(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-06
(45)【発行日】2024-08-15
(54)【発明の名称】吸引器用コントローラ
(51)【国際特許分類】
A24F 40/57 20200101AFI20240807BHJP
A24F 40/53 20200101ALI20240807BHJP
【FI】
A24F40/57
A24F40/53
(21)【出願番号】P 2021164924
(22)【出願日】2021-10-06
(62)【分割の表示】P 2021006613の分割
【原出願日】2020-03-12
【審査請求日】2023-03-10
(73)【特許権者】
【識別番号】000004569
【氏名又は名称】日本たばこ産業株式会社
(74)【代理人】
【識別番号】110003281
【氏名又は名称】弁理士法人大塚国際特許事務所
(72)【発明者】
【氏名】丸橋 啓司
(72)【発明者】
【氏名】藤田 創
【審査官】河内 誠
(56)【参考文献】
【文献】特開2019-103506(JP,A)
【文献】特表2017-525348(JP,A)
【文献】国際公開第2018/025380(WO,A1)
【文献】特表2018-528762(JP,A)
【文献】特表2019-531049(JP,A)
【文献】国際公開第2018/167817(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A24F 40/00-47/00
(57)【特許請求の範囲】
【請求項1】
プロピレングリコール及びグリセリンを含む液体のエアロゾル源を保持する容器と、ヒータと、前記ヒータによる加熱領域まで前記容器から前記エアロゾル源を輸送し且つ前記加熱領域において前記ヒータとの間に間隔を有する輸送部とを有する霧化器を制御するための吸引器用コントローラであって、
前記ヒータの温度に相関を有する物理量を監視し、監視中の物理量が目標値に近づくように、前記霧化器に供給される電力を制御する制御回
路を備え、
前記制御回路は、
前記ヒータの第1端に接続された非反転入力端子と、前記ヒータの第2端に接続された反転入力端子とを有するオペアンプと、
前記オペアンプの出力を前記物理量として監視するために、デジタル形式に変換された前記オペアンプの出力と、デジタル形式でメモリに格納された前記目標値とを比較するマイクロコントローラと、を含み、
前記目標値は、前記エアロゾル源を加熱中の前記ヒータの温度が210℃以上且つ230℃未満の範囲内となるように設定され、
前記制御回路は、
前記物理量が前記目標値よりも小さい場合に、前記ヒータの温度を上昇させる量の電力を前記霧化器に供給し、
前記物理量が前記目標値よりも大きい場合に、前記ヒータの温度を下降させる量の電力を前記霧化器に供給する、吸引器用コントローラ。
【請求項2】
前記制御回路は、前記加熱領域にエアロゾル源がない場合にも、前記ヒータの温度が210℃以上且つ230℃未満の範囲内となるように構成される、請求項1に記載の吸引器用コントローラ。
【請求項3】
前記制御回路は、前記監視中の物理量が、前記ヒータの温度が230℃以上であることを示す値になった場合に、前記霧化器への電力の供給を停止する、請求項1または2に記載の吸引器用コントローラ。
【請求項4】
前記マイクロコントローラは、前記ヒータが加熱されていない状態の前記オペアンプの出力に基づいて前記目標値を算出し、前記メモリに前記目標値を格納する、請求項
1乃至3の何れか1項に記載の吸引器用コントローラ。
【請求項5】
前記霧化器に供給するための電力を生成する電圧生成回路を備え、
前記制御回路は、前記電圧生成回路と前記ヒータとの間に接続されたトランジスタをさらに含み、
前記マイクロコントローラは、前記オペアンプの出力と前記目標値との比較結果に基づく信号を前記トランジスタの制御端子に供給する、請求項
1乃至4の何れか1項に記載の吸引器用コントローラ。
【請求項6】
プロピレングリコール及びグリセリンを含む液体のエアロゾル源を保持する容器と、ヒータと、前記ヒータによる加熱領域まで前記容器から前記エアロゾル源を輸送し且つ前記加熱領域において前記ヒータとの間に間隔を有する輸送部とを有する霧化器を制御するための吸引器用コントローラであって、
前記霧化器に供給するための電力を生成する電圧生成回路と、
前記ヒータの温度に相関を有する物理量を監視し、監視中の物理量が目標値に近づくように、前記電圧生成回路から前記霧化器に供給される電力を制御する制御回路と、を備え、
前記制御回路は、
前記ヒータの第1端に接続された非反転入力端子と、前記ヒータの第2端に接続された反転入力端子とを有するオペアンプと、
前記オペアンプの出力を前記物理量として監視するために、デジタル形式に変換された前記オペアンプの出力と、デジタル形式でメモリに格納された前記目標値とを比較するマイクロコントローラと、を含み、
前記制御回路は、アナログ回路を含み且つデジタル回路を含まず、
前記制御回路は、
前記物理量が前記目標値よりも小さい場合に、前記ヒータの温度を上昇させる量の電力を前記霧化器に供給し、
前記物理量が前記目標値よりも大きい場合に、前記ヒータの温度を下降させる量の電力を前記霧化器に供給する、吸引器用コントローラ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、吸引器用コントローラに関する。
【背景技術】
【0002】
電子たばこ等の吸引器のヒータの温度を制御するために様々な方法が提案されている。特許文献1には、装置中で高粘度材料を加熱するための目標温度を約100℃以上約200℃以下とすることが記載されている。特許文献2には、ヒータの実際の作動温度を所定の最高作動温度よりも低く保つために、ヒータに供給される電気エネルギーを調節する技術が記載されている。特許文献3には、香味原料の成形体を加熱するヒータの抵抗値の変化に基づいて、ヒータへの通電のオン・オフを制御する技術が記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2017-221213号公報
【文献】特許第5739800号公報
【文献】特開2000-041654号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
液体のエアロゾル源を利用する吸引器では、ウィックと呼ばれる多孔質体によって、液体のエアロゾル源がヒータの近くまで運ばれ、そこで加熱される。ヒータからの熱は、エアロゾル源に到達するまでに低減してしまう。エアロゾル源から適量のエアロゾルを生成するためには、このような熱の損失を考慮してヒータの温度を制御することが望ましい。本発明は、液体のエアロゾル源を加熱するヒータの制御に有利な技術を提供することを目的とする。
【課題を解決するための手段】
【0005】
上記課題に鑑みて、第1態様によれば、
プロピレングリコール及びグリセリンを含む液体のエアロゾル源を保持する容器と、ヒータと、前記ヒータによる加熱領域まで前記容器から前記エアロゾル源を輸送し且つ前記加熱領域において前記ヒータとの間に間隔を有する輸送部とを有する霧化器を制御するための吸引器用コントローラであって、
前記ヒータの温度に相関を有する物理量を監視し、監視中の物理量が目標値に近づくように、前記霧化器に供給される電力を制御する制御回路を備え、
前記制御回路は、
前記ヒータの第1端に接続された非反転入力端子と、前記ヒータの第2端に接続された反転入力端子とを有するオペアンプと、
前記オペアンプの出力を前記物理量として監視するために、デジタル形式に変換された前記オペアンプの出力と、デジタル形式でメモリに格納された前記目標値とを比較するマイクロコントローラと、を含み、
前記目標値は、前記エアロゾル源を加熱中の前記ヒータの温度が210℃以上且つ230℃未満の範囲内となるように設定され、
前記制御回路は、
前記物理量が前記目標値よりも小さい場合に、前記ヒータの温度を上昇させる量の電力を前記霧化器に供給し、
前記物理量が前記目標値よりも大きい場合に、前記ヒータの温度を下降させる量の電力を前記霧化器に供給する、吸引器用コントローラが提供される。
第2態様によれば、
前記制御回路は、前記加熱領域にエアロゾル源がない場合にも、前記ヒータの温度が210℃以上且つ230℃未満の範囲内となるように構成される、第1態様に記載の吸引器用コントローラが提供される。
第3態様によれば、
前記制御回路は、前記監視中の物理量が、前記ヒータの温度が230℃以上であることを示す値になった場合に、前記霧化器への電力の供給を停止する、第1態様または第2態様に記載の吸引器用コントローラが提供される。
第4態様によれば、
前記マイクロコントローラは、前記ヒータが加熱されていない状態の前記オペアンプの出力に基づいて前記目標値を算出し、前記メモリに前記目標値を格納する、第1態様乃至第3態様の何れか1つに記載の吸引器用コントローラが提供される。
第5態様によれば、
前記霧化器に供給するための電力を生成する電圧生成回路を備え、
前記制御回路は、前記電圧生成回路と前記ヒータとの間に接続されたトランジスタをさらに含み、
前記マイクロコントローラは、前記オペアンプの出力と前記目標値との比較結果に基づく信号を前記トランジスタの制御端子に供給する、第1態様乃至第4態様の何れか1つに記載の吸引器用コントローラが提供される。
第6態様によれば、
プロピレングリコール及びグリセリンを含む液体のエアロゾル源を保持する容器と、ヒータと、前記ヒータによる加熱領域まで前記容器から前記エアロゾル源を輸送し且つ前記加熱領域において前記ヒータとの間に間隔を有する輸送部とを有する霧化器を制御するための吸引器用コントローラであって、
前記霧化器に供給するための電力を生成する電圧生成回路と、
前記ヒータの温度に相関を有する物理量を監視し、監視中の物理量が目標値に近づくように、前記電圧生成回路から前記霧化器に供給される電力を制御する制御回路と、を備え、
前記制御回路は、
前記ヒータの第1端に接続された非反転入力端子と、前記ヒータの第2端に接続された反転入力端子とを有するオペアンプと、
前記オペアンプの出力を前記物理量として監視するために、デジタル形式に変換された前記オペアンプの出力と、デジタル形式でメモリに格納された前記目標値とを比較するマイクロコントローラと、を含み、
前記制御回路は、アナログ回路を含み且つデジタル回路を含まず、
前記制御回路は、
前記物理量が前記目標値よりも小さい場合に、前記ヒータの温度を上昇させる量の電力を前記霧化器に供給し、
前記物理量が前記目標値よりも大きい場合に、前記ヒータの温度を下降させる量の電力を前記霧化器に供給する、吸引器用コントローラが提供される。
【発明の効果】
【0006】
上記手段により、液体のエアロゾル源を加熱するヒータの制御に有利な技術が提供される。
【図面の簡単な説明】
【0007】
【
図1】本発明の実施形態の吸引器の構成例を説明する図。
【
図2】本発明の実施形態のヒータの構成例を説明する図。
【
図3】本発明の実施形態の電気部品の構成例を説明する図。
【
図4】本発明の実施形態の電気部品の動作例を説明する図。
【
図5】本発明の第1構成例の制御回路を説明する図。
【
図6】本発明の第1構成例の制御回路の動作を説明する図。
【
図7】本発明の第2構成例の制御回路を説明する図。
【
図8】本発明の第3構成例の制御回路を説明する図。
【
図9】本発明の第4構成例の制御回路を説明する図。
【
図10】本発明の第5構成例の制御回路を説明する図。
【
図11】本発明の第6構成例の制御回路を説明する図。
【
図12】本発明の第7構成例の制御回路を説明する図。
【発明を実施するための形態】
【0008】
以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものでなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
【0009】
図1には、一実施形態の吸引器100の構成が模式的に示されている。吸引器100は、ユーザによる吸引動作に応じて、エアロゾルを含む気体、または、エアロゾルおよび香味物質を含む気体を吸口部130を通してユーザに提供するように構成されうる。吸引器100は、コントローラ102と、霧化器104とを備えうる。吸引器100は、霧化器104を取り外し可能な状態で保持する保持部103を備えうる。コントローラ102は、吸引器用コントローラとして理解されてもよい。霧化器104は、エアロゾル源を霧化するように構成されうる。エアロゾル源は、例えば、グリセリンまたはプロピレングリコール等の多価アルコール等の液体でありうる。あるいは、エアロゾル源は、薬剤を含んでもよい。エアロゾル源は、液体であってもよいし、固体であってもよいし、液体および固体の混合物であってもよい。エアロゾル源に代えて、水等の蒸気源が用いられてもよい。
【0010】
吸引器100は、香味源131を含むカプセル106を更に備えてもよく、霧化器104は、カプセル106を取り外し可能な状態で保持するカプセルホルダ105を含みうる。香味源131は、例えば、たばこ材料を成形した成形体でありうる。あるいは、香味源131は、たばこ以外の植物(例えば、ミント、ハーブ、漢方、コーヒー豆等)によって構成されてもよい。香味源には、メントールなどの香料が付与されていてもよい。香味源131は、エアロゾル源に添加されてもよい。なお、カプセルホルダ105は、霧化器104ではなくコントローラ102に設けられていてもよい。
【0011】
コントローラ102は、電気部品110を含みうる。電気部品110は、ユーザインターフェース116を含みうる。あるいは、コントローラ102は、電気部品110およびユーザインターフェース116を含むものとして理解されてもよい。ユーザインターフェース116は、例えば、表示部DISP(例えば、LED等の発光素子、および/または、LCD等の画像表示器)、および/または、操作部OP(例えば、ボタンスイッチ等のスイッチ、および/または、タッチディスプレイ)を含みうる。
【0012】
コントローラ102の保持部103は、第1電気接点111および第2電気接点112を含みうる。保持部103によって霧化器104が保持された状態において、保持部103の第1電気接点111は、霧化器104の第3電気接点113に接し、また、保持部103の第2電気接点112は、霧化器104の第4電気接点114に接しうる。コントローラ102は、第1電気接点111および第2電気接点112を通して霧化器104に電力を供給しうる。
【0013】
霧化器104は、前述の第3電気接点113および第4電気接点114を含みうる。また、霧化器104は、エアロゾル源を加熱するヒータ127と、液体のエアロゾル源を保持する容器125と、容器125によって保持されたエアロゾル源をヒータ127による加熱領域に輸送する輸送部126とを含みうる。輸送部126は、ウィックとも呼ばれうる。ヒータ127の加熱領域の少なくとも一部は、霧化器104内に設けられた流路128に配置されうる。第1電気接点111、第3電気接点113、ヒータ127、第4電気接点114および第2電気接点112は、ヒータ127に電流を流すための電流経路を形成する。輸送部126は、例えば、繊維素材または多孔質素材で構成されうる。
【0014】
霧化器104は、前述のように、カプセル106を取り外し可能に保持するカプセルホルダ105を含むことができる。カプセルホルダ105は、一例において、カプセル106の一部をカプセルホルダ105内または霧化器104内に収容し、他の一部を露出させるようにカプセル106を保持しうる。ユーザは、吸口部130を口で銜えて、エアロゾルを含有する気体を吸引することができる。取り外し可能なカプセル106が吸口部130を備えることで、吸引器100を清潔に保つことができる。
【0015】
ユーザが吸口部130を銜えて吸引動作を行うと、矢印で例示されるように、霧化器104の流路128に空気が流入し、ヒータ127がエアロゾル源を加熱することによって発生するエアロゾルがその空気によって吸口部130に向けて輸送される。そして、香味源131が配置されている構成においては、そのエアロゾルに香味源131が発生する香味物質が添加されて吸口部130に輸送され、ユーザの口に吸い込まれる。
【0016】
図2を参照して、
図1のヒータ127および輸送部126の断面構造について説明する。
図1に示すヒータ127はコイル形状を有する。このコイルの内部がヒータ127による加熱領域となる。
図2は、コイルの軸方向からヒータ127および輸送部126を見た断面構造を示す。
図2に示すように、ヒータ127と輸送部126との間には間隔があいている。そのため、ヒータ127から輸送部126に向けて放出された熱は、輸送部126に到達するまでに低減する。そのため、輸送部126の外面の温度は、ヒータ127の温度よりも低くなる。また、輸送部126の内部にあるエアロゾル源は、輸送部126の外面の温度よりもさらに低くなる。
図1の例ではヒータ127がコイル形状を有するが、ヒータ127は、蛇行形状、円筒形状、ブレード形状のような他の形状を有していてもよい。ヒータ127がいずれの形状であっても、ヒータ127と輸送部126との間の間隔によって、ヒータ127からの熱が損失してしまう。仮にヒータ127と輸送部126の間の間隔が極めて狭い又は0である場合であっても、輸送部126の外面にあるエアロゾル源から優先的にヒータ127によって加熱されるため、やはり輸送部126の内部にあるエアロゾル源とヒータ127の間には間隔が生じてしまう。
【0017】
ヒータ127の温度が低すぎるとエアロゾルの発生量が不十分になり、ヒータ127の温度が高すぎるとエアロゾルの発生量が過剰になる。いずれの場合であっても、ユーザに与える香喫味が意図しないものとなってしまう。本願の発明者らは、様々な実験を通じて、
図1の構造を有する吸引器100において、意図した香喫味をユーザに与えるために、エアロゾル源を加熱中のヒータ127の温度を210℃以上且つ230℃未満の範囲内とすればよいことを見出した。そこで、以下では、加熱中のヒータ127の温度がこの範囲に入った後、この範囲内に維持するための電気部品110の具体的な構成について説明する。
【0018】
図3には、電気部品110の構成例が示されている。電気部品110は、電源(例えば、バッテリー)301と、霧化器104(のヒータ127)に供給するための電力を生成する電圧生成回路302と、霧化器104(のヒータ127)に供給される電力を制御する制御回路303とを備えうる。ヒータ127の抵抗値R
HTRは、ヒータ127の温度によって変化する。例えば、ヒータ127の抵抗値R
HTRは、ヒータ127の温度と正の相関を有する。
【0019】
電圧生成回路302は、例えば、電源301から供給される電源電圧Vbatをヒータ駆動電圧Voutに変換する電圧変換器(電圧レギュレータ)321を含むことができる。さらに、電圧生成回路302は、電源電圧Vbatを制御回路303内のMCU(マイクロコントローラユニット)用の電圧Vmcuに変換するLDO(Low DropOut)等の電圧変換回路322を含んでもよい。
【0020】
制御回路303は、電気部品110の全体的な制御を行う。このような制御の一部として、制御回路303は、エアロゾル源を加熱中のヒータ127の温度が210℃以上且つ230℃未満の範囲内となるようにフィードバック制御を行う。具体的に、制御回路303の目標値算出部331は、ユーザが吸引器100の使用を開始する前に、ヒータ127の温度に相関を有する物理量の目標値を算出し、メモリに格納しておく。この物理量は、後述するように、ヒータ127に印加されている電圧であってもよい。この目標値は、エアロゾル源を加熱中のヒータ127の温度が210℃以上且つ230℃未満の範囲内となるように設定される。その後、制御回路303の供給電力制御部332は、ユーザが吸引器100を使用中に、この物理量を監視し、監視中の物理量が目標値に近づくように、電圧生成回路302から霧化器104のヒータ127に供給される電力を制御する。
【0021】
電気部品110は、電気部品110の所定箇所の温度を検出する温度センサ304と、ユーザのパフ動作を検出するパフセンサ(例えば、圧力センサ)305とをさらに含んでもよい。温度センサ304は、パフセンサ305または電源301に組み込まれていてもよい。
【0022】
図4には、吸引器100の動作が示されている。この動作は、制御回路303によって制御される。制御回路303は、プログラムを格納したメモリと、該プログラムに従って動作するプロセッサとを含む。
図4の動作は、プロセッサがメモリ内のプログラムを実行することによって処理されてもよい。
【0023】
ステップS401で、制御回路303は、霧化要求を受けることを待ち、霧化要求を受けたら、ステップS402を実行する。霧化要求は、霧化器104を動作させること、より詳しくは、エアロゾル源からエアロゾルを発生させるようにヒータ127を目標温度範囲内に制御することの要求である。霧化要求は、ユーザが吸口部130を通して吸引動作(パフ動作)を行ったことをパフセンサ305が検出し、その検出をパフセンサ305が制御回路303に通知する動作でありうる。あるいは、霧化要求は、ユーザが操作部OPを操作したことを操作部OPが制御回路303に通知する動作でありうる。
【0024】
ステップS402で、制御回路303は、電源電圧Vbatを不図示の電源管理回路から取得し、電源電圧Vbatが放電終止電圧Vend(例えば3.2V)を上回っているかどうかを判定する。電源電圧Vbatが放電終止電圧Vend以下ということは、電源301の放電可能残量が十分ではないことを意味する。そこで、電源電圧Vbatが放電終止電圧Vend以下である場合は、ステップS419において、制御回路303は、ユーザインターフェース116の表示部DISPを使って、電源301の充電を促す報知を行う。この報知は、表示部DISPがLEDを含む場合において、該LEDを赤色で点灯させることでありうる。電源電圧Vbatが放電終止電圧Vendを上回っている場合、ステップS403において、制御回路303は、ユーザインターフェース116の表示部DISPを使って、正常動作が可能であることを報知しうる。この報知は、表示部DISPがLEDを含む場合において、該LEDを青色で点灯させることでありうる。
【0025】
ステップS403に次いで、ステップS404で、制御回路303は、ヒータ127に対する給電制御を開始する。ヒータ127に対する給電制御は、ヒータ127を目標温度範囲内に制御する温度制御を含む。この温度制御の詳細は後述する。
【0026】
次いで、ステップS405で、制御回路303は、吸引時間TLを0にリセットし、その後、ステップS406で、制御回路303は、吸引時間TLにΔtを加算する。Δtは、ステップS406の実行と次のステップS406の実行との時間間隔に相当する。
【0027】
次いで、ステップS407で、制御回路303は、霧化要求が終了しているかどうかを判定し、霧化要求が終了している場合は、ステップS409において、制御回路303は、ヒータ127に対する給電制御を停止する。一方、霧化要求が終了していない場合は、ステップS408において、制御回路303は、吸引時間TL(例えば2.0~2.5sec)が上限時間に達したかどうかを判定し、吸引時間TLが上限時間に達していない場合は、ステップS406に戻る。
【0028】
ステップS409に次いで、ステップS410で、制御回路303は、青色で点灯させていたLEDを消灯させる。次いで、ステップS411で、制御回路303は、積算時間TAを更新する。より具体的には、ステップS411で、現時点での積算時間TAに吸引時間TLを加算する。積算時間TAは、カプセル106が吸引のために使用された積算時間、換言すると、カプセル106の香味源131を通してエアロゾルが吸引された積算時間でありうる。
【0029】
ステップS412で、制御回路303は、積算時間TAが吸引可能時間(例えば、120sec)を超えていないかどうかを判定する。積算時間TAが吸引可能時間を超えていない場合は、カプセル106が未だ香味物質を提供可能であることを意味し、この場合は、ステップS401に戻る。積算時間TAが吸引可能時間を超えている場合は、ステップS413において、制御回路303は、霧化要求の発生を待つ。そして、霧化要求が発生したら、ステップS414において、制御回路303は、霧化要求が所定時間にわたって継続するのを待ち、その後、ステップS416において、制御回路303は、ヒータ127に対する給電制御を禁止する。なお、ステップS414は省略されてもよい。
【0030】
次いで、ステップS416では、制御回路303は、ユーザインターフェース116の表示部DISPを使って、カプセル106の交換を促す報知を行う。この報知は、表示部DISPがLEDを含む場合において、該LEDを青色で点滅(点灯、消灯の繰り返し)させることでありうる。これを受けて、ユーザは、カプセル106を交換しうる。一例において、1個の霧化器104と複数個(例えば、5個)のカプセル106とが1個のセットとして販売されうる。このような例では、1個のセットの1個の霧化器104および全てのカプセル106が消費された後、消費されたセットの霧化器104と最後のカプセル106が新しいセットの霧化器104およびカプセル106に交換されうる。
【0031】
ステップS417で、制御回路303は、カプセル106(または、カプセル106および霧化器104)の交換が完了するのを待ち、ステップS418で、制御回路303は、ヒータ127に対する給電制御の禁止を解除し、ステップS401に戻る。
【0032】
続いて、
図5を参照して、ヒータ127をフィードバック制御するための制御回路303の第1構成例について説明する。制御回路303は、MCU501と、スイッチSW1およびSW2と、シャント抵抗R
shunt1およびR
shunt2と、オペアンプ502とを含みうる。MCU501は、メモリ511と、スイッチ駆動部512と、目標値算出部331と、比較部513と、ADC(アナログデジタル変換器)415とを含みうる。スイッチ駆動部512と、目標値算出部331と、比較部513とは、汎用プロセッサによって実現されてもよいし、専用回路によって実現されてもよいし、両者の組み合わせによって実現されてもよい。スイッチSW1およびSW2と、シャント抵抗R
shunt1およびR
shunt2と、スイッチ駆動部512と、比較部513とによって、供給電力制御部332が構成される。
【0033】
スイッチSW1およびシャント抵抗R
shunt1は、電圧生成回路302からのヒータ駆動電圧Voutの供給ラインとヒータ127との間に直列に接続されている。シャント抵抗R
shunt1の抵抗値をその符号と同様にR
shunt1と標記する。以下に説明する他の抵抗についても同様である。
図5の例では、スイッチSW1とヒータ127との間にシャント抵抗R
shunt1が接続されている。これにかえて、シャント抵抗R
shunt1とヒータ127との間にスイッチSW1が接続されてもよい。
【0034】
スイッチSW1は、例えばトランジスタ、具体的にFET(電界効果トランジスタ)やIGBT(絶縁ゲート型バイポーラ・トランジスタ)によって構成されてもよい。以下ではスイッチSW1などの様々なスイッチがFETによって構成される場合について説明するが、FETはIGBTや他のスイッチで構成されてもよい。スイッチSW1の制御端子(例えば、FETのゲート)に、スイッチ駆動部512から制御信号SWC1が供給される。スイッチSW1は、制御信号SWC1の値に応じて、オン・オフを切り替える。スイッチSW1をオン(すなわち、導通状態)にする制御信号をオン信号と呼び、スイッチSW1をオフ(すなわち、非導通状態)にする制御信号をオフ信号と呼ぶ。オン信号は例えばハイレベルであり、オフ信号は例えばローレベルである。以下に説明する他のスイッチの制御信号についても同様である。
【0035】
スイッチSW2およびシャント抵抗R
shunt2は、電圧生成回路302からのヒータ駆動電圧Voutの供給ラインとヒータ127との間に直列に接続されている。シャント抵抗R
shunt2の抵抗値は、シャント抵抗R
shunt1の抵抗値よりも十分に大きい。
図5の例では、スイッチSW2とヒータ127との間にシャント抵抗R
shunt2が接続されている。これにかえて、シャント抵抗R
shunt2とヒータ127との間にスイッチSW2が接続されてもよい。スイッチSW2は、例えばトランジスタ、具体的にFETやIGBTによって構成されてもよい。スイッチSW2の制御端子(例えば、FETのゲート)には、スイッチ駆動部512から制御信号SWC2が供給される。スイッチSW2は、制御信号SWC2の値に応じて、オン・オフを切り替える。
【0036】
オペアンプ(差動増幅器)502は、非反転入力端子、反転入力端子および出力端子を有する。オペアンプ502の非反転入力端子は、ヒータ127の一端(具体的に、第3電気接点113)に接続されている。オペアンプ502の反転入力端子は、ヒータ127の別の一端(具体的に、第4電気接点114)に接続されている。オペアンプ502の出力端子は、ADC415の入力端子に接続されている。このように、オペアンプ502は、ヒータ127に印加されている電圧V
HTRをADC415に供給する。
図5の第1構成例で、制御回路303は、ヒータの温度に相関を有する物理量として、オペアンプ502の出力、すなわち電圧V
HTRを監視する。制御回路303は、電圧V
HTRが目標値に近づくように、ヒータ127に供給される電力を制御する。
【0037】
電圧V
HTRの目標値V
Targetの算出方法について説明する。制御回路303は、ヒータ127が加熱されていない状態、例えば、
図4のステップS404よりも前に、目標値V
Targetを算出する動作を行ってもよい。まず、制御回路303は、スイッチSW1をオフにし、スイッチSW2をオンにする。これによって、ヒータ駆動電圧Voutの供給ラインから、スイッチSW2、シャント抵抗R
shunt2およびヒータ127を経由して接地まで電流が流れる。
【0038】
目標値算出部331は、ヒータ127に印加されている電圧VHTRをデジタル形式でADC415から受け取る。そして、目標値算出部331は、以下の式(1)および式(2)に従って目標値VTargetを算出し、目標値VTargetをデジタル形式でメモリ511に格納する。以下に説明するメモリ511に格納される他の値もデジタル形式で格納される。
【0039】
【0040】
【0041】
式(1)および式(2)において、α、VoutおよびRShunt2は規定値であり、例えば製造時にメモリ511に書き込まれる。RRefは、電圧VHTRの測定時の温度TRefにおけるヒータ127の抵抗値を表す。そこで、RRefを基準抵抗値、温度TRefを基準温度と呼ぶ。基準抵抗値を取得する際のヒータ127の温度は、吸引器100内の任意箇所の温度(例えば、温度センサ304によって検出される温度)や、室温に基づいて決定されてもよい。αは、ヒータ127の温度係数[ppm/℃]である。αは、ヒータ127の材質やサイズによって定まる値であり、例えば製造時にメモリ511に書き込まれる。
【0042】
TTargetは、エアロゾル源を加熱中のヒータ127の目標温度である。目標温度TTargetは、例えば製造時に設定され、メモリ511に書き込まれる。目標値VTargetは、ヒータ127の温度が目標温度TTargetである時点の電圧VHTRに相当する。目標温度TTargetは、210℃以上且つ230℃未満の範囲内、例えば220℃となるように設定される。電圧VHTRが目標値VTargetに近づくようにフィードバック制御を行うことによって、ヒータ127の温度も目標温度TTargetに近づくように変動する。このようにして、目標値VTargetは、エアロゾル源を加熱中のヒータ127の温度が210℃以上且つ230℃未満の範囲内となるように設定される。
【0043】
上述の例では、式(1)および(2)に分けて目標値VTargetを算出するように説明している。しかし、目標値算出部331は、これらの式を統合した式に従って目標値VTargetを算出してもよい。
【0044】
続いて、
図6を参照して、ヒータ127の温度のフィードバック制御について説明する。制御回路303は、このフィードバック制御を、ユーザによる吸引中(例えば、
図4のステップS404~S409の間)に実行する。この動作の実行中に、比較部513は、メモリ511から読み出したデジタル形式の目標値V
Targetと、デジタル形式でADC415から受け取った電圧V
HTRとを比較し、これらの比較結果をスイッチ駆動部512に供給し続ける。このように、比較部513は、ヒータ127に印加されている電圧V
HTRを監視する。
【0045】
ステップS601で、スイッチ駆動部512は、制御信号SWC1としてオフ信号を供給することによってスイッチSW1をオフにし、制御信号SWC2としてオン信号を供給することによってスイッチSW2をオンにする。その後、スイッチ駆動部512は、比較部513からの出力に基づいて、電圧VHTRが目標値VTargetよりも低いどうかを判定する。この条件を満たす場合(ステップS601で「YES」)に、スイッチ駆動部512は処理をステップS602に遷移し、それ以外の場合(ステップS601で「NO」)に、スイッチ駆動部512は処理をステップS603に遷移する。
【0046】
ステップS602で、スイッチ駆動部512は、制御信号SWC1としてオン信号を供給することによってスイッチSW1をオンにし、制御信号SWC2としてオフ信号を供給することによってスイッチSW2をオフにする。スイッチ駆動部512は、スイッチSW1にすでにオン信号を供給している場合にその状態を維持し、スイッチSW2にすでにオフ信号を供給している場合にその状態を維持する。この状態は、比較部513による比較結果が変化するまで維持される。これにより、ヒータ駆動電圧Voutの供給ラインから、スイッチSW1、シャント抵抗Rshunt1およびヒータ127を経由して接地まで電流が流れる。一方、スイッチSW2を経由する経路には電流が流れない。ヒータ127にシャント抵抗Rshunt1経由で電流が流れることによって、ヒータ127の加熱に必要な電力が供給され、ヒータ127の温度が上昇する。シャント抵抗Rshunt1は、ヒータ127の温度を上昇可能な電流を流す抵抗値を有する。
【0047】
ステップS603で、スイッチ駆動部512は、制御信号SWC1としてオフ信号を供給することによってスイッチSW1をオフにし、制御信号SWC2としてオン信号を供給することによってスイッチSW2をオンにする。スイッチ駆動部512は、スイッチSW2にすでにオン信号を供給している場合にその状態を維持し、スイッチSW1にすでにオフ信号を供給している場合にその状態を維持する。この状態は、比較部513による比較結果が変化するまで維持される。これにより、ヒータ駆動電圧Voutの供給ラインから、スイッチSW2、シャント抵抗Rshunt2およびヒータ127を経由して接地まで電流が流れる。一方、スイッチSW1を経由する経路には電流が流れない。シャント抵抗Rshunt2は十分に大きいため、ヒータ127の加熱に必要な電力が供給されず、ヒータ127の温度が下降する。すなわち、シャント抵抗Rshunt2は、ヒータ127の温度を下降可能な電流を流す抵抗値を有する。シャント抵抗Rshunt2の抵抗値が十分に大きい場合に、ヒータ127に供給される電力は実質的にゼロとなる。
【0048】
ステップS604で、スイッチ駆動部512は、加熱処理を終了するかどうかを判定する。この条件を満たす場合(ステップS604で「YES」)に、スイッチ駆動部512は処理を終了し、それ以外の場合(ステップS604で「NO」)に、スイッチ駆動部512は処理をステップS601に遷移する。加熱処理を終了するための条件は、上述の
図4のステップS409に遷移するための条件である。
【0049】
以上のように、制御回路303は、電圧VHTRが目標値VTargetに近づくようにヒータ127に供給する電力を制御する。具体的に、制御回路303は、監視中の電圧VHTRと目標値VTargetとの比較結果に基づいて、電圧生成回路302から霧化器104への電力の供給量を切り替える。上述のように、目標値VTargetは、ヒータ127の温度が目標温度TTargetとなるように設定されているため、このフィードバック制御によって、エアロゾル源を加熱中のヒータ127の温度が210℃以上且つ230℃未満に維持される。上述のステップS601において、等号が成立する場合にNOに分岐するが、これにかえてYESに分岐してもよい。また、制御回路303は、監視中の電圧VHTRを他の値に変換することなく、直接、目標値VTargetと比較し、フィードバック制御を行う。そのため、フィードバック制御における追従性が高まる。その結果、ヒータ127の加熱領域からエアロゾル源がなくなり、加熱対象の熱容量が大きく変化した場合であっても、制御回路303は、ヒータの温度を210℃以上且つ230℃未満の範囲内に維持できる。
【0050】
続いて、
図7を参照して、ヒータ127をフィードバック制御するための制御回路303の第2構成例について説明する。第2構成例では、
図5の第1構成例においてMCU501が実行していたフィードバック制御をアナログ回路によって実行する。以下、第1構成例との相違点について主に説明する。
【0051】
第2構成例の制御回路303は、第1構成例の制御回路303と比較して、コンパレータCMPおよび論理反転のためのインバータ702をさらに有する。また、第2構成例のMCU501は、スイッチ駆動部512および比較部513を含まず、DAC(デジタルアナログ変換器)701を含む。
【0052】
コンパレータCMPの反転入力端子は、ヒータ127のヒータ駆動電圧Voutの供給ライン側の端部(すなわち、第3電気接点113)に接続されている。したがって、コンパレータCMPの反転入力端子には、ヒータ127に印加されている電圧VHTRが供給される。コンパレータCMPの非反転入力端子には、MCU501(具体的に、DAC701)からアナログ形式の目標値VTargetが供給される。したがって、コンパレータCMPは、電圧VHTRと目標値VTargetとの比較結果を出力する。すなわち、コンパレータCMPは、ヒータ127の温度に相関を有する物理量として、電圧VHTRを監視する。
【0053】
コンパレータCMPからの出力信号は、分圧回路を経由してスイッチSW1の制御端子に供給される。また、コンパレータCMPからの出力信号は、インバータ702および分圧回路を経由してスイッチSW2の制御端子に供給される。なお、これら分圧回路の双方または一方は省略されてもよい。DAC701は、メモリ511からデジタル形式の目標値VTargetを読み出し、アナログ形式に変換してコンパレータCMPに供給する。
【0054】
第2構成例において、目標値V
Targetの決定方法は第1構成例と同じであるため、説明を省略する。第2構成例におけるヒータ127の温度のフィードバック制御について説明する。制御回路303は、このフィードバック制御を、ユーザによる吸引中(例えば、
図4のステップS404~S409の間)に実行する。
【0055】
ヒータ127への電力供給を開始するために、DAC701は、メモリ511から目標値VTargetを読み出し、アナログ形式に変換してコンパレータCMPに供給し続ける。吸引直後はヒータ127の温度が低く、それゆえ電圧VHTRも低いため、コンパレータCMPは、比較結果としてハイレベルを出力する。その結果、スイッチSW1の制御端子にハイレベルが供給され、スイッチSW1がオンになる。また、スイッチSW2の制御端子に、インバータ702によって論理反転されたローレベルが供給され、スイッチSW2がオフになる。これにより、第1構成例と同様にヒータ127に電流が流れ、ヒータ127の温度が上昇する。
【0056】
ヒータ127の温度が上昇し、電圧VHTRが目標値VTargetを上回ると、コンパレータCMPは、比較結果としてローレベルを出力する。その結果、スイッチSW1の制御端子にローレベルが供給され、スイッチSW1がオフになる。また、スイッチSW2の制御端子に、インバータ702によって論理反転されたハイレベルが供給され、スイッチSW2がオンになる。これにより、第1構成例と同様に電流が流れ、ヒータ127の温度が下降する。その後、電圧VHTRが目標値VTargetを下回ると、ヒータ127の温度が上昇するようにヒータ127に電力が供給される。
【0057】
以上のように、制御回路303は、電圧VHTRが目標値VTargetに近づくようにヒータ127に供給する電力を制御する。第2構成例では、MCU501に含まれないアナログ回路(具体的に、コンパレータCMP)によって電圧VHTRおよび目標値VTargetの大小比較を行っているため、MCU501の動作クロックに束縛されずに電力制御を行える。そのため、いっそう高速な制御が可能となる。また、MCU501が大小比較を行わないため、MCU501の処理負担が軽減する。
【0058】
続いて、
図8を参照して、ヒータ127をフィードバック制御するための制御回路303の第3構成例について説明する。
図7の第2構成例ではコンパレータを1系統有していたのに対して、第3構成例では、コンパレータを2系統有する。以下、第2構成例との相違点について主に説明する。
【0059】
第3構成例の制御回路303は、第2構成例の制御回路303と比較して、コンパレータCMPおよびインバータ702を含まず、コンパレータCMP1およびCMP2ならびにスイッチSW3およびSW4を含む。また、第3構成例のMCU501は、DAC701を含まず、DAC801および802を含む。
【0060】
コンパレータCMP1の反転入力端子は、ヒータ127のヒータ駆動電圧Voutの供給ライン側の端部(すなわち、第3電気接点113)に接続されている。したがって、コンパレータCMP1の反転入力端子には、ヒータ127に印加されている電圧VHTRが供給される。コンパレータCMP1の非反転入力端子には、アナログ形式の目標値VTargetが供給される。したがって、コンパレータCMP1は、電圧VHTRと目標値VTargetとの比較結果を出力する。コンパレータCMP1からの出力信号は、分圧回路を経由してスイッチSW1の制御端子に供給される。
【0061】
コンパレータCMP2の非反転入力端子は、ヒータ127のヒータ駆動電圧Voutの供給ライン側の端部(すなわち、第3電気接点113)に接続されている。したがって、コンパレータCMP2の非反転入力端子には、ヒータ127に印加されている電圧VHTRが供給される。コンパレータCMP2の反転入力端子には、アナログ形式の目標値VTargetが供給される。したがって、コンパレータCMP2は、電圧VHTRと目標値VTargetとの比較結果を出力する。コンパレータCMP2からの出力信号は、分圧回路を経由してスイッチSW2の制御端子に供給される。以上のように構成されたコンパレータCMP1とコンパレータCMP2とは、互いに異なるレベルの信号を出力する。
【0062】
DAC801は、メモリ511からデジタル形式の目標値VTarget1を読み出し、アナログ形式に変換し、スイッチSW3を介してコンパレータCMP1およびCMP2に供給する。DAC802は、メモリ511からデジタル形式の目標値VTarget2を読み出し、アナログ形式に変換し、スイッチSW4を介してコンパレータCMP1およびCMP2に供給する。コンパレータCMP1とコンパレータCMP2とが互いに異なるレベルの信号を出力するため、スイッチSW3およびSW4は、一方のみがオンになる。そのため、スイッチSW3がオン(すなわち、スイッチSW4がオフ)の場合に、目標値VTarget1が目標値VTargetとしてコンパレータCMP1およびCMP2に供給される。スイッチSW4がオン(すなわち、スイッチSW3がオフ)の場合に、目標値VTarget2が目標値VTargetとしてコンパレータCMP1およびCMP2に供給される。
【0063】
目標値VTarget1は、スイッチSW1がオン且つスイッチSW2がオフの場合の電圧VHTRの目標値である。目標値VTarget2は、スイッチSW1がオフ且つスイッチSW2がオンの場合の電圧VHTRの目標値である。目標値算出部331は、上述の式(1)ならびに以下の式(3)および(4)に従ってこれらの目標値を算出し、メモリ511に格納する。目標値VTarge1の算出と同様に、目標値算出部331は、スイッチSW1をオフにし、スイッチSW2をオンにした状態で、ADC415から受け取られるデジタル形式に変換されたヒータ127に印加されている電圧VHTRに基づき目標値VTarge2を算出してもよい。
【0064】
【0065】
【0066】
式(3)および式(4)において、α、Vout、RShunt1およびRShunt2は規定値であり、例えば製造時にメモリ511に書き込まれる。目標温度TTargetは、式(2)について上述したとおりである。RShunt1>RShunt2であるため、VTarget1<VTarget2となる。
【0067】
第1構成例と同様にして、目標値算出部331は、式(1)に従って基準抵抗値RRefを算出し、この値を式(3)および式(4)に当てはめることによって目標値VTarget1および目標値VTarget2を算出する。
【0068】
第3構成例におけるヒータ127の温度のフィードバック制御について説明する。制御回路303は、このフィードバック制御を、ユーザによる吸引中(例えば、
図4のステップS404~S409の間)に実行する。
【0069】
ヒータ127への電力供給を開始するために、DAC801は、メモリ511から目標値VTarget1を読み出し、アナログ形式に変換してスイッチSW3に供給し続ける。また、DAC802は、メモリ511から目標値VTarget2を読み出し、アナログ形式に変換してスイッチSW4に供給し続ける。この時点で、スイッチSW3がオンであり、スイッチSW4がオフであるとする。そのため、目標値VTargetとして目標値VTarget1がコンパレータCMP1およびCMP2に供給される。
【0070】
吸引直後はヒータ127の温度が低く、それゆえ電圧VHTRも低いため、コンパレータCMP1は比較結果としてハイレベルを出力し、コンパレータCMP2は比較結果としてローレベルを出力する。その結果、スイッチSW1の制御端子およびスイッチSW3の制御端子にハイレベルが供給され、スイッチSW1およびSW3がオンになる。また、スイッチSW2の制御端子およびスイッチSW4の制御端子にローレベルが供給され、スイッチSW2およびSW4がオフになる。これにより、第1構成例と同様にヒータ127に電流が流れ、ヒータ127の温度が上昇する。また、目標値VTargetとして目標値VTarget1がコンパレータCMP1およびCMP2に供給され続ける。
【0071】
ヒータ127の温度が上昇し、電圧VHTRが目標値VTargetを上回ると、コンパレータCMP1は、比較結果としてローレベルを出力し、コンパレータCMP2は、比較結果としてハイレベルを出力する。その結果、スイッチSW1の制御端子およびスイッチSW3の制御端子にローレベルが供給され、スイッチSW1およびSW3がオフになる。また、スイッチSW2の制御端子およびスイッチSW4の制御端子にハイレベルが供給され、スイッチSW2およびSW4がオンになる。これにより、第1構成例と同様にヒータ127に電流が流れ、ヒータ127の温度が下降する。また、目標値VTargetとして目標値VTarget2がコンパレータCMP1およびCMP2に供給されるようになる。その後、電圧VHTRが目標値VTargetを下回ると、ヒータ127の温度が上昇するようにヒータ127に電力が供給される。
【0072】
以上のように、制御回路303は、電圧VHTRが目標値VTargetに近づくようにヒータ127に供給する電力を制御する。第3構成例では、ヒータ127の温度が上昇中であるか下降中であるかに応じて目標値VTargetの値を切り替えるため、一層細やかなフィードバック制御が行える。
【0073】
続いて、
図9を参照して、ヒータ127をフィードバック制御するための制御回路303の第4構成例について説明する。第4構成例は、第3構成例と比較して、遅延回路901および902をさらに有する。以下、第3構成例との相違点について主に説明する。
【0074】
遅延回路901は、コンパレータCMP1の出力端子とスイッチSW1の制御端子との間のノードに接続されている。遅延回路902は、コンパレータCMP2の出力端子とスイッチSW2の制御端子との間のノードに接続されている。遅延回路901および902によって、切り替えの速度を調整できる。これにより、ヒータ127の温度変化を滑らかにしたり、スイッチSW1とスイッチSW2の寿命を延長したりすることができる。
【0075】
続いて、
図10を参照して、ヒータ127をフィードバック制御するための制御回路303の第5構成例について説明する。第5構成例は、第3構成例と比較して、コンデンサCP1およびCP2と、スイッチSW5およびSW6をさらに有する。以下、第3構成例との相違点について主に説明する。
【0076】
コンデンサCP1は、マイクロコントローラ501(具体的に、DAC801)とスイッチSW3との間のノードに接続されている。スイッチSW5は、コンデンサCP1に並列に接続されている。コンデンサCP1は、DAC801が出力したアナログ形式の目標値VTarget1を保持できる。そのため、MCU501は、DAC801が出力した目標値VTarget1をコンデンサCP1が保持した後、DAC801を停止できる。目標値VTarget1の値が更新された場合に、MCU501は、スイッチSW5をオンにすることによって、コンデンサCP1に保持された値をリセットし、その後、更新後の目標値VTarget1をコンデンサCP1に保持させる。
【0077】
コンデンサCP2は、マイクロコントローラ501(具体的に、DAC802)とスイッチSW4との間のノードに接続されている。スイッチSW6は、コンデンサCP2に並列に接続されている。コンデンサCP2は、DAC802が出力したアナログ形式の目標値VTarget2を保持できる。その他のコンデンサCP2の機能についてはコンデンサCP1の機能と同様である。第5構成例によれば、フィードバック制御におけるMCU501の関与を一層軽減でき、MCU501の負担が一層軽減する。
【0078】
続いて、
図11を参照して、ヒータ127をフィードバック制御するための制御回路303の第6構成例について説明する。第6構成例は、第3構成例と比較して、コンパレータCMP3およびDAC1101をさらに有する。以下、第3構成例との相違点について主に説明する。
【0079】
コンパレータCMP3の反転入力端子は、ヒータ127のヒータ駆動電圧Voutの供給ライン側の端部(すなわち、第3電気接点113)に接続されている。したがって、コンパレータCMP3の反転入力端子には、ヒータ127に印加されている電圧VHTRが供給される。コンパレータCMP3の非反転入力端子には、アナログ形式の上限値VUpperが供給される。したがって、コンパレータCMP3は、電圧VHTRと上限値VUpperとの比較結果を出力する。コンパレータCMP3からの出力信号は、分圧回路を経由してスイッチSW2の制御端子に供給される。スイッチSW2の制御端子につながる分圧回路は、コンパレータCMP2の出力とコンパレータCMP3の出力との少なくとも一方がローレベルである場合にスイッチSW2の制御端子にローレベルが供給され、コンパレータCMP2の出力とコンパレータCMP3の出力との両方がハイレベルである場合にスイッチSW2の制御端子にハイレベルが供給されるように構成される。
【0080】
上限値VUpperは、ヒータ127の温度が230℃以上である場合の電圧VHTRと等しくなるように設定され、メモリ511に格納される。上限値VUpperは、上述のいずれの目標値VTargetよりも高い値となる。監視中の電圧VHTRが上限値VUpper未満である場合に、コンパレータCMP3の出力信号はハイレベルとなる。この場合に、第3構成例と同様にして、ヒータ127に電力が供給される。
【0081】
監視中の電圧VHTRが上限値VUpperに達すると、スイッチSW1の制御端子へローレベルが供給されるとともに、スイッチSW2の制御端子へもローレベルが供給される。そのため、電圧生成回路302から霧化器104への電力の供給が停止する。このように、第6構成例によれば、ヒータ127の過熱が抑制される。
【0082】
続いて、
図12を参照して、ヒータ127をフィードバック制御するための制御回路303の第7構成例について説明する。第7構成例は、第3構成例と比較して、オペアンプ402、目標値算出部331、ADC240、DAC801および802を含まず、抵抗R1~R4を含む。
【0083】
抵抗R1およびR2は分圧回路を構成する。抵抗R1と抵抗R2との間のノードの電圧が目標値VTarget1となるように抵抗R1およびR2の抵抗値が設定されている。具体的に、抵抗R1およびR2は、以下の式に従う抵抗値を有する。
【0084】
【0085】
抵抗R1と抵抗R2との間のノードは、スイッチSW3に接続される。スイッチSW3がオンになると、抵抗R1およびR2で構成される分圧回路から、スイッチSW3を通じて、コンパレータCMP1およびコンパレータCMP2に、目標値VTargetとして目標値VTarget1が供給される。目標値VTarget1の値は、上述の第3構成例の制御回路303の有する他の吸引器100を利用して決定され、この値を利用して抵抗R1およびR2の抵抗値が決定されてもよい。
【0086】
抵抗R3およびR4は分圧回路を構成する。抵抗R3と抵抗R4との間のノードの電圧が目標値VTarget2となるように抵抗R3およびR4の抵抗値が設定されている。具体的に、抵抗R3およびR4は、以下の式に従う抵抗値を有する。
【0087】
【0088】
抵抗R3と抵抗R4との間のノードは、スイッチSW4に接続される。スイッチSW4がオンになると、抵抗R3およびR4で構成される分圧回路から、スイッチSW3を通じて、コンパレータCMP1およびコンパレータCMP2に、目標値VTargetとして目標値VTarget2が供給される。目標値VTarget2の値は、上述の第3構成例の制御回路303の有する他の吸引器100を利用して決定され、この値を利用して抵抗R3およびR4の抵抗値が決定されてもよい。
【0089】
図12にMCU501を示しているものの、第7構成例において、MCU501は、ヒータ127の温度のフィードバック制御に関与しない。言い換えると、ヒータ127の温度のフィードバック制御を行う制御回路303は、デジタル回路であるMCU501を含まず、アナログ回路を含む。さらに言えば、ヒータ127の温度のフィードバック制御を行う制御回路303は、アナログ回路のみを含む。この構成例によれば、MCU501の処理負担を一層軽減できる。
【0090】
発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。本発明の第1構成例から第7構成例のいずれの制御回路においても、電圧生成回路302からのヒータ駆動電圧Voutの供給ラインとヒータ127との間に、スイッチSW1、スイッチSW2、シャント抵抗Rshunt1、シャント抵抗Rshunt2が設けられている。これに代えて、接地とヒータ127との間に、スイッチSW1、スイッチSW2、シャント抵抗Rshunt1、シャント抵抗Rshunt2を設けてもよい。
【符号の説明】
【0091】
100 吸引器、104 霧化器、127 ヒータ、303 制御回路、501 MCU