(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-05
(45)【発行日】2024-08-14
(54)【発明の名称】正視域予測を使用した眼内レンズ選択のためのシステム及び方法
(51)【国際特許分類】
A61F 2/16 20060101AFI20240806BHJP
【FI】
A61F2/16
(21)【出願番号】P 2021537158
(86)(22)【出願日】2020-01-17
(86)【国際出願番号】 IB2020050387
(87)【国際公開番号】W WO2020152555
(87)【国際公開日】2020-07-30
【審査請求日】2023-01-06
(32)【優先日】2019-01-22
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】319008904
【氏名又は名称】アルコン インコーポレイティド
(74)【代理人】
【識別番号】100099759
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100160705
【氏名又は名称】伊藤 健太郎
(72)【発明者】
【氏名】ラメシュ サランガパニ
(72)【発明者】
【氏名】マーク ボントレス
【審査官】岡▲さき▼ 潤
(56)【参考文献】
【文献】国際公開第2018/021561(WO,A1)
【文献】米国特許出願公開第2011/0242482(US,A1)
【文献】特開2013-236902(JP,A)
【文献】特開2017-077250(JP,A)
【文献】特表2016-533781(JP,A)
【文献】国際公開第2001/085066(WO,A1)
【文献】特表2017-505698(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61F 2/16
(57)【特許請求の範囲】
【請求項1】
方法であって、
予測エンジンを実装する1つ以上のコンピューティングデバイスによって、眼の1つ以上の術前測定値を判定することと、
前記予測エンジンによって、前記眼の前記1つ以上の術前測定値に基づいて、眼内レンズ(IOL)の術後前房深度(ACD)を推定することと、
前記予測エンジンによって、前記眼の前記1つ以上の術前測定値、及び前記推定された術後ACDに基づいて、前記IOLが移植された前記眼の術後の顕性屈折等価球面度数(MRSE)を推定することと、
前記IOLが移植された前記眼が正視域にある可能性が高いと判断された場合には正視域予測モデルを使用して前記術後MRSEを再推定
し、又は、前記IOLが移植された前記眼が正視域にある可能性が低いと判断された場合には非正視域予測モデルを使用して前記術後MRSEを再推定することと、
前記予測エンジンによって、前記再推定された術後MRSEをユーザに提供して、前記眼の移植用のIOLの選択を支援することと、を含む、方法。
【請求項2】
前記術後ACDを推定することが、
前記眼の幾何学的モデルを使用して、第1の推定値を生成することと、
ニューラルネットワークベースの予測モデルを使用して、前記第1の推定値を更新することと、を含む、請求項1に記載の方法。
【請求項3】
前記術後MRSEを推定することが、前記眼のモデルを使用する光線追跡アルゴリズムを使用して、前記術後MRSEの第1の推定
値を生成することを含む、請求項1に記載の方法。
【請求項4】
前記術後MRSEを推定することが、ニューラルネットワークベースの補正モデルを使用して、前記術後MRSEの前記第1の推定値を補正することを更に含む、請求項3に記載の方法。
【請求項5】
前記IOLが移植された前記眼が前記正視域にあるかどうかを判定することが、分類器及び受信者動作特性曲線を使用することを含む、請求項1に記載の方法。
【請求項6】
前記正視域予測モデルが、ニューラルネットワークを含み、
前記非正視域予測モデルが、ニューラルネットワークを含む、請求項1に記載の方法。
【請求項7】
前記眼の前記術前測定値が、
前記眼の角膜の白から白までの直径、
前記角膜の平均角膜曲率測定値、
及び前記眼の軸長、からなる群のうちの1つ以上を含む、請求項1に記載の方法。
【請求項8】
第2のIOLの術後MRSEを推定及び再推定することと、
前記IOLの前記再推定された術後MRSE、及び前記第2のIOLの前記再推定された術後MRSEを前記ユーザに提示して、前記眼の移植用の前記IOLの前記選択時に前記ユーザを支援することと、を更に含み、
前記IOL及び前記第2のIOLが、異なるIOL度数を有する、請求項1に記載の方法。
【請求項9】
前記IOLが移植された前記眼の1つ以上の術後測定値を判定することと、
前記眼の前記1つ以上の術後測定値に基づいて、前記予測エンジンによって使用される1つ以上のモデルを更新することと、を更に含む、請求項1に記載の方法。
【請求項10】
前記予測エンジンによって、前記眼の前記1つ以上の術前測定値に基づいて、前記眼の水晶体の術前ACDを推定することと、
前記推定された術前ACDに基づいて、前記術後ACDを更に推定することと、を更に含む、請求項1に記載の方法。
【請求項11】
予測エンジンであって、
1つ以上のプロセッサを備え、
前記予測エンジンが、
眼の1つ以上の術前測定値を判定し、
前記眼の前記1つ以上の術前測定値に基づいて、眼内レンズ(IOL)の術後前房深度(ACD)を推定し、
前記眼の前記1つ以上の術前測定値、及び前記推定された術後ACDに基づいて、前記IOLが移植された前記眼の術後の顕性屈折等価球面度数(MRSE)を推定し、
前記推定された術後MRSEに基づいて、前記IOLが移植された前記眼が正視域にありそうかどうかを判定し、
前記IOLが移植された前記眼が正視域にある可能性が高いと判断された場合には正視域予測モデルを使用して前記術後MRSEを再推定し、
又は、前記IOLが移植された前記眼が正視域にある可能性が低いと判断された場合には非正視域予測モデルを使用して前記術後MRSEを再推定し、
前記再推定された術後MRSEをユーザに提供して、前記眼の移植用のIOLの選択を支援する、ように構成されている、予測エンジン。
【請求項12】
前記術後ACDを推定するために、前記予測エンジンが、
前記眼の幾何学的モデルを使用して、第1の推定値を生成し、
ニューラルネットワークベースの予測モデルを使用して、前記第1の推定値を更新する、ように構成されている、請求項11に記載の予測エンジン。
【請求項13】
前記IOLが移植された前記眼が前記正視域にあるかどうかを判定するために、前記予測エンジンが、分類器及び受信者動作特性曲線を使用するように構成されている、請求項11に記載の予測エンジン。
【請求項14】
前記正視域予測モデルが、ニューラルネットワークを含み、
前記非正視域予測モデルが、ニューラルネットワークを含む、請求項11に記載の予測エンジン。
【請求項15】
前記予測エンジンが、
第2のIOLの術後MRSEを推定及び再推定し、
前記IOLの前記再推定された術後MRSE、及び前記第2のIOLの前記再推定された術後MRSEを前記ユーザに提示して、前記眼の移植用の前記IOLの前記選択時に前記ユーザを支援する、ように更に構成されており、
前記IOL及び前記第2のIOLが、異なるIOL度数を有する、請求項11に記載の予測エンジン。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、正視域予測を使用して移植される眼内レンズの選択を支援するシステム及び方法に関する。
【背景技術】
【0002】
白内障手術では、眼の自然な水晶体を取り除き、ほとんどの場合、その自然な水晶体を人工の眼内レンズ(IOL)と交換する。最適な術後の視力結果を得るために、良好な術前の手術計画が重要である。重要な術前計画の決定事項のうちのいくつかは、適切なIOLタイプ及び度数を選択して、IOL移植後の所望の顕性屈折等価球面度数(MRSE)を達成することである。
【0003】
通常、IOL予測式において使用される測定値は、光学及び/又は超音波バイオメータを使用して光軸上で取得される1次元測定値である。これらの従来の測定作業は、IOLタイプ及び度数の選択中の不正確さにつながり、その結果、患者の視力結果は最適とならない。
【0004】
したがって、当該技術分野において、患者の視力結果の最適化につながる、移植用眼内レンズをより良好に選択するための技術が必要とされている。
【発明の概要】
【課題を解決するための手段】
【0005】
いくつかの実施形態によれば、予測エンジンを実装する1つ以上のコンピューティングデバイスによって実行される方法は、眼の1つ以上の術前測定値を判定することと、眼の1つ以上の術前測定値に基づいて、眼内レンズ(IOL)の術後前房深度(ACD)を推定することと、眼の1つ以上の術前測定値、及び推定された術後ACDに基づいて、IOLが移植された眼の術後の顕性屈折等価球面度数(MRSE)を推定することと、推定された術後MRSEに基づいて、IOLが移植された眼が正視域にありそうかどうかを判定することと、判定されている正視域に基づいて、正視域予測モデル又は非正視域予測モデルを使用して、IOLが移植された眼の術後MRSEを再推定することと、再推定された術後MRSEをユーザに提供して、眼の移植用のIOLの選択を支援することと、を含む。
【0006】
いくつかの実施形態によれば、予測エンジンは、1つ以上のプロセッサを含む。予測エンジンは、眼の1つ以上の術前測定値を判定し、眼の1つ以上の術前測定値に基づいて、眼内レンズ(IOL)の術後前房深度(ACD)を推定し、眼の1つ以上の術前測定値、及び推定された術後ACDに基づいて、IOLが移植された眼の術後の顕性屈折等価球面度数(MRSE)を推定し、推定された術後MRSEに基づいて、IOLが移植された眼が正視域にありそうかどうかを判定し、判定されている正視域に基づいて、正視域予測モデル又は非正視域予測モデルを使用して、IOLが移植された眼の術後MRSEを再推定し、再推定された術後MRSEをユーザに提供して、眼の移植用のIOLの選択を支援する、ように構成されている。
【0007】
いくつかの実施形態によれば、1つ以上のプロセッサによって実行されると、1つ以上のプロセッサに方法を実行させるように適合された、複数の機械可読命令を含む非一時的機械可読媒体。方法は、眼の1つ以上の術前測定値を判定することと、眼の1つ以上の術前測定値に基づいて、眼内レンズ(IOL)の術後前房深度(ACD)を推定することと、眼の1つ以上の術前測定値、及び推定された術後ACDに基づいて、IOLが移植された眼の術後の顕性屈折等価球面度数(MRSE)を推定することと、推定された術後MRSEに基づいて、IOLが移植された眼が正視域にありそうかどうかを判定することと、判定されている正視域に基づいて、正視域予測モデル又は非正視域予測モデルを使用して、IOLが移植された眼の術後MRSEを再推定することと、再推定された術後MRSEをユーザに提供して、眼の移植用のIOLの選択を支援することと、を含む。
【0008】
本技術、本技術の特徴、及び本技術の利点をより完全に理解するために、添付の図面と併せて、以下の説明を参照する。
【図面の簡単な説明】
【0009】
【
図1】
図1は、いくつかの実施形態による、IOL選択のためのシステムの図である。
【
図2】
図2は、いくつかの実施形態による、IOLを移植する方法の図である。
【
図3】
図3は、いくつかの実施形態による、眼及び眼の特徴の図である。
【
図4】
図4は、いくつかの実施形態による、IOL及びIOL度数を評価する方法の図である。
【
図6】
図6は、いくつかの実施形態による、多層ニューラルネットワークの図である。
【発明を実施するための形態】
【0010】
図面において、同一符号を有する要素は、同一又は類似の機能を有する。
【0011】
発明の態様、実施形態、実装形態、又はモジュールを示すこの説明及び添付の図面は、限定するものとして解釈されるべきではなく、特許請求の範囲が、保護された発明を定義する。この説明及び特許請求の範囲の精神及び範囲から逸脱することなく、様々な機械的、構成的、構造的、電気的、及び動作上の変更を行うことができる。場合によっては、本発明をあいまいにしないために、周知の回路、構造、又は技術は、図示又は詳細に説明されていない。2つ以上の図の類似の番号は、同一又は類似の要素を表す。
【0012】
この説明では、本開示と一致するいくつかの実施形態を説明する特定の詳細が示されている。実施形態の完全な理解を提供するために、多数の特定の詳細が示されている。しかしながら、これらの具体的詳細の一部又は全部なしにいくつかの実施形態が実践され得ることは、当業者には明らかであろう。本明細書に開示された特定の実施形態は、限定的でなく、例示的であるように意図される。当業者であれば、本明細書に具体的に説明されないが、この開示の範囲及び精神の範囲内にある他の要素を実現することができる。加えて、不必要な繰り返しを避けるために、一実施形態に関連して図示されて説明された1つ以上の特徴は、特に別途説明しない限り、又は1つ以上の特徴によって実施形態が機能しなくなる場合を除いて、他の実施形態に組み込まれ得る。
【0013】
以下に説明する技術には、患者の術後MRSEを推定することによって、新しい患者の移植後の視力結果をより良好に推定するためのシステム及び方法が含まれる。システム及び方法は、複数の予測モデルを使用して、それぞれのIOL及びIOL度数の術後MRSEを推定して、外科医及び患者による、所望の術後の視力結果を提供する可能性が最も高いIOLの選択を支援する。より具体的には、システム及び方法は、1つ以上のモデルを使用して、候補IOLが正視域内の術後の視力結果(すなわち、患者が眼鏡などの追加の補正レンズでIOLを補う必要がない術後の視力結果)か、又は正視域外の術後の視力結果か、のいずれにつながりそうかを判定し、次いで、別々の予測モデルを使用して、正視域内の視力結果につながると予測されたIOLと、正視域外の視力結果につながると予測されたIOLとに対する術後MRSEを推定する。
【0014】
図1は、いくつかの実施形態による、IOL選択のためのシステムのシステム100を示している。システム100は、ネットワーク115を介して1つ以上の診断訓練データソース110に結合されたIOL選択プラットフォーム105を含む。いくつかの実施例では、ネットワーク115は、1つ以上のスイッチングデバイス、ルータ、ローカルエリアネットワーク(例えば、イーサネット(登録商標))、広域ネットワーク(例えば、インターネット)などを含み得る。診断訓練データソース110のそれぞれは、眼科診療器、眼科クリニック、医科大学、電子医療記録(EMR)リポジトリなどによって、利用可能なデータベース、データリポジトリなどであってもよい。診断訓練データソース110のそれぞれは、患者の術前及び術後の眼、手術計画データ、手術コンソールパラメータログ、手術合併症ログ、患者の病歴、患者の人口統計データ、移植されたIOLに関する情報など、の多次元画像及び/又は測定値のうちの1つ以上の形態で、訓練データをIOL選択プラットフォーム105に提供することができる。IOL選択プラットフォーム105は、訓練データを匿名化、暗号化、及び/又は他の方法で保護するように構成され得る1つ以上のデータベース155に訓練データを記憶することができる。
【0015】
IOL選択プラットフォーム105は、(以下でより詳細に説明するように)受信した訓練データを処理し、眼の測定値を抽出し、訓練データに対して生データ分析を実行し、機械学習アルゴリズム及び/又はモデルを訓練して、術前測定値に基づいて術後MRSEを推定し、機械学習を繰り返し改良して、術後MRSEを予測するために使用される様々なモデルを最適化し、将来の患者でのそれらの使用を改善して、術後の視力結果(例えば、IOLが移植された眼のより良好な光学特性)を改善することができる予測エンジン120を含む。いくつかの実施例では、予測エンジン120は、術前測定値と、1つ以上の診断訓練データソース110から得られた対応する術後結果とに基づいて訓練された1つ以上のモデル(例えば、1つ以上のニューラルネットワーク)を使用してもよい。
【0016】
IOL選択プラットフォーム105は、ネットワーク115を介して、眼科診療器125の1つ以上のデバイスに更に結合されている。1つ以上のデバイスには、診断デバイス130が含まれる。診断デバイス130は、患者135の眼の1つ以上の多次元画像及び/又は他の測定値を取得するために使用される。診断デバイス130は、光干渉断層計(OCT)デバイス、回転カメラ(例えば、シャインプルーフカメラ)、磁気共鳴画像診断デバイス(MRI)デバイス、角膜計、検眼器、光バイオメータなどの、眼の解剖学的構造の多次元画像及び/又は測定値を取得するための複数のデバイスのいずれかであってもよい。
【0017】
眼科診療器125にはまた、患者135の多次元画像及び/又は測定値を診断デバイス130から取得し、それらをIOL選択プラットフォーム105に送信するための、1つ以上のコンピューティングデバイス140を含み得る。1つ以上のコンピューティングデバイス140は、スタンドアロンコンピュータ、タブレット及び/又は他のスマートデバイス、手術コンソール、診断デバイス130に統合されたコンピューティングデバイスなど、のうちの1つ以上であってもよい。
【0018】
IOL選択プラットフォーム105は、患者135の測定値を受信し、及び/又は測定値から値を計算し、予測エンジン120を使用して、様々なIOL及びIOL度数に対する術後MRSEの推定値を生成することができる。次いで、予測エンジンを使用して、眼科診療器125及び/又は外科医若しくは他のユーザに様々なIOL及びIOL度数の推定された術後MRSEを提供することによって、患者135用のIOL及びIOL度数の選択を支援することができる。
【0019】
診断デバイス130は更に、選択されたIOLを使用して患者が白内障の除去及びIOLの移植を受けた後に、患者135の術後測定値を取得するために使用され得る。次いで、1つ以上のコンピューティングデバイス140は、患者135及び選択されたIOLの術後多次元画像及び/又は測定値を、将来の患者で使用するために患者135からの情報を組み込むように、予測エンジン120によって使用されるモデルを反復的に訓練及び/又は更新する際に使用するIOL選択プラットフォーム105に送信することができる。
【0020】
推定された術後MRSE、選択されたIOL、及び/又は選択されたIOL度数は、コンピューティングデバイス140、及び/又は別のコンピューティングデバイス、ディスプレイ、手術コンソールなどに表示され得る。加えて、IOL選択プラットフォーム105及び/又は1つ以上のコンピューティングデバイス140は、以下でより詳細に説明するように、測定値で患者135の解剖学的構造の様々な特徴を特定することができる。さらに、IOL選択プラットフォーム105及び/又は1つ以上のコンピューティングデバイス140は、患者の解剖学的構造及び/又は測定された特徴を特定、強調、及び/又は描写するグラフィック要素を作成してもよい。IOL選択プラットフォーム105及び/又は1つ以上のコンピューティングデバイス140は、グラフィック要素で測定値を補足することができる。
【0021】
いくつかの実施形態では、IOL選択プラットフォーム105は、推定された術後MRSE、選択されたIOL、及び/又は選択されたIOL度数を使用する、眼科診療器125に対して1つ以上の手術計画を提供するために使用され得る手術プランナ150を更に含んでもよい。
【0022】
いくつかの実施形態では、システム100は、スタンドアロン手術プランナ160を更に含んでもよく、及び/又は眼科診療器125は、1つ以上のコンピューティングデバイス140上に手術プランナモジュール170を更に含んでもよい。
【0023】
上述され、ここで更に強調されているように、
図1は、特許請求の範囲を不当に制限するべきではない単なる例に過ぎない。当業者であれば、多くの変形、代替、及び修正を認識するであろう。いくつかの実施形態によれば、IOL選択プラットフォーム130、並びに/又はデータベース155、予測エンジン120、及び/若しくは手術プランナ150などのIOL選択プラットフォーム130の1つ以上の構成要素は、眼科診療器125の1つ以上のデバイスに統合されてもよい。いくつかの実施例では、コンピューティングデバイス140は、IOL選択プラットフォーム105、データベース155、予測エンジン120、及び/又は手術プランナ150をホストしてもよい。いくつかの実施例では、手術プランナ150は、手術プランナ170と組み合わされてもよい。
【0024】
図2は、いくつかの実施形態による、IOLを移植する方法200の図である。方法200のプロセス210~290のうちの1つ以上は、少なくとも部分的に、非一時的で有形の機械可読媒体に記憶された実行可能コードの形態で実装され、実行可能コードは、1つ以上のプロセッサ(例えば、予測エンジン120、IOL予測プラットフォーム、診断デバイス130、1つ以上のコンピューティングデバイス140、並びに/又は1つ以上の外科プランナ150、160、及び/若しくは170、のプロセッサ)によって実行されると、1つ以上のプロセッサに、1つ以上のプロセス210~290を実行させることができる。いくつかの実施形態によれば、プロセス280及び/又は290は、任意選択的であり、省略されてもよい。
【0025】
プロセス210において、眼の1つ以上の術前測定値が判定される。いくつかの実施例では、術前測定値のうちの1つ以上は、診断デバイス130、OCTデバイス、回転(例えば、シャインプルーフ)カメラ、MRIデバイスなどの、診断デバイスを使用して取得された眼の1つ以上の術前画像から抽出することができる。いくつかの実施例では、術前測定値のうちの1つ以上は、診断デバイス130、角膜計、検眼器、光学バイオメータなどの、1つ以上の測定デバイスを使用して判定することができる。プロセス210は、いくつかの実施形態による、眼300及び眼の特徴の図である
図3のコンテキストで説明される。
図3に示されるように、眼300は、角膜310、前房320、及び水晶体330を含む。
【0026】
いくつかの実施形態では、眼300の対象となる1つの測定値は、角膜310の白から白までの直径である。いくつかの実施例では、角膜310の白から白までの直径は、光学バイオメータを使用して測定することができる。いくつかの実施例では、角膜310の白から白までの直径は、眼300の1つ以上の画像を分析することによって判定することができる。いくつかの実施例では、1つ以上の画像を分析して、前房320の鼻角340及び側頭角350をそれぞれ特定することができる。いくつかの実施例では、前房320を特定する構造を特定し(例えば、1つ以上のエッジ検出及び/又は領域検出アルゴリズムを使用して)、前房320の側頭及び鼻の範囲に向かって位置する前房320のエッジでの鋭角に気付くことによって、前房320の鼻角340及び側頭角350を、1つ以上の画像から特定することができる。いったん特定されると、鼻角340と側頭角350との間の距離を測定して、角膜310の白から白までの直径を判定することができ、これは鼻角340と側頭角350との間の線360の長さに対応する。
【0027】
いくつかの実施形態では、眼300の対象となる1つの測定値は、角膜310の前面の平均角膜曲率測定値又は真円度である。いくつかの実施例では、角膜310の平均角膜曲率測定値は、眼300の1つ以上の画像、角膜計などを使用して測定され得る。いくつかの実施例では、角膜310の平均角膜曲率測定値は、角膜310の急勾配の角膜曲率測定値及び浅い角膜曲率測定値の平均に基づき得る。いくつかの実施例では、角膜310の平均角膜曲率測定値は、337.5を平均角膜曲率測定値で割った、角膜310の曲率半径(rc)として表され得る。
【0028】
いくつかの実施形態では、眼300からの対象となる1つの測定値は、眼300の中心軸380に沿って角膜310の前面から網膜まで測定された眼300の軸長370である。いくつかの実施例では、軸長370は、眼球300の1つ以上の画像、眼の生体測定値などを使用して判定され得る。
【0029】
再度
図2を参照すると、プロセス220において、眼の術前前房深度(ACD)が推定される。
図3の実施例では、術前ACD390は、角膜310の後面と術前の水晶体330の前面との間の距離に対応する。いくつかの実施例では、術前ACDは、眼の1つ以上の幾何学的モデル、及び第1の補正モデルの組み合わせを使用して、推定することができる。いくつかの実施例では、1つ以上の幾何学的モデルのそれぞれが、角膜の曲率半径(rc)、眼の軸長、及びプロセス210中に測定された角膜の白から白までの直径に基づいて、術前ACDの初期推定値を提供する。いくつかの実施例では、眼の1つ以上の幾何学的モデルのそれぞれは、例えば、曲率半径、軸長、白から白までの直径、及び前房深度が既知である、以前の患者の眼からのデータに対する最小二乗アプローチを使用して、1つ以上の幾何学的モデルのそれぞれをフィッティングすることによって判定されてもよい。いくつかの実施例では、データは、データソース110などのデータソースに記憶されてもよい。術前ACD、曲率半径、軸長、白から白までの直径の初期推定値のそれぞれは、次いで、術前ACDのより正確な見積もりを提供するために、術前ACDの1つ以上の初期推定値を改良する第1の補正モデルに渡される。いくつかの実施例では、第1の補正モデルは、以前の患者の眼からのデータを使用して訓練されたニューラルネットワークを含み得る。
【0030】
プロセス230において、眼の術後前房深度(ACD)が推定される。
図3の実施例では、術後ACD390は、角膜310の後面と、眼300に移植されるIOLの前面との間の距離に対応する。いくつかの実施例では、術後ACDは、プロセス220中に使用される眼の1つ以上の幾何学的モデルと、第1の予測モデルとの組み合わせを使用して推定することができる。プロセス220からの術前ACDの初期推定値、曲率半径、軸長、及び白から白までの直径のそれぞれは、次いで、術後ACDの推定を生成するために、第1の予測モデルに渡される。いくつかの実施例では、第1の予測モデルは、移植された各IOLに対する術後ACDに関する情報を含む、以前の患者の眼からのデータを使用して訓練されたニューラルネットワークを含み得る。
【0031】
プロセス240において、1つ以上の候補眼内レンズ(IOL)が特定される。いくつかの実施例では、利用可能なIOL、過去の経験、好み、患者の現在の視力の問題、患者の予測される視力結果などの1つ以上に基づいて、外科医又は他のユーザが1つ以上の候補IOLを選択することができる。1つ以上の候補IOLのそれぞれは、対応するタイプ及びIOL度数を有する。
【0032】
プロセス250において、プロセス240中に特定された候補IOLのそれぞれに対して、術後の顕性屈折等価球面度数(MRSE)が推定される。MRSEは、ジオプター(D)で示される。いくつかの実施形態によれば、候補IOLのそれぞれに対するMRSEは、
図4に示される方法400などの、IOL及びIOL度数を評価する方法を使用して、判定することができる。方法400のプロセス410~450のうちの1つ以上は、少なくとも部分的に、非一時的で有形の機械可読媒体に記憶された実行可能コードの形態で実装され、実行可能コードは、1つ以上のプロセッサ(例えば、予測エンジン120、IOL予測プラットフォームなどのプロセッサ)によって実行されると、1つ以上のプロセッサに、1つ以上のプロセス410~450を実行させることができる。
【0033】
プロセス410において、術後MRSEが推定される。いくつかの実施例では、術後MRSEは、プロセス210中に判定された白から白への直径、プロセス210中に判定された眼の平均角膜曲率測定値、プロセス210中に判定された軸長、プロセス220中に推定された術前ACD、プロセス230中に推定された術後ACD、評価されているIOLのIOLタイプ、評価されているIOLのIOL度数などのうちの1つ以上に基づいて推定され得る。いくつかの実施例では、プロセス410は、評価されているIOLが移植された偽水晶体眼を表すように構築された近軸モデルの眼を使用する光線追跡アプローチを使用してもよい。光線追跡モデルでは、眼に入射している光線は、角膜の前面、角膜の後面、IOLの前面、IOLの後面の順に通過し、その後最終的に網膜の表面に到達する。これらの表面のそれぞれの形状は、プロセス210中に判定された眼の測定値からのパラメータ、IOLの設計プロファイル、推定された術後ACD、及び眼の既知のモデルを使用して、双円錐形として定義される。角膜、前房、眼の他の部分における眼の材料又は媒質の屈折率は、眼のモデル及び/又はIOLのモデルから既知である。
【0034】
いくつかの実施形態では、光線追跡を使用して、近軸モデルの眼から眼全体の波面を「測定」する。光線は網膜の中心(例えば、中心窩)から追跡され、角膜の前面に向かって全方向に放射する。角膜の前面の頂点には、平面が配置されている。眼を出ていくときの光線の平面との交差の軌跡と、対応する光路長とが記録される。いくつかの実施例では、直径3.5mの(例えば、入射瞳に対応する)円形アパーチャ内の光線データを使用して、眼全体の波面を計算する。
【0035】
いくつかの実施例では、推定された術後MRSEは、眼全体の波面の表現からゼルニケ多項式を使用して計算することができる。いくつかの実施例では、推定された術後MRSEは、評価されているIOLに対応するIOLが移植された眼の球形及び円柱両方の屈折力の組み合わせを含む。光線追跡アプローチについては、Canovas,“Customized Eye Models for Determining Optimized Intraocular Lens Power,”Biomedical Optics Express Vol.2(6),1649-1663,2011により詳細に記載されており、これは参照により本明細書に組み込まれる。
【0036】
プロセス420において、プロセス410からの推定された術後MRSEが補正される。いくつかの実施例では、推定された術後MRSEは、第2の補正モデルを使用して補正され得る。第2の補正モデルは、プロセス210中に判定された眼の測定値(例えば、白から白までの直径、平均角膜曲率測定値、及び/若しくは軸長)、プロセス230中に推定された術後ACD、並びに/又はプロセス410中に推定された術後MRSEのうちの1つ以上を使用して、プロセス410中に推定された術後MRSEに対する補正を判定することができる。いくつかの実施例では、第2の補正モデルは、推定された及び実際の術後MRSEの両方を含む、以前の患者の眼からのデータを使用して訓練されたニューラルネットワークを含み得る。いくつかの実施例では、第2の補正モデルは、術後MRSEの補正された推定値を取得するために、プロセス410中に推定された術後MRSEに追加される補正値を判定することができる。
【0037】
プロセス430において、評価されているIOLが術後の眼を正視域に置くかどうかが判定される。いくつかの実施例では、術後MRSEが眼の所望の術後MRSEの半ジオプター以内である場合、術後の眼は正視域にあると見なされ、その結果、術後の眼に追加の補正レンズが必要となる可能性は低くなる。(例えば、所望の術後MRSEと実際の術後MRSEの絶対差とが、互いの半ジオプター以内である場合。)いくつかの実施例では、評価されているIOLが術後の眼を正視域に置くかどうかは、プロセス420中に判定された術後MRSEの補正された推定値と、眼の所望の術後MRSEとの間で絶対差を取って、それが半ジオプター未満であるかどうかを確認することによって判定することができる。
【0038】
いくつかの実施例では、術後ACDの補正された推定値は単なる推定値であるため、評価されているIOLが術後の眼を正視域に置くかどうかのより堅牢なテストが好ましい場合がある。いくつかの実施例では、評価されているIOLが術後の眼を正視域に置くかどうかを判定するためのより堅牢な分類器は、二変量密度分位数及び受信者動作特性(ROC)曲線に基づくロジスティック回帰などの統計的手法を使用して開発することができる。いくつかの実施例では、このアプローチは、術後MRSEの以前の補正された推定値、及び移植されたIOLからの対応する実際の術後MRSE値を含むデータのペア間で、ロジスティック回帰曲線などの回帰曲線に適合し得る。次いで、二変量分位数を回帰曲線とともに使用して、実際の術後MRSEが正視域内(例えば、所望の術後MRSEの半ジオプター以内)にある可能性を予測する分類器を提供することができる。次に、ROC曲線を使用して、移植されたIOLが術後の眼を正視域に置くことを確実に結論付けるために超えるべきである可能性の閾値を判定することができる。ROC曲線の使用は、術後の眼が正視域に入るかどうかに関して偽陽性及び偽陰性の判定をもたらす予測を説明し、それによって、回帰ベースの分類器の感度及び特異性の両方をより良好に最大化する分類アプローチを提供する。したがって、このアプローチを使用することにより、評価されているIOLが術後の眼が正視域に入るかどうかの推定された可能性と、評価されているIOLを使用して術後の眼が正視域に入ると結論付けるために超えるべき閾値の尤度とが提供される。ROC曲線については、Greiner et al.,“Principles and Practical Application of the Receiver-Operating Characteristic Analysis for Diagnostic Tests,”Preventive Veterinary Medicine,v45,2000,23-41、及びFawcett,“An Introduction to ROC Analysis,”Pattern Recognition Letters,v27,2000,861-874により詳細に記載されており、これらのいずれもが参照により本明細書に組み込まれる。
【0039】
評価されているIOLが術後の眼を正視域に置く可能性が高いと判定された場合(例えば、分類器によって予測された可能性がROC曲線からの閾値以上である場合)、術後MRSEは、プロセス440を使用して、正視域予測モデルを用いて再推定される。評価されているIOLが術後の眼を正視域に置く可能性が低いと判定された場合、術後MRSEは、プロセス450を使用して、非正視域予測モデルを用いて再推定される。
【0040】
プロセス440において、正視域予測モデルを使用して、評価されているIOLの術後MRSEが再推定される。いくつかの実施例では、正視域予測モデルは、プロセス210中に判定された眼の測定値(例えば、白から白までの直径、平均角膜曲率測定値、及び/若しくは軸長)、並びに/又は術後MRSEを再推定するためのプロセス230中に推定された術後ACDのうちの1つ以上を使用してもよい。いくつかの実施例では、正視域予測モデルは、術後の眼が正視域に置かれた場合の推定された及び実際の術後MRSEの両方を含む、以前の患者の眼からのデータを使用して訓練されたニューラルネットワークを含み得る。いったん正視域予測モデルを使用して術後のMRSEが再推定されると、方法400は終了する。
【0041】
プロセス450おいて、非正視域予測モデルを使用して、評価されているIOLの術後MRSEを再推定する。いくつかの実施例では、非正視域予測モデルは、プロセス210中に判定された眼の測定値(例えば、白から白までの直径、平均角膜曲率測定値、及び/若しくは軸長)、並びに/又は術後MRSEを再推定するためのプロセス230中に推定された術後ACDのうちの1つ以上を使用してもよい。いくつかの実施例では、非正視域予測モデルは、術後の眼が非正視域に置かれた場合の推定された及び実際の術後MRSEの両方を含む、以前の患者の眼からのデータを使用して訓練されたニューラルネットワークを含み得る。いったん非正視域予測モデルを使用して術後のMRSEが再推定されると、方法400は終了する。
【0042】
再度
図2を参照すると、プロセス260において、IOLが候補IOLの中から選択される。いくつかの実施例では、プロセス260は、移植のために適切なIOLを選択できるように、ユーザインターフェースを介して、外科医、別のユーザ、及び/又は患者に情報を提供することを含み得る。いくつかの実施例では、情報には、プロセス240中に特定された候補IOLのそれぞれに対して、IOLタイプ、IOL度数、プロセス230からの推定された術後ACD、プロセス430からの正視域の判定、プロセス420からのMRSEの補正された術後推定値、プロセス440又は450からの再推定された術後MRSE(該当する場合)、再推定された術後MRSEと所望の術後MRSEとの間の差などを含み得る。いくつかの実施例では、候補IOLは、プロセス430からの正視域の判定に基づいてグループに分けられ、及び/又は再推定された術後MRSEと所望の術後MRSEとの間の実際の差又は絶対差に基づいて分類され得る。いくつかの実施例では、外科医又は他のユーザは、結果のリストから選択すること、リンクをクリックすること、ボタンを押すことなどによって、IOLを選択することができる。
【0043】
プロセス270において、IOLが移植される。いくつかの実施例では、プロセス260中に選択されたIOLが、外科医によって眼内に移植される。
【0044】
プロセス280において、眼の1つ以上の術後測定値が取得される。いくつかの実施例では、1つ以上の術後測定値には、IOLの移植後のIOLの実際の術後ACD、IOLの移植後の実際の術後MRSE、実際の術後正視域の判定などを含み得る。いくつかの実施例では、実際の術後ACD及び/又は実際の術後MRSEは、術後の眼の1つ以上の画像、術後の眼の1つ以上の生理学的及び/又は光学的測定値などに基づいて判定され得る。
【0045】
プロセス290において、方法200及び/又は400によって使用される1つ以上のモデルが更新される。いくつかの実施例では、プロセス210中に判定された1つ以上の術前測定値、プロセス280中に判定された実際の術後ACD、実際の術後MRSE、実際の術後正視域の判定などが、プロセス220の1つ以上の幾何学的モデル、プロセス220の第1の補正モデル、プロセス230の第1の予測モデル、プロセス420の第2の補正モデル、プロセス440の正視域予測モデル、又はプロセス450の非正視域予測モデルのうちのいずれかの追加訓練データとして使用され得る。いくつかの実施例では、追加の訓練データは、データソース110などのデータソースに追加することができる。いくつかの実施例では、更新には、最小二乗適合の更新、ニューラルネットワークへのフィードバック(例えば、逆伝播を使用して)などのうちの1つ以上を含み得る。いくつかの実施例では、様々な候補IOLの術後MRSEを正しく予測するそれらの能力に基づき、1つ以上の損失関数を使用して、1つ以上のモデルを訓練することができる。いくつかの実施例では、1つ以上の損失関数は、式1に従って判定された平均絶対誤差損失関数(MAPE)、及び/又は式2に従って判定された半ジオプター予測成功損失関数(MAE)の確率を含むことができ、ここで、MRSEActi及びMRSEEstiは、i番目の訓練例の実際の及び推定された術後MRSEであり、Nは訓練サンプルの数である。
【数1】
【0046】
図5A及び
図5Bは、いくつかの実施形態による処理システムの図である。
図5A及び5Bには2つの実施形態が示されているが、当業者であればまた、他のシステムの実施形態も可能であることを容易に理解するであろう。いくつかの実施形態によれば、
図5A及び/又は
図5Bの処理システムは、IOL選択プラットフォーム105、眼科診療器125、予測エンジン120、診断デバイス130、1つ以上のコンピューティングデバイス140、外科プランナ150、160、及び/又は170のいずれか、などのうちの1つ以上に含まれ得るコンピューティングシステムを代表している。
【0047】
図5Aは、システム500の構成要素がバス505を使用して互いに電気通信しているコンピューティングシステム500を示している。システム500は、プロセッサ510と、読み出し専用メモリ(ROM)520、ランダムアクセスメモリ(RAM)525などの形態のメモリ(例えば、PROM、EPROM、FLASH-EPROM、及び/又は他のメモリチップ若しくはカートリッジ)を含む様々なシステム構成要素をプロセッサ510に結合するシステムバス505と、を含む。システム500は更に、プロセッサ510に直接接続されるか、近接しているか、又はプロセッサ510の一部として統合されている、高速メモリのキャッシュ512を含み得る。システム500は、プロセッサ510による高速アクセスのために、キャッシュ512を介してROM520、RAM525、及び/又は1つ以上の記憶デバイス530に記憶されたデータにアクセスすることができる。いくつかの実施例では、キャッシュ512は、メモリ515、ROM520、RAM525、及び/又はキャッシュ512に以前に記憶された1つ以上の記憶デバイス530からのデータにプロセッサ510がアクセスする際の遅延を回避するパフォーマンスブーストを提供してもよい。いくつかの実施例では、1つ以上の記憶デバイス530は、1つ以上のソフトウェアモジュール(例えば、ソフトウェアモジュール532、534、536など)を記憶する。ソフトウェアモジュール532、534、及び/又は536は、方法200及び/又は300のプロセスなどの様々なアクションを実行するために、プロセッサ510を制御し、及び/又は制御するように構成されてもよい。また、システム500は1つのプロセッサ510のみを示しているが、プロセッサ510は、1つ以上の中央処理装置(CPU)、マルチコアプロセッサ、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)、グラフィックス処理ユニット(GPU)、テンソル処理ユニット(TPU)などを代表し得ることが理解されよう。いくつかの実施例では、システム500は、スタンドアロンサブシステムとして、及び/又はコンピューティングデバイスに追加されたボードとして、若しくは仮想マシンとして実装されてもよい。
【0048】
ユーザがシステム500と対話するのを可能にするために、システム500は、1つ以上の通信インターフェース540及び/又は1つ以上の入出力(I/O)デバイス545を含む。いくつかの実施例では、1つ以上の通信インターフェース540は、1つ以上のネットワーク及び/又は通信バス規格に従って通信を提供するために、1つ以上のネットワークインターフェース、ネットワークインターフェースカードなどを含み得る。いくつかの実施例では、1つ以上の通信インターフェース540は、ネットワーク115などのネットワークを介してシステム500と通信するためのインターフェースを含み得る。いくつかの実施例では、1つ以上のI/Oデバイス545には、1つ以上のユーザインターフェースデバイス(例えば、キーボード、ポインティング/選択デバイス(例えば、マウス、タッチパッド、スクロールホイール、トラックボール、タッチスクリーンなど))、オーディオデバイス(例えば、マイクロフォン及び/又はスピーカ)、センサ、アクチュエータ、ディスプレイデバイスなどを含み得る。
【0049】
1つ以上の記憶装置530のそれぞれは、ハードディスク、光学媒体、ソリッドステートドライブなどによって提供されるもののような、非一時的及び不揮発性記憶装置を含み得る。いくつかの実施例では、1つ以上の記憶デバイス530のそれぞれは、システム500(例えば、ローカル記憶デバイス)と同じ場所に配置され、及び/又はシステム500から離れて配置され得る(例えば、クラウド記憶デバイス)。
【0050】
図5Bは、本明細書に記載される方法(例えば、方法200及び/又は300)のいずれかを実行する際に使用され得るチップセットアーキテクチャに基づくコンピューティングシステム550を示している。システム550は、ソフトウェア、ファームウェア、及び/又は1つ以上のCPU、マルチコアプロセッサ、マイクロプロセッサ、マイクロコントローラ、DSP、FPGA、ASIC、GPU、TPUなどの他の計算を実行することができる、任意の数の物理的及び/又は論理的に別個のリソースを代表するプロセッサ555を含み得る。示されるように、プロセッサ555は、1つ以上のCPU、マルチコアプロセッサ、マイクロプロセッサ、マイクロコントローラ、DSP、FPGA、ASIC、GPU、TPU、コプロセッサ、コーダ-デコーダ(CODEC)なども含む、1つ以上のチップセット560によって支援される。示されるように、1つ以上のチップセット560は、1つ以上のI/Oデバイス565、1つ以上の記憶デバイス570、メモリ575、ブリッジ580、及び/又は1つ以上の通信インターフェース590のうちの1つ以上と共に、プロセッサ555とインターフェースする。いくつかの実施例では、1つ以上のI/Oデバイス565、1つ以上の記憶デバイス570、メモリ、及び/又は1つ以上の通信インターフェース590は、
図5A及びシステム500の同様に名付けられた対応物に対応し得る。
【0051】
いくつかの実施例では、ブリッジ580は、1つ以上のキーボード、ポインティング/選択デバイス(例えば、マウス、タッチパッド、スクロールホイール、トラックボール、タッチスクリーンなど)、オーディオデバイス(例えば、マイク及び/又はスピーカ)、ディスプレイデバイスなどの、システム550に1つ以上のユーザインターフェース(UI)構成要素へのアクセスを提供するための追加のインターフェースを提供してもよい。
【0052】
いくつかの実施形態によれば、システム500及び/又は560は、方法200及び/又は300のプロセスの実行の際にユーザ(例えば、外科医及び/又は他の医療関係者)を支援するのに適したグラフィックユーザインターフェース(GUI)を提供してもよい。GUIには、実行される次のアクションに関する命令、眼の術前及び/又は術後の画像などの注釈付き及び/又は注釈なしの解剖学的構造の図(例えば、
図4に描写するような)、入力要求などを含み得る。いくつかの実施例では、GUIは、解剖学的構造などのトゥルーカラー画像及び/又はフォルスカラー画像を表示することができる。
【0053】
図6は、いくつかの実施形態による多層ニューラルネットワーク600の図である。いくつかの実施形態では、ニューラルネットワーク600は、プロセス220、230、420、440、及び/又は450に関して説明され、且つ予測エンジン120によって使用される1つ以上のモデルのそれぞれを実装するために使用されるニューラルネットワークを代表し得る。ニューラルネットワーク600は、入力層620を使用して入力データ610を処理する。いくつかの実施例では、入力データ610は、1つ以上のモデルに提供される入力データ、及び/又は1つ以上のモデルを訓練するために使用されるプロセス290中の更新時に1つ以上のモデルに提供される訓練データに対応し得る。入力層620は、スケーリング、範囲制限などによって入力データ610を調整するために使用される複数のニューロンを含む。入力層620の各ニューロンは、隠れ層631の入力に供給される出力を生成する。隠れ層631には、入力層620からの出力を処理する複数のニューロンが含まれる。いくつかの実施例では、隠れ層631のニューロンのそれぞれが出力を生成し、次いでその出力が、隠れ層639で終わる1つ以上の追加の隠れ層を介して伝播される。隠れ層639は、以前の隠れ層からの出力を処理する複数のニューロンを含む。隠れ層639の出力は、出力層640に供給される。出力層640は、スケーリング、範囲制限などによって隠れ層639からの出力を調整するために使用される1つ以上のニューロンを含む。ニューラルネットワーク600のアーキテクチャは代表的なものに過ぎず、1つの隠れ層のみを有するニューラルネットワーク、入力層及び/又は出力層なしのニューラルネットワーク、リカレント層を有するニューラルネットワークなどを含む、他のアーキテクチャが可能であることを理解すべきである。
【0054】
いくつかの実施例では、入力層620、隠れ層631~639、及び/又は出力層640のそれぞれは、1つ以上のニューロンを含む。いくつかの実施例では、入力層620、隠れ層631~639、及び/又は出力層640のそれぞれは、同じ数又は異なる数のニューロンを含み得る。いくつかの実施例では、ニューロンのそれぞれは、式3に示されるように、その入力xの組み合わせ(例えば、訓練可能な重み行列Wを使用した加重和)を取り、任意選択の訓練可能なバイアスbを加え、活性化関数fを適用して、出力aを生成する。いくつかの実施例では、活性化関数fは、線形活性化関数、上限及び/又は下限を有する活性化関数、対数シグモイド関数、双曲線タンジェント関数、整流線形単位関数などであり得る。いくつかの実施例では、ニューロンのそれぞれは、同じ又は異なる活性化関数を有し得る。
a=f(Wx+b) 式3
【0055】
いくつかの実施例では、ニューラルネットワーク600は、(例えば、プロセス290間に)入力データとグラウンドトゥルース(例えば、予期された)出力データとの組み合わせを含む訓練データの組み合わせである、教師あり学習を使用して訓練されてもよい。入力データ610用の入力データを使用して生成されたニューラルネットワーク600の出力と、グラウンドトゥルース出力データと比較したニューラルネットワーク600によって生成された出力データ650との差。生成された出力データ650とグラウンドトゥルース出力データとの間の差は、次いで、ニューラルネットワーク600にフィードバックされて、様々な訓練可能な重み及びバイアスを補正することができる。いくつかの実施例では、確率的勾配降下アルゴリズムなどを使用する逆伝播技術を使用して、その差をフィードバックすることができる。いくつかの実施例では、訓練データの組み合わせの多数のセットが、全体的な損失関数(例えば、各訓練の組み合わせの差に基づく平均二乗誤差)が許容レベルに収束するまで、ニューラルネットワーク600に複数回提示され得る。
【0056】
上述の実施形態による方法は、非一時的で有形の機械可読媒体に記憶される実行可能命令として実装され得る。実行可能命令は、1つ以上のプロセッサ(例えば、プロセッサ510及び/又はプロセス555)によって実行されると、1つ以上のプロセッサに、方法200及び/又は400のプロセスのうちの1つ以上を実行させることができる。方法200及び/又は400のプロセスを含み得る機械可読媒体のいくつかの一般的な形態は、例えば、フロッピー(登録商標)ディスク、フレキシブルディスク、ハードディスク、磁気テープ、任意の他の磁気媒体、CD-ROM、任意の他の光学媒体、パンチカード、紙テープ、穴のパターンを有する任意の他の物理的媒体、RAM、PROM、EPROM、FLASH-EPROM、任意の他のメモリチップ若しくはカートリッジ、及び/又はプロセッサ若しくはコンピュータが読み取るように適合されている任意の他の媒体である。
【0057】
これらの開示による方法を実装するデバイスは、ハードウェア、ファームウェア、及び/又はソフトウェアを含むことができ、且つ様々なフォームファクタのいずれかを取ることができる。そのようなフォームファクタの典型的な例としては、ラップトップ、スマートフォン、スモールフォームファクタのパーソナルコンピュータ、携帯情報端末などが挙げられる。本明細書で記載されている機能性の一部はまた、周辺機器及び/又はアドインカードで具体化されてもよい。そのような機能性はまた、更なる例として、単一のデバイスにおいて実行される異なるチップ又は異なるプロセスの中から回路基板上に実装されてもよい。
【0058】
例示的な実施形態が示され、説明されてきたが、前述の開示では広範囲の修正、変更、及び置換が想定されており、場合によっては、実施形態のいくつかの特徴は、他の特徴の対応する使用なしに利用されてもよい。当業者であれば、多くの変形、代替、及び修正を認識するであろう。したがって、本発明の範囲は、以下の特許請求の範囲によってのみ限定されるべきであり、特許請求の範囲は、本明細書に開示される実施形態の範囲と一致する方法で広く解釈されることが適切である。