範囲内に含まれることがより好ましい。
【0019】
疎水性繊維状物質の質量と、親水性繊維状物質の質量とを合わせた繊維質量は、触媒担持粒子における担体の質量の0.05倍以上0.4倍以下であることが好ましく、0.2倍以上0.3倍以下であることがより好ましい。繊維質量が、触媒担持粒子における担体の質量の0.05倍未満の場合は、電極触媒層に形成される細孔が少ない影響で、高電流域では電極反応で生成した水を充分に排水することができず、反応ガスの拡散性を高めることができない場合があると推定される。また、0.4倍を超える場合は、電極触媒層に形成される細孔が多い影響で、低加湿条件下では保水性を高めることが困難な場合があると推定される。
【0020】
高分子電解質の質量は、触媒担持粒子における担体の質量の0.3倍以上1.0倍以下であることが好ましく、0.5倍以上0.8倍以下であることがより好ましい。高分子電解質の質量が、触媒担持粒子における担体の質量の0.3倍未満の場合は、電極触媒層に形成される細孔が少ない影響で、高電流域では電極反応で生成した水を充分に排水することができず、反応ガスの拡散性を高めることができない場合があると推定される。また、1.0倍を超える場合は、電極触媒層に形成される細孔が多い影響で、低加湿条件下では保水性を高めることが困難な場合がある推定される。
【0021】
本願発明者は、以上の構成からなる第一の電極触媒部2a(又は3a)が低加湿条件下で保水性を有し、第二の電極触媒部2b(又は3b)が電極反応で生成した水の除去を阻害しないことを確認した。なお、詳細なメカニズムは、以下のように推測されるが、本発明は下記メカニズムに何ら拘束されるものではない。
【0022】
上述の構成(a)及び(b)を有する電極触媒層2、3は、繊維状物質の絡み合いによって、耐久性低下の起因となる電極触媒層のクラック発生を抑制するなど、高い耐久性と機械特性が得られる。繊維状物質の平均繊維長が0.7μmに満たない場合は、繊維状物質の絡み合いが弱いため、機械特性が低下する場合がある。また、繊維状物質の平均繊維長が30μmを超える場合は、繊維状物質の絡み合いが強いため、インクとして分散できない場合がある。
【0023】
また、ガスの出口側に設ける第二の電極触媒部2b(又は3b)では、繊維状物質に対する疎水性繊維状物質の質量比を大きくすることで、電極触媒層内に形成される細孔の疎水性が高まり、水の除去を促進する。一方、ガスの入口側に設ける第一の電極触媒部2a(又は3a)では、繊維状物質に対する疎水性繊維状物質の質量比を小さくすることで、電極触媒層内に形成される細孔の親水性が高まり、低加湿条件下における保水性を両立している。
【0024】
上記構成(a)及び(b)を有する電極触媒層2、3は、更に下記の構成(c)を有することが好ましい。
(c)第一の電極触媒部2a(又は3a)における、繊維状物質に対する疎水性繊維状物質の質量比(疎水性繊維状物質の質量/繊維状物質の質量)は0.1以上0.45以下の範囲内であり、第二の電極触媒部2b(又は3b)における、繊維状物質に対する疎水性繊維状物質の質量比(疎水性繊維状物質の質量/繊維状物質の質量)は0.55以上0.9以下の範囲内である。
【0025】
繊維状物質に対する疎水性繊維状物質の質量比について、第一の電極触媒部2a(又は3a)における質量比は、0.1以上0.45以下であることが好ましく、0.2以上0.35以下であることがより好ましい。
また、繊維状物質に対する疎水性繊維状物質の質量比について、第二の電極触媒部2b(又は3b)における質量比(疎水性繊維状物質の質量/繊維状物質の質量)は、0.55以上0.9以下であることが好ましく、0.65以上0.8以下であることがより好ましい。
【0026】
第一の電極触媒部2a(又は3a)における、繊維状物質に対する疎水性繊維状物質の質量比が0.1に満たない場合は、電極触媒層内に形成される細孔の親水性が過剰に高まり、水の除去が困難となる場合がある。
第二の電極触媒部2b(又は3b)における、繊維状物質に対する疎水性繊維状物質の質量比が0.9を超える場合は、低加湿条件下で水の保持が困難となり、プロトン伝導性が低下する場合がある。
また、第一の電極触媒部2a(又は3a)における、繊維状物質に対する疎水性繊維状物質の質量比が0.45を超える場合と、第二の電極触媒部2b(又は3b)における、繊維状物質に対する疎水性繊維状物質の質量比が0.55に満たない場合は、電極触媒層内に形成される細孔における疎水性と親水性の差が少なくなり、高い発電性能を示すことが困難になる場合がある。
【0027】
〔固体高分子形燃料電池〕
次に、
図2を用いて、本発明の一実施形態に係る膜電極接合体11を備えた固体高分子形燃料電池について説明する。
図2に示す固体高分子形燃料電池12は、膜電極接合体11と、一対のガス拡散層4、5と、一組のセパレータ10a、10bと、を備える。ガス拡散層4は、膜電極接合体11の電極触媒層2と対向するように配置される。ガス拡散層5は、電極触媒層3と対向するように配置される。電極触媒層2とガス拡散層4とによって、空気極(カソード、正極)6が形成される。電極触媒層3とガス拡散層5とによって、燃料極(アノード、負極)7が形成される。
【0028】
また、一組のセパレータ10a、10bは、ガス拡散層4及び5の外側、つまり、ガス拡散層4及び5の、膜電極接合体11と対向する側とは逆側にそれぞれ配置される。すなわち、膜電極接合体11は、膜電極接合体11の厚さ方向において、一つのセパレータ10a、10bに挟まれている。セパレータ10a、10bは、それぞれ、ガス拡散層4及び5と対向する面に形成されたガス流通用のガス流路8a、8bと、ガス拡散層4及び5と対向する面とは逆側の面に形成された冷却水流通用の冷却水流路9a、9bとを備えている。セパレータ10a、10bは、導電性及び不透過性を有する材料によって形成される。
【0029】
燃料極7と向かい合うセパレータ10bのガス流路8bには、燃料ガスとして例えば水素ガスが供給される。一方、空気極6と向かい合うセパレータ10aのガス流路8aには、酸化剤ガスとして例えば酸素ガスが供給される。燃料ガスの水素と、酸化剤ガスの酸素とをそれぞれ触媒の存在下において電極反応させることにより、燃料極7と空気極6との間に起電力を生じさせることができる。
固体高分子形燃料電池12において、一対のセパレータ10a、10bが、高分子電解質膜1、一対の電極触媒層2、3、および、一対のガス拡散層4、5を挟持する。
図2に示す固体高分子形燃料電池12は、単セル構造を有した燃料電池の一例であるが、固体高分子形燃料電池は、セパレータ10a又はセパレータ10bを介して複数のセルが積層された構造を有してもよい。
【0030】
〔膜電極接合体の製造方法〕
次に、上記構成(a)、(b)、(c)を有する膜電極接合体11の製造方法の一例を説明する。
上記構成(a)、(b)、(c)を有する膜電極接合体11は、下記の触媒インク作製工程と触媒部形成工程と積層工程とを含む方法で製造される。
触媒インク作製工程は、触媒が担持されたカーボン粒子からなる触媒担持粒子と、疎水性繊維状物質及び親水性繊維状物質を含む繊維状物質と、高分子電解質と、溶媒と、を含む触媒インクを製造する工程である。触媒インク作製工程では、繊維状物質に対する疎水性繊維状物質の質量比の異なる二種類の触媒インクを作製する。繊維状物質に対する疎水性繊維状物質の質量比が小さい触媒インクを第一の触媒インク、繊維状物質に対する疎水性繊維状物質の質量比が大きい触媒インクを第二の触媒インクとした。
【0031】
触媒部形成工程は、第一の触媒インクを基材に塗布して乾燥させることにより第一の電極触媒部2a(又は3a)を形成する第一工程及び、第二の触媒インクを基材に塗布して乾燥させることにより第二の電極触媒部2b(又は3b)を形成する第二工程を有する。
触媒部形成工程において、基材に対する、第一の触媒インクの塗布領域と上記第二の触媒インクの塗布領域とが重ならいように第一の触媒インク及び第二の触媒インクの塗布を行う。これにより、第一の電極触媒部2a(又は3a)及び第二の電極触媒部2b(又は3b)を有する電極触媒層2(又は3)が形成される。
【0032】
積層工程では、基材に形成した電極触媒層2(又は3)を高分子電解質膜1の上に貼り付けて積層する工程である。積層工程において、電極触媒層2(又は3)に流入するガスの流れ方向に対し、第一の電極触媒部2a(又は3a)を上記ガスの流れ方向の入口側に、第二の電極触媒部2b(又は3b)を上記ガスの流れ方向の出口側になるように設定して貼り付ける。なお、基材が高分子電解質膜1である場合つまり、高分子電解質膜1に直接、電極触媒層2(又は3)を形成した場合には、触媒部形成工程を行うことで積層工程を行うこととなる。
電極触媒層2、3を高分子電解質膜1の上下各面に貼り付けることで、膜電極接合体11が得られる。電極触媒層2、3の両方が上述の方法で製造されたものであってもよいし、一方が上述の方法で製造され、他方が従来の方法で製造されたものであってもよい。
【0033】
〔詳細説明〕
以下、膜電極接合体11及び固体高分子形燃料電池12について更に詳細に説明する。
高分子電解質膜1としては、プロトン伝導性を有するものであれば良く、例えば、フッ素系高分子電解質膜又は、炭化水素系高分子電解質膜を用いることができる。フッ素系高分子電解質膜として、例えば、デュポン社製Nafion(登録商標)、旭硝子株式会社製Flemion(登録商標)、旭化成株式会社製Aciplex(登録商標)、ダブリュー.エル.ゴア アンド アソシエーツ社製Gore Select(登録商標)等を用いることができる。
【0034】
また、炭化水素系高分子電解質膜としては、例えば、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等の電解質膜を用いることができる。特に、高分子電解質膜1として、デュポン社製Nafion(登録商標)系材料を用いることが好適である。
電極触媒層2、3は、触媒インクを用いて高分子電解質膜1の両面に形成される。電極触媒層2、3用の触媒インクは、触媒が担持されたカーボン粒子からなる触媒担持粒子、疎水性繊維状物質と親水性繊維状物質の繊維状物質、高分子電解質、及び溶媒を含み、繊維状物質に対する疎水性繊維状物質の質量比の異なる二種類の組成を用いる。
【0035】
触媒インクに含まれる高分子電解質は、プロトン伝導性を有するものであれば良い。高分子電解質には、高分子電解質膜1と同様の材料を用いることができる。高分子電解質には、例えば、フッ素系高分子電解質又は、炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質として、例えば、デュポン社製Nafion(登録商標)系材料等を用いることができる。また、炭化水素系高分子電解質としては、例えば、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレン等の電解質を用いることができる。特に、フッ素系高分子電解質として、デュポン社製Nafion(登録商標)系材料を用いることが好適である。
【0036】
本実施形態で用いる触媒(以下、触媒粒子あるいは触媒と称すことがある)としては、白金族元素、金属、その金属の合金や酸化物、複酸化物等を用いることができる。白金族元素としては、白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウムがあり、金属としては、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウムもしくはアルミニウム等が例示できる。なお、ここでいう複酸化物とは2種類の金属からなる酸化物のことをいう。
触媒粒子が、白金、金、パラジウム、ロジウム、ルテニウム、及び、イリジウムから選ばれた1種又は2種以上の金属である場合、電極反応性に優れ、電極反応を効率良く安定して行うことができる。触媒粒子が、白金、金、パラジウム、ロジウム、ルテニウム、及び、イリジウムから選ばれた1種又は2種以上の金属である場合、電極触媒層2、3を備えた固体高分子形燃料電池12が高い発電特性を示すので好ましい。
【0037】
上述の触媒を担持する電子伝導性の粉末、すなわち担体としては、一般的にカーボン粒子が使用される。カーボン粒子の種類は、微粒子状で導電性を有し、触媒におかされないものであれば限定されるものではない。カーボン粒子としては、例えば、カーボンブラックやグラファイト、黒鉛、活性炭、カーボンファイバー、カーボンナノチューブ、フラーレンを用いることができる。
カーボン粒子の平均粒子径は、10nm以上1000nm以下の範囲内に含まれることが好ましく、10nm以上100nm以下の範囲内に含まれることがより好ましい。ここで、平均粒子径とは、SEM像から求めた平均粒子径である。カーボン粒子の平均粒子径が10nm以上1000nm以下の範囲内に含まれる場合、触媒の活性及び安定性が向上するため好ましい。また、カーボン粒子の平均粒子径が10nm以上1000nm以下の範囲に含まれる場合には、電子伝導パスが形成されやすくなり、また、2つの電極触媒層2、3のガス拡散性および触媒の利用率が向上するため好ましい。
【0038】
上述の触媒担持粒子は、疎水性被膜を備えたものでも良い。言い換えれば、触媒を担持した粒子は、疎水性被膜によって覆われてもよい。この場合、疎水性被膜は、十分に反応ガスを透過する膜厚を有することが好ましい。疎水性被膜の膜厚は、具体的には40nm以下であることが好ましい。40nmよりも厚くなると活性点への反応ガスの供給が阻害される場合がある。一方、疎水性被膜が40nm以下であれば十分に反応ガスが疎水性被膜を透過するため、触媒担持粒子に疎水性を付与することができる。
また、触媒担持粒子を覆う疎水性被膜の膜厚は、十分に生成水を撥水する膜厚であることが好ましい。疎水性被膜の膜厚は、具体的には2nm以上であることが好ましい。疎水性被膜がこれよりも薄くなると生成水が滞留し、活性点への反応ガスの供給が阻害される場合がある。すなわち、疎水性被膜が2nm以上の厚さを有することによって、生成水の滞留を抑え、これによって、活性点に対する反応ガスの供給が阻害されることが抑えられる。
【0039】
触媒担持粒子を覆う疎水性被膜は、例えば、少なくとも一つの極性基を有するフッ素系化合物から形成される。極性基には、例えば、ヒドロキシル基、アルコキシ基、カルボキシル基、エステル基、エーテル基、カーボネート基、アミド基などが挙げられる。極性基の存在により、電極触媒層の最表面にフッ素系化合物を固定化することができる。フッ素系化合物における極性基以外の部分は、疎水性及び化学的安定性の高さからフッ素及びカーボンからなる構造であることが好ましい。しかし、疎水性被膜が十分な疎水性及び化学的安定性を有するならばこのような構造に限られるものではない。
【0040】
疎水性繊維状物質は、疎水性を持つものであれば特に制限されず、導電性繊維を用いることができる。導電性繊維としては、カーボンナノファイバーやカーボンナノチューブ、気相成長炭素繊維が例示できる。気相成長炭素繊維の例として、昭和電工株式会社製VGCF(登録商標)等を用いることができる。これらの疎水性繊維状物質は、1種のみを単独で使用してもよいが、2種以上を併用しても良い。
親水性繊維状物質は、親水性を持つものであれば特に制限されず、親水性を持つように作られた導電性繊維を用いても良いし、親水性を持たない導電性繊維に親水性を付与しても良い。親水性の付与方法としては、例えばオゾンや酸素プラズマ処理、電解酸化、混酸処理などが挙げられる。これらの親水性繊維状物質は、1種のみを単独で使用してもよいが、2種以上を併用しても良い。
【0041】
触媒インクの分散媒として使用される溶媒は、触媒が担持されたカーボン粒子からなる触媒担持粒子、疎水性繊維状物質と親水性繊維状物質の繊維状物質、高分子電解質を浸食することがなく、高分子電解質を流動性の高い状態で溶解又は微細ゲルとして分散できるものあれば特に限定されるものではない。しかしながら、溶媒には、揮発性の有機溶媒が少なくとも含まれていることが望ましい。触媒インクの分散媒として使用される溶媒は、アルコール類、ケトン系溶剤、エーテル系溶剤、極性溶剤等であってよい。アルコール類は、例えば、メタノール、エタノール、1‐プロパノール、2‐プロパノール、1‐ブタノール、2‐ブタノール、イソブチルアルコール、tert‐ブチルアルコール、ペンタノール等であってよい。ケトン系溶剤は、例えば、アセトン、メチルエチルケトン、ペンタノン、メチルイソブチルケトン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジイソブチルケトン等であってよい。エーテル系溶剤は、例えば、テトラヒドロフラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジブチルエーテル等であってよい。極性溶剤は、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N‐メチルピロリドン、エチレングリコール、ジエチレングリコール、ジアセトンアルコール、1‐メトキシ‐2‐プロパノール等であってよい。また、溶媒は、上述の材料のうち2種以上を混合させた混合溶媒であってもよい。
【0042】
また、低級アルコールを用いた分散媒は発火の危険性が高いため、低級アルコールを分散媒として用いる場合は、低級アルコールと水との混合溶媒を用いることが好ましい。更に、分散媒には、高分子電解質となじみが良い水、すなわち高分子電解質に対する親和性が高い水が含まれていても良い。分散媒における水の添加量は、高分子電解質が分離して白濁を生じたり、ゲル化したりしない程度であれば特に制限されるものではない。
触媒が担持されたカーボン粒子を触媒インクにおいて分散させるために、触媒インクに分散剤が含まれていても良い。分散剤としては、例えば、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤、非イオン界面活性剤等を挙げることができる。
【0043】
アニオン界面活性剤の例として、アルキルエーテルカルボン酸塩、エーテルカルボン酸塩、アルカノイルザルコシン、アルカノイルグルタミン酸塩、アシルグルタメート、オレイン酸・N‐メチルタウリン、オレイン酸カリウム・ジエタノールアミン塩、アルキルエーテルサルフェート・トリエタノールアミン塩、ポリオキシエチレンアルキルエーテルサルフェート・トリエタノールアミン塩、特殊変成ポリエーテルエステル酸のアミン塩、高級脂肪酸誘導体のアミン塩、特殊変成ポリエステル酸のアミン塩、高分子量ポリエーテルエステル酸のアミン塩、特殊変成リン酸エステルのアミン塩、高分子量ポリエステル酸アミドアミン塩、特殊脂肪酸誘導体のアミドアミン塩、高級脂肪酸のアルキルアミン塩、高分子量ポリカルボン酸のアミドアミン塩、ラウリン酸ナトリウム、ステアリン酸ナトリウム、オレイン酸ナトリウム等のカルボン酸型界面活性剤、ジアルキルスルホサクシネート、スルホコハク酸ジアルキル塩、1,2‐ビス(アルコキシカルボニル)‐1‐エタンスルホン酸塩、アルキルスルホネート、アルキルスルホン酸塩、パラフィンスルホン酸塩、α‐オレフィンスルホネート、直鎖アルキルベンゼンスルホネート、アルキルベンゼンスルホネート、ポリナフチルメタンスルホネート、ポリナフチルメタンスルホン酸塩、ナフタレンスルホネート‐ホルマリン縮合物、アルキルナフタレンスルホネート、アルカノイルメチルタウリド、ラウリル硫酸エステルナトリウム塩、セチル硫酸エステルナトリウム塩、ステアリル硫酸エステルナトリウム塩、オレイル硫酸エステルナトリウム塩、ラウリルエーテル硫酸エステル塩、アルキルベンゼンスルホン酸ナトリウム、油溶性アルキルベンゼンスルホン酸塩、α‐オレフィンスルホン酸塩等のスルホン酸型界面活性剤、アルキル硫酸エステル塩、硫酸アルキル塩、アルキルサルフェート、アルキルエーテルサルフェート、ポリオキシエチレンアルキルエーテルサルフェート、アルキルポリエトキシ硫酸塩、ポリグリコールエーテルサルフェート、アルキルポリオキシエチレン硫酸塩、硫酸化油、高度硫酸化油等の硫酸エステル型界面活性剤、リン酸(モノ又はジ)アルキル塩、(モノ又はジ)アルキルホスフェート、(モノ又はジ)アルキルリン酸エステル塩、リン酸アルキルポリオキシエチレン塩、アルキルエーテルホスフェート、アルキルポリエトキシ・リン酸塩、ポリオキシエチレンアルキルエーテル、リン酸アルキルフェニル・ポリオキシエチレン塩、アルキルフェニルエーテル・ホスフェート、アルキルフェニル・ポリエトキシ・リン酸塩、ポリオキシエチレン・アルキルフェニル・エーテルホスフェート、高級アルコールリン酸モノエステルジナトリウム塩、高級アルコールリン酸ジエステルジナトリウム塩、ジアルキルジチオリン酸亜鉛等のリン酸エステル型界面活性剤等が挙げられる。
【0044】
カチオン界面活性剤の例として、ベンジルジメチル{2-[2-(P-1,1,3,3-テトラメチルブチルフェノオキシ)エトキシ]エチル}アンモニウムクロライド、オクタデシルアミン酢酸塩、テトラデシルアミン酢酸塩、オクタデシルトリメチルアンモニウムクロライド、牛脂トリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド、ヤシトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、ベヘニルトリメチルアンモニウムクロライド、ヤシジメチルベンジルアンモニウムクロライド、テトラデシルジメチルベンジルアンモニウムクロライド、オクタデシルジメチルベンジルアンモニウムクロライド、ジオレイルジメチルアンモニウムクロライド、1-ヒドロキシエチル-2-牛脂イミダゾリン4級塩、2-ヘプタデセニルーヒドロキシエチルイミダゾリン、ステアラミドエチルジエチルアミン酢酸塩、ステアラミドエチルジエチルアミン塩酸塩、トリエタノールアミンモノステアレートギ酸塩、アルキルピリジウム塩、高級アルキルアミンエチレンオキサイド付加物、ポリアクリルアミドアミン塩、変成ポリアクリルアミドアミン塩、パーフルオロアルキル第4級アンモニウムヨウ化物等が挙げられる。
【0045】
両性界面活性剤の例として、ジメチルヤシベタイン、ジメチルラウリルベタイン、ラウリルアミノエチルグリシンナトリウム、ラウリルアミノプロピオン酸ナトリウム、ステアリルジメチルベタイン、ラウリルジヒドロキシエチルベタイン、アミドベタイン、イミダゾリニウムベタイン、レシチン、3‐[ω‐フルオロアルカノイル‐N‐エチルアミノ]‐1‐プロパンスルホン酸ナトリウム、N‐[3‐(パーフルオロオクタンスルホンアミド)プロピル]‐N,N‐ジメチル‐N‐カルボキシメチレンアンモニウムベタイン等が挙げられる。
【0046】
非イオン界面活性剤の例として、ヤシ脂肪酸ジエタノールアミド(1:2型)、ヤシ脂肪酸ジエタノールアミド(1:1型)、牛脂肪酸ジエタノールアミド(1:2型)、牛脂肪酸ジエタノールアミド(1:1型)、オレイン酸ジエタノールアミド(1:1型)、ヒドロキシエチルラウリルアミン、ポリエチレングリコールラウリルアミン、ポリエチレングリコールヤシアミン、ポリエチレングリコールステアリルアミン、ポリエチレングリコール牛脂アミン、ポリエチレングリコール牛脂プロピレンジアミン、ポリエチレングリコールジオレイルアミン、ジメチルラウリルアミンオキサイド、ジメチルステアリルアミンオキサイド、ジヒドロキシエチルラウリルアミンオキサイド、パーフルオロアルキルアミンオキサイド、ポリビニルピロリドン、高級アルコールエチレンオキサイド付加物、アルキルフェノールエチレンオキサイド付加物、脂肪酸エチレンオキサイド付加物、ポリプロピレングリコールエチレンオキサイド付加物、グリセリンの脂肪酸エステル、ペンタエリスリットの脂肪酸エステル、ソルビットの脂肪酸エステル、ソルビタンの脂肪酸エステル、砂糖の脂肪酸エステル等が挙げられる。
【0047】
上述した界面活性剤の中でも、アルキルベンゼンスルホン酸、油溶性アルキルベンゼンスルホン酸、α‐オレフィンスルホン酸、アルキルベンゼンスルホン酸ナトリウム、油溶性アルキルベンゼンスルホン酸塩、α‐オレフィンスルホン酸塩等のスルホン酸型の界面活性剤は、カーボンの分散効果、分散剤の残存による触媒性能の変化等の観点から、分散剤として好適である。
【0048】
また、触媒インクには、必要に応じて分散処理が行われてもよい。触媒インクの粘度と、触媒インクに含まれる粒子のサイズとを、触媒インクの分散処理の条件によって制御することができる。分散処理は、様々な装置を採用して行うことができる。特に、分散処理の方法は限定されるものではない。例えば、分散処理としては、ボールミルおよびロールミルによる処理、せん断ミルによる処理、湿式ミルによる処理、超音波分散処理等が挙げられる。また、分散処理には、遠心力によって攪拌を行うホモジナイザー等を採用しても良い。触媒インクに分散処理を行う分散時間が長くなることに伴い、触媒担持粒子の凝集体が破壊されるから、触媒インクを用いて形成された電極触媒層において、細孔容積は小さくなる。
【0049】
触媒インク中の固形分含有量が多すぎる場合、触媒インクの粘度が高くなるため、電極触媒層2、3の表面にクラックが入りやすくなる。一方、触媒インク中の固形分含有量が少なすぎる場合、成膜レートが非常に遅く、生産性が低下してしまう。したがって、触媒インク中の固形分含有量は、1質量%(wt%)以上50質量%以下であることが好ましい。すなわち、触媒インク中の固形分含有量が1質量%以上であることによって、成膜レートが過剰に遅くなることを抑え、これによって、生産性の低下を抑えることが可能である。触媒インク中の固形分含有量が50質量%以下であることによって、触媒インクの粘度が過剰に高くなることを抑え、これによって、電極触媒層2、3の表面にクラックが生じることが抑えられる。
触媒インクを基材上に塗布する塗布方法としては、ドクターブレード法、ディッピング法、スクリーン印刷法、ロールコーティング法等を採用することができる。
電極触媒層2、3の製造に用いる基材としては、転写シートを用いることができる。
【0050】
基材として用いられる転写シートとしては、転写性が良い材質であれば良く、例えば、フッ素系樹脂を用いることができる。フッ素系樹脂としては、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロパーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等が挙げることができる。また、転写シートとして、高分子シート、高分子フィルムを用いることもできる。高分子シート、高分子フィルムの材料としては、ポリイミド、ポリエチレンテレフタラート、ポリアミド(ナイロン(登録商標))、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート等を用いることができる。また、基材として転写シートを用いた場合には、高分子電解質膜1に溶媒除去後の塗膜である電極膜を接合した後に転写シートを剥離し、高分子電解質膜1の両面に電極触媒層2、3を備える膜電極接合体11とすることができる。
【0051】
ガス拡散層4、5としては、ガス拡散性と導電性とを有する材質を用いることができる。例えば、ガス拡散層4、5として、カーボンクロス、カーボンペーパー、不織布等のポーラスカーボン材を用いることができる。
セパレータ10(10a、10b)としては、カーボンタイプあるいは金属タイプのもの等を用いることができる。なお、ガス拡散層4、5とセパレータ10(10a、10b)はそれぞれ一体構造となっていても良い。また、セパレータ10(10a、10b)もしくは電極触媒層2、3が、ガス拡散層4、5の機能を果たす場合は、ガス拡散層4、5は省略しても良い。
固体高分子形燃料電池12は、ガス供給装置、冷却装置等、その他付随する装置を組み立てることにより製造することができる。
【0052】
<効果その他>
本実施形態に係る膜電極接合体11の電極触媒層2、3において、ガスの入口側に設ける第一の電極触媒部2a(又は3a)における繊維状物質に対する疎水性繊維状物質の質量比を、ガスの出口側に設ける第二の電極触媒部2b(又は3b)での質量比と比較して小さくする。
この構成によれば、ガスの入口側に設ける第一の電極触媒部2a(又は3a)で保水性を高め、ガスの出口側に設ける第二の電極触媒部2b(又は3b)で水の除去を促進することができ、低加湿条件下でも高い発電特性を得ることができる。
【0053】
このため、製造工程の大幅な変更等を伴うことなく、またコストの大幅な増加を伴うことなく、高い発電特性を得ることができる。
なお、上記実施形態においては、電極触媒層2及び3のそれぞれに第一の電極触媒部と第二の電極触媒部とを設けた場合について説明したが、これに限るものではなく、電極触媒層2及び3のそれぞれに、三つ以上の電極触媒部を設けてもよい。電極触媒層2及び3それぞれに三つ以上の電極触媒部を設ける場合には、ガスの上流側に近いほど、繊維状物質に対する疎水性繊維状物質の質量比が、ガスの下流側の電極触媒部よりも小さくなるようにすることが好ましい。
【0054】
例えば、第三の電極触媒部は、第一の電極触媒部2a、3a用の触媒インクと第二の電極触媒部2b、3b用の触媒インクとが混ざり合った混合部として形成する。もっとも、第三の電極触媒部を、上述の構成(a)、(b)とは異なる組成から構成しても良い。ただし、上述の構成(a)、(b)とは異なる組成から構成する場合、第三の電極触媒部は、電極触媒層全体の面積の20%以下とすることが好ましい。また、各電極触媒部間の境界線は、平面視で直線状でなくても良い。境界線は蛇行状などの形状であっても良い。
また、膜電極接合体11において、高分子電解質膜1の両面に形成される電極触媒層2及び3のうち、一方の電極触媒層2又は3のみに、第一の電極触媒部と第二の電極触媒部とが設けられていてもよい。
【0055】
一方の電極触媒層2又は3のみに第一の電極触媒部及び第二の電極触媒部を設けた場合、二つの電極触媒部を有する電極触媒層は、電極反応により水が発生する空気極(カソード)側に配置することが好ましい。ただし、低加湿条件下における高分子電解質の水分保持の点から、二つの電極触媒部を有する電極触媒層は高分子電解質膜1の両面に形成されることが、より好ましい。
また、
図1では電極触媒層2又は3の第一の電極触媒部と第二の電極触媒部が同等の面積で二分割されている(電極触媒層2に対する第一の電極触媒部の面積率が50%)の例を示しているが、これに限定されない。
【0056】
電極触媒層2又は3に対する第一の電極触媒部の面積率は15%以上60%以下であることがガスの反応性の面から好ましい。電極触媒層2又は3に対する第一の電極触媒部の面積率が15%に満たない場合は、低加湿条件下における保水効果が弱く、高い発電特性が得られない。また、電極触媒層2又は3に対する第一の電極触媒部の面積率が60%を超える場合は、燃料極及び空気極における物質輸送の妨げにより発電反応が停止するフラッディング現象が生じるため、高い発電特性が得られない。
【実施例】
【0057】
次に、本実施形態に関する発明の実施例について説明する。
以下に、本実施形態における固体高分子形燃料電池用膜電極接合体の製造方法について具体的な実施例及び比較例を挙げて説明するが、本実施形態は下記の実施例及び比較例によって制限されるものではない。
【0058】
<実施例>
〔触媒インクの調整〕
担持密度30質量%である白金担持カーボン触媒と、平均繊維長が1.5μmである疎水性繊維状物質(カーボンファイバー)及び親水性繊維状物質(酸化処理したカーボンファイバー)と、イオン交換容量が1.4meq/gである高分子電解質を含む20質量%高分子電解質溶液とを溶媒中で混合し、遊星型ボールミルで30分間の分散処理を行い、第一の触媒インクを作製した。第一の触媒インクは、繊維状物質に対する疎水性繊維状物質の質量比が0.3の組成比、繊維状物質に対する親水性繊維状物質の質量比が0.7の組成比として、カーボン粒子と繊維状物質と高分子電解質との配合比を質量比で1:0.3:0.8とした。
【0059】
次に、担持密度30質量%である白金担持カーボン触媒と、平均繊維長が1.5μmである疎水性繊維状物質及び親水性繊維状物質と、イオン交換容量が1.4meq/gである高分子電解質を含む20質量%高分子電解質溶液とを溶媒中で混合し、遊星型ボールミルで30分間の分散処理を行い、第二の触媒インクを作製した。第二の触媒インクは、繊維状物質に対する疎水性繊維状物質の質量比が0.7の組成比、繊維状物質に対する親水性繊維状物質の質量比が0.3の組成比として、カーボン粒子と繊維状物質と高分子電解質との配合比を質量比で1:0.3:0.8とした。
各触媒インクの溶媒は、超純水と1-プロパノールの体積比で1:1とした。また、各触媒インクにおける固形分含有量は、それぞれ8質量%となるように調整した。
【0060】
〔電極触媒層の形成〕
ポリテトラフルオロエチレン(PTFE)シートの基材に対し、作製した触媒インクをドクターブレード法で塗布し、大気雰囲気中80℃で乾燥させた。第一の触媒インクの塗布量は、燃料極(アノード)として白金担持量0.1mg/cm2になり、また、空気極(カソード)として白金担持量0.3mg/cm2になるように調整し、電極触媒層(第一の電極触媒部)を形成した。また、第二の触媒インクの塗布量は、燃料極(アノード)として白金担持量0.1mg/cm2になり、空気極(カソード)として白金担持量0.3mg/cm2になるように調整し、電極触媒層(第二の電極触媒部)を形成した。
【0061】
〔膜電極接合体の作製〕
それぞれの電極触媒層を形成した基材を5cm×2.5cmにそれぞれ打ち抜き、第一の電極触媒部がガスの入口側、第二の電極触媒部がガスの出口側となるように配置させて、5cm×5cmの電極触媒層とした。この電極触媒層を高分子電解質膜1の両面に配置させ、転写温度130℃、転写圧力5.0×106Paの条件でホットプレスを行い、膜電極接合体11を得た。
【0062】
<比較例>
〔触媒インクの調整〕
担持密度30質量%である白金担持カーボン触媒と、平均繊維長が1.5μmである疎水性繊維状物質及び親水性繊維状物質と、高分子電解質溶液としてイオン交換容量が1.4meq/gである高分子電解質を含む20質量%高分子電解質溶液とを溶媒中で混合し、遊星型ボールミルで30分間の分散処理を行い、触媒インクを作製した。触媒インクは、繊維状物質に対する疎水性繊維状物質の質量比が0.5の組成比、繊維状物質に対する親水性繊維状物質の質量比が0.5の組成比として、カーボン粒子と繊維状物質と高分子電解質との配合比を質量比で1:0.3:0.8とした。触媒インクの溶媒は、超純水と1-プロパノールの体積比で1:1とした。また、触媒インクにおける固形分含有量は、それぞれ8質量%となるように調整した。
これにより、触媒インクが得られた。この触媒インクは、実施例における第一の触媒インクと第二の触媒インクの全ての成分を一度に混合、分散して得られたものである。
【0063】
〔電極触媒層の形成〕
ポリテトラフルオロエチレン(PTFE)シートの基材に対し、作製した触媒インクをドクターブレード法で塗布し、大気雰囲気中80℃で乾燥させた。触媒インクの塗布量は、燃料極(アノード)として白金担持量0.1mg/cm2になり、空気極(カソード)として白金担持量0.3mg/cm2になるように調整し、電極触媒層を形成した。
〔膜電極接合体の作製〕
それぞれの電極触媒層を形成した基材を5cm×5cmにそれぞれ打ち抜き、この電極触媒層を高分子電解質膜の両面に配置させ、転写温度130℃、転写圧力5.0×106Paの条件でホットプレスを行い、膜電極接合体を得た。
【0064】
<評価>
〔発電特性〕
実施例および比較例で得られた各膜電極接合体を挟持するように、ガス拡散層としてカーボンペーパーを貼りあわせて、発電評価セル内に設置し、燃料電池測定装置を用いて電流電圧測定を行った。測定時のセル温度は80℃とし、運転条件は以下に示すフル加湿と低加湿を採用した。また、燃料ガスとして水素を、酸化剤ガスとして空気を用い、利用率一定による流量制御を行った。なお、背圧は50kPaとした。
〔運転条件〕
条件1(フル加湿):相対湿度 アノード100%RH、カソード100%RH
条件2(低加湿) :相対湿度 アノード30%RH、カソード30%RH
【0065】
〔測定結果〕
実施例で作製した膜電極接合体は、比較例で作製した膜電極接合体よりも、低加湿の運転条件下で優れた発電性能を示した。また、実施例で作製した膜電極接合体は、低加湿の運転条件下においても、フル加湿の運転条件下と同等レベルの発電性能であった。特に電流密度1.5A/cm2付近の発電性能が向上した。実施例で作製した膜電極接合体の電流密度1.5A/cm2におけるセル電圧は、比較例で作製した膜電極接合体の電流密度1.5A/cm2におけるセル電圧と比べて0.21V高い発電特性を示した。
【0066】
実施例で作製した膜電極接合体と比較例で作製した膜電極接合体との発電特性の結果から、実施例の膜電極接合体は保水性が高まり、低加湿の運転条件下における発電特性が、フル加湿の運転条件下と同等の発電特性を示すことが確認された。
また、フル加湿の運転条件下では、実施例で作製した膜電極接合体の電流密度1.5A/cm2におけるセル電圧は、比較例で作製した膜電極接合体の電流密度1.5A/cm2におけるセル電圧と比べて0.13V高い発電特性を示した。
実施例で作製した膜電極接合体と比較例で作製した膜電極接合体との発電特性の結果から、実施例で作製した膜電極接合体では、反応ガスの拡散性が高く、電極反応で生成した水の除去等を阻害していないことが確認された。
【0067】
以上、本発明の実施形態を詳述してきたが、実際には、上記の実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の変更があっても本発明に含まれる。
【符号の説明】
【0068】
1…高分子電解質膜
2…電極触媒層
2a…第一の電極触媒部
2b…第二の電極触媒部
3…電極触媒層
3a…第一の電極触媒部
3b…第二の電極触媒部
4…ガス拡散層
5…ガス拡散層
6…空気極(カソード)
7…燃料極(アノード)
8、8a、8b…ガス流路
9、9a、9b…冷却水流路
10、10a、10b…セパレータ
11…膜電極接合体
12…固体高分子形燃料電池