(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-06
(45)【発行日】2024-08-15
(54)【発明の名称】眼および/または環境の画像を捕捉するように構成される導波管を伴う拡張現実ディスプレイ
(51)【国際特許分類】
G02B 27/02 20060101AFI20240807BHJP
H04N 5/64 20060101ALI20240807BHJP
H04N 13/344 20180101ALI20240807BHJP
H04N 13/383 20180101ALI20240807BHJP
G02B 5/18 20060101ALN20240807BHJP
G02B 5/32 20060101ALN20240807BHJP
【FI】
G02B27/02 Z
H04N5/64 511A
H04N13/344
H04N13/383
G02B5/18
G02B5/32
【外国語出願】
(21)【出願番号】P 2022166137
(22)【出願日】2022-10-17
(62)【分割の表示】P 2020516716の分割
【原出願日】2018-09-21
【審査請求日】2022-10-17
(32)【優先日】2017-09-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】514108838
【氏名又は名称】マジック リープ, インコーポレイテッド
【氏名又は名称原語表記】Magic Leap,Inc.
【住所又は居所原語表記】7500 W SUNRISE BLVD,PLANTATION,FL 33322 USA
(74)【代理人】
【識別番号】100078282
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】アシフ シネイ
(72)【発明者】
【氏名】バラク フリードマン
(72)【発明者】
【氏名】マイケル アンソニー クルグ
(72)【発明者】
【氏名】チュルウ オ
(72)【発明者】
【氏名】ニザン メイタブ
【審査官】鈴木 俊光
(56)【参考文献】
【文献】特開2010-102215(JP,A)
【文献】米国特許出願公開第2015/0289762(US,A1)
【文献】米国特許出願公開第2016/0209657(US,A1)
【文献】特開平10-239628(JP,A)
【文献】米国特許第08878749(US,B1)
【文献】米国特許出願公開第2016/0085300(US,A1)
【文献】特開2016-142887(JP,A)
【文献】特開2009-300480(JP,A)
【文献】特表2017-522601(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 27/01 - 27/02
H04N 5/64
H04N 13/344
H04N 13/383
G02B 5/18
G02B 5/32
(57)【特許請求の範囲】
【請求項1】
頭部搭載型ディスプレイシステムであって、前記頭部搭載型ディスプレイシステムは、光をユーザの眼に投影し、拡張現実画像コンテンツを前記ユーザの視野内に表示するように構成され、かつ、前記頭部搭載型ディスプレイシステムを装着している前記ユーザの眼の少なくとも一部を結像するように構成され、前記頭部搭載型ディスプレイシステムは、
前記ユーザの頭部上に支持されるように構成されるフレームと、
画像を投影するように構成される画像プロジェクタと、
カメラと、
前記フレームに結合される光源であって、前記光源は、光を生成するように構成される、光源と、
前記フレーム上に配置される接眼レンズであって、前記接眼レンズは、前記光を前記ユーザの眼の中に指向し、拡張現実画像コンテンツを前記ユーザの視野に表示するように構成され、前記接眼レンズの少なくとも一部は、透明であり、前記接眼レンズの前記少なくとも一部が、前記ユーザの正面の環境からの光を前記ユーザの眼に透過させ、前記ユーザの正面の環境のビューを提供するように、前記ユーザが前記頭部搭載型ディスプレイシステムを装着すると、前記ユーザの眼の正面の場所に配置され、前記接眼レンズは、
(a)少なくとも1つの導波管と、
(b)前記画像プロジェクタからの光をその中で誘導するように、前記画像プロジェクタからの光を前記少なくとも1つの導波管の中に内部結合するように構成される少なくとも1つの内部結合光学要素と、
(c)前記少なくとも1つの導波管内で誘導される前記画像プロジェクタからの光を前記少なくとも1つの導波管から外に結合し、前記光を前記ユーザの眼に指向するように構成される少なくとも1つの結合光学要素と、
(d)前記少なくとも1つの導波管内で誘導される前記光を前記少なくとも1つの導波管から外に結合し、前記光を前記カメラに指向するように構成される少なくとも1つの外部結合光学要素と
を備える、接眼レンズと、
前記接眼レンズを通して通過する前記ユーザの眼から反射された光を受け取り、前記光を前記接眼レンズに戻るように指向するように配置される屈折力を有する反射性表面と、
前
記光源および前記カメラに結合される電子機器であって、前記電子機器は、前
記光源によって放出される光が、前記カメラが画像を捕捉していないときに、低減された強度を有するように、前記カメラによる画像の捕捉に合わせて前
記光源をパルス化しながら、周期的に前記画像を捕捉するように前記カメラを制御するように構成される、電子機器と
を備え、
前記画像プロジェクタは、前記少なくとも1つの内部結合光学要素に対して光学経路内に配置され、前記画像プロジェクタからの光を前記少なくとも1つの導波管の中に内部結合し、前記画像プロジェクタからの前記画像が前記ユーザの視野内にあるように、前記光が、前記少なくとも1つの結合光学要素によって、前記少なくとも1つの導波管から外に前記ユーザの眼へと結合されるように、その中で誘導されるようにし、
前記少なくとも1つの結合光学要素は、前記接眼レンズを通して通過し、前記反射性表面から前記接眼レンズに戻るように反射される、前記ユーザの眼からの光が、前記少なくとも1つの導波管の中に結合され、その中で誘導されるように構成され、
前記カメラは、前記少なくとも1つの外部結合光学要素に対して光学経路内に配置され、前記反射性表面から反射され、前記少なくとも1つの結合光学要素を介して、前記少なくとも1つの導波管の中に結合され、その中で誘導され、前記少なくとも1つの外部結合光学要素によって、前記少なくとも1つの導波管から外に結合される、前記ユーザの眼からの前記光の少なくとも一部を受け取る、頭部搭載型ディスプレイシステム。
【請求項2】
前記光源は、赤外線光を前記ユーザの眼に指向するように構成される1つ以上の赤外線光源を備える、請求項1に記載の頭部搭載型ディスプレイシステム。
【請求項3】
前記光源は、1つ以上の赤外線発光ダイオード(LED)を備える、請求項1または2に記載の頭部搭載型ディスプレイシステム。
【請求項4】
前記光源からの光を受け取り、前記眼を前記光で照明するように配置される軸外反射体をさらに備える、請求項1~3のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項5】
前記反射性表面は、赤外線光を反射させるが、可視光を透過させる、請求項1~4のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項6】
前記反射性表面は、湾曲している、請求項1~5のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項7】
前記反射性表面は、反射では、正の屈折力を有し、透過では、無視可能な屈折力を有する、請求項1~6のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項8】
前記反射性表面は、前記ユーザの眼からの光をコリメートするように構成される、請求項1~7のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項9】
前記反射性表面は、前記ユーザの眼の網膜からの光をコリメートするように構成される、請求項1~8のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項10】
前記反射性表面は、前記ユーザの眼の前部領域からの光をコリメートするように構成される、請求項1~9のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項11】
前記反射性表面は、前記ユーザの眼の角膜からの光をコリメートするように構成される、請求項1~10のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項12】
前記少なくとも1つの外部結合光学要素は、軸外反射体を備える、請求項1~11のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項13】
前記少なくとも1つの内部結合光学要素は、軸外反射体を備える、請求項1~12のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項14】
前記少なくとも1つの導波管は、導波管のスタックを備える、請求項1~13のいずれかに記載の頭部搭載型ディスプレイシステム。
【請求項15】
前記導波管のスタックの異なる導波管は、前記ユーザの眼からの異なる距離から投影されるかのように、異なる波面発散を伴う光を出力するように構成される、請求項14に記載の頭部搭載型ディスプレイシステム。
【請求項16】
前記導波管のスタックの異なる導波管は、異なる色を伴う光を出力するように構成される、請求項14または15に記載の頭部搭載型ディスプレイシステム。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本願は、参照することによってその全体として本明細書に組み込まれる、35U.S.C.§119(e)下、2017年9月21日に出願され、「AUGUMENTED REALITY DISPLAY WITH EYEPIECE CONFIGURED TO CAPTURE IMAGES OF EYE AND ENVIRONMENT」と題された、米国仮出願第62/561645号の優先権の利益を主張する。
【0002】
本開示は、拡張現実結像および可視化システムを含む、光学デバイスに関する。
【背景技術】
【0003】
現代のコンピューティングおよびディスプレイ技術は、いわゆる「仮想現実」または「拡張現実」体験のためのシステムの開発を促進しており、デジタル的に再現された画像またはその一部が、現実であるように見える、またはそのように知覚され得る様式でユーザに提示される。仮想現実または「VR」シナリオは、典型的には、他の実際の実世界の視覚的入力に対する透過性を伴わずに、デジタルまたは仮想画像情報の提示を伴い、拡張現実または「AR」シナリオは、典型的には、ユーザの周囲の実際の世界の可視化に対する拡張としてのデジタルまたは仮想画像情報の提示を伴う。複合現実または「MR」シナリオは、一種のARシナリオであって、典型的には、自然世界の中に統合され、それに応答する、仮想オブジェクトを伴う。例えば、MRシナリオは、実世界内のオブジェクトによってブロックされて見える、または別様にそれと相互作用するように知覚される、AR画像コンテンツを含んでもよい。
【0004】
図1を参照すると、拡張現実場面10が、描写されている。AR技術のユーザには、人々、木々、背景における建物、コンクリートプラットフォーム30を特徴とする、実世界公園状設定20が見える。ユーザはまた、実世界プラットフォーム30上に立っているロボット像40と、マルハナバチの擬人化のように見える、飛んでいる漫画のようなアバタキャラクタ50等の「仮想コンテンツ」を「見ている」と知覚する。これらの要素50、40は、実世界には存在しないという点で、「仮想」である。ヒトの視知覚系は、複雑であって、他の仮想または実世界画像要素間における仮想画像要素の快適で、自然のような感覚で、かつ豊かな提示を促進する、AR技術の生産は、困難である。
【0005】
本明細書に開示されるシステムおよび方法は、ARまたはVR技術に関連する種々の課題に対処する。
【0006】
偏光ビームスプリッタは、ディスプレイシステムにおいて、偏光を光変調器に指向し、次いで、本光を視認者に指向するために使用されてもよい。概して、ディスプレイシステムのサイズを低減させることの継続的需要が存在し、その結果、偏光ビームスプリッタを利用する構成部分を含む、ディスプレイシステムの構成部分のサイズを低減させる需要もまた存在する。
【発明の概要】
【課題を解決するための手段】
【0007】
本明細書に説明される種々の実装は、照明および/または画像投影を眼に提供するように構成される、ディスプレイシステムを含む。加えて、または代替として、ディスプレイシステムは、眼および/または環境を結像することができる。
【0008】
いくつかの実施形態では、頭部搭載型ディスプレイシステムは、光をユーザの眼に投影し、拡張現実画像コンテンツを該ユーザの視野内に表示するように構成される。頭部搭載型ディスプレイシステムは、ユーザの頭部上に支持されるように構成される、フレームを含むことができる。ディスプレイシステムはまた、画像をユーザの眼の中に投影し、画像コンテンツをユーザの視野内に表示するように構成される、画像プロジェクタを含むことができる。ディスプレイシステムは、カメラと、少なくとも1つの導波管と、光が、該導波管の中に結合され、その中で誘導されるように構成される、少なくとも1つの結合光学要素と、少なくとも1つの外部結合要素とを含むことができる。少なくとも1つの外部結合要素は、該導波管内で誘導される光を該導波管から外に結合し、該光を該カメラに指向するように構成されることができる。カメラは、画像が該カメラによって捕捉され得るように、該少なくとも1つの外部結合光学要素に対して光学経路内に配置され、結合要素を介して該導波管の中に結合され、その中で誘導され、該外部結合要素によって該導波管から外に結合される、光の少なくとも一部を受け取ることができる。
本発明は、例えば、以下を提供する。
(項目1)
光をユーザの眼に投影し、拡張現実画像コンテンツを前記ユーザの視野内に表示するように構成される頭部搭載型ディスプレイシステムであって、前記頭部搭載型ディスプレイシステムは、
フレームであって、前記フレームは、前記ユーザの頭部上に支持されるように構成される、フレームと、
画像プロジェクタであって、前記画像プロジェクタは、画像を前記ユーザの眼の中に投影し、画像コンテンツを前記ユーザの視野内に表示するように構成される、画像プロジェクタと、
カメラと、
少なくとも1つの導波管と、
少なくとも1つの結合光学要素であって、前記少なくとも1つの結合光学要素は、光が、前記導波管の中に結合され、その中で誘導されるように構成される、少なくとも1つの結合光学要素と、
少なくとも1つの外部結合要素であって、前記少なくとも1つの外部結合要素は、前記導波管内で誘導される光を前記導波管から外に結合し、前記光を前記カメラに指向するように構成される、少なくとも1つの外部結合要素と
を備え、
前記カメラは、画像が前記カメラによって捕捉され得るように、前記少なくとも1つの外部結合光学要素に対して光学経路内に配置され、前記結合要素を介して前記導波管の中に結合され、その中で誘導され、前記外部結合要素によって前記導波管から外に結合される、前記光の少なくとも一部を受け取る、頭部搭載型ディスプレイシステム。
(項目2)
前記少なくとも1つの結合光学要素は、前記環境の画像が前記カメラによって捕捉され得るように、前記頭部搭載型ディスプレイシステムを装着している前記ユーザの正面の環境からの光が、前記少なくとも1つの導波管の中に結合され、その中で誘導されるように構成される、項目1に記載のシステム。
(項目3)
前記少なくとも1つの結合光学要素は、前記眼の画像が前記カメラによって捕捉され得るように、前記頭部搭載型ディスプレイシステムを装着している前記ユーザの眼から反射された光が、前記少なくとも1つの導波管の中に結合され、その中で誘導されるように構成される、項目1に記載のシステム。
(項目4)
前記少なくとも1つの結合光学要素は、前記眼の画像が前記カメラによって捕捉され得るように、前記頭部搭載型ディスプレイシステムを装着している前記ユーザの眼から反射された光が、前記導波管の中に結合され、その中で誘導されるように構成され、前記システムは、前記眼の前部部分を結像するように構成される、項目1に記載のシステム。
(項目5)
前記少なくとも1つの結合光学要素は、前記眼の画像が前記カメラによって捕捉され得るように、前記頭部搭載型ディスプレイシステムを装着している前記ユーザの眼から反射された光が、前記導波管の中に結合され、その中で誘導されるように構成され、前記システムは、前記眼の角膜表面を結像するように構成される、項目1に記載のシステム。
(項目6)
前記少なくとも1つの結合光学要素は、前記眼の画像が前記カメラによって捕捉され得るように、前記頭部搭載型ディスプレイシステムを装着している前記ユーザの眼から反射された光が、前記導波管の中に結合され、その中で誘導されるように構成され、前記システムは、前記ユーザの眼の網膜を結像するように構成される、項目1に記載のシステム。
(項目7)
前記フレーム上に配置される接眼レンズをさらに備え、前記接眼レンズは、光を前記ユーザの眼の中に指向し、拡張現実画像コンテンツをユーザの視野に表示するように構成され、前記接眼レンズの少なくとも一部は、透明であり、前記透明部分が、前記ユーザの正面の環境からの光をユーザの眼に透過させ、前記ユーザの正面の環境のビューを提供するように、前記ユーザが前記頭部搭載型ディスプレイを装着すると、前記ユーザの眼の正面の場所に配置される、項目1に記載のシステム。
(項目8)
前記接眼レンズは、前記画像プロジェクタからの光を受け取り、前記光を前記ユーザの眼の中に指向し、拡張現実画像コンテンツをユーザの視野に表示するように構成される、項目7に記載のシステム。
(項目9)
前記接眼レンズは、前記少なくとも1つの導波管を備える、項目7に記載のシステム。
(項目10)
前記画像プロジェクタは、光を前記接眼レンズの縁の中に指向するように構成される、項目7に記載のシステム。
(項目11)
前記画像プロジェクタは、光を前記少なくとも1つの導波管の縁の中に指向するように構成される、項目9に記載のシステム。
(項目12)
前記画像コンテンツを前記ユーザの眼に提供するために、前記画像プロジェクタからの光を誘導するように、前記画像プロジェクタからの光を前記少なくとも1つの導波管の中に内部結合するように構成される少なくとも1つの内部結合光学要素をさらに備える、項目1に記載のシステム。
(項目13)
前記少なくとも1つの結合光学要素はまた、画像コンテンツがユーザの眼によって視認され得るように、前記導波管内で誘導される前記画像プロジェクタからの光を前記少なくとも1つの導波管から外に結合するように構成される、項目1に記載のシステム。
(項目14)
同一結合光学要素が、画像コンテンツがユーザの眼によって視認され得るように、前記導波管内で誘導される前記画像プロジェクタからの光を前記導波管から外に結合し、前記カメラまで前記少なくとも1つの導波管の中で誘導されるように、光を前記少なくとも1つの導波管の中に結合するように構成される、項目1に記載のシステム。
(項目15)
画像コンテンツがユーザの眼によって視認され得るように、前記導波管内で誘導される前記画像プロジェクタからの光を前記少なくとも1つの導波管から外に結合するように構成される少なくとも1つの画像コンテンツ外部結合光学要素をさらに備える、項目1に記載のシステム。
(項目16)
前記少なくとも1つの結合光学要素は、前記頭部搭載型結像システムを装着している前記ユーザの眼に面し、前記眼からの光を受け取る、項目1に記載のシステム。
(項目17)
前記少なくとも1つの結合光学要素は、前記環境の画像が前記カメラによって捕捉され得るように、前記頭部搭載型結像システムを装着している前記ユーザの正面の環境からの光が、前記少なくとも1つの導波管の中に結合され、前記少なくとも1つの導波管の中で誘導されるように構成される、項目1に記載のシステム。
(項目18)
前記少なくとも1つの結合光学要素は、前記頭部搭載型結像システムを装着している前記ユーザの正面の環境に面し、前記環境からの光を受け取る、項目1に記載のシステム。
(項目19)
前記導波管内で誘導される前記画像プロジェクタからの光を前記少なくとも1つの導波管から外に結合するように構成される前記少なくとも1つの画像コンテンツ外部結合光学要素と、前記光が、前記導波管の中に結合され、前記導波管の中で前記カメラまで誘導されるように構成される少なくとも1つの結合光学要素は、相互の上に重畳される、項目15に記載のシステム。
(項目20)
前記導波管内で誘導される前記画像プロジェクタからの光を前記少なくとも1つの導波管から外に結合するように構成される前記少なくとも1つの画像コンテンツ外部結合光学要素と、前記光が、前記導波管の中に結合され、前記導波管の中で前記カメラまで誘導されるように構成される少なくとも1つの結合光学要素は、他方にわたってスタックされる、項目15に記載のシステム。
【図面の簡単な説明】
【0009】
【
図1】
図1は、ARデバイスを通した拡張現実(AR)のユーザのビューを図示する。
【0010】
【
図2】
図2は、ウェアラブルディスプレイシステムの実施例を図示する。
【0011】
【
図3】
図3は、ユーザのための3次元画像をシミュレートするための従来のディスプレイシステムを図示する。
【0012】
【
図4】
図4は、複数の深度平面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。
【0013】
【
図5】
図5A-5Cは、曲率半径と焦点半径との間の関係を図示する。
【0014】
【
図6】
図6は、画像情報をユーザに出力するための導波管スタックの実施例を図示する。
【0015】
【
図7】
図7は、導波管によって出力された出射ビームの実施例を図示する。
【0016】
【
図8】
図8は、スタックされた導波管アセンブリの実施例を図示し、各深度平面は、複数の異なる原色を使用して形成される画像を含む。
【0017】
【
図9A】
図9Aは、それぞれ、内部結合光学要素を含む、スタックされた導波管のセットの実施例の断面側面図を図示する。本明細書で議論されるように、導波管のスタックは、接眼レンズを備えてもよい。
【0018】
【0019】
【
図9C】
図9Cは、
図9Aおよび9Bの複数のスタックされた導波管の実施例の上下平面図を図示する。
【0020】
【
図10】
図10は、接眼レンズと、画像プロジェクタと、眼を照明するための光源と、眼の画像を捕捉するためのカメラとを備える、例示的結像システムの断面側面図を図式的に図示する。
【0021】
【
図11A】
図11Aは、眼を照明するための光源および画像を眼内に投入するための画像プロジェクタの両方が、光を接眼レンズの導波管上の内部結合光学要素に向かって放出する様子を図式的に図示する。
【0022】
【
図11B】
図11Bは、光源および画像プロジェクタから投影された光が、導波管の中に結合される様子を図式的に図示する。
【0023】
【
図11C】
図11Cは、内部結合された光が、全内部反射によって導波管を通して伝搬し得る様子を図式的に図示する。
【0024】
【
図11D】
図11Dは、光源および画像プロジェクタからの光が、接眼レンズから外に結合される様子を図式的に図示する。
【0025】
【
図11E】
図11Eは、少なくとも結合光学要素の全次元に沿って(例えば、x-方向に沿って)内部結合された光を伝搬するように構成される、導波管および結合光学要素を図式的に図示する。眼に入射する光は、延在源から示される(例えば、結像光は、網膜の領域を捕捉するであろう)。
【0026】
【
図12A】
図12Aは、眼から出射し、接眼レンズ上に入射する、網膜から反射された光を図式的に示す、断面図である。
【0027】
【
図12B】
図12Bは、接眼レンズの導波管の中に結合される、例示的光を図式的に図示する。
【0028】
【
図12C】
図12Cは、眼からのコリメートされ、内部結合された光が、導波管を通して、結像デバイスに向かって伝搬する様子を図式的に図示する。
【0029】
【
図12D】
図12Dは、眼からの内部結合された光が、1つ以上の外部結合光学要素に伝搬する様子を図式的に示す。
【0030】
【
図12E】
図12Eは、眼の画像(例えば、網膜)がカメラによって捕捉され得るように、眼からの光が、外部結合光学要素によって導波管から外に結合され、カメラに指向される様子を図式的に図示する。
【0031】
【
図13A】
図13Aは、結像システムが、眼、例えば、網膜の種々の部分を結像し得る様子を図式的に図示し、これは、眼の配向が決定され、眼位置が追跡されることを可能にすることができる。
【0032】
【
図13B】
図13Bは、眼を種々の異なる方向に指向させるために使用される、順次表示される固定標的のパターンを図示し、その間、網膜は、結像される。結果として生じる画像は、網膜の同じではない部分に対応する。例えば、眼が、種々の方向に指向され、ディスプレイ上の異なるように位置する固定標的を視認すると、カメラによって捕捉された画像は、網膜の異なる部分を含む。これらの画像は、組み立てられ、網膜のより大きいマップまたは合成画像を形成することができる。
【0033】
【
図14A】
図14Aは、接眼レンズと、接眼レンズの前方の環境からの光を収集するためのカメラとを備える、結像システムの断面図を図式的に図示する。環境からの光は、環境内の1つ以上の物理的オブジェクトから反射または放出されるように示される。接眼レンズの正面の環境内のオブジェクトからの光の収集は、環境の画像が捕捉されることを可能にすることができる。
【0034】
【
図14B】
図14Bは、環境からの光が、結合光学要素によって接眼レンズの導波管の中に結合される様子を図式的に図示する。
【0035】
【
図14C】
図14Cは、接眼レンズの前方の屈折光学要素(例えば、広視野レンズ等のレンズ)等の屈折力型光学要素を使用して環境からの光を収集するための、結像システムを図式的に図示する。
【0036】
【
図15A】
図15Aは、光を照明源から受け取り、光を接眼レンズ内の導波管の中に結合するための偏光選択的内部結合光学要素を備える、例示的結像システムを図式的に図示する。接眼レンズはさらに、光を導波管から外に結合するための偏光選択的光結合要素を含む。偏光器が、照明源からの光を偏光させるために使用されてもよく、半波リターダが、偏光選択的内部結合光学要素によって導波管の中に方向転換されるように、線形偏光の配向を回転させるために使用されてもよい。
【0037】
【
図15B】
図15Bは、眼からの(例えば、照明源からの赤外線光で照明された網膜からの)光が、導波管の中に戻るように結合され、画像捕捉のためのカメラに指向される様子を図式的に図示する。
【0038】
【
図16】
図16は、眼の前部部分(例えば、角膜)を結像するために構成される、結像システムを図式的に図示する。結像システムは、上記に説明されるような接眼レンズを備える。結像システムはさらに、光学結合要素を介して導波管の中に結合し、画像捕捉のためのカメラに伝搬させるために、眼の前部部分から収集された光をコリメートするための正のレンズを含む。本システムはさらに、正のレンズによって導入される正の屈折力をオフセットし、そうでなければ正のレンズによって生じるであろう、接眼レンズの正面の環境の画像の反転を防止するための負のレンズを備える。
【0039】
【
図17】
図17は、眼の前部部分(例えば、角膜)を結像するために構成される、別の例示的結像システムを図式的に図示する。結像システムは、光学結合要素を介して導波管の中に結合し、画像捕捉のためのカメラに伝搬させるために、眼の前部部分からの光をコリメートする、湾曲波長選択的反射体を備える。波長選択的反射体は、眼から反射された赤外線光のために、反射的に動作し、ユーザの正面の環境からの可視光のために、透過的に動作し得る。
【0040】
【
図18】
図18は、同様に、光学結合要素を介して導波管の中に結合し、画像捕捉のためのカメラに伝搬させるために、眼の前部部分からの光をコリメートする、湾曲波長選択的反射体を含む、例示的結像システムを図式的に図示する。偏光選択性が、眼から反射された光の経路を制御することを補助するために採用されてもよい。眼の照明は、
図18に示されるように、導波管と眼との間の複数の光源の代わりに、導波管を介して提供される。
【0041】
【
図19】
図19は、雑音を取り去るためのプロシージャを補助するためのシャッタを含む、結像システムを図式的に図示する。
【0042】
【
図20A】
図20A-20Eは、湾曲波長選択的反射体と併せて波長変調を使用して雑音を取り去るための、代替プロシージャを図式的に図示する。
【
図20B】
図20A-20Eは、湾曲波長選択的反射体と併せて波長変調を使用して雑音を取り去るための、代替プロシージャを図式的に図示する。
【
図20C】
図20A-20Eは、湾曲波長選択的反射体と併せて波長変調を使用して雑音を取り去るための、代替プロシージャを図式的に図示する。
【
図20D】
図20A-20Eは、湾曲波長選択的反射体と併せて波長変調を使用して雑音を取り去るための、代替プロシージャを図式的に図示する。
【
図20E】
図20A-20Eは、湾曲波長選択的反射体と併せて波長変調を使用して雑音を取り去るための、代替プロシージャを図式的に図示する。
【0043】
【
図21】
図21は、ユーザの眼またはユーザの正面の環境の画像データを受信しながら、同時に、光をユーザの眼の中に投影し、画像コンテンツをそこに提供するために使用され得る、例示的接眼レンズを示す。
【0044】
【
図22】
図22は、複数の均一キラル構造を有する、コレステリック液晶回折格子(CLCG)の実施例の断面側面図を図示する。
【0045】
【
図23】
図23は、コレステリック液晶(CLC)軸外ミラーを使用して装着者の眼を結像するように構成される、前向きに向いたカメラを備える、結像システムの実施例を図示する。
【0046】
図面は、例示的実施形態を図示するために提供され、本開示の範囲を限定することを意図するものではない。同様の参照番号は、全体を通して同様の部分を指す。
【発明を実施するための形態】
【0047】
ここで、図面を参照するが、同様の参照番号は、全体を通して同様の部分を指す。
【0048】
図2は、ウェアラブルディスプレイシステム60の実施例を図示する。ディスプレイシステム60は、ディスプレイ70と、そのディスプレイ70の機能をサポートするための種々の機械的および電子モジュールおよびシステムとを含む。ディスプレイ70は、フレーム80に結合されてもよく、これは、ディスプレイシステムユーザまたは視認者90によって装着可能であって、ディスプレイ70をユーザ90の眼の正面に位置付けるように構成される。ディスプレイ70は、いくつかの実施形態におけるアイウェアと見なされてもよい。いくつかの実施形態では、スピーカ100が、フレーム80に結合され、ユーザ90の外耳道に隣接して位置付けられるように構成される(いくつかの実施形態では、示されない別のスピーカが、随意に、ユーザの他方の外耳道に隣接して位置付けられ、ステレオ/成形可能音制御を提供してもよい)。ディスプレイシステムはまた、1つ以上のマイクロホン110または他のデバイスを含み、音を検出してもよい。いくつかの実施形態では、マイクロホンは、ユーザが、入力またはコマンドをシステム60に提供することを可能にするように構成され(例えば、音声メニューコマンドの選択、自然言語質問等)、および/または他の人物(例えば、類似ディスプレイシステムの他のユーザ)とのオーディオ通信を可能にしてもよい。マイクロホンはさらに、周辺センサとして構成され、オーディオデータ(例えば、ユーザおよび/または環境からの音)を収集してもよい。いくつかの実施形態では、ディスプレイシステムはまた、周辺センサ120aを含んでもよく、これは、フレーム80と別個であって、ユーザ90の身体(例えば、ユーザ90の頭部、胴体、四肢等上)に取り付けられてもよい。周辺センサ120aは、いくつかの実施形態では、ユーザ90の生理学的状態を特徴付けるデータを取得するように構成されてもよい。例えば、センサ120aは、電極であってもよい。
【0049】
図2を継続して参照すると、ディスプレイ70は、有線導線または無線コネクティビティ等の通信リンク130によって、ローカルデータ処理モジュール140に動作可能に結合され、これは、フレーム80に固定して取り付けられる、ユーザによって装着されるヘルメットまたは帽子に固定して取り付けられる、ヘッドホン内に埋設される、または別様にユーザ90に除去可能に取り付けられる(例えば、リュック式構成、ベルト結合式構成において)等、種々の構成で搭載されてもよい。同様に、センサ120aは、通信リンク120b、例えば、有線導線または無線コネクティビティによって、ローカルデータ処理モジュール140に動作可能に結合されてもよい。ローカル処理およびデータモジュール140は、ハードウェアプロセッサおよび不揮発性メモリ(例えば、フラッシュメモリまたはハードディスクドライブ)等のデジタルメモリを備えてもよく、両方とも、データの処理、キャッシュ、および記憶を補助するために利用されてもよい。データは、a)センサ(画像捕捉デバイス(カメラ等)、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、ジャイロスコープ、および/または本明細書に開示される他のセンサ(例えば、フレーム80に動作可能に結合される、または別様にユーザ90に取り付けられ得る)から捕捉されたデータ、および/またはb)可能性として処理または読出後にディスプレイ70への通過のための遠隔処理モジュール150および/または遠隔データリポジトリ160(仮想コンテンツに関連するデータを含む)を使用して取得および/または処理されたデータを含む。ローカル処理およびデータモジュール140は、これらの遠隔モジュール150、160が相互に動作可能に結合され、ローカル処理およびデータモジュール140に対するリソースとして利用可能であるように、有線または無線通信リンクを介して等、通信リンク170、180によって、遠隔処理モジュール150および遠隔データリポジトリ160に動作可能に結合されてもよい。いくつかの実施形態では、ローカル処理およびデータモジュール140は、画像捕捉デバイス、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、および/またはジャイロスコープのうちの1つ以上のものを含んでもよい。いくつかの他の実施形態では、これらのセンサのうちの1つ以上のものは、フレーム80に取り付けられてもよい、または有線または無線通信経路によってローカル処理およびデータモジュール140と通信する、独立構造であってもよい。
【0050】
図2を継続して参照すると、いくつかの実施形態では、遠隔処理モジュール150は、データおよび/または画像情報を分析および処理するように構成される、1つ以上のプロセッサを備えてもよい。いくつかの実施形態では、遠隔データリポジトリ160は、インターネットまたは「クラウド」リソース構成における他のネットワーキング構成を通して利用可能であり得る、デジタルデータ記憶設備を備えてもよい。いくつかの実施形態では、遠隔データリポジトリ160は、1つ以上の遠隔サーバを含んでもよく、これは、情報、例えば、拡張現実コンテンツをローカル処理およびデータモジュール140および/または遠隔処理モジュール150に生成するための情報を提供する。いくつかの実施形態では、全てのデータが、記憶され、全ての計算は、ローカル処理およびデータモジュール内で行われ、遠隔モジュールからの完全に自律的な使用を可能にする。
【0051】
ここで
図3を参照すると、「3次元」または「3-D」としての画像の知覚は、視認者の各眼への画像の若干異なる提示を提供することによって達成され得る。
図3は、ユーザに関する3次元画像をシミュレートするための従来のディスプレイシステムを図示する。眼210、220毎に1つの2つの明確に異なる画像190、200が、ユーザに出力される。画像190、200は、視認者の視線と平行な光学軸またはz-軸に沿って距離230だけ眼210、220から離間される。画像190、200は、平坦であって、眼210、220は、単一の遠近調節された状態をとることによって、画像上に合焦し得る。そのような3-Dディスプレイシステムは、ヒト視覚系に依拠し、画像190、200を組み合わせ、組み合わせられた画像の深度および/または尺度の知覚を提供する。
【0052】
しかしながら、ヒト視覚系は、より複雑であって、深度の現実的知覚を提供することは、より困難であることを理解されたい。例えば、従来の「3-D」ディスプレイシステムの多くの視認者は、そのようなシステムが不快であることを見出す、または深度の感覚を全く知覚しない場合がある。理論によって限定されるわけではないが、オブジェクトの視認者は、輻輳・開散運動(vergence)および遠近調節(accommodation)の組み合わせに起因して、オブジェクトを「3次元」として知覚し得ると考えられる。相互に対する2つの眼の輻輳・開散運動の移動(例えば、瞳孔が、眼の視線を収束させ、オブジェクトに固視させるための相互に向かって、またはそこから離れるように移動する、眼の回転)は、眼の水晶体および瞳孔の集束(または「遠近調節」)と密接に関連付けられる。通常条件下では、眼の水晶体の焦点を変化させる、または眼を遠近調節し、1つのオブジェクトから異なる距離における別のオブジェクトに焦点を変化させることは、「遠近調節-輻輳・開散運動反射」および瞳孔拡張または収縮として知られる関係下、同一距離までの輻輳・開散運動における整合変化を自動的に生じさせるであろう。同様に、輻輳・開散運動における変化は、正常条件下では、水晶体形状および瞳孔サイズの遠近調節における整合変化を誘起するであろう。本明細書に記載されるように、多くの立体視または「3-D」ディスプレイシステムは、3次元視点がヒト視覚系によって知覚されるように、各眼への若干異なる提示(したがって、若干異なる画像)を使用して、場面を表示する。しかしながら、そのようなシステムは、とりわけ、単に、場面の異なる提示を提供するが、眼が全画像情報を単一の遠近調節された状態において視認すると、「遠近調節-輻輳・開散運動反射」に対抗して機能するため、多くの視認者にとって不快である。遠近調節と輻輳・開散運動との間のより優れた整合を提供するディスプレイシステムは、3次元画像のより現実的かつ快適なシミュレーションを形成し得る。
【0053】
図4は、複数の深度平面を使用して3次元画像をシミュレートするためのアプローチの側面を図示する。
図4を参照すると、z-軸上の眼210、220からの種々の距離におけるオブジェクトは、それらのオブジェクトが合焦するように、眼210、220によって遠近調節される。眼210、220は、特定の遠近調節された状態をとり、z-軸に沿って異なる距離においてオブジェクトに合焦させる。その結果、特定の遠近調節された状態は、特定の深度平面におけるオブジェクトまたはオブジェクトの一部が、眼がその深度平面のための遠近調節された状態にあるとき合焦するように、関連付けられた焦点距離を有する、深度平面240のうちの特定の1つと関連付けられると言え得る。いくつかの実施形態では、3次元画像は、眼210、220毎に画像の異なる提示を提供することによって、また、深度平面のそれぞれに対応する画像の異なる提示を提供することによってシミュレートされてもよい。例証を明確にするために、別個であるように示されるが、眼210、220の視野は、例えば、z-軸に沿った距離が増加するにつれて重複し得ることを理解されたい。加えて、例証を容易にするために、平坦として示されるが、深度平面の輪郭は、深度平面内の全ての特徴が特定の遠近調節された状態における眼と合焦するように、物理的空間内で湾曲され得ることを理解されたい。
【0054】
オブジェクトと眼210または220との間の距離はまた、その眼によって視認されるようなそのオブジェクトからの光の発散の量を変化させ得る。
図5A-5Cは、距離と光線の発散との間の関係を図示する。オブジェクトと眼210との間の距離は、減少距離R1、R2、およびR3の順序で表される。
図5A-5Cに示されるように、光線は、オブジェクトまでの距離が減少するにつれてより発散する。距離が増加するにつれて、光線は、よりコリメートされる。換言すると、点(オブジェクトまたはオブジェクトの一部)によって生成されるライトフィールドは、点がユーザの眼から離れている距離の関数である、球状波面曲率を有すると言え得る。曲率は、オブジェクトと眼210との間の距離の減少に伴って増加する。その結果、異なる深度平面では、光線の発散度もまた、異なり、発散度は、深度平面と視認者の眼210との間の距離の減少に伴って増加する。単眼210のみが、例証を明確にするために、
図5A-5Cおよび本明細書の種々の他の図に図示されるが、眼210に関する議論は、視認者の両眼210および220に適用され得ることを理解されたい。
【0055】
理論によって限定されるわけではないが、ヒトの眼は、典型的には、有限数の深度平面を解釈し、深度知覚を提供することができると考えられる。その結果、知覚された深度の高度に真実味のあるシミュレーションが、眼にこれらの限定数の深度平面のそれぞれに対応する画像の異なる提示を提供することによって達成され得る。異なる提示は、視認者の眼によって別個に集束され、それによって、異なる深度平面上に位置する場面のための異なる画像特徴に合焦させるために要求される眼の遠近調節に基づいて、および/または焦点がずれている異なる深度平面上の異なる画像特徴の観察に基づいて、ユーザに深度合図を提供することに役立ててもよい。
【0056】
図6は、画像情報をユーザに出力するための導波管スタックの実施例を図示する。ディスプレイシステム250は、複数の導波管270、280、290、300、310を使用して3次元知覚を眼/脳に提供するために利用され得る、導波管のスタックまたはスタックされた導波管アセンブリ260を含む。いくつかの実施形態では、ディスプレイシステム250は、
図2のシステム60であって、
図6は、そのシステム60のいくつかの部分をより詳細に概略的に示す。例えば、導波管アセンブリ260は、
図2のディスプレイ70の一部であってもよい。ディスプレイシステム250は、いくつかの実施形態では、ライトフィールドディスプレイと見なされてもよいことを理解されたい。加えて、導波管アセンブリ260はまた、接眼レンズとも称され得る。
【0057】
図6を継続して参照すると、導波管アセンブリ260はまた、複数の特徴320、330、340、350を導波管間に含んでもよい。いくつかの実施形態では、特徴320、330、340、350は、1つ以上のレンズであってもよい。導波管270、280、290、300、310および/または複数のレンズ320、330、340、350は、種々のレベルの波面曲率または光線発散を用いて画像情報を眼に送信するように構成されてもよい。各導波管レベルは、特定の深度平面と関連付けられてもよく、その深度平面に対応する画像情報を出力するように構成されてもよい。画像投入デバイス360、370、380、390、400は、導波管のための光源として機能してもよく、画像情報を導波管270、280、290、300、310の中に投入するために利用されてもよく、それぞれ、本明細書に説明されるように、眼210に向かって出力のために各個別の導波管を横断して入射光を分散させるように構成されてもよい。光は、画像投入デバイス360、370、380、390、400の出力表面410、420、430、440、450から出射し、導波管270、280、290、300、310の対応する入力表面460、470、480、490、500の中に投入される。いくつかの実施形態では、入力表面460、470、480、490、500はそれぞれ、対応する導波管の縁であってもよい、または対応する導波管の主要表面の一部(すなわち、世界510または視認者の眼210に直接面する導波管表面のうちの1つ)であってもよい。いくつかの実施形態では、光の単一ビーム(例えば、コリメートされたビーム)が、各導波管の中に投入され、クローン化されたコリメートビームの全体場を出力してもよく、これは、特定の導波管と関連付けられた深度平面に対応する特定の角度(および発散量)において眼210に向かって指向される。いくつかの実施形態では、画像投入デバイス360、370、380、390、400のうちの単一の1つは、複数(例えば、3つ)の導波管270、280、290、300、310と関連付けられ、その中に光を投入してもよい。
【0058】
いくつかの実施形態では、画像投入デバイス360、370、380、390、400はそれぞれ、それぞれ対応する導波管270、280、290、300、310の中への投入のために画像情報を生成する、離散ディスプレイである。いくつかの他の実施形態では、画像投入デバイス360、370、380、390、400は、例えば、画像情報を1つ以上の光学導管(光ファイバケーブル等)を介して画像投入デバイス360、370、380、390、400のそれぞれに送り得る、単一の多重化されたディスプレイの出力端である。画像投入デバイス360、370、380、390、400によって提供される画像情報は、異なる波長または色(例えば、本明細書に議論されるように、異なる原色)の光を含んでもよいことを理解されたい。
【0059】
いくつかの実施形態では、導波管270、280、290、300、310の中に投入される光は、光プロジェクタシステム520によって提供され、これは、光モジュール540を備え、これは、発光ダイオード(LED)等の光エミッタを含んでもよい。光モジュール540からの光は、ビームスプリッタ550を介して、光変調器530、例えば、空間光変調器によって指向および修正されてもよい。光変調器530は、導波管270、280、290、300、310の中に投入される光の知覚される強度を変化させるように構成されてもよい。空間光変調器の実施例は、液晶ディスプレイ(LCD)を含み、シリコン上液晶(LCOS)ディスプレイを含む。画像投入デバイス360、370、380、390、400は、図式的に図示され、いくつかの実施形態では、これらの画像投入デバイスは、光を導波管270、280、290、300、310の関連付けられたものの中に出力するように構成される、共通投影システム内の異なる光経路および場所を表し得ることを理解されたい。
【0060】
いくつかの実施形態では、ディスプレイシステム250は、光を種々のパターン(例えば、ラスタ走査、螺旋走査、リサジューパターン等)で1つ以上の導波管270、280、290、300、310の中に、最終的には、視認者の眼210に投影するように構成される、1つ以上の走査ファイバを備える、走査ファイバディスプレイであってもよい。いくつかの実施形態では、図示される画像投入デバイス360、370、380、390、400は、光を1つまたは複数の導波管270、280、290、300、310の中に投入するように構成される、単一走査ファイバまたは走査ファイバの束を図式的に表し得る。いくつかの他の実施形態では、図示される画像投入デバイス360、370、380、390、400は、複数の走査ファイバまたは走査ファイバの複数の束を図式的に表し得、それぞれ、光を導波管270、280、290、300、310のうちの関連付けられた1つの中に投入するように構成される。1つ以上の光ファイバは、光を光モジュール540から1つ以上の導波管270、280、290、300、310に透過するように構成されてもよいことを理解されたい。1つ以上の介在光学構造が、走査ファイバまたは複数のファイバと、1つ以上の導波管270、280、290、300、310との間に提供され、例えば、走査ファイバから出射する光を1つ以上の導波管270、280、290、300、310の中に再指向してもよいことを理解されたい。
【0061】
コントローラ560は、画像投入デバイス360、370、380、390、400、光源540、および光変調器530の動作を含む、スタックされた導波管アセンブリ260のうちの1つ以上のものの動作を制御する。いくつかの実施形態では、コントローラ560は、ローカルデータ処理モジュール140の一部である。コントローラ560は、例えば、本明細書に開示される種々のスキームのいずれかに従って、導波管270、280、290、300、310への画像情報のタイミングおよびプロビジョニングを調整する、プログラミング(例えば、非一過性媒体内の命令)を含む。いくつかの実施形態では、コントローラは、単一の一体型デバイスまたは有線または無線通信チャネルによって接続される分散型システムであってもよい。コントローラ560は、いくつかの実施形態では、処理モジュール140または150(
図2)の一部であってもよい。
【0062】
図6を継続して参照すると、導波管270、280、290、300、310は、全内部反射(TIR)によって各個別の導波管内で光を伝搬するように構成されてもよい。導波管270、280、290、300、310はそれぞれ、主要上部表面および主要底部表面およびそれらの主要上部表面と主要底部表面との間に延在する縁を伴う、平面であってもよい、または、別の形状(例えば、湾曲)を有してもよい。図示される構成では、導波管270、280、290、300、310はそれぞれ、各個別の導波管内で伝搬する光を導波管から再指向し、画像情報を眼210に出力することによって、光を導波管から抽出するように構成される、外部結合光学要素570、580、590、600、610を含んでもよい。抽出された光はまた、外部結合光と称され得、外部結合光学要素はまた、光抽出光学要素と称され得る。抽出された光のビームは、導波管によって、導波管内を伝搬する光が光抽出光学要素に衝打する場所において出力され得る。外部結合光学要素570、580、590、600、610は、例えば、本明細書にさらに議論されるような回折光学特徴を含む、格子であってもよい。説明の容易性および図面の明確性のために、導波管270、280、290、300、310の底部主要表面に配置されて図示されるが、いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、本明細書にさらに議論されるように、上部および/または底部主要表面に配置されてもよい、および/または導波管270、280、290、300、310の容積内に直接配置されてもよい。いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、透明基板に取り付けられ、導波管270、280、290、300、310を形成する、材料の層内に形成されてもよい。いくつかの他の実施形態では、導波管270、280、290、300、310は、材料のモノリシック部品であってもよく、外部結合光学要素570、580、590、600、610は、材料のその部品の表面上および/またはその内部に形成されてもよい。
【0063】
図6を継続して参照すると、本明細書に議論されるように、各導波管270、280、290、300、310は、光を出力し、特定の深度平面に対応する画像を形成するように構成される。例えば、眼の最近傍の導波管270は、眼210にコリメートされた光(そのような導波管270の中に投入された)を送達するように構成されてもよい。コリメートされた光は、光学無限遠焦点面を表し得る。次の上方の導波管280は、眼210に到達し得る前に、第1のレンズ350(例えば、負のレンズ)を通して通過する、コリメートされた光を送出するように構成されてもよい。そのような第1のレンズ350は、眼/脳が、その次の上方の導波管280から生じる光を光学無限遠から眼210に向かって内向きにより近い第1の焦点面から生じるように解釈するように、若干の凸面波面曲率を生成するように構成されてもよい。同様に、第3の上方の導波管290は、眼210に到達する前に、その出力光を第1のレンズ350および第2のレンズ340の両方を通して通過させる。第1のレンズ350および第2のレンズ340の組み合わせられた屈折力は、眼/脳が、第3の導波管290から生じる光が次の上方の導波管280からの光であったよりも光学無限遠から人物に向かって内向きにさらに近い第2の焦点面から生じるように解釈するように、別の漸増量の波面曲率を生成するように構成されてもよい。
【0064】
他の導波管層300、310およびレンズ330、320も同様に構成され、スタック内の最高導波管310は、人物に最も近い焦点面を表す集約焦点力のために、その出力をそれと眼との間のレンズの全てを通して送出する。スタックされた導波管アセンブリ260の他側の世界510から生じる光を視認/解釈するとき、レンズ320、330、340、350のスタックを補償するために、補償レンズ層620が、スタックの上部に配置され、下方のレンズスタック320、330、340、350の集約力を補償してもよい。そのような構成は、利用可能な導波管/レンズ対と同じ数の知覚される焦点面を提供する。導波管の外部結合光学要素およびレンズの集束側面は両方とも、静的であってもよい(すなわち、動的ではないまたは電気活性ではない)。いくつかの代替実施形態では、一方または両方とも、電気活性特徴を使用して動的であってもよい。
【0065】
いくつかの実施形態では、導波管270、280、290、300、310のうちの2つ以上のものは、同一の関連付けられた深度平面を有してもよい。例えば、複数の導波管270、280、290、300、310が、同一深度平面に設定される画像を出力するように構成されてもよい、または導波管270、280、290、300、310の複数のサブセットが、深度平面毎に1つのセットを伴う、同一の複数の深度平面に設定される画像を出力するように構成されてもよい。これは、それらの深度平面において拡張された視野を提供するようにタイル化された画像を形成する利点を提供し得る。
【0066】
図6を継続して参照すると、外部結合光学要素570、580、590、600、610は、導波管と関連付けられた特定の深度平面のために、光をその個別の導波管から再指向し、かつ本光を適切な量の発散またはコリメーションを伴って出力するように構成されてもよい。その結果、異なる関連付けられた深度平面を有する導波管は、外部結合光学要素570、580、590、600、610の異なる構成を有してもよく、これは、関連付けられた深度平面に応じて、異なる量の発散を伴う光を出力する。いくつかの実施形態では、光抽出光学要素570、580、590、600、610は、体積特徴または表面特徴であってもよく、これは、具体的角度において光を出力するように構成されてもよい。例えば、光抽出光学要素570、580、590、600、610は、体積ホログラム、表面ホログラム、および/または回折格子であってもよい。いくつかの実施形態では、特徴320、330、340、350は、レンズではなくてもよい。むしろ、それらは、単に、スペーサ(例えば、クラッディング層および/または空隙を形成するための構造)であってもよい。
【0067】
いくつかの実施形態では、外部結合光学要素570、580、590、600、610は、回折パターンを形成する回折特徴または「回折光学要素」(また、本明細書では、「DOE」とも称される)である。好ましくは、DOEは、ビームの光の一部のみがDOEの各交差部で眼210に向かって偏向される一方、残りがTIRを介して導波管を通して移動し続けるように、十分に低回折効率を有する。画像情報を搬送する光は、したがって、様々な場所において導波管から出射するいくつかの関連出射ビームに分割され、その結果、導波管内でバウンスする本特定のコリメートされたビームに関して、眼210に向かって非常に均一パターンの出射放出となる。
【0068】
いくつかの実施形態では、1つ以上のDOEは、能動的に回折する「オン」状態と有意に回折しない「オフ」状態との間で切替可能であってもよい。例えば、切替可能なDOEは、ポリマー分散液晶の層を備えてもよく、その中で微小液滴は、ホスト媒体中に回折パターンを備え、微小液滴の屈折率は、ホスト材料の屈折率に実質的に整合するように切り替えられてもよい(その場合、パターンは、入射光を著しく回折させない)、または微小液滴は、ホスト媒体のものに整合しない屈折率に切り替えられてもよい(その場合、パターンは、入射光を能動的に回折させる)。
【0069】
いくつかの実施形態では、カメラアセンブリ630(例えば、可視光および赤外線光カメラを含む、デジタルカメラ)が、眼210および/または眼210の周囲の組織の画像を捕捉し、例えば、ユーザ入力を検出する、および/またはユーザの生理学的状態を監視するために提供されてもよい。本明細書で使用されるように、カメラは、任意の画像捕捉デバイスであってもよい。いくつかの実施形態では、カメラアセンブリ630は、画像捕捉デバイスと、光(例えば、赤外線光)を眼に投影し、次いで、該光が眼によって反射され、画像捕捉デバイスによって検出され得る、光源とを含んでもよい。いくつかの実施形態では、カメラアセンブリ630は、フレーム80(
図2)に取り付けられてもよく、カメラアセンブリ630からの画像情報を処理し得る、処理モジュール140および/または150と電気通信してもよい。いくつかの実施形態では、1つのカメラアセンブリ630が、眼毎に利用され、各眼を別個に監視してもよい。
【0070】
ここで
図7を参照すると、導波管によって出力された出射ビームの実施例が、示される。1つの導波管が図示されるが、導波管アセンブリ260(
図6)内の他の導波管も同様に機能し得、導波管アセンブリ260は、複数の導波管を含むことを理解されたい。光640が、導波管270の入力表面460において導波管270の中に投入され、TIRによって導波管270内を伝搬する。光640がDOE570上に衝突する点では、光の一部は、導波管から出射ビーム650として出射する。出射ビーム650は、略平行として図示されるが、本明細書に議論されるように、また、導波管270と関連付けられた深度平面に応じて、ある角度(例えば、発散出射ビームを形成する)において眼210に伝搬するように再指向されてもよい。略平行出射ビームは、眼210からの遠距離(例えば、光学無限遠)における深度平面に設定されるように現れる画像を形成するように光を外部結合する、外部結合光学要素を伴う導波管を示し得ることを理解されたい。他の導波管または他の外部結合光学要素のセットは、より発散する、出射ビームパターンを出力してもよく、これは、眼210がより近い距離に遠近調節し、網膜に合焦させることを要求し、光学無限遠より眼210に近い距離からの光として脳によって解釈されるであろう。
【0071】
いくつかの実施形態では、フルカラー画像が、原色、例えば、3つ以上の原色のそれぞれにおける画像をオーバーレイすることによって、各深度平面において形成されてもよい。
図8は、スタックされた導波管アセンブリの実施例を図示し、各深度平面は、複数の異なる原色を使用して形成される画像を含む。図示される実施形態は、深度平面240a-240fを示すが、より多いまたはより少ない深度もまた、検討される。各深度平面は、第1の色Gの第1の画像、第2の色Rの第2の画像、および第3の色Bの第3の画像を含む、それと関連付けられた3つ以上の原色画像を有してもよい。異なる深度平面は、文字G、R、およびBに続くジオプタ(dpt)に関する異なる数字によって示される。単なる実施例として、これらの文字のそれぞれに続く数字は、ジオプタ(1/m)、すなわち、視認者からの深度平面の逆距離を示し、図中の各ボックスは、個々の原色画像を表す。いくつかの実施形態では、異なる波長の光の眼の集束における差異を考慮するために、異なる原色に関する深度平面の正確な場所は、変動してもよい。例えば、所与の深度平面に関する異なる原色画像は、ユーザからの異なる距離に対応する深度平面上に設置されてもよい。そのような配列は、視力およびユーザ快適性を増加させ得、および/または色収差を減少させ得る。
【0072】
いくつかの実施形態では、各原色の光は、単一専用導波管によって出力されてもよく、その結果、各深度平面は、それと関連付けられた複数の導波管を有してもよい。そのような実施形態では、文字G、R、またはBを含む、図中の各ボックスは、個々の導波管を表すものと理解され得、3つの導波管は、深度平面毎に提供されてもよく、3つの原色画像が、深度平面毎に提供される。各深度平面と関連付けられた導波管は、本図面では、説明を容易にするために相互に隣接して示されるが、物理的デバイスでは、導波管は全て、レベル毎に1つの導波管を伴うスタックで配列されてもよいことを理解されたい。いくつかの他の実施形態では、複数の原色が、例えば、単一導波管のみが深度平面毎に提供され得るように、同一導波管によって出力されてもよい。
【0073】
図8を継続して参照すると、いくつかの実施形態では、Gは、緑色であって、Rは、赤色であって、Bは、青色である。いくつかの他の実施形態では、マゼンタ色およびシアン色を含む、光の他の波長と関連付けられた他の色も、赤色、緑色、または青色のうちの1つ以上のものに加えて使用されてもよい、またはそれらに取って代わってもよい。
【0074】
本開示全体を通した所与の光の色の言及は、その所与の色として視認者によって知覚される、光の波長の範囲内の1つ以上の波長の光を包含するものと理解されると理解されたい。例えば、赤色光は、約620~780nmの範囲内である1つ以上の波長の光を含んでもよく、緑色光は、約492~577nmの範囲内である1つ以上の波長の光を含んでもよく、青色光は、約435~493nmの範囲内である1つ以上の波長の光を含んでもよい。
【0075】
いくつかの実施形態では、光源540(
図6)は、視認者の視覚的知覚範囲外の1つ以上の波長、例えば、赤外線および/または紫外線波長の光を放出するように構成されてもよい。加えて、ディスプレイ250の導波管の内部結合、外部結合、および他の光再指向構造は、例えば、結像および/またはユーザ刺激用途のために、本光をディスプレイからユーザの眼210に向かって指向および放出するように構成されてもよい。
【0076】
ここで
図9Aを参照すると、いくつかの実施形態では、導波管に衝突する光は、その光を導波管の中に内部結合するために再指向される必要があり得る。内部結合光学要素が、光をその対応する導波管の中に再指向および内部結合するために使用されてもよい。
図9Aは、それぞれ、内部結合光学要素を含む、複数またはセット660のスタックされた導波管の実施例の断面側面図を図示する。導波管はそれぞれ、1つ以上の異なる波長または1つ以上の異なる波長範囲の光を出力するように構成されてもよい。スタック660は、スタック260(
図6)に対応してもよく、スタック660の図示される導波管は、複数の導波管270、280、290、300、310の一部に対応してもよいが、画像投入デバイス360、370、380、390、400のうちの1つ以上のものからの光が、光が内部結合のために再指向されることを要求する位置から導波管の中に投入されることを理解されたい。
【0077】
スタックされた導波管の図示されるセット660は、導波管670、680、および690を含む。各導波管は、関連付けられた内部結合光学要素(導波管上の光入力面積とも称され得る)を含み、例えば、内部結合光学要素700は、導波管670の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素710は、導波管680の主要表面(例えば、上側主要表面)上に配置され、内部結合光学要素720は、導波管690の主要表面(例えば、上側主要表面)上に配置される。いくつかの実施形態では、内部結合光学要素700、710、720のうちの1つ以上のものは、個別の導波管670、680、690の底部主要表面上に配置されてもよい(特に、1つ以上の内部結合光学要素は、反射性偏向光学要素である)。図示されるように、内部結合光学要素700、710、720は、その個別の導波管670、680、690の上側主要表面(または次の下側導波管の上部)上に配置されてもよく、特に、それらの内部結合光学要素は、透過性偏向光学要素である。いくつかの実施形態では、内部結合光学要素700、710、720は、個別の導波管670、680、690の本体内に配置されてもよい。いくつかの実施形態では、本明細書に議論されるように、内部結合光学要素700、710、720は、他の光の波長を透過しながら、1つ以上の光の波長を選択的に再指向するように波長選択的である。その個別の導波管670、680、690の片側または角に図示されるが、内部結合光学要素700、710、720は、いくつかの実施形態では、その個別の導波管670、680、690の他の面積内に配置されてもよいことを理解されたい。
【0078】
図示されるように、内部結合光学要素700、710、720は、相互から側方にオフセットされてもよい。いくつかの実施形態では、各内部結合光学要素は、その光が別の内部結合光学要素を通して通過せずに、光を受信するようにオフセットされてもよい。例えば、各内部結合光学要素700、710、720は、
図6に示されるように、光を異なる画像投入デバイス360、370、380、390、および400から受信するように構成されてもよく、光を内部結合光学要素700、710、720の他のものから実質的に受信しないように、他の内部結合光学要素700、710、720から分離されてもよい(例えば、側方に離間される)。
【0079】
各導波管はまた、関連付けられた光分散要素を含み、例えば、光分散要素730は、導波管670の主要表面(例えば、上部主要表面)上に配置され、光分散要素740は、導波管680の主要表面(例えば、上部主要表面)上に配置され、光分散要素750は、導波管690の主要表面(例えば、上部主要表面)上に配置される。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の底部主要表面上に配置されてもよい。いくつかの他の実施形態では、光分散要素730、740、750は、それぞれ、関連付けられた導波管670、680、690の上部および底部両方の主要表面上に配置されてもよい、または光分散要素730、740、750は、それぞれ、異なる関連付けられた導波管670、680、690内の上部主要表面および底部主要表面の異なるもの上に配置されてもよい。
【0080】
導波管670、680、690は、例えば、材料のガス、液体、および/または固体層によって離間および分離されてもよい。例えば、図示されるように、層760aは、導波管670および680を分離してもよく、層760bは、導波管680および690を分離してもよい。いくつかの実施形態では、層760aおよび760bは、低屈折率材料(すなわち、導波管670、680、690の直近のものを形成する材料より低い屈折率を有する材料)から形成される。好ましくは、層760a、760bを形成する材料の屈折率は、導波管670、680、690を形成する材料の屈折率を0.05またはそれを上回る、または0.10またはそれを下回る。有利には、より低い屈折率層760a、760bは、導波管670、680、690を通して光の全内部反射(TIR)(例えば、各導波管の上部主要表面および底部主要表面の間のTIR)を促進する、クラッディング層として機能してもよい。いくつかの実施形態では、層760a、760bは、空気から形成される。図示されないが、導波管の図示されるセット660の上部および底部は、直近クラッディング層を含んでもよいことを理解されたい。
【0081】
好ましくは、製造および他の考慮点を容易にするために、導波管670、680、690を形成する材料は、類似または同一であって、層760a、760bを形成する材料は、類似または同一である。いくつかの実施形態では、導波管670、680、690を形成する材料は、1つ以上の導波管間で異なってもよい、および/または層760a、760bを形成する材料は、依然として、前述の種々の屈折率関係を保持しながら、異なってもよい。
【0082】
図9Aを継続して参照すると、光線770、780、790が、導波管のセット660に入射する。光線770、780、790は、1つ以上の画像投入デバイス360、370、380、390、400(
図6)によって導波管670、680、690の中に投入されてもよいことを理解されたい。
【0083】
いくつかの実施形態では、光線770、780、790は、異なる色に対応し得る、異なる性質、例えば、異なる波長または異なる波長範囲を有する。内部結合光学要素700、710、720はそれぞれ、光が、TIRによって、導波管670、680、690のうちの個別の1つを通して伝搬するように、入射光を偏向させる。いくつかの実施形態では、内部結合光学要素700、710、720はそれぞれ、他の波長を下層導波管および関連付けられた内部結合光学要素に透過させながら、1つ以上の特定の光の波長を選択的に偏向させる。
【0084】
例えば、内部結合光学要素700は、それぞれ、異なる第2および第3の波長または波長範囲を有する、光線780および790を透過させながら、第1の波長または波長範囲を有する、光線770を偏向させるように構成されてもよい。透過された光線780は、第2の波長または波長範囲の光を偏向させるように構成される、内部結合光学要素710に衝突し、それによって偏向される。光線790は、第3の波長または波長範囲の光を選択的に偏向させるように構成される、内部結合光学要素720によって偏向される。
【0085】
図9Aを継続して参照すると、偏向された光線770、780、790は、対応する導波管670、680、690を通して伝搬するように偏向される。すなわち、各導波管の内部結合光学要素700、710、720は、光をその対応する導波管670、680、690の中に偏向させ、光を対応する導波管の中に内部結合する。光線770、780、790は、光をTIRによって個別の導波管670、680、690を通して伝搬させる角度で偏向される。光線770、780、790は、導波管の対応する光分散要素730、740、750に衝突するまで、TIRによって個別の導波管670、680、690を通して伝搬する。
【0086】
ここで
図9Bを参照すると、
図9Aの複数のスタックされた導波管の実施例の斜視図が、図示される。前述のように、内部結合された光線770、780、790は、それぞれ、内部結合光学要素700、710、720によって偏向され、次いで、それぞれ、導波管670、680、690内でTIRによって伝搬する。光線770、780、790は、次いで、それぞれ、光分散要素730、740、750に衝突する。光分散要素730、740、750は、それぞれ、外部結合光学要素800、810、820に向かって伝搬するように、光線770、780、790を偏向させる。
【0087】
いくつかの実施形態では、光分散要素730、740、750は、直交瞳エクスパンダ(OPE)である。いくつかの実施形態では、OPEは、光を外部結合光学要素800、810、820に偏向または分散し、いくつかの実施形態ではまた、外部結合光学要素に伝搬するにつれて、本光のビームまたはスポットサイズを増加させ得る。いくつかの実施形態では、光分散要素730、740、750は、省略されてもよく、内部結合光学要素700、710、720は、光を直接外部結合光学要素800、810、820に偏向させるように構成されてもよい。例えば、
図9Aを参照すると、光分散要素730、740、750は、それぞれ、外部結合光学要素800、810、820と置換されてもよい。いくつかの実施形態では、外部結合光学要素800、810、820は、光を視認者の眼210(
図7)に指向させる、射出瞳(EP)または射出瞳エクスパンダ(EPE)である。OPEは、少なくとも1つの軸においてアイボックスの寸法を増加させるように構成されてもよく、EPEは、OPEの軸と交差する、例えば、直交する軸においてアイボックスを増加させてもよいことを理解されたい。例えば、各OPEは、光の残りの部分が導波管を辿って伝搬し続けることを可能にしながら、OPEに衝打する光の一部を同一導波管のEPEに再指向するように構成されてもよい。OPEへの衝突に応じて、再び、残りの光の別の部分は、EPEに再指向され、その部分の残りの部分は、導波管等を辿ってさらに伝搬し続ける。同様に、EPEへの衝打に応じて、衝突光の一部は、導波管からユーザに向かって指向され、その光の残りの部分は、EPに再び衝打するまで、導波管を通して伝搬し続け、その時点で、衝突する光の別の部分は、導波管から指向される等となる。その結果、内部結合された光の単一ビームは、その光の一部がOPEまたはEPEによって再指向される度に、「複製」され、それによって、
図6に示されるように、クローン化された光のビーム野を形成し得る。いくつかの実施形態では、OPEおよび/またはEPEは、光のビームのサイズを修正するように構成されてもよい。
【0088】
故に、
図9Aおよび9Bを参照すると、いくつかの実施形態では、導波管のセット660は、原色毎に、導波管670、680、690と、内部結合光学要素700、710、720と、光分散要素(例えば、OPE)730、740、750と、外部結合光学要素(例えば、EP)800、810、820とを含む。導波管670、680、690は、各1つの間に空隙/クラッディング層を伴ってスタックされてもよい。内部結合光学要素700、710、720は、(異なる波長の光を受信する異なる内部結合光学要素を用いて)入射光をその導波管の中に再指向または偏向させる。光は、次いで、個別の導波管670、680、690内にTIRをもたらすであろう角度で伝搬する。示される実施例では、光線770(例えば、青色光)は、前述の様式において、第1の内部結合光学要素700によって偏光され、次いで、導波管を辿ってバウンスし続け、光分散要素(例えば、OPE)730、次いで、外部結合光学要素(例えば、EP)800と相互作用する。光線780および790(例えば、それぞれ、緑色および赤色光)は、導波管670を通して通過し、光線780は、内部結合光学要素710上に衝突し、それによって偏向される。光線780は、次いで、TIRを介して、導波管680を辿ってバウンスし、その光分散要素(例えば、OPE)740、次いで、外部結合光学要素(例えば、EP)810に進むであろう。最後に、光線790(例えば、赤色光)は、導波管690を通して通過し、導波管690の光内部結合光学要素720に衝突する。光内部結合光学要素720は、光線が、TIRによって、光分散要素(例えば、OPE)750、次いで、TIRによって、外部結合光学要素(例えば、EP)820に伝搬するように、光線790を偏向させる。外部結合光学要素820は、次いで、最後に、光線790を視認者に外部結合し、視認者はまた、他の導波管670、680からの外部結合した光も受信する。
【0089】
図9Cは、
図9Aおよび9Bの複数のスタックされた導波管の実施例の上下平面図を図示する。図示されるように、導波管670、680、690は、各導波管の関連付けられた光分散要素730、740、750および関連付けられた外部結合光学要素800、810、820とともに、垂直に整合されてもよい。しかしながら、本明細書に議論されるように、内部結合光学要素700、710、720は、垂直に整合されない。むしろ、内部結合光学要素は、好ましくは、非重複する(例えば、上下図に見られるように、側方に離間される)。本明細書でさらに議論されるように、本非重複空間配列は、1対1ベースで異なるリソースから異なる導波管の中への光の投入を促進し、それによって、具体的光源が具体的導波管に一意に結合されることを可能にする。いくつかの実施形態では、非重複の空間的に分離される内部結合光学要素を含む、配列は、偏移瞳システムと称され得、これらの配列内の内部結合光学要素は、サブ瞳に対応し得る。
【0090】
眼結像および環境結像
上記に議論されるように、頭部搭載型ディスプレイは、装着者の正面の世界のビューと統合された、それと併せた、および/またはそれにわたって重畳された、画像コンテンツをユーザに提供するために使用されることができる。そのような頭部搭載型ディスプレイシステムは、光をユーザの眼の中に投影し、拡張現実画像コンテンツを形成し、ユーザの正面の環境からの光をユーザに透過させるように構成されることができる。頭部搭載型ディスプレイシステムは、環境および/またはユーザの眼を結像するために、1つ以上のカメラを含んでもよい。外向きに向いたカメラは、直接、環境を結像し、例えば、拡張現実画像コンテンツを環境内のオブジェクトに対して設置すべき場所を決定するために使用されてもよい。例えば、環境を結像することは、頭部搭載型ディスプレイが、テーブル上またはテーブル内の代わりに、テーブルの隣に立っている人物の画像をレンダリングし得るように、テーブルの場所を提供し得る。内向きに向いたカメラが、直接、眼追跡等のために、眼を結像するために使用されてもよい。本明細書に開示されるのは、同様に、眼および/または環境を結像するように構成され得る、頭部搭載型ディスプレイシステムおよび/または結像システムの実施例である。いくつかの設計では、システムは、直接、それぞれ、眼および/または環境を結像するために、内向きおよび/または外向きに向いたカメラを要求しない。そのようなシステムは、1つ以上のカメラと光学連通する、接眼レンズ内の1つ以上の導波管等の接眼レンズを介して、眼/環境からの光を受け取るように構成される、1つ以上のカメラを採用してもよい。光が導波管によって収集されると、1つ以上のカメラは、眼および/またはユーザの正面の環境の画像を生成することができる。導波管を使用して、眼および/または環境を結像するための光を収集することは、潜在的に、頭部搭載型ディスプレイの形状因子を低減させ、頭部搭載型ディスプレイを可能性としてよりコンパクトかつ/または審美的に望ましいものにし得る。
【0091】
図10は、頭部搭載型ディスプレイ上で使用され得る、接眼レンズ950と統合される、眼を結像するように構成される、例示的結像システム900を図示する。ユーザの眼210の正面に配置され得る、接眼レンズ950は、画像コンテンツを眼の中に投入することと、眼を結像することとの両方のために使用されることができる。
図10は、片眼210の正面の一方の接眼レンズ950を示す。
図2に示されるような種々の頭部搭載型ディスプレイシステムは、個別の左および右の眼210の正面に配置される、一対の接眼レンズ950と、関連付けられたコンポーネントとを含んでもよい。単一導波管940が、
図10に示されるが、導波管940は、1つ、2つ、3つ、4つ、6つ、7つ、8つ、またはそれよりも多い導波管(例えば、1つ以上の導波管のスタック)を含んでもよい。
【0092】
結像システム900は、眼を照明し、画像捕捉を促進する、光源または照明源960、光をその中に伝搬するように構成される、導波管940を備える、接眼レンズ950、および/または画像捕捉のためのカメラ等の結像デバイス920を含むことができる。接眼レンズ950を介して眼の中に投入され得る、画像を生産するための画像プロジェクタ930もまた、示される。接眼レンズ950は、照明源960および/または画像プロジェクタ930からの光を眼に運び、眼からの光をカメラ920に運ぶように構成される、1つ以上の導波管940を含んでもよい。接眼レンズ950はさらに、眼を照明するため、かつ画像投入のために、導波管940から外に眼へと、および/または画像捕捉のために、眼から導波管の中に、光を結合するために、1つ以上の結合光学要素944を備えてもよい。接眼レンズ950は、加えて、照明源960および/または画像プロジェクタ930からの光を導波管940の中に結合するための1つ以上の内部結合光学要素942と、導波管からの光をカメラ920に結合するための1つ以上の外部結合光学要素952とを備えてもよい。
【0093】
接眼レンズ950は、頭部上に装着される、フレーム上に配置されてもよい。接眼レンズ950は、眼210の正面に配置されてもよい。接眼レンズ950は、装着者の鼻により近い、内側または鼻側と、装着者のこめかみにより近く、鼻からより遠い、反対の外側またはこめかみ側とを有してもよい。
図10では、結合光学要素944は、内部結合光学要素942および外部結合光学要素952に対して内側または鼻側(結合光学要素944に対して外側またはこめかみ側)にある。照明源960もまた、画像プロジェクタ930に対してより内側または鼻側(または画像プロジェクタは、照明源より外側またはこめかみ側)にある。しかしながら、相対的位置は、異なり得る。例えば、照明源960は、いくつかの設計では、画像プロジェクタ930より外側またはこめかみ側にあってもよい。
【0094】
導波管940は、相互に反対に配置される、最大表面積を有する、2つの主要表面(前方表面および後方表面)を有する、シートまたは層を備えてもよい。前方表面は、ユーザが頭部搭載型ディスプレイを装着するとき、ユーザの眼210からより遠くあり得(装着者の正面の環境により近い)、後方表面は、ユーザの眼により近い(かつ装着者の正面の環境からより遠い)。導波管940は、光が、全内部反射によって、主要表面間でその中で誘導され得るように、1.0を上回る屈折率を伴う透明材料(例えば、ガラス、プラスチック)を含んでもよい。同一番号を伴う要素は、本明細書に説明される実施形態のうちの1つ以上のもののための同一機能性を有し得る。
【0095】
光を眼210から導波管940におよび/または導波管から眼に結合するための結合光学要素944が、導波管940上または内に配置されてもよい。
図10に示されるように、結合光学要素944は、結合光学要素944を介して導波管940から結合される光が、ユーザの眼210上に入射し得るように(例えば、眼を照明するため、および/または画像投入のため)、ユーザの眼210と導波管940との間の光学経路内に配置されてもよい。結合光学要素944は、導波管内で誘導される光を導波管から外に方向転換させる、または全内部反射によってその中で誘導されるように、結合光学要素944上に入射する光をある角度で導波管の中に方向転換させるように構成される、複数の方向転換特徴を備えてもよい。結合光学要素944および方向転換特徴は、導波管940と物理的に関与してもよい。例えば、結合光学要素944は、導波管940内または上にパターン化された(例えば、エッチングされた)ホログラフィックまたは回折光学要素(例えば、表面レリーフ格子)を備えてもよい。結合光学要素944は、導波管940上に配置される、層を備えてもよい、または導波管940内に形成されてもよい。例えば、体積ホログラフィックまたは他の回折光学要素は、導波管またはその上に配置される層を構成する材料の屈折率を変化させることによって形成されてもよい。故に、結合光学要素944は、導波管940の体積内に、またはその上に配置される層として、配置されてもよい。
【0096】
設計に応じて、結合光学要素944は、透過性または反射性であってもよく、透過的または反射的に動作してもよい。例えば、結合光学要素944は、それぞれ、透過的または反射的に動作し、例えば、それを通して透過された、またはそこから反射された光を方向転換させる、透過性または反射性回折光学要素(例えば、格子)またはホログラフィカル光学要素を含んでもよい。結合光学要素944は、偏光選択的方向転換要素(例えば、偏光器)等の偏光光学要素を含むことができる。偏光選択的方向転換要素は、1つ以上の偏光格子、回折光学要素、および/またはホログラフィック光学要素を含んでもよく、液晶偏光格子等の液晶構造を備えてもよい。結合光学要素944は、全内部反射(TIR)によって導波管940内で誘導される、画像プロジェクタ930および/または光源960からの光を、導波管から外に眼へと射出されるように、臨界角未満の角度(例えば、より法線方向に近い角度)で、ユーザの眼210に指向するように構成されてもよい。加えて、または代替として、結合光学要素944は、全内部反射によってその中でカメラ920に誘導されるように、臨界角を上回る角度(例えば、あまり法線方向に近くない角度)で、眼210からの光を導波管940の中に結合するように構成されてもよい。
【0097】
図10に示されるように、照明源960および/または画像プロジェクタ930からの光を導波管940の中に結合するための内部結合光学要素942が、導波管940上または内に配置されてもよい。内部結合光学要素942は、内部結合光学要素942を介して光源960から結合される光が、導波管940内で誘導されるように、光源960と導波管940との間の光学経路に配置されてもよい。内部結合光学要素942は、例えば、全内部反射によってその中で誘導されるように、その上に入射する光をある角度で導波管の中に方向転換させるように構成される、複数の方向転換特徴を備えてもよい。内部結合光学要素942は、液晶偏光格子等の液晶構造を備えてもよい。加えて、または代替として、内部結合光学要素942は、ブレーズド格子を含んでもよい。内部結合光学要素942は、導波管940上に配置される、層を備えてもよい、または導波管940上または内に形成されてもよい(例えば、パターン化される)、または別様にその中に製造されてもよい。例えば、表面ホログラフィックまたは回折光学要素(例えば、表面レリーフ格子)が、導波管またはその上の層の表面をパターン化する(例えば、エッチングする)ことによって、加工されてもよい。体積ホログラフィックまたは回折光学要素はまた、導波管またはその上に配置される層を構成する材料の屈折率を変化させることによって、形成されてもよい。故に、内部結合光学要素942は、導波管940の体積またはその上に配置される層内に配置されてもよい。設計に応じて、内部結合光学要素942は、透過性または反射性であってもよく、透過的または反射的に動作してもよい。例えば、内部結合光学要素942は、それぞれ、透過的または反射的に動作し、例えば、それを通して透過された、またはそこから反射された光を方向転換する、透過性または反射性回折光学要素(例えば、格子)またはホログラフィカル光学要素を含んでもよい。
【0098】
内部結合光学要素942は、反射性光学要素(例えば、ミラー)を備えてもよい。例えば、内部結合光学要素942は、軸外反射体を備えてもよい。加えて、または代替として、内部結合光学要素942および/または結合光学要素944は、偏光選択的方向転換要素(例えば、偏光器)等の偏光光学要素を含むことができる。偏光選択的方向転換要素は、1つ以上の偏光格子、回折光学要素、および/またはホログラフィック光学要素を含んでもよく、液晶偏光格子等の液晶構造を備えてもよい。例えば、内部結合光学要素942および/または結合光学要素944の一方または両方は、液晶偏光格子(LCPG)を含むことができる。LCPGは、潜在的に、広波長において、高効率回折を提供することができる。故に、LCPGは、内部結合光学要素942および/または結合光学要素944のために有用であり得る。LCPGは、偏光依存であり得る。LCPGまたは他のタイプの液晶格子、回折光学要素、または光学要素は、光を導波管の中にまたは導波管から外に方向転換させる等の1つ以上の機能を提供するように構成される、液晶の分子のパターンまたは配列を含んでもよい。故に、内部結合光学要素942および/または結合光学要素944は、偏光格子を備えてもよい。加えて、または代替として、内部結合光学要素942および/または結合光学要素944は、液晶を備えることができ、したがって、いくつかの実装では、一方または両方は、液晶格子または液晶回折光学要素であってもよい。加えて、または代替として、内部結合光学要素942および/または結合光学要素944の一方または両方は、ブレーズド格子を含むことができる。いくつかの設計では、内部結合光学要素942は、コレステリック液晶反射性レンズ(例えば、反射性液晶回折レンズ、ブラッグ反射性構造、反射性液晶回折格子等)等の液晶反射体を備える。液晶格子、液晶偏光格子および他の液晶光学要素のいくつかの非限定的実施例は、以下の公開出願(それぞれ、その全体としておよびあらゆる目的のために、参照することによって本明細書に組み込まれる)に議論される。「MULTILAYER LIQUID CRYSTAL DIFFRACTIVE GRATINGS FOR REDIRECTING LIGHT OF WIDE INCIDENT ANGLE RANGES」と題され、2017年11月16日に出願された、米国特許公開第2018/0143438号、「SPATIALLY VARIABLE LIQUID CRYSTAL DIFFRACTION GRATINGS」と題され、2017年11月16日に出願された、米国特許公開第2018/0143485号、「WAVEGUIDE LIGHT MULTIPLEXER USING CROSSED GRATINGS」と題され、2017年11月16日に出願された、米国特許公開第2018/0143509号、「DISPLAY SYSTEM WITH VARIABLE POWER REFLECTOR」と題され、2018年2月22日に出願された、米国特許公開第2018/0239147号、「VARIABLE-FOCUS VIRTUAL IMAGE DEVICES BASED ON POLARIZATION CONVERSION」と題され、2018年2月22日に出願された、米国特許公開第2018/0239177号、および「DIFFRACTIVE DEVICES BASED ON CHOLESTERIC LIQUID CRYSTAL」と題され、2017年12月7日に出願された、米国特許公開第2018/0164627号。しかしながら、内部結合光学要素942および/または結合光学要素944の設計は、これらに限定されず、他のタイプの光学要素、回折光学要素、液晶光学要素、液晶格子、および液晶偏光格子を含んでもよい。反射体等のコレステリック液晶構造の実施例に関するさらなる情報はまた、下記の「コレステリック液晶ミラー」と題された節にも見出され得る。上記に議論されるように、他の液晶光学要素および他の非液晶光学要素が、使用されてもよい。故に、本明細書に説明されるものおよび他のタイプの格子、回折光学要素、液晶要素、および光学要素全般の両方である、多くのタイプの結合光学要素(例えば、内部結合光学要素942および/または結合光学要素944)、回折光学要素、格子、偏光格子等が、使用されてもよい。種々の実装では、内部結合光学要素942は、眼までの全内部反射によってユーザの眼210に導波管940内で誘導されるように、臨界角を上回る角度で、画像プロジェクタ930および/または光源960からの光を導波管の中に結合するように構成されてもよい。
【0099】
導波管940は、1つ以上の導波管を備えてもよい。いくつかの実装では、1つ以上の導波管940は、導波管のスタックを備える。いくつかの設計では、例えば、導波管のスタックの異なる導波管は、ユーザの眼からの異なる距離から投影されるかのように、異なる波面発散を伴う光を出力するように構成される。例えば、第1の導波管または導波管のグループは、第1の深度から投影されるかのように、コリメートされる、または第1の発散を有する、光を出力するように構成されてもよく、第2の導波管または導波管のグループは、第1の深度より近い第2の深度から投影されるかのように、発散している(コリメートされない)、または第2の発散(第1の発散を上回る)における、光を出力するように構成されてもよい。いくつかの設計では、異なる導波管は、異なる関連付けられた色を有する、光を出力するように構成されてもよい。例えば、第1の導波管は、赤色光を出力するように構成されてもよく、第2の導波管は、緑色光を出力するように構成されてもよく、第3の導波管は、青色光を出力するように構成されてもよい。第4の導波管は、赤外線光を出力および/または入力するように構成されてもよい。
【0100】
図10に示されるような導波管940からの光をカメラ920に結合するための外部結合光学要素952は、例えば、その上に入射する光が、導波管内で誘導されず、導波管から外にカメラへと方向転換されるように、ある角度で、光を方向転換させるように構成される、複数の方向転換特徴を備えてもよい。外部結合光学要素952は、導波管940の内部内に配置されてもよい、または導波管940の表面(例えば、主要表面)内または上にパターン化されてもよい(例えば、エッチングされる)。例えば、表面ホログラフィックまたは回折光学要素(例えば、表面レリーフ格子)は、導波管またはその上の層の表面をパターン化する(例えば、エッチングする)ことによって、加工されてもよい。体積ホログラフィックまたは回折光学要素はまた、導波管またはその上に配置される層を構成する材料の屈折率を変化させることによって、形成されてもよい。設計に応じて、外部結合光学要素952は、透過性または反射性であってもよく、透過的または反射的に動作してもよい。例えば、外部結合光学要素952は、それぞれ、透過的または反射的に動作し、例えば、それを通して透過された、またはそこから反射された光を方向転換する、透過性または反射性回折光学要素(例えば、格子)またはホログラフィカル光学要素を含んでもよい。
【0101】
外部結合光学要素942は、反射性光学要素(例えば、ミラー)を備えてもよい。例えば、外部結合光学要素952は、軸外反射体を備えてもよい。いくつかの設計では、外部結合光学要素952は、偏光選択的方向転換要素(例えば、偏光器)等の偏光光学要素を含むことができる。故に、偏光選択的方向転換要素は、1つ以上の偏光格子、回折光学要素、および/またはホログラフィック光学要素を含んでもよく、液晶偏光格子等の液晶構造を備えてもよい。いくつかの実装では、例えば、外部結合光学要素952は、液晶偏光格子(LCPG)を含むことができる。LCPGは、潜在的に、広波長において、高効率回折を提供することができる。同様に、LCPGは、外部結合光学要素952のために有用であり得る。LCPGは、偏光依存であり得る。LCPGまたは他のタイプの液晶格子は、光を導波管の中にまたは導波管から外に方向転換させる等の1つ以上の機能を提供するように構成される、液晶の分子のパターンまたは配列を含んでもよい。故に、外部結合光学要素952は、偏光格子を備えてもよい。加えて、または代替として、外部結合光学要素952は、液晶を備えることができ、したがって、いくつかの実装では、液晶格子または液晶回折光学要素等の他の液晶光学要素であってもよい。加えて、または代替として、外部結合光学要素952は、ブレーズド格子を含むことができる。いくつかの設計では、外部結合光学要素952は、コレステリック液晶反射性レンズ(例えば、反射性液晶回折レンズ、ブラッグ反射性構造、反射性液晶回折格子等)等の液晶反射体を備える。液晶格子、液晶偏光格子、および他の液晶光学要素のいくつかの非限定的実施例は、以下の公開出願(それぞれ、その全体としておよびあらゆる目的のために、参照することによって本明細書に組み込まれる)に議論される。「MULTILAYER LIQUID CRYSTAL DIFFRACTIVE GRATINGS FOR REDIRECTING LIGHT OF WIDE INCIDENT ANGLE RANGES」と題され、2017年11月16日に出願された、米国特許公開第2018/0143438号、「SPATIALLY VARIABLE LIQUID CRYSTAL DIFFRACTION GRATINGS」と題され、2017年11月16日に出願された、米国特許公開第2018/0143485号、「WAVEGUIDE LIGHT MULTIPLEXER USING CROSSED GRATINGS」と題され、2017年11月16日に出願された、米国特許公開第2018/0143509号、「DISPLAY SYSTEM WITH VARIABLE POWER REFLECTOR」と題され、2018年2月22日に出願された、米国特許公開第2018/0239147号、「VARIABLE-FOCUS VIRTUAL IMAGE DEVICES BASED ON POLARIZATION CONVERSION」と題され、2018年2月22日に出願された、米国特許公開第2018/0239177号、および「DIFFRACTIVE DEVICES BASED ON CHOLESTERIC LIQUID CRYSTAL」と題され、2017年12月7日に出願された、米国特許公開第2018/0164627号。しかしながら、外部結合光学要素952の設計は、これらに限定されず、他のタイプの光学要素、回折光学要素、液晶光学要素、液晶格子、および液晶偏光格子を含んでもよい。反射体等のコレステリック液晶構造の実施例に関するさらなる情報はまた、下記の「コレステリック液晶ミラー」と題された節にも見出され得る。上記に議論されるように、他の液晶光学要素および他の非液晶光学要素が、使用されてもよい。故に、本明細書に説明されるものおよび他のタイプの格子、回折光学要素、液晶要素、または光学要素全般の両方である、多くのタイプの結合光学要素(例えば、外部結合光学要素952)、回折光学要素、格子、偏光格子等が、使用されてもよい。上記で参照されるように、外部結合光学要素952は、全内部反射によって導波管内で誘導されないが、カメラ920に射出されるように、臨界角未満の角度で、導波管940内で誘導される光を再指向されるように構成されてもよい。
【0102】
種々の設計では、結合光学要素944は、ユーザに結合光学要素944および接眼レンズ950を通してユーザの正面の環境が見えるように、可視スペクトル内では透過性であってもよい。内部結合光学要素942はまた、例えば、内部結合光学要素が、画像プロジェクタ930からの光を受け取るために使用される場合、および/または照明源960が、可視光を出力し、眼210を可視光で照明するように構成される場合、可視スペクトル内の光を方向転換させてもよい。いくつかの実施形態では、内部結合光学要素942は、例えば、照明源960は、赤外線光を出力し、眼210を赤外線光で照明するように構成される場合、赤外線光を方向転換させるように構成される。
図10に示されるようないくつかの設計では、内部結合光学要素942は、外部結合光学要素952より内側または鼻側にあってもよい。しかしながら、他の設計では、内部結合光学要素942は、外部結合光学要素952より外側またはこめかみ側にあってもよい。
図10に示されるようなある実装では、外部結合光学要素952は、内部結合光学要素942に隣接してもよいが、非隣接位置付けも、可能性として考えられる。
【0103】
照明源960は、
図10に示されるように、接眼レンズ950の眼210と同一側(例えば、後方または近位側)上に配置されてもよい(近位は、眼210に最も近い側を指し得る)。代替として、照明源960は、眼210と反対の側(例えば、前方または遠位側)上に配置されてもよい。照明源960は、内部結合光学要素942を介して、光を導波管940の主要表面のうちの少なくとも1つの中に指向するように構成されてもよい。光源960は、不可視光(例えば、赤外線)を放出するように構成されてもよい。光源960は、1つ以上のLEDを含んでもよい。LEDは、赤外線LEDを備えてもよい。光源960は、コヒーレント光を放出するように構成されてもよい。いくつかの設計では、光源960は、レーザ(例えば、赤外線レーザ)を備える。いくつかの設計では、光源960は、パルス状光を放出する。例えば、カメラ920は、画像を周期的に捕捉するように構成されることができる。故に、照明源960は、その間、カメラが画像を取得する、周期と一致するようにパルス化されることができる。照明源960から出力される強度は、カメラが画像を取得していないとき、低減されることができる。照明の総エネルギーを短時間集中させることによって、増加された信号対雑音比が、眼210を非安全強度レベルに暴露せずに、取得されることができる。ある場合には、例えば、カメラ920は、30ミリ秒毎に1つの画像を捕捉し、カメラの暴露時間は、数ミリ秒である。照明源960は、カメラ920のものに合致する類似周期および持続時間を有する、パルスを出力するように構成されることができる。
【0104】
いくつかの実装では、異なる波長を有する、異なる光源が、代替として、下記に議論されるように、異なる波長照明を異なる時間に提供するようにパルス化される。
【0105】
内部結合光学要素942は、例えば、該画像プロジェクタ930および/または光源960からの光をその中に誘導するように、照明源960および/または画像プロジェクタ930と直接光学連通してもよい。例えば、光源960によって放出される光は、結合光学要素944および/または外部結合光学要素952のいずれかと光学的に相互作用する前に、内部結合光学要素942上に入射してもよい。
【0106】
図11A-11Eに示されるように、画像プロジェクタ930から投影された光902は、画像を網膜上に形成し得る。画像プロジェクタ930は、光源、変調器、および/または投影光学を含んでもよい。画像プロジェクタ930のための光源は、1つ以上のLED、レーザ、または他の光源を備えてもよく、1つ以上の可視光源を備えてもよい。変調器は、液晶空間光変調器等の空間光変調器を備えてもよい。そのような空間光変調器は、例えば、異なる空間場所における光の強度を変調させるように構成されてもよい。投影光学は、1つ以上のレンズを備えてもよい。画像を投影および/または形成することが可能な他のタイプの画像プロジェクタ930も、採用されてもよい。例えば、画像プロジェクタ930は、走査光ファイバを備えてもよい。
【0107】
画像プロジェクタ930および内部結合光学要素942は、相互に直接光学連通してもよい。画像プロジェクタ930は、例えば、その中に画像プロジェクタ930からの光が指向される、内部結合光学要素942と整合されてもよい。ある場合には、画像プロジェクタ930は、対応する内部結合光学要素942および/または導波管940に隣接して配置される。画像プロジェクタ930はまた、内部結合光学要素942と、結合光学要素944と、眼210とを含む、光学経路内に配置されてもよい。
【0108】
画像プロジェクタ930は、
図10および
図11A-11Eに示されるように、照明源960と別個の要素であってもよい。しかしながら、ある場合には、画像プロジェクタ930が、照明源として使用されてもよい。例えば、画像を眼210の中に投入することに加え、画像プロジェクタ930は、画像捕捉のために、可視および/または赤外線光を眼の中に指向し、眼を照明するために使用されてもよい。しかしながら、代替として、1つ以上の別個の光源960が、画像捕捉のために、眼210を照明するために使用されてもよい。
【0109】
照明源960によって放出される光は、例えば、不可視光等の特定の波長範囲の光を備えてもよい。照明源960は、眼210の1つ以上の部分(例えば、角膜、網膜)を結像するために、不可視(例えば、赤外線)光を眼210上に/の中に投影するように構成されてもよい。ある例示的実装では、光源960は、約850nm~940nmの範囲内の光を放出するように構成されてもよい。光源960は、少なくとも約20nmの波長範囲にわたって延在する光を放出するように構成されてもよい。他の範囲もまた、可能性として考えられる。放出される波長範囲は、5nm、10nm、15nm、50nm、75nm、100nm、150nm、200nm、またはこれらの値のいずれかの間の任意の範囲であってもよい。光源960は、赤外線スペクトル内の任意の範囲等の波長の広帯域を横断して光を放出するように構成されてもよい。
【0110】
カメラを備え得る、結像デバイス920は、検出器アレイと、可能性として、結像光学とを備えてもよい。検出器アレイは、例えば、CCDまたはCMOS検出器アレイを備えてもよく、結像光学は、1つ以上のレンズを備えてもよい。1つ以上のレンズは、正の屈折力と、関連付けられた焦点距離とを有してもよい。ある設計では、カメラ920は、無限遠に合焦される。例えば、光学は、焦点距離fを有してもよく、検出器アレイは、大距離におけるオブジェクトが検出器アレイ上に結像されるような焦点距離に対応する光学から離れた距離に配置されてもよい。同様に、コリメートされる、眼または環境内のオブジェクトからの光も、検出器アレイ上に集束され、眼またはオブジェクトの画像をその上に形成するであろう。
【0111】
結像デバイス920は、導波管940の照明源960および/または眼210と反対側上に配置されてもよい。いくつかの設計では、結像デバイス920は、導波管940の光源960および/または眼210と同一側上に配置されてもよい。
図10に示されるように、結像デバイス920は、接眼レンズ950の外側またはこめかみ側縁の近傍に配置されてもよいが、他の場所も、可能性として考えられる。
【0112】
図11A-11Eは、
図10の例示的結像システム900の動作を図示する。
図11Aは、照明源960が、光902を導波管940上の内部結合光学要素942に向かって放出する様子を示す。示されるように、光902は、略法線方向で接眼レンズ950に入射するように指向され得るが、他の角度も、可能性として考えられる。いくつかの設計では、光源960は、コリメートされた光を接眼レンズ950の中に放出するように構成される。
図11Bに示されるように、照明光902は、内部結合光学要素942を介して、導波管940の中に結合されることができる。内部結合光学要素942が、回折光学要素(例えば、格子、ホログラフィック要素)を備える、いくつかの設計では、その上に入射する光は、導波管の臨界角を上回る角度で回折され、内部結合される光904を全内部反射(TIR)によって接眼レンズ950内で誘導させる。いくつかの設計では、内部結合光学要素942は、光を結合光学要素944に向かって指向するように構成されてもよい。内部結合光学要素942は、偏光選択的であってもよい。例えば、内部結合光学要素942は、液晶偏光格子のような偏光格子等の偏光選択的方向転換要素を含むことができる。
図11Cは、内部結合される光904が、TIRによって、導波管940を通して伝搬する様子を示す。
【0113】
図11Dは、光を接眼レンズ950から外に結合する、例示的結像システム900を図示する。内部結合される光904が、導波管940を通して伝搬するにつれて、光の一部が、結合光学要素944上に入射し得る。結合光学要素944は、内部結合される光904を接眼レンズ950から外にユーザの眼210に向かって結合するように構成されることができる。結合光学要素944は、光をコリメートされた光として眼210に向かって結合するように構成されてもよい。結合光学要素944は、特定の波長範囲の光に調整されてもよい。例えば、結合光学要素944は、赤外線光(例えば、約700nm~15000nm)を導波管940から外に結合するように構成されてもよい。いくつかの設計では、結合光学要素944は、光の複数の波長を接眼レンズ950から外に結合するように構成されることができる。例えば、結合光学要素944は、赤外線および可視光の両方のために調整されてもよい。結合光学要素944はまた、下記により完全に説明されるように、光を導波管940の中に結合するように構成されることができる。
【0114】
結合光学要素944は、ユーザのための1つ以上のアイボックスの寸法を増加させるように構成されることができる。例えば、1つ以上の寸法は、第1の軸(例えば、x軸)に沿って測定されてもよい。接眼レンズ950はさらに、直交瞳エクスパンダ(OPE)を含んでもよい。OPEは、導波管上または内(例えば、主要表面のうちの1つ上)に配置される、少なくとも1つの光再指向要素を有してもよい、またはOPEは、導波管940内に配置されてもよい。OPEは、上記の光分散要素730、740、750に関して上記に説明されるものと類似または同じである特徴を含んでもよい。いくつかの実装では、光再指向要素は、回折光学要素を備えてもよい。OPEは、第1の軸に直交する第2の軸(例えば、y軸)に沿ってアイボックスの寸法を増加させるように構成されてもよい。
【0115】
図11Dは、光の一部が、接眼レンズ950からユーザの眼210に向かって出射する様子を示す。いくつかの設計では、結合光学要素944は、第1の軸(例えば、x-軸と平行)に沿った結合光学要素944の種々の部分において結合光学要素944上に入射する、内部結合される光904が、第1の軸に沿った結合光学要素944の各部分において接眼レンズ950から出射するように構成される。これは、ユーザに、画像を投影させる、または異なる眼位置または場所のために眼を照明するための光を提供し得る。
【0116】
図11D-11Eに示されるように、結合光学要素944は、内部結合される光904を接眼レンズ950から外にコリメートされた光として結合するように構成されてもよい。本光はまた、一般に、接眼レンズ950および/または導波管940の主要表面に対してほぼ法線方向で指向され得る。コリメートされた光は、眼の中に指向され、眼(例えば、眼の角膜および天然レンズ)によって網膜上に集束され得る。網膜上に入射する本光908は、網膜を結像し、および/または画像コンテンツを眼に提供するための照明を提供し得る。本光908の一部は、例えば、網膜から反射または散乱され、眼から出射し、捕捉されるべき網膜の画像を提供し得る。光源960は、光が網膜の領域を照明するであろうように、延在された光源であってもよい。
【0117】
図12A-12Eは、
図11A-11Eの結像システム900が、加えて、または代替として、眼210の画像収集のために使用され得る様子を図示する。
図12Aは、網膜から反射された光910が、眼210から出射する様子を示す。示されるように、眼の天然レンズ、眼内の瞳孔、および角膜を通して通過する、網膜から散乱または反射された光910は、コリメートされ得る。本光はまた、法線入射(例えば、導波管940および/または結合光学要素944の主要表面に対して直角)で、接眼レンズ950上に入射し得る。結合光学要素944は、網膜から反射された光910を導波管940の中に結合するように構成されてもよい。
【0118】
図12Bは、光を接眼レンズ950の中に結合するにつれた、例示的結像システム900を図示する。結合光学要素944は、導波管940内で誘導されるように、光を臨界角を上回る角度で再指向する、回折光学要素または他の構造等の方向転換特徴を含んでもよい。結合光学要素944は、内部結合される光914を、概して、光源960および/または結像デバイス920に向かって指向するように構成されてもよい。結合光学要素944は、カメラ920に向かって伝搬する本光のある割合未満を導波管940から外に戻るように結合するように構成されることができる。例えば、部分反射性要素(例えば、半透明ミラー)が、結合光学要素944が配置される導波管940の部分に沿った導波管940から外への内部結合される光914の漏出を低減させながら、内部結合される光914の一部が、全内部反射によって導波管940内を伝搬し続けるように、導波管940上または内に配置されてもよい。漏出しない光の部分は、0~1の任意の割合であってもよい。例えば、その部分は、0.90であってもよく、結合光学要素944に沿って導波管940を通して伝搬する、光線の90%は、光線の各反射において導波管940内に維持される。他の部分も、可能性として考えられる(例えば、0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.80、またはこれらの値のいずれかの間の任意の範囲)。そのような部分反射性要素も同様に、下記に説明される実装において使用されることができる。
【0119】
図12Cに示されるように、コリメートされた内部結合される光914は、導波管940を通して結像デバイス920に向かって伝搬し続け得る。
図12Dは、内部結合される光914の一部が、1つ以上の外部結合光学要素952上に入射するまで、伝搬し続け得る様子を示す。内部結合光学要素942から外への内部結合される光914の漏出の量を低減させるために、内部結合光学要素942は、カメラ920に向かって伝搬する本光を導波管から外に戻るように殆ど結合しないように構成されることができる。例えば、部分反射性要素(例えば、半透明ミラー)が、内部結合光学要素942が配置される導波管940の部分に沿った導波管940から外への内部結合される光914の漏出を低減させながら、内部結合される光914の一部が全内部反射によって導波管940内を伝搬し続けるように、導波管940上または内に配置されてもよい。漏出しない光の部分は、0~1の任意の割合であってもよい。例えば、部分は、0.90であってもよく、導波管940を通して結合光学要素944に沿って伝搬する、光線の90%は、光線の各反射において導波管940内に維持される。他の部分も、可能性として考えられ得る(例えば、0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.80、またはこれらの値のいずれかの間の任意の範囲)。そのような部分反射性要素も同様に、下記に説明される実装において使用されることができる。
【0120】
図12Eに示されるように、外部結合光学要素952は、導波管940内で誘導される光を導波管940から外に結像デバイス920へと結合するように構成されることができる。その結果、外部結合要素952上に入射する、導波管940内を伝搬する光は、導波管940から外に、例えば、導波管940の主要表面から外に(例えば、導波管940の前方または後方側)射出され、結像デバイス920上に指向されるように、再指向され得る。外部結合光学要素952は、導波管940の主要表面に対して垂直に(例えば、法線方向で)導波管940から出射するように、光926を指向するように構成されてもよい。いくつかの設計では、外部結合光学要素952は、結像デバイス920の感光部分に対して法線入射で、コリメートされた光924を結像デバイス920上に指向するように構成される。上記に議論されるように、カメラ920は、無限遠に合焦され得、例えば、結像光学は、コリメートされた光を検出器アレイ上に集束させるように構成され得る。
【0121】
故に、導波管940は、ユーザの眼210の少なくとも一部の画像を捕捉するように、結像デバイス920(例えば、カメラ)によって受け取られるように、ユーザの眼210から結合される光を導波管940の中に誘導するように構成されてもよい。同一導波管940は、画像プロジェクタ930からの画像がユーザの視野内にあるように、画像プロジェクタ930からの光がユーザの眼210に指向され得るように、画像プロジェクタ930から結合される光を誘導するように構成されてもよい。いくつかの実装では、同一導波管は、眼の画像がカメラ920によって捕捉され得るように、照明源からの光が、ユーザの眼210に指向され、眼を照明し得るように、照明源960から結合される光を誘導するように構成される。
【0122】
いくつかの実装では、同一結合光学要素944は、(i)結像デバイス920によって受け取られるように、ユーザの眼210からの光を導波管940の中に結合し、(ii)画像プロジェクタ930からの光を導波管940から外にユーザの眼210へと結合し、画像コンテンツをユーザの視野の中に投影するように構成されることができる。いくつかの実装では、同一結合光学要素944は、照明源からの光が眼を照明し得るように、照明源960からの光を導波管から外にユーザの眼210へと結合するように構成されることができる。
【0123】
他の設計では、異なる導波管が、使用されることができ、および/または異なる結合光学要素944が、使用されることができる。いくつかの設計では、例えば、第1の導波管940は、ユーザの眼210の少なくとも一部の画像を捕捉するように、カメラ920によって受け取られるように、ユーザの眼210から結合される光を誘導するように構成されてもよく、第2の導波管は、画像プロジェクタ930からの光がユーザの眼210に指向されるように、画像プロジェクタ930から結合される光を誘導するように構成されてもよい。第1および第2の導波管は、相互の上部にスタックされてもよい。別の導波管は、加えて、または代替として、照明源からの光が、ユーザの眼210に指向され、眼を照明し得るように、照明源960から結合される光を誘導するように構成されてもよい。
【0124】
また、いくつかの実装では、第1の結合光学要素944は、(i)結像デバイス920によって受け取られるように、ユーザの眼210からの光を導波管940の中に結合し、(ii)画像プロジェクタ930からの光を導波管940から外にユーザの眼210へと結合し、画像コンテンツをユーザの視野の中に投影するように構成されることができる。別の結合光学要素は、加えて、または代替として、照明源からの光が眼を照明し得るように、照明源960からの光を導波管から外にユーザの眼210へと結合するように構成されてもよい。
【0125】
いくつかの設計では、結合光学要素944は、複数の回折光学要素(DOE)を含むことができる。例えば、第1のDOEは、ユーザの眼210からの光を結像デバイス920によって受け取られるように、導波管940の中に結合するように構成されることができる。第2のDOEは、画像プロジェクタ930からの光を導波管940から外にユーザの眼210へと結合し、画像コンテンツをユーザの視野の中に投影するように構成されることができる。随意に、第3のDOEは、光源960からの光を導波管940から外にユーザの眼210へと結合し、眼を照明するように構成されることができる。第1および第2の(および可能性として、第3の)DOEは、例えば、いくつかの実装では、ユーザの正面の環境からの光が、第1のDOEを通して通過し、次いで、第2のDOE上に入射し、次いで、第3のDOE上に入射し、ユーザの眼上に入射するように、スタックされることができる。しかしながら、順序は、異なり得る。
【0126】
いくつかの設計では、第1および第2のDOEは、導波管940の単一要素または体積内に統合される。いくつかの実装では、例えば、第1および第2のDOEは両方とも、導波管2102内で相互の上に重畳される(例えば、同一またはほぼ同一体積を占有する)。例えば、第1および第2のDOEは、同一媒体内に記録されてもよい。
【0127】
上記に説明されるように、眼、例えば、網膜の画像を捕捉することは、眼追跡を促進することができる。
図13Aは、例えば、眼が異なる位置にあるときの異なる時間において、例えば、眼210の種々の部分(例えば、網膜)を結像するように構成される、結像システム900を図示する。段階AおよびBは、異なる眼の配向の間の眼210の画像を指し得る。
図13Aは、段階Aおよび段階Bの結像の両方の間の眼210の画像およびその結果を示す。
【0128】
いくつかの実装では、光放出928(例えば、上記に説明されるような照明源960から、または異なるように構成される、および/または位置する、1つ以上の照明源から)が、
図13Aによって示されるように、網膜962の1つ以上の画像を取得するために使用されることができる。網膜962の画像は、眼210の異なる配向の間に結像される、1つ以上の領域964、966を備え得る。
図13Aは、網膜962の画像の2つの領域964、966を示す。例えば、段階Aにおいて結像される網膜の領域964は、眼210が導波管940に対して法線方向の角度で指向される間に結像され得る。段階Bにおいて結像される網膜の領域966に関する画像データは、眼210が導波管940とある鋭角で配向される間に取得され得る。結像の1つ以上の段階の間、眼210の1つ以上の配向を使用して、網膜962の合成画像またはマップが、取得され得る。データモジュール140(
図2参照)等の処理電子機器またはプロセッサが、2つの近傍領域間の重複画像データを見出すために使用されてもよい。重複領域の画像データを使用して、網膜962の合成画像が、決定されることができる。ユーザの網膜のより大きいサイズ(例えば、フルサイズ)の合成画像またはマップが、記憶されることができる。
【0129】
本明細書に説明されるように、頭部搭載型ディスプレイは、ユーザの眼が指向される方向に基づいて、ユーザの眼の網膜をマッピングするために使用されることができる。眼視線を使用して、ユーザの環境内のオブジェクトとの現実的かつ直感的相互作用を提供し、および/または頭部搭載型ディスプレイデバイスの装着者を識別するために、頭部搭載型ディスプレイシステムは、網膜マッピングを使用して、ユーザの眼特徴の一意性および眼測定にある影響を及ぼし得る他の条件を組み込むことができる。例えば、画像は、対応する網膜画像内の血管の位置に基づいて、識別されてもよい。
【0130】
網膜マッピングは、コンピューティングデバイスが、ユーザの眼視線(例えば、網膜画像内で識別されるように)と2Dまたは3D空間内の視線点を関連付ける方法を学習することを可能にするためのプロセスを伴い得る。眼視線は、2Dまたは3D空間内の単一点と関連付けられてもよい。眼視線はまた、空間内の複数の点と関連付けられることができ、これは、仮想オブジェクトの移動(例えば、一連の点、移動する画像の場所)を説明することができる。
【0131】
頭部搭載型ディスプレイシステムは、網膜画像に基づいて、ユーザの眼視線を決定することができる。頭部搭載型ディスプレイシステムは、センサ(例えば、結像デバイス920等の眼カメラ)を使用して、網膜画像を取得することができる。頭部搭載型ディスプレイシステムは、ユーザがその眼視線を変化させる間(例えば、ユーザが、移動または偏移する較正標的または固定標的を追従するように見回しているとき等)、ユーザの片眼または両眼を結像することができる。ユーザの網膜をマッピングするために、頭部搭載型ディスプレイシステムは、仮想標的、例えば、固定標的を、ユーザが見るために提示することができる。仮想標的は、2Dまたは3D空間内の視線の1つ以上の既知の点と関連付けられてもよい。ユーザが標的を見ている間、頭部搭載型ディスプレイシステムは、網膜画像を入手し、画像と視線点を関連付けることができる。頭部搭載型ディスプレイシステムは、個別の網膜画像と標的と関連付けられた視線の点の関連付けに基づいて、マッピング行列を計算および/または生成することができる。
【0132】
網膜マッピング結果は、各人物の眼内の一意性を反映させることができる。例えば、頭部搭載型ディスプレイシステムは、具体的個人の片眼または両眼にカスタマイズされる、マッピング行列を生成することができる。例えば、ユーザは、具体的標的に応答した異なる眼移動の量または眼視線を有し得る。加えて、または代替として、ユーザは、網膜内に血管の異なる位置、サイズ、形状、および/または配向を有し得る。その結果、個々のユーザに特有の較正結果を生成することによって、頭部搭載型ディスプレイシステムは、眼視線とのより正確なユーザ相互作用を可能にし得、および/または特定のユーザの識別を可能にし得る。
【0133】
故に、ユーザが、頭部搭載型ディスプレイデバイスを装着すると、システムは、ユーザが前のユーザであるかまたは新しいユーザであるかを検出することができる。混乱行列が、計算されることができ、システムメモリ内に記憶される特定の眼視線画像に関するスコアが、現在のユーザの対応する画像と比較される。混乱行列は、複数の眼視線および関連付けられた網膜画像に関する比較スコアを含むことができる。比較スコアに基づいて、システムは、ユーザの識別(例えば、ユーザが、記憶された網膜画像または合成マップが関連付けられた個人と同一であるかどうか)および/または決定に関する信頼度レベルに関して決定を行うことが可能であり得る。信頼度レベルは、例えば、識別係数を含み得る。記憶される画像、例えば、合成画像またはマップは、現在のユーザに関して取得される瞬間またはリアルタイム画像と称される、後に取得された画像と比較されてもよい。システムは、システムが、ユーザが新しいユーザであることを検出する場合、アラートを提供してもよい、または他のアクションを行なってもよい。
【0134】
システムは、デジタルフィルタリングまたは画像処理等のフィルタリングをカメラによって捕捉された網膜の画像に適用してもよい。そのようなフィルタリングまたは結像処理は、例えば、識別、スティッチング、合成画像の組立、眼追跡等のために使用され得る、特徴を向上させ得る。そのようなフィルタリングまたは画像処理は、縁向上を備えてもよい。そのようなフィルタは、例えば、Frangiフィルタを備えてもよいが、他のタイプのフィルタが、使用されてもよい。そのようなフィルタまたは処理(例えば、縁向上またはFrangiフィルタ)は、網膜画像内の血管または管状構造または線維等の画像特徴を向上および/または検出するために使用されることができる。
【0135】
図13Bは、網膜マッピングプロセスにおいて使用され得る、順次表示される固定標的のパターンを図示する。その上にユーザの眼がその視線を指向させるであろう、これらの仮想標的は、眼の視線を種々の異なる方向に再指向させることができ、その間、網膜は、結像されることができる。異なる視線方向と関連付けられた結果として生じる画像は、網膜の同じではない部分に対応する。上記に議論されるように、眼が、異なる方向を注視し、ディスプレイ上の異なるように位置する固定標的を視認するとき、カメラによって捕捉された画像は、網膜の異なる部分を含む。これらの画像は、組み立てられ、網膜のより大きいマップまたは合成画像を形成することができる。
【0136】
図13Bは、ユーザの視野(FOV)1200内の16の異なる場所における仮想標的を示す。種々の実装では、仮想標的は、所与の時間において、所与の場所に提示されるであろう。1つ以上の網膜画像が、仮想標的がその特定の場所においてユーザに提示される時間の間、取得されるであろう。本画像またはこれらの画像は、標的位置および/または対応する視線方向と関連付けられてもよい。より多いまたはより少ない標的場所が、使用されてもよい。
図13Bに示される実施例では、16の標的場所1202a-1202pが、示される。より多いまたはより少ない標的場所が、使用されてもよい。標的場所はまた、異なり得る。標的が異なる場所に提示される順序は、変動し得る。例えば、標的は、ラスタパターンにおいて、ユーザの視野の左から右側に、今度は逆に、右から左側に、再び、左から右側に移動し、視野内の標的の位置を低下させてもよく、各側方通過は、視野を横断する。しかしながら、他のパターンおよびアプローチも、可能性として考えられる。同様に、標的は、同じようにまたは異なるように、異なる場所においてレンダリングされることができる。例えば、レンダリングされた標的は、サイズ、形状、色等が異なり得る。標的は、眼追跡較正プロセスの間、順次、ユーザにレンダリングされることができる。例えば、上記に議論されるように、頭部搭載型ディスプレイシステムは、蛇行パターンにおいて、標的をレンダリングしてもよい。例えば、標的1202aの後に、1202b、次いで、1202c、次いで、1202d、次いで、1202h、次いで、1202g等が続いてもよい。他のパターンも、可能性として考えられる。例えば、標的は、よりランダムまたは非シーケンシャルパターンで表示され得る。いくつかの実施形態では、単一標的が、ユーザに表示され、標的は、ユーザの視野を動き回る(例えば、標的の移動の間、位置1202a-1202pを通過する、またはそこで一時的に停止する)。頭部搭載型ディスプレイシステムは、ユーザがこれらの標的を見ている間、ユーザの網膜の画像を入手することができる。例えば、頭部搭載型ディスプレイシステムは、ユーザが第1の場所1202aにおける標的を見ているとき、第1の画像を入手し、ユーザが第2の場所1202bにおける標的を見ているとき、第2の画像を入手し、ユーザが第3の場所1202cにおける標的を見ているとき、第3の画像を入手する等と続くことができる。ウェアラブルシステムは、第1の画像と第1の位置1202aを関連付け、第2の画像と第2の位置1202bを関連付け、第3の画像と第3の位置1202cを関連付ける等と続くことができる。近傍画像は、データベース内でともにスティッチングされ、完全または部分的網膜マップを作成してもよい。例えば、2つの画像が、複数の画像に共通の特徴または特徴の一部(例えば、血管またはその一部)を使用して、適切な位置合わせにおいて、ともにスティッチングされることができる。種々の実装では、隣接する標的位置は、位置合わせされ、ともにスティッチングされ得る、重複画像を生産するであろう。例えば、標的位置1202aおよび標的位置1202bならびに標的位置1202bおよび標的位置1202cは、相互にスティッチングされ得る、重複および隣接する網膜画像を生産し得る。故に、いくつかの異なる網膜画像が、網膜のより大きい画像(例えば、合成画像またはマップ)を組み立てるように、異なる眼視線を用いて取得され得る。
【0137】
上記に議論されるように、眼追跡が、合成網膜画像またはマップを使用して、実施されることができる。例えば、標的がもはや表示されなくなった後、ユーザは、ユーザが、ユーザおよび頭部搭載型ディスプレイの正面の異なる実オブジェクトまたは頭部搭載型ディスプレイによって表示される拡張現実(仮想)画像コンテンツを見るにつれて、その眼視線を移動させ得る。1つ以上の網膜画像が、これらの時間において取得され得る。用語「瞬間」または「リアルタイム」画像は、本明細書では、眼追跡(またはバイオメトリックデータを取得する等の他の目的)のために使用され得る、較正に続いて取得されるこれらの画像を説明するために使用されてもよい。これらの「瞬間」または「リアルタイム」画像は、合成網膜画像またはマップの一部に対応する可能性が高い。システムは、本「瞬間」または「リアルタイム」網膜画像と合成網膜画像または網膜マップの一部を十分に合致させるように構成されてもよい。そのような合致は、「瞬間」または「リアルタイム」網膜画像および合成網膜画像またはマップの一部の両方に共通の特徴または特徴の一部(血管またはその一部)に基づいてもよい。これに対して本「瞬間」または「リアルタイム」網膜画像が一致する、合成網膜画像またはマップの部分の場所に基づいて、視線方向が、推測され得る。異なる視線方向は、網膜マップの異なる部分に対応する、網膜画像をもたらすであろう。故に、合成網膜画像またはマップ上の「瞬間」または「リアルタイム」網膜画像の場所を識別することは、ユーザの視線の方向に関する情報を提供するであろう。眼追跡、例えば、眼の移動および眼視線の変化を追跡することは、そのようなまたは類似方法を使用して、実施されてもよい。上記に議論されるように、縁向上、縁検出、または他のデジタルフィルタリングおよび/または処理が、異なる画像の特徴を向上させる、および/または合成網膜画像または網膜マップと相関させるために使用されてもよい。
【0138】
種々の実装では、仮想標的または固定標的が、表示され(例えば、複数の場所において)、合成網膜画像またはマップを組み立てる、初期較正プロセスの完了後、合成網膜画像またはマップは、依然として、精緻化されることができる。例えば、付加的網膜画像が、取得されるにつれて、合成網膜画像またはマップは、付加的画像を使用して、さらに精緻化または改良されることができる。故に、付加的「瞬間」または「リアルタイム」網膜画像が、例えば、眼追跡を提供する目的のために、取得されるにつれて、合成網膜画像またはマップは、「瞬間」または「リアルタイム」を使用して、さらに精緻化または改良されることができる。ユーザが、ディスプレイ内の種々の位置を見続けるにつれて(較正標的の補助の有無にかかわらず)、網膜合成画像またはマップは、仮想標的または固定標的が表示された初期較正に続いて入手された付加的画像を使用して、さらに精緻化されてもよい。合成網膜画像またはマップの品質は、したがって、増加され得る。
【0139】
眼追跡が、遂行され得、および/または合成網膜画像またはマップが、生産され得、網膜画像が使用される方法の付加的非限定的実施例は、「EYE IMAGE COLLECTION」と題され、2017年1月17日に出願された、米国特許公開第2017/0205875号(本開示は、参照することによってその全体として本明細書に組み込まれる)に説明される。
【0140】
故に、上記に議論されるように、網膜のより大きい部分が、本明細書に説明されるような結像システムを使用して、網膜画像および/または眼の他の画像を取得することによって、記録およびマッピングされ得、そのような画像は、眼追跡を促進し得る。例えば、
図13Aに示される眼210の画像は、眼が恣意的位置にあるときに捕捉されてもよい。処理電子機器またはプロセッサ(合成画像を形成するものとして上記に説明されるものと同一または異なるもの等)が、次いで、ユーザの網膜のリアルタイムで捕捉された画像とユーザの網膜の記憶された合成画像またはより大きいサイズ(例えば、フルサイズ)の画像を比較し、眼移動を追跡し得る。リアルタイムで捕捉されたユーザの網膜の所与の画像は、ユーザの網膜の具体的部分を示し得る。上記に説明されるように、そのような捕捉された画像とユーザの網膜のより大きい部分のユーザのマッピングの記憶された画像を比較することによって、システムは、捕捉された画像内に示されるユーザの網膜の部分を決定することができ、それによって、そのような画像を生産するであろう、眼の位置/配向を決定することができる。例えば、眼が2つの異なる位置および/または配向にあるときに生産される、網膜の部分の2つの異なる画像を示す、
図13Aを参照されたい。故に、眼の位置および/または配向は、網膜の異なる画像を捕捉し、可視である網膜の部分を決定することによって決定され得る。そのような決定は、合成画像が形成されない場合でも、実施され得、むしろ、異なる眼位置/配向に関する網膜の複数の画像が、データベース内に記録および記憶される。網膜の将来的画像が、取得されると、その画像は、記憶される画像のデータベース内の画像と比較され、最近取得された眼の画像に類似する、データベース内の画像を決定し得る。最近の画像を、関連付けられた位置および/またはそれらと関連付けられた配向を有する、データベース内の画像のうちの1つ以上のものに合致することは、より最近の画像の配向および/または位置の決定を可能にすることができる。眼追跡の他のアプローチも、本明細書に説明される設計を使用して捕捉された画像に基づいて、使用されてもよい。
【0141】
本明細書に説明されるように、網膜画像は、同様に、他の目的のために採用されてもよい。例えば、網膜画像は、ユーザが、合成網膜画像またはマップが取得された同一ユーザであることを照合するために使用されてもよい。ユーザが頭部搭載型ディスプレイシステムを装着しているときに(例えば、較正プロセスの間および/または後の使用の間に)取得される、網膜の画像は、記憶される、以前に取得された(例えば、前日にまたは頭部搭載型ディスプレイが以前にブートアップされたときに作成された)合成網膜画像またはマップと比較されてもよい。最近取得された網膜画像が、合成網膜画像またはマップの一部に十分に合致しない場合、現在のユーザが前のユーザ(例えば、合成仮想画像またはマップが作成された)と異なると結論付けられてもよい。そのような方法は、セキュリティのために、例えば、頭部搭載型ディスプレイデバイスの現在のユーザが、デバイスの所有者または典型的ユーザであることを照合するために使用されてもよい。故に、網膜結像を介して取得されるバイオメトリックデータは、セキュリティ目的のために使用されてもよい。
【0142】
網膜結像は、同様に、ユーザの健康を監視するために、バイオメトリックデータを収集するために使用されてもよい。医療関連データが、網膜画像から取得されてもよい。そのような医療データは、ユーザの健康を監視するために有用であり得る。
【0143】
眼追跡、健康監視、およびセキュリティのためのバイオメトリックデータの収集等の眼結像の種々の用途は、網膜結像のコンテキストにおいて本明細書で議論されるが、ユーザの他の部分、例えば、ユーザの眼の結像も、これらおよび他の目的のために採用されてもよい。
【0144】
接眼レンズ950は、眼の結像を促進するために利用されることが可能であるように上記に説明されるが、接眼レンズはまた、ユーザの正面の世界を結像するために使用されることができる。
図14A-14Bは、例えば、ユーザの正面の環境の一部および/または環境の一部内のオブジェクトを結像するために使用され得る、例示的結像システム900を図示する。使用される結像システム900は、光が、接眼レンズ950によって、接眼レンズおよびユーザの前方の環境から収集されることを除き、
図11A-11Eおよび/または
図12A-12Eに関して説明されるものの類似システムであり得る。
図14Aは、例えば、ユーザおよび接眼レンズ950の前方の環境内の1つ以上の物理的オブジェクト972から反射される、および/またはそれによって放出される、環境からの光970を図示する。示されるように、環境からの光970は、例えば、環境内の物理的オブジェクト972が、結像システム900に到達する光線がコリメートまたはほぼコリメートされるために、結像システム900から十分に長距離に位置し得るため、ほぼコリメートされ得る(例えば、無限遠に)。いくつかの実装では、結像システム900は、結像システム900内で屈折力を有する任意の光学要素(例えば、レンズ、ミラー)を使用せずに、環境および/または環境内のオブジェクトを結像するように構成されてもよい。
【0145】
図14Aおよび14Bに示される結像システム900は、上記に説明される結像システムに類似する。結像システムは、画像プロジェクタ930(図示せず)からの光を眼210の中に指向し、画像をその中に形成するように構成される、結合光学要素944を含む、1つ以上の導波管940を備える、接眼レンズ950を含む。1つ以上の導波管は、複数の対応する色/波長を内部結合/外部結合するように構成される、複数の導波管(例えば、導波管のスタック)を含んでもよい。導波管のスタック内の各導波管は、特定の色(例えば、赤色、緑色、青色)の光を指向するように構成されてもよい。例えば、最遠位導波管(例えば、導波管のスタック)は、導波管が可視光の同一波長を内部結合および外部結合するように構成されるように、可視光(例えば、赤色、青色、緑色)のために構成されてもよい。加えて、または代替として、不可視(例えば、赤外線)光を内部結合および外部結合するように構成される、導波管が、眼210の近位に配置されてもよい。導波管940に対応するそのような複数の導波管は、本明細書に説明される任意の他の実装において使用されてもよい。結像システム900はまた、結像デバイス(例えば、カメラ)920と、導波管940内でカメラに伝搬される、眼210から反射された光を方向転換させるように構成される、外部結合光学要素952とを含んでもよい。
図14Aおよび14Bでは、照明源960は、照明源がユーザの正面の環境を結像するために必要とされ得ないため、除外される。しかしながら、照明源(例えば、上記に説明される光源960)は、ある設計では、使用されてもよい。
【0146】
接眼レンズ950、導波管940、結合光学要素944、外部結合光学要素952、およびカメラ920は、上記に説明されるものと同一または類似してもよい。例えば、結合光学要素944は、導波管940と物理的に関与してもよい。例えば、結合光学要素944および/または外部結合光学要素952は、環境からの光が、結合光学要素944を介して、導波管940の中に結合され、カメラ210上に入射するように(例えば、環境の少なくとも一部の画像を形成するため)、外部結合光学要素を介して、導波管から外に結合されるように、接眼レンズ950の正面の環境とカメラ920との間の光学経路内に配置されてもよい。結合光学要素944は、導波管内で誘導される光を導波管から外に方向転換させる、または全内部反射によってその中で誘導されるように、結合光学要素944上に入射する光をある角度で導波管の中に方向転換させるように構成される、複数の方向転換特徴を備えてもよい。外部結合光学要素952は、光が、全内部反射によって導波管内で誘導されないが、カメラに向かって外に指向されるように、導波管内である角度で誘導される、光(環境から)を方向転換させるように構成される、複数の方向転換特徴を備えてもよい。結合光学要素944、外部結合光学要素952、およびそれぞれと関連付けられた方向転換特徴は、導波管940と物理的に関与してもよい。例えば、結合光学要素944および/または外部結合光学要素952は、導波管940内または上にパターン化された(例えば、エッチングされた)1つ以上のホログラフィックまたは回折光学要素(例えば、表面レリーフ格子)を備えてもよい。結合光学要素944および/または外部結合光学要素952は、導波管940上に配置される層を備えてもよい、または導波管940内に形成されてもよい。例えば、体積ホログラフィックまたは回折光学要素は、導波管またはその上に配置される層を構成する材料の屈折率を変化させることによって形成されてもよい。故に、結合光学要素944および/または外部結合光学要素952は、導波管940またはその上に配置される層の体積内に配置されてもよい。設計に応じて、結合光学要素944および/または外部結合光学要素952は、透過性または反射性であってもよく、透過的または反射的に動作してもよい。例えば、結合光学要素944および/または外部結合光学要素952は、それぞれ、透過的または反射的に動作し、例えば、それを通して透過された、またはそこから反射された光を方向転換する、透過性または反射性回折光学要素(例えば、格子)またはホログラフィカル光学要素を含んでもよい。結合光学要素944および/または外部結合光学要素952は、偏光選択的方向転換要素(例えば、偏光器)等の偏光光学要素を含むことができる。偏光選択的方向転換要素は、1つ以上の偏光格子、回折光学要素、および/またはホログラフィック光学要素を含んでもよく、液晶偏光格子等の液晶構造を備えてもよい。いくつかの実装では、反射性光学要素は、反射体(例えば、ミラー)を含んでもよい。例えば、導波管940等の他の要素も、同様に、上記に説明されるものに類似してもよい。
【0147】
図14Bは、
図14Aに示される結像システム900の動作を図示する。環境からの光970は、結合光学要素944によって導波管940の中に結合される。結合光学要素944は、コリメートされた光の少なくとも一部が、導波管内で全内部反射によってカメラ920に向かって誘導されるように、導波管940の臨界角を上回る角度で、本コリメートされた光を方向転換させるように構成されてもよい。外部結合光学要素952は、結合光学要素944を介して、導波管940の中に結合され、その中で誘導される、ユーザの正面の環境からの光の少なくとも一部を受け取るように構成されることができる。外部結合光学要素952は、環境の画像がカメラ920によって捕捉され得るように、内部結合される光を導波管940から外にカメラ920へと結合するように構成されてもよい。環境の画像は、データモジュール140(
図2参照)等の処理電子機器(例えば、1つ以上のプロセッサ)に通過されてもよい。データモジュール140は、拡張現実コンテキスト内の環境の修正された画像を再現するように構成されてもよい。処理電子機器は、有線または無線電子信号を介して、カメラ920と通信してもよい。加えて、または代替として、処理電子機器は、1つ以上の遠隔受信機を使用して、カメラ920と通信してもよい。処理電子機器は、遠隔に常駐してもよい(例えば、クラウドコンピューティングデバイス、遠隔サーバ等)。
【0148】
本結像システム900は、したがって、直接、環境を結像するために使用されることができ、これは、種々の理由から、有用であり得る。例えば、環境を結像することは、拡張現実画像コンテンツを環境内のオブジェクトに対して設置すべき場所を決定するために使用されることができる。例えば、環境を結像することは、頭部搭載型ディスプレイが、テーブル上またはテーブル内の代わりに、テーブルの隣に立っている人物の画像をレンダリングし得るように、テーブルの場所を提供し得る。環境を結像することに関して説明される結像システム900はまた、
図10、11A-11E、および/または12A-12Eに関して説明されるような眼210を結像するために使用されてもよい。
【0149】
結像システム900を使用して、環境の広視野を結像することが望ましくあり得る。
図14Cは、接眼レンズの前方の屈折光学要素980(例えば、広視野レンズ)等の屈折力型光学要素またはレンズを使用して、環境からの光を収集するための結像システム900を図式的に図示する。屈折光学要素980は、正の屈折力を有してもよい。屈折光学要素980(例えば、正のレンズ)は、環境からコリメートされた光970を導波管940に向かって収束させる。
図14Cに示されるレンズ以外のタイプのレンズが、採用されてもよい。透過される光(図示せず)は、屈折光学要素980の等しいが反対の負の屈折力のために構成される、屈折光学要素990(例えば、負のレンズ)等の屈折力型光学要素またはレンズを通して通過し得る。負のレンズ990は、正のレンズ980と類似または同一屈折力を有し、正のレンズの屈折力またはその一部をオフセットまたは相殺し得る。このように、環境(例えば、導波管940の遠位)からの光は、負のレンズ990、接眼レンズ950、および正のレンズ980を通して通過し得、実質的に、これらの2つのレンズによって眼に導入される屈折力に正味の変化を及ぼさない。負のレンズ990は、ユーザが、接眼レンズ950の正面の環境を視認するとき、正のレンズの屈折力を被らないであろうように、正のレンズ980の屈折力をオフセットまたは相殺するように構成されてもよい。負のレンズ990はまた、正のレンズ980の効果を相殺し、装着者の正面の環境内のオブジェクトの画像を反転させるであろう。環境からの一部の光970は、光線の一部が収束するにもかかわらず、結合光学要素944によって、導波管940の中に内部結合され得る。外部結合光学要素952上に入射する内部結合される光は、導波管940から外に射出され得る。
【0150】
実装(例えば、
図14A-14Cによって説明されるもの)は、拡張現実コンテキスト外で使用されてもよい。例えば、環境を結像するように構成される、結像システム900は、例えば、眼鏡(非屈折力型眼鏡を含む)または遠近両用眼鏡等のウェアラブルデバイス内に実装されることが意図される。そのような結像システム900は、画像プロジェクタ930および/または光源960を要求しなくてもよい。加えて、または代替として、そのような結像システム900は、対応する画像プロジェクタ930および/または光源960のために構成される、内部結合光学要素を要求しなくてもよい。
【0151】
環境をハンドヘルドデバイス(例えば、携帯電話、タブレット)等の視認画面(例えば、テレビ画面、コンピュータ画面)上に結像するために、そのような結像システム900を実装することが有利であり得る。結像システム900は、ビデオチャット能力を改良し得る。例えば、チャットパートナが見えている視認者が、画面を見ると、直接、視認者を見ているように現れ得る。これは、結像システム900によって捕捉された光線が、ユーザが見ている同一領域内で捕捉されるであろうため、可能となるであろう(例えば、異なる場所に位置付けられる別個の外向きに向いたカメラによって捕捉された光線を有する、画面の視認とは対照的)。
【0152】
図14Cの結像システム900がまた、眼210を結像するために使用される実装では、光源960および/または画像プロジェクタ930は、光を導波管940の中に投入するように構成されてもよい。導波管の中に内部結合される、眼から反射された光は、屈折光学要素990(例えば、負のレンズ)を通して通過するであろうため、正の屈折力型屈折光学要素が、光源960および/または画像プロジェクタ930と導波管940との間に配置されてもよい。正のレンズは、光源および/または光プロジェクタからの内部結合される光が、眼210上に入射する前に、屈折光学要素990によって提供される任意の屈折力をオフセットまたは相殺するように構成されることができる。
図14Cに示されるもの以外のタイプのレンズも、光学要素990として使用されてもよい。代替として、または加えて、光源および/または画像プロジェクタと通信する処理電子機器が、光が屈折光学要素990を通して通過後、ユーザに歪曲されていない画像を提示するために十分な画像を改変するように構成されることができる。対応する内部結合光学要素、外部結合光学要素、および/または結合光学要素は、いくつかの設計では、コリメートされていない光(例えば、発散、収束光)に作用するように構成されてもよい。
【0153】
種々の実装では、同一導波管940は、(i)接眼レンズ950およびユーザの正面の環境からの光をカメラ940に伝搬し、(ii)画像プロジェクタ930からの光を眼210に伝搬し、画像コンテンツをその中に形成するために使用されてもよい。同一導波管940を使用することは、システムおよび/または接眼レンズを簡略化し得、システムおよび/または接眼レンズをよりコンパクトにし、可能性として、低減された形状因子を提供し得る。導波管940の数を低減させることによって、接眼レンズ950の厚さを低減させることは、同様に、他の理由のためにも有利であり得る。より低いコストおよびより簡略化された製造プロセスは、いくつかのそのような利点であり得る。
【0154】
また、種々の設計では、同一または異なる結像システムが、同一頭部搭載型ディスプレイ内で使用され、例えば、上記に説明されるように、眼からの光を接眼レンズ950内の導波管を介してカメラ940に伝搬することによって、眼を結像してもよい。そのようなシステムはまた、接眼レンズを使用して、照明源からの光を眼210に転送し、眼を照明する。いくつかの設計では、接眼レンズは、加えて、画像プロジェクタ930からの光を眼210に伝搬し、画像コンテンツをその中に形成するために使用されてもよい。接眼レンズを使用して、環境を結像し、眼を結像する(および可能性として、眼を照明する)ことを補助することは、システムを簡略化し得、および/またはシステムをよりコンパクトにし、可能性として、低減された形状因子を提供し得る。
【0155】
さらに、いくつかの実装では、同一導波管940は、(i)接眼レンズ950の正面の環境からの光をカメラ940に伝搬し、(ii)眼210からの光をカメラに伝搬し、眼の画像を捕捉するために使用されてもよい。同一導波管は、画像プロジェクタ930からの光を眼210に伝搬し、画像コンテンツをその中に形成し、および/または画像捕捉のために、照明源960からの光を眼210に伝搬し、眼を照明するために使用されてもよい。同一導波管940を使用することは、システムおよび/または接眼レンズを簡略化し得、システムおよび/または接眼レンズをよりコンパクトにし、可能性として、低減された形状因子を提供し得る。導波管940の数を低減させることによって、接眼レンズ950の厚さを低減させることは、同様に、他の理由のためにも利点であり得る。より低いコストおよびより簡略化された製造プロセスは、いくつかのそのような利点であり得る。
【0156】
同様に、環境からの光を導波管940の中に結合することに加え、同一結合光学要素944は、画像プロジェクタ930からの光を眼210に指向し、画像コンテンツをその中に形成し、および/またはその中でカメラ920に誘導されるように、眼からの光を導波管940の中に指向するように構成されてもよい。加えて、または代替として、同一結合光学要素944は、導波管940内で誘導される照明源960からの光を導波管から外にユーザの眼210へと結合するように構成されてもよい。
【0157】
上記に議論されるように、結合光学要素944、内部結合光学要素942、または外部結合光学要素952のうちの1つ以上のものは、偏光選択的結合要素を備えてもよい。故に、種々の設計では、接眼レンズ950または導波管940の中に入力される光は、偏光選択的方向転換要素によって適切に作用されるように偏光される。
【0158】
故に、いくつかの実施形態では、照明源960は、偏光選択的結合/方向転換要素によって適切に作用されるように、好適な偏光の偏光源を備える。
【0159】
1つ以上の偏光特有光学フィルタおよび偏光修正要素が、画像プロジェクタ930および/または光源960が、導波管940を通して相互に正対して配置されるもの等の種々の結像システム900内に含まれてもよい。偏感光要素は、結像デバイス920の中への指向性光放出を低減させ、および/または、例えば、これらの要素が同一側方位置において導波管940の反対側上に整合される構成では、結像デバイス920の飽和を低減させる際に有用であり得る。
図15A-15Bは、そのような構成を示す。
図15Aに示されるような光源960は、偏光器(例えば、線形偏光器)等の偏光特有光学フィルタ982を通して、および/または偏光回転子等の入射光の偏光状態を改変するように構成される、偏光修正要素986を通して、光を指向するように構成されることができる。半波リターダ等のリターダは、例えば、線形偏光を回転させ得る。故に、適切に配向された半波リターダまたは半波長板は、s-偏光をp-偏光またはその逆に回転させ得る。故に、種々の実装では、偏光特有光学フィルタ982および/または偏光修正要素986が、適切に配向された偏光を内部結合光学要素に提供するように、光源960と内部結合光学要素942との間の光学経路内に配置される。いくつかの実装では、結像システム900は、偏光修正要素を含まないが、偏光器等の適切に配向された偏光光学フィルタを含む。
【0160】
光源960によって放出される光は、特定の順序において、光学要素の配列を通して通過し得る。例えば、
図15Aに示されるように、光は、最初に、光源960から、偏光特有光学フィルタ982(例えば、偏光器)を通して、次いで、偏光修正要素986(例えば、回転子)を通して通過し得る。光が、偏光修正要素986を通して通過後、光は、内部結合光学要素942上に入射してもよく、これは、その中で誘導されるように、光を導波管940の中に指向し得る。
【0161】
例えば、光源960は、混合偏光(例えば、s-偏光およびp-偏光)の光を放出するように構成されてもよい。偏光特有光学フィルタ982は、第1の偏光状態の光(例えば、p-偏光)のみを透過させるように構成されてもよい。光が継続するにつれて、偏光修正要素986は、光の偏光状態を変化させる(例えば、p-偏光からs-偏光に)ように構成されてもよい。内部結合光学要素は、s-偏光が導波管内で誘導されるように、導波管の臨界角を上回る角度に、s-偏光を方向転換させるように構成されてもよい。内部結合される光904は、導波管940を通して伝搬するにつれて、第2の偏光(s-偏光)内で実質的に偏光され得る。結合光学要素944は、第2の偏光状態(s-偏光)の光のみを方向転換させるように構成されてもよい。結合光学要素944は、内部結合される光904を導波管940から外に眼210へと結合し、画像捕捉のために、照明を提供するように構成されてもよい。
【0162】
結像デバイス920の直接照明(例えば、飽和)を防止するために、偏光修正要素958および/または偏光特有光学フィルタ984が、ある偏光状態(例えば、p-偏光)の光のみが、偏光特有光学フィルタ984を通して結像デバイス920に通過し得るように、導波管940内または上に配置されてもよい。偏光修正要素958(例えば、半波長板)は、偏光の状態を変化させる(例えば、s-偏光からp-偏光に)ように構成されてもよい。偏光特有光学フィルタ984は、ある偏光の光(例えば、p-偏光)のみをそれを通して透過させるように構成されてもよい。このように、偏光特有光学フィルタ982を通して通過する光は、直接、偏光特有光学フィルタ984を通して透過するように構成されないであろう。上記の実装(例えば、画像プロジェクタ930および/または光源960は、
図15Aに示されるように、同一光学軸上にある)のいずれかでは、
図10、11A-11E、および12A-12Eにおけるように、偏光特有光学フィルタ982、偏光修正要素986、内部結合光学要素942、偏光修正要素958、および/または偏光特有光学フィルタ984の構成は、
図15Aの設計に従って実装されてもよい。偏光特有光学フィルタ984は、第1の偏光の光を透過させ、第1のものと異なる第2の偏光の光を再指向または反射させるように構成される、透過性-反射性偏光器(例えば、偏光器ビームスプリッタ)であってもよい。
【0163】
部分反射性要素(例えば、半透明ミラー)が、内部結合される光904を結像デバイス920に方向転換させるために含まれてもよい。部分反射性要素は、内部結合される光914の一部が、導波管940から外への内部結合される光914の漏出を低減させながら、結像デバイス920に向かって反射されるように、内部結合光学要素942と偏光修正要素986との間に配置されてもよい。漏出しない光の部分は、0~1の任意の割合であってもよい。例えば、部分は、0.90であってもよく、結合光学要素944に沿って導波管940を通して伝搬する光線の90%は、光線の各反射において、導波管940内で維持される。他の部分も、可能性として考えられる(例えば、0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.80、またはこれらの値の間の範囲内の任意の値)。
【0164】
図15Bは、網膜から反射または散乱する光の伝搬を図示する。第2の偏光(s-偏光)を有する、結合光学要素944上に入射する、網膜から反射された光910の一部は、結合光学要素944によって、導波管940の臨界角を上回る角度で方向転換され、したがって、その中で誘導され得る。光の一部は、導波管940の中に結合され得ず、内部結合されない光912として、それを通して透過するであろう。内部結合される光904は、導波管940を通してカメラに向かって伝搬し得る。
【0165】
他の実装も、光源およびカメラの近位の偏光選択的要素の使用から利点を享受し得る。例えば、種々のシステムは、第1の偏光を有する照明を提供し、異なる偏光を有する光を使用して、カメラで画像を捕捉するように構成されることができる。例えば、そのような構成は、網膜を結像するとき、角膜等からの望ましくない反射を低減させるために使用されてもよい。角膜からの反射は、鏡面反射性となるであろう。故に、第1の偏光の光が、角膜上に入射する場合、角膜から反射された光は、その第1の偏光を維持するであろう。対照的に、網膜は、拡散性である。第1の偏光の光が、網膜上に入射する場合、網膜から反射された光は、第1の偏光のみを維持しないであろう。拡散反射は、非偏光をもたらす可能性がより高い。故に、第1の偏光と異なる第2の偏光が、反射された光内に存在するであろう。同様に、第1の偏光で照明し、第2の異なる偏光で結像することによって、網膜は、角膜からの低減されたグレアを伴って、結像されることができる。
【0166】
故に、種々の実装では、偏光特有光学フィルタ982、984はともに、眼210から(例えば、角膜から)反射された望ましくない光を低減させるために使用されてもよい。例えば、結像デバイス920によって捕捉された画像を飽和させ得る、望ましくない光、グレア、または閃光が、角膜から反射され得る。角膜から反射された光は、鏡面反射性であって、その偏光を維持し得る。対照的に、網膜から反射された光は、より拡散反射され得、あまり均質に偏光され得ない。同様に、偏光器の組み合わせが、望ましくない反射された光の一部または大部分を除去するために使用されてもよい。最初に、偏光は、眼210を照明するために使用されることができる。いくつかの設計では、偏光された照明源(例えば、光源960)が、使用されてもよい。加えて、または代替として、第1の偏光器(例えば、偏光特有光学フィルタ982)が、照明源の光学経路の開始時に位置付けられ、光の初期偏光を提供してもよい。第2の偏光器(例えば、偏光特有光学フィルタ984)が、光が結像デバイス920に入射する前に、光学経路に位置付けられてもよい。第2の偏光器は、第1の偏光器から90o回転されてもよい(例えば、偏光器982、984は、「交差」してもよい)。その結果、眼は、第1の偏光で照明され、第1の偏光の一部の光は、角膜から反射されるであろう。本光は、カメラの近位の偏光器984を通して通過しないであろう。しかしながら、網膜から反射された光は、第2の偏光を含むであろう。同様に、網膜から拡散反射された光は、カメラの近位の偏光器984を通して通過し、網膜の画像がカメラによって捕捉されることを可能にするであろう。したがって、そのような構成では、結像デバイス920に入射し得る、眼から(例えば、角膜から)受け取られた望ましくない光は、低減または排除され得る。他の構成も、可能性として考えられる。例えば、光源960からの光を導波管940の中に結合する、偏光選択的内部結合光学要素942と、光を導波管から外にカメラ920へと結合するための偏光選択的外部結合光学要素が、異なる偏光選択性性質を有するように採用されてもよい。例えば、偏光選択的内部結合光学要素は、第1の偏光を有する照明源からの光を導波管の中に選択的に方向転換させ得る一方、外部結合光学要素は、第2の異なる偏光の光を導波管から外にカメラへと選択的に方向転換させ得る。効果は、再び、結像デバイス920に入射する前に、眼から(例えば、角膜から)受け取られた望ましくない光を低減または除去することになり得る。
【0167】
接眼レンズ950を使用して、光を収集し、網膜を結像することが可能な種々の結像システム900が、本明細書で議論される。しかしながら、結像システム900は、眼の前部部分等の眼の他の部分を結像するようにも構成されることができる。
図16は、結像システム900が、眼210の前部部分(例えば、角膜)を結像するために使用され得る様子を図示する。結像システム900は、上記に説明される例示的結像システム900の1つ以上の要素を含んでもよい。加えて、例示的結像システム900は、屈折力を有する、屈折力型屈折光学要素980、990等の1つ以上の屈折力型光学要素またはレンズを含んでもよい。例えば、正の屈折力のレンズまたは正のレンズ980が、眼210と接眼レンズとの間の接眼レンズ950の近位側(例えば、眼210により近い)上に配置されてもよい。負の屈折力のレンズまたは負のレンズ990が、接眼レンズとユーザの前方の環境との間の接眼レンズ950の遠位側上に配置されてもよい。レンズ980、990の一方または両方は、可変焦点要素(例えば、可変焦点レンズ)であってもよい、および/または液晶要素を含んでもよい。いくつかの設計では、レンズ980、990の一方または両方は、フレネルレンズを含む。レンズ980、990は、液晶を組み込み、フレネルレンズ機能性を生産し得る。そのような機能性は、レンズ980、990の一方または両方の可変焦点を可能にし得る。いくつかの設計では、レンズ980、990のうちの1つ以上のものは、接眼レンズ950と統合される、および/またはその上または中に製造されてもよい(例えば、形成される)。
【0168】
種々の実施形態では、結合光学要素944は、その中で誘導されるように、眼210から反射されたコリメートされた光を光導波路の中に方向転換させるように構成される。故に、正のレンズ980は、眼の前部部分(例えば、角膜)等の眼210から反射された光をコリメートするように構成されてもよい。正のレンズ980は、したがって、結像されるべき眼210の部分、例えば、角膜までのレンズの距離と等しいまたは実質的に等しい焦点距離を有してもよい。
【0169】
負のレンズ990は、正のレンズ980と類似または同一屈折力を有し、正のレンズの屈折力をオフセットまたは相殺してもよい。このように、環境(例えば、導波管940の遠位)からの光は、負のレンズ990、接眼レンズ950、および正のレンズ980を通して通過し得、実質的にこれらの2つのレンズによって導入される屈折力に正味の変化を及ぼさない。したがって、負のレンズ990は、ユーザが、接眼レンズ950の正面の環境を視認するとき、正のレンズの屈折力を被らないであろうように、正のレンズ980の屈折力をオフセットまたはキャンセルするように構成され得る。負のレンズ990はまた、正のレンズ980の効果を相殺し、装着者の正面の環境内のオブジェクトの画像を反転させるであろう。
【0170】
図16は、角膜上に入射し、そこから散乱する、光928を図示する。結像システム900は、角膜から反射された本光988を捕捉するように構成されてもよい。例えば、正のレンズ980は、角膜から散乱された光988の一部を収集し、本光988をコリメートしてもよい。正のレンズ980によってコリメートされた本光988は、結合光学要素944上に入射し、これは、光がTIRによってその中で誘導されるように、導波管の臨界角より大きい角度で、コリメートされた光を導波管940の中に方向転換させるように構成される。結合光学要素944、外部結合光学要素952、および/または導波管940は、上記に説明されるようなものであってもよい。結果として生じる外部結合される光906は、外部結合光学要素952によって導波管940から外にカメラ(図示せず)へと指向され得る。
【0171】
図16は、上記に説明されるような接眼レンズ950から生じ得る、コリメートされた光等の光928を示す。照明源960は、光を導波管940の中に結合し得、結合要素944は、照明源960からの本光を導波管から外に結合し得る。結合要素944は、光を導波管940から外にコリメートされた光として結合するように構成されてもよい。本光は、眼の前部部分(例えば、角膜)を照明し、そこから散乱する。上記に議論されるように、本散乱された光988は、正のレンズ980および結像システム900によって収集され、眼210の前部部分の画像を形成することができる。また、上記に議論されるように、眼210上に指向される本照明928は、不可視(例えば、赤外線)光であってもよい。
【0172】
図16はまた、眼210を照明するための代替配列を示す。いくつかの設計では、LEDまたはエミッタ等の1つ以上の光源934が、眼210に対して配置され、TIRによって導波管940を通して誘導され、眼210上に指向されずに、光をその上に指向してもよい。いくつかの実装では、接眼レンズ950または導波管940は、1つ以上の光源934と眼210との間の光学経路内にない。いくつかの設計では、複数のそのような光源934は、眼の近傍および/または周囲において、あるパターン(例えば、円形またはリング状パターン)で配列されてもよい。いくつかの設計では、光源934のパターンは、1つ以上のレンズ980、990の光学軸と平行(例えば、同軸)の照明軸を画定し得る。1つ以上の光源934は、上記に説明される、1つ以上の光源960に類似してもよく、例えば、パルス状であってもよい。同様に、1つ以上の光源934は、赤外線LED等の赤外線光源または別のタイプの不可視光を備えてもよい。代替として、1つ以上の光源は、可視光を放出する、可視光源を備えてもよい。または、1つ以上の光源は、可視および不可視(例えば、赤外線)光の両方を放出してもよい。
【0173】
図17は、眼の前部部分(例えば、角膜)等の眼210の一部を結像するように構成される、別の例示的結像システム900を図示する。
図17に示される結像システム900は、
図16に示される透過性光学要素(レンズ)980と対照的に、眼からの光をコリメートするように構成される、反射性光学要素996を採用する。反射性光学要素は、色収差が、概して、
図17に示される反射体996等の反射性光学要素に適用可能ではないため、透過性光学要素より少ない収差を有するであろう。故に、眼210からの光を収集する際に反射性表面を使用することによって、より少ない(例えば、色)収差が、眼の捕捉された画像内に導入される。
【0174】
図17は、例えば、波長依存反射性コーティング998を有する、湾曲透過性光学要素996を含む、結像システム900を図示する。湾曲透過性光学要素996は、導波管940の遠位(接眼レンズ950の環境側)に配置されてもよい。故に、湾曲透過性光学要素996は、装着者の前方の環境と導波管940および/または結合光学要素944との間に配置されてもよい。同様に、導波管940および/または結合光学要素944は、湾曲透過性光学要素996と眼210との間に配置されてもよい。
【0175】
波長依存反射性コーティング998は、ある波長または波長の範囲の光を反射させるように構成されてもよい。いくつかの実装では、例えば、波長依存反射性コーティング998は、ある波長の範囲内の不可視光(例えば、赤外線光)を反射させるように構成されてもよい一方、波長依存反射性コーティング998は、可視光を透過させるように構成されてもよい。波長依存反射性コーティング998は、ある場合には、湾曲透過性光学要素996の表面上に配置されてもよい。
【0176】
上記に議論されるように、種々の設計では、結合光学要素944は、その中で誘導されるように、眼210から反射されたコリメートされた光を導波管940の中に方向転換させるように構成される。故に、反射性光学要素996は、眼の前部部分(例えば、角膜)等の眼210から反射された光をコリメートするように構成されてもよい。湾曲反射性光学要素996は、したがって、波長依存反射性コーティング998から反射されたその近位側上に入射する光に関して正の屈折力を有し得る。特に、種々の設計では、反射性光学要素994は、反射性光学要素996から結像されるべき眼210の部分、例えば、角膜、虹彩等までの距離と等しいまたは実質的に等しい焦点距離を有してもよい。焦点距離の例示的値は、例えば、2cm~8cmであってもよい。いくつかの実装では、焦点距離は、4cm~6cmである。いくつかの設計では、焦点距離は、約5cmである。焦点距離は、これらの値のいずれかによって形成される任意の範囲内であってもよい、または異なる設計では、そのような範囲外であってもよい。
【0177】
種々の実装では、反射性光学要素996は、接眼レンズの前方の接眼レンズ950の遠位側上に配置される。故に、反射性光学要素996は、接眼レンズ950とユーザの前方の環境との間に配置される。同様に、接眼レンズ950は、反射性光学要素996と眼210との間に配置される。
【0178】
湾曲透過性光学要素996は、任意の形状の曲率を有する、湾曲反射性表面を有してもよい。いくつかの実装では、表面は、回転対称である。いくつかの実装では、表面は、球状または非球面(例えば、放物線)であってもよい。非回転対称形状もまた、可能性として考えられる。しかしながら、種々の設計では、反射性表面は、正の屈折力を有する。反射性光学要素996は、例えば、少なくとも、ある波長および/または偏光のために、凹面ミラーを備えてもよい。
【0179】
湾曲透過性光学要素996は、透過では、無視可能な屈折力を有するように構成されてもよい。同様に、湾曲透過性光学要素996は、収束または発散を導入せずに、光を透過させるように構成されてもよい。一実施例では、湾曲透過性光学要素996は、外側半径の曲率と実質的に同一である内側半径の曲率を有してもよい。薄型光学要素996は、例えば、伝送されるそれを通して透過される光に関して、光学収差を低減させ得、より軽量であり得、および/またはよりコンパクトであり得る。
【0180】
種々の設計では、反射性光学要素996は、ユーザに装着者の正面の環境が見え得るように、可視光に対して透過性の材料を含む。ある場合には、透過を向上させるために、湾曲透過性光学要素996は、外側表面(例えば、遠位表面)上を反射防止性コーティングでコーティングされてもよい。反射防止性コーティングは、例えば、赤色、緑色、および/または青色光等の可視光の反射を低減させるように構成されてもよい。しかしながら、反射性光学要素996は、眼210から散乱された光の一部を反射させ、眼の画像を形成するように構成されてもよい。故に、反射性光学要素996は、異なる光に異なるように作用し得る。例えば、反射性光学要素996は、異なる波長に異なるように作用し得る。反射性光学要素996は、赤外線光を反射させ、可視光を透過させるように構成されてもよい。
【0181】
上記に議論されるように、1つ以上の光源934は、眼210を赤外線光で照明するように構成されてもよい。眼210(例えば、角膜)から反射された結果として生じる光988は、
図17に図式的に図示されるように、発散し得る。湾曲透過性光学要素996は、眼(例えば、角膜、虹彩)から反射された本光988を受け取るように配置されてもよい。波長依存反射性コーティング998は、眼を照明するために使用される波長照明が、湾曲透過性光学要素996上の反射性コーティングによって反射された同一波長(例えば、850nm)であるため、眼から反射された光988を反射させるように構成され得る。例えば、眼は、赤外線光(例えば、850nm)で照明されてもよく、湾曲透過性光学要素996は、赤外線光(例えば、850nm)を反射させ、可視光を通過させるように構成されてもよい。湾曲透過性光学要素996の形状もまた、眼から反射された光988をコリメートし、TIRによってその中で誘導されるように、コリメートされた光を導波管940の中に方向転換させる、光を結合光学要素944に反射させるように構成されてもよい。
【0182】
図17では、ある他の設計におけるように、LEDまたはエミッタ等の1つ以上の光源934が、眼210に対して配置され、TIRによって導波管940を通して誘導され、眼210上に指向されずに、光をその上に指向してもよい。いくつかの実装では、接眼レンズ950または導波管940は、1つ以上の光源934と眼210との間の光学経路内にない。いくつかの設計では、複数のそのような光源934は、眼の近傍のおよび/または周囲において、あるパターン(例えば、円形またはリング状パターン)で配列されてもよい。いくつかの設計では、光源934のパターンは、1つ以上のレンズ980、990の光学軸と平行(例えば、同軸)の照明軸を画定してもよい。1つ以上の光源934は、上記に説明される1つ以上の光源960に類似してもよく、例えば、パルス状であってもよい。同様に、1つ以上の光源934は、赤外線LED等の赤外線光源または別のタイプの不可視光を備えてもよい。しかしながら、他のタイプの光源も、使用されることができる。
【0183】
図18は、眼の前部部分(例えば、角膜)等の眼210の一部を結像するように構成される、別の例示的結像システム900を図示する。
図18に示される実装では、偏光選択性が、眼から反射された光の経路を制御することを補助するために採用される。特に、種々の設計では、結合光学要素944は、偏光選択的である。例えば、第1の偏光を有する、光は、結合光学要素944を通して透過される一方、第2の異なる偏光の光は、TIRによってその中に結合されるように、結合光学要素944によって導波管940の中に方向転換される。故に、種々の実装では、眼210は、偏光で照明される、または導波管上に入射する眼からの光が偏光されるように、偏光器(図示せず)が、眼と導波管940との間に配置される。例えば、エミッタ934が、偏光を放出してもよい、または眼210が偏光で照明されるように、偏光器が、エミッタ934の正面に配置されてもよい。故に、種々の設計では、光学結合要素944によって受け取られる、眼210に入射し、および/またはそこから反射された偏光された光の偏光は、該光が反射体996に指向されるように、最初に、偏光されてもよい。
【0184】
同様に、種々の実装では、結合光学要素944(および/または外部結合光学要素952)は、それぞれ、第1の線形、円形、または楕円偏光状態(例えば、p-偏光、左円、または楕円偏光等)等の第1の偏光状態の光を透過させ、第2の線形、円形、または楕円形(例えば、s-偏光、右円、または楕円偏光等)等の第2の偏光状態の光を導波管の中および/またはそこから外に方向転換させるように構成される。いくつかの実装では、眼照明器934は、第1の偏光(例えば、p偏光)のみまたはそれを主に放出してもよい、または第1の偏光状態の光(例えば、p-偏光)のみを透過させるように構成される、偏光修正要素(例えば、偏光器)をさらに含んでもよい。加えて、結合光学要素944および/または外部結合光学要素952は、それぞれ、第2の偏光の光(例えば、s-偏光)を導波管の中および/またはそこから外に方向転換させるように構成されてもよい。
【0185】
図17に示される結像システム900と同様に、
図17に示される結像システム900の湾曲反射体998は、波長依存反射性コーティング998を有する、湾曲透過性光学要素996を備える。波長依存反射性コーティング998は、ある波長または波長の範囲の光を反射させるように構成されてもよい。いくつかの実装では、例えば、波長依存反射性コーティング998は、ある波長の範囲内の不可視光(例えば、赤外線光)を反射させるように構成されてもよい一方、波長依存反射性コーティング998は、可視光を透過させるように構成されてもよい。波長依存反射性コーティング998は、ある場合には、湾曲透過性光学要素996の表面上に配置されてもよい。
【0186】
種々の実装では、湾曲透過性光学要素996は、接眼レンズの前方の接眼レンズ950の遠位側上に配置される。故に、反射性光学要素996は、接眼レンズ950とユーザの前方の環境との間に配置される。同様に、接眼レンズ950は、反射性光学要素996と眼210との間に配置される。
【0187】
故に、眼210からの第1の偏光(例えば、p-偏光)を有する光は、結合光学要素944上に入射し、それを通して湾曲透過性光学要素996に通過する。結像システム900はさらに、リターダ(例えば、4分の1波リターダ)等の偏光修正光学要素978を含む。本リターダ978は、透過性であって、4分の1波の位相差をそれを通して透過される光上に付与する。本光は、湾曲透過性光学要素996上に入射し、そこから反射される。波長依存反射性コーティング998は、眼から反射されたある波長の光を反射させるように構成されてもよい。その結果、本光は、湾曲透過性光学要素996の湾曲表面から反射され、コリメートされる。本コリメートされた光は、再び、リターダ978を通して通過し、それによって、別の4分の1波の位相差をそれを通して透過される光上に付与する。リターダを通したこれらの2回の通過において導入される位相差(例えば、全波の位相差)は、偏光を回転させる。故に、1回目の通過で偏光選択的結合光学要素944を通して透過される第1の偏光(例えば、p-偏光)は、第2の偏光(s-偏光)に変換され、TIRによってカメラ920に誘導されるように、導波管940の中に方向転換される。上記に議論されるように、種々の設計では、結合光学要素944は、その中で誘導されるように、眼210から反射されたコリメートされた光を導波管940の中に方向転換させるように構成される。故に、反射性光学要素996は、眼の前部部分(例えば、角膜)等の眼210から反射された光をコリメートするように構成されてもよい。湾曲反射性光学要素996は、したがって、正の屈折力を有し得る。特に、種々の設計では、反射性光学要素994は、反射性光学要素996から、例えば、角膜、虹彩等の結像されるべき眼210の部分までの距離と等しいまたは実質的に等しい焦点距離を有してもよい。焦点距離の例示的値は、例えば、2cm~8cmであってもよい。いくつかの実装では、焦点距離は、4cm~6cmである。いくつかの設計では、焦点距離は、約5cmである。
【0188】
種々の設計では、反射性光学要素996は、光を反射させるように構成される、湾曲表面を備えてもよい。湾曲表面は、ある場合には、球状または回転対称であってもよい。反射性光学要素996は、例えば、少なくとも、ある波長および/または偏光のために、凹面ミラーを備えてもよい。
【0189】
種々の設計では、反射性光学要素996は、ユーザに装着者の正面の環境が見え得るように、可視光に対して透過性の材料を含む。湾曲透過性光学要素996の表面上に配置される波長依存反射性コーティング998は、したがって、可視光または可視光の少なくともある波長に対して透過性であり得る。湾曲透過性光学要素996はまた、外側表面(例えば、遠位表面)上を反射防止性コーティングでコーティングされてもよい。反射防止性コーティングは、赤色、緑色、および/または青色光の反射を低減させるように構成されてもよい。しかしながら、反射性光学要素994は、眼210から散乱された光の一部を反射させ、眼の画像を形成するように構成されてもよい。故に、反射性光学要素996は、異なる光に異なるように作用し得る。例えば、反射性光学要素996は、異なる偏光状態(および/または波長)の光に異なるように作用し得る。反射性光学要素996は、可視光を透過させ、赤外線光を反射させるように構成されてもよい。
【0190】
図17に示されるように、
図18におけるLEDまたはエミッタ等の1つ以上の光源934は、眼210に対して配置され、TIRによって導波管940を通して誘導され、眼210の上に指向されずに、光をその上に指向してもよい。故に、いくつかの実装では、接眼レンズ950または導波管940は、1つ以上の光源934と眼210との間の光学経路内にない。いくつかの設計では、複数のそのような光源934は、眼の近傍および/または周囲において、あるパターン(例えば、円形またはリング状パターン)で配列されてもよい。1つ以上の光源934は、上記に説明される1つ以上の光源960に類似してもよく、例えば、パルス状であってもよい。同様に、1つ以上の光源934は、赤外線LED等の赤外線光源または別のタイプの不可視光を備えてもよい。特に、種々の実装では、光源934は、波長依存反射性コーティング998および/または湾曲透過性光学要素996によって反射された光を放出してもよい。しかしながら、他のタイプの光源も、使用されることができる。
【0191】
偏光選択的結合光学要素944は、その上に入射する線形偏光のタイプに応じて、偏光選択的であるように構成されるが、他の偏光選択的結合光学要素は、異なるタイプの円形または楕円偏光等の他のタイプの偏光状態に対して偏光選択的であってもよい。偏光選択的結合光学要素944は、例えば、第1の円または楕円偏光(例えば、左回り偏光またはLHP-偏光)等の第1の偏光が、偏光選択的結合光学要素944を通して透過され、第2の円または楕円偏光(例えば、右回り偏光またはRHP)等の第2の偏光が、光導波路の中に方向転換される、またはその逆であるように構成されてもよい。そのような偏光選択的結合光学要素944は、コレステリック液晶等の液晶を備えてもよい。いくつかの液晶光学要素の実施例は、下記の「コレステリック液晶ミラー」と題された節、「DIFFRACTIVE DEVICES BASED ON CHOLESTERIC LIQUID CRYSTAL」と題され、2017年12月7日に出願された、米国特許公開第2018/0164627号、「DISPLAY SYSTEM WITH VARIABLE POWER REFLECTOR」と題され、2018年2月22日に出願された、米国特許公開第2018/0239147号、「VARIABLE-FOCUS VIRTUAL IMAGE DEVICES BASED ON POLARIZATION CONVERSION」と題され、2018年2月22日に出願された、米国特許公開第2018/0239177号(それぞれ、その全体としておよびあらゆる目的のために、参照することによって本明細書に組み込まれる)に議論される。
【0192】
円偏光器等の偏光修正要素またはリターダは、眼と偏光選択的結合光学要素944との間に配置され、眼から反射された光を第1の偏光(例えば、LHP)に変換してもよい。LHP光は、偏光選択的結合光学要素944を通して通過し、反射体998から反射し、偏光をRHPに変化させ、偏光選択的結合光学要素944によって導波管の中にカメラへと方向転換されるであろう。
【0193】
いくつかの実装では、反射体996は、ある偏光状態の光のみが、反射され、および/または異なる偏光状態の光が、透過されるように、その反射率において偏光選択的であってもよい。そのような光学要素は、コレステリック液晶等の液晶を備えてもよい。そのような光学要素の実施例は、下記の「コレステリック液晶ミラー」と題された節、「DIFFRACTIVE DEVICES BASED ON CHOLESTERIC LIQUIDCRYSTAL」と題され、2017年12月7日に出願された、米国特許公開第2018/0164627号、「DISPLAY SYSTEM WITH VARIABLE POWER REFLECTOR」と題され、2018年2月22日に出願された、米国特許公開第2018/0239147号、「VARIABLE-FOCUS VIRTUAL IMAGE DEVICES BASED ON POLARIZATION CONVERSION」と題され、2018年2月22日に出願された、米国特許公開第2018/0239177号(それぞれ、その全体としておよびあらゆる目的のために、参照することによって本明細書に組み込まれる)に議論される。そのような光学要素は、第1の円または楕円偏光状態(左円または楕円偏光)等の第1の偏光状態の光を反射させ、第2の円または楕円偏光状態(例えば、右円または楕円偏光)等の第2の偏光状態の光を透過させる、またはその逆であってもよい。いくつかの実施形態では、液晶が、反射では、反射体が、正の屈折力等の屈折力を有するように、反射体996の湾曲表面上に配置される。種々の他の実装では、液晶光学要素は、平坦または平面であってもよい。例えば、液晶は、平坦または平面基板または層上に配置されてもよい。平坦であるにもかかわらず、屈折力が、液晶光学要素内に含まれ得る。そのような要素は、コレステリック液晶反射性レンズと称され得る。故に、眼からの光は、コリメートされ、結合光学要素998に反射され得る。反射体は、例えば、第1の偏光状態の光(例えば、左円または楕円形)を反射させ、第2の偏光の光(例えば、右円または楕円偏光)を透過させてもよい。故に、眼210は、左円偏光で照明される、または眼から反射された光は、第1の偏光(例えば、左円または楕円偏光)を有する光を透過させる、偏光器(例えば、円または楕円偏光器)を通して透過される。結合光学要素944もまた、偏光選択的であってもよく、LHP光を透過させ、RHP光を導波管の中に方向転換させてもよい。眼からのLHP光は、結合光学要素944を通して通過する。本透過されるLHP光はまた、波長選択的液晶反射体996上に入射し、そこから反射される。ある設計では、波長選択的液晶反射体996は、反射に応じて、第1の偏光状態(例えば、LHP)を第2の偏光状態(例えば、RHP)に変換する。本第2の偏光状態の光(例えば、RHP光)は、結合光学要素944に指向され、これは、第2の偏光状態の光(RHP)を導波管940の中にカメラ920へと方向転換させる。
【0194】
いくつかの設計では、結合光学要素944は、液晶格子を備えないが、代わりに、例えば、表面レリーフ回折格子またはホログラフィック格子を備える。上記に議論されるように、コレステリック液晶を備えない、これらの結合光学要素944はまた、体積回折またはホログラフィック光学要素または格子を備えてもよい。
【0195】
故に、眼から散乱された光は、結合要素944によって導波管の中に結合するために、反射性光学要素996によって導波管940に戻るように反射される。しかしながら、対照的に、第2の偏光状態(例えば、RHP)に対応する、装着者の正面の環境からの偏光されない光の一部は、反射性光学要素996を通して透過されるであろう。したがって、装着者には、反射性光学要素996を通してオブジェクトが見え得る。
【0196】
しかしながら、種々の設計では、反射性光学要素996は、透過では、無視可能な屈折力を有するであろう。例えば、反射性光学要素996は、光学要素の両側上に、それを通して透過される光のための光学要素の総屈折力が無視可能であるであろうように、同一曲率を有する湾曲表面を有してもよい。
【0197】
上記に議論されるように、種々の実装では、反射性光学要素996は、下記の「コレステリック液晶ミラー」と題された節、「DIFFRACTIVE DEVICES BASED ON CHOLESTERIC LIQUID CRYSTAL」と題され、2017年12月7日に出願された、米国特許公開第2018/0164627号、「DISPLAYSY STEM WITH VARIABLE POWER REFLECTOR」と題され、2018年2月22日に出願された、米国特許公開第2018/0239147号、「VARIABLE-FOCUS VIRTUAL IMAGE DEVICES BASED ON POLARIZATION CONVERSION」と題され、2018年2月22日に出願された、米国特許公開第2018/0239177号(それぞれ、その全体としておよびあらゆる目的のために、参照することによって本明細書に組み込まれる)に議論されるようなコレステリック液晶反射性要素を備える、コレステリック液晶反射性レンズである。そのような光学要素は、特定の波長または波長範囲に作用し得る。故に、眼から反射された赤外線光等の光は、コレステリック液晶反射性要素によって作用され得る。しかしながら、環境からの可視光等のその波長範囲内にない光は、コレステリック液晶反射性要素によって作用されずに、コレステリック液晶反射性要素を通して通過され得る。故に、コレステリック液晶反射性要素は、それを通して通過する環境からの本可視光のための無視可能な屈折力を有し得る。
【0198】
上記に議論されるように、ある実装では、照明源960は、導波管から外に方向転換される、光を導波管940の中に結合し、眼210を照明する。そのような実施形態では、結合光学要素944は、偏光選択的であってもよい。例えば、結合光学要素944は、第1の偏光(p-偏光)を透過させ、第2の偏光(s-偏光)を透過させてもよい。
【0199】
故に、照明源906からの光が、導波管940を通して伝搬し、結合光学要素944によって方向転換される場合、本照明は、s-偏光となるであろう。偏光修正光学要素(例えば、4分の1波リターダ)が、眼から反射された偏光の回転を生じさせるように、導波管940と眼210との間に配置されてもよい。眼210から反射された光源960からの光は、4分の1波リターダを通して、2回通過し、その結果、眼を照明するために結合要素944によって導波管から射出されるs-偏光は、p-偏光に変換されるであろう。
【0200】
本p-偏光は、結合光学要素944および導波管を通して透過され、反射性光学要素996上に入射するであろう。
【0201】
結像システム900はさらに、第2の偏光修正要素978を備えてもよく、これは、例えば、上記に議論されるように、リターダまたは波長板を備えてもよい。本リターダは、例えば、4分の1波リターダを備えてもよい。第2の偏光修正要素978が、導波管940の遠位、すなわち、導波管と反射体996との間に配置されてもよい。第2の偏光修正要素978はまた、結合要素光944と反射体996との間に配置されてもよい。結合要素光944を通して透過された眼210からの光(p-偏光)は、第2の偏光修正要素978を通して通過し、円偏光に変換される。反射体996が、円偏光を反射させる場合、本光は、再び、偏光修正要素978を通して通過後、導波管940に戻るように反射されるであろう。本偏光修正要素(例えば、4分の1波リターダ)978を通した2回の通過は、光をs-偏光に変換され、その中でカメラ(図示せず)に誘導されるように、結合要素944によって導波管の中に方向転換されるであろう。
【0202】
図18に図示されるように、眼210から反射された光988は、発散する。本光は、湾曲される、または別様に正の屈折力を有する、反射体996上に入射し、それによってコリメートされ得る。コリメートされた光を導波管940の中に方向転換させるように構成される、結合光学要素944は、したがって、湾曲反射性光学要素996からの本コリメートされた光を結像デバイス920(図示せず)に向かって指向するであろう。故に、湾曲反射性光学要素996によってコリメートされた眼210から反射された光は、導波管940の中に結合され、その中で外部結合光学要素952に向かって誘導される。外部結合光学要素952は、光を接眼レンズ950から外にカメラ(図示せず)へと指向するように構成されてもよい。
【0203】
様々な変形例が、結像システムの構成において可能性として考えられる。異なるタイプの反射体996および結合要素944が、採用されてもよい。反射体996および結合要素944は、例えば、線形偏光または円または楕円偏光に作用するように構成されてもよい。議論されるように、反射体996は、屈折力を有する。反射体996および結合要素944は、屈折力の有無にかかわらず、コレステリック液晶格子反射体および/またはレンズを備えてもよい。リターダ等の偏光修正要素978が、結合要素944と反射体との間および/または結合要素944と眼との間に含まれてもよい。いくつかの実施形態では、円偏光器または線形偏光器等の偏光器が、眼と結合要素944との間に配置されてもよい。例えば、非偏光が、眼から反射される場合、偏光器(例えば、円偏光器または線形偏光器)が、眼と結合要素944との間に配置されてもよい。いくつかのそのような場合では、結合要素944は、偏光選択的である。
【0204】
眼から反射された光が、導波管940を通して湾曲反射性光学要素996に通過し、コリメートされ、導波管に戻るように再指向される、
図17および18に示されるような構成では、背景雑音が、導入される。本背景雑音は、最初に眼から結合光学要素944を通して通過する光から生じる。上記に議論されるように、結合光学要素944は、その中で画像が形成されるカメラ920に誘導されるように、コリメートされた光を導波管940の中に方向転換させるように構成されてもよい。しかしながら、結合光学要素944は、その上に入射する一部のコリメートされていない光を方向転換させるであろう。故に、結合光学要素944および導波管940を通した湾曲反射性光学要素996への初期通過において、眼から反射されたコリメートされていない(発散する)光の一部が、結合光学要素944によって導波管の中に結合され、カメラ920によって形成される眼の画像に対する背景雑音に寄与するであろう。本雑音は、その中でカメラ920に誘導されるように結合光学要素944によって導波管の中に結合される、湾曲反射性光学要素996によって逆反射されたコリメートされた光によって形成される画像上に重畳されるであろう。
【0205】
ある設計では、本雑音は、画像から取り去れられることができる。雑音を信号から取り去るためのプロセスは、(a)方向転換され、カメラ920に到達する、結合光学要素944を通した湾曲反射性光学要素996への初期通過における、結合光学要素944によって結合される光の量(Nと称される)を測定するステップと、(b)光が、結合光学要素944および導波管940を通して湾曲反射性光学要素996に通過し、コリメートされ、結合光学要素に戻るように反射され、カメラに方向転換されるときの、カメラ920における総信号を測定するステップとを伴い得る。本総信号もまた、眼から反射されたコリメートされていない光は、結合光学要素944を通して通過し、湾曲反射性光学要素996に到達し、したがって、コリメートされていない光の一部は、結合光学要素944によってカメラ920に方向転換されるであろうため、ある雑音Nを含むであろう。雑音Nが、眼の画像にわたって重畳される雑音を含む、総信号Tから別個に測定され得る場合、雑音Nは、下記の式によって表されるように、総信号Tから取り去られることができる。I=T-N
式中、Iは、雑音成分Nが除去された画像を表す。
【0206】
上記の2つの測定(a)および(b)は、種々の方法において取得されることができる。例えば、
図19に示されるように、シャッタ936が、湾曲反射性光学要素996と導波管940および結合光学要素944との間に配置されることができる。本シャッタ936は、シャッタが第1の状態にあるとき、光を遮断し、シャッタが第2の状態にあるとき、光を透過させるように構成され得る。本シャッタ936は、例えば、液晶シャッタを備えてもよい。
【0207】
故に、雑音成分Nは、シャッタ936が、眼210から反射された光が、結合光学要素944上に入射し、それを通して湾曲反射性光学要素996に向かって通過する、第1の状態にあるとき、測定されることができるが、しかしながら、閉鎖されたシャッタによって、湾曲反射性光学要素に到達することを防止される。上記に議論されるように、眼210から反射された光の一部は、大部分はコリメートされないが、結合光学要素944の中に結合し、導波管の中に方向転換され、その中でカメラ920に誘導される。上記で参照されるように、本光は、画像の形成に寄与しないが、背景雑音となるであろう。カメラ920は、シャッタ936が閉鎖されると、本雑音Nを記録してもよい。
【0208】
雑音Nおよび画像の両方を含む、総信号Tは、シャッタ936が、シャッタが開放される、第2の状態にあるときに測定されることができる。眼210から反射された光は、再び、結合光学要素944上に入射する。眼210から反射された本光の一部は、大部分はコリメートされないが、結合光学要素944の中に結合し、導波管の中に方向転換され、その中でカメラ920に誘導される。しかしながら、眼210から反射された本光の大部分は、結合光学要素944を通して、開放シャッタ936を通して、湾曲反射性光学要素996に通過する。湾曲反射性光学要素996は、本光をコリメートし、その少なくとも一部を結合光学要素944に戻るように反射させ、これは、眼210の画像を形成するためにカメラ920に誘導されるように、本コリメートされた光を導波管920の中に方向転換させる。カメラ920は、眼210の本画像を捕捉することができる。
【0209】
カメラ920と通信する処理電子機器(等処理電子機器140)は、シャッタ936が第1の閉鎖状態にあるときに測定される、雑音成分Nと、シャッタが第2の開放状態にあるときに測定される、総信号Tとを受信することができ、その2つを減算(T-N)することができる。このように、それを通した初期通過において、結合光学要素944の中に結合される、眼210から反射されたコリメートされていない光によって寄与される、雑音Nは、総画像信号Tから減算されることができる。処理電子機器は、有線電子信号を介して、カメラ920と通信してもよい。加えて、または代替として、処理電子機器は、1つ以上の遠隔受信機を使用して、カメラ920と通信してもよい。処理電子機器は、遠隔に常駐してもよい(例えば、クラウドコンピューティングデバイス、遠隔サーバ等)。
【0210】
他の方法が、(a)および(b)の測定を実施し、NおよびTを取得し、NをTから減算するために採用されてもよい。例えば、湾曲反射性光学要素996が、
図18に示されるような波長選択的である場合、眼は、異なる時間において、異なる波長の光で照明されることができる。例えば、測定(a)を実施し、雑音Nを定量化するために、眼は、湾曲反射性光学要素996によって反射されない波長で照明されることができる。しかしながら、測定(b)を実施し、総信号Tを定量化するために、眼は、湾曲反射性光学要素996によって反射された波長で照明されることができる。雑音Nは、次いで、上記に議論されるように、総Tから減算されることができる(例えば、T-N)。
【0211】
図20-20Eは、波長変調を使用して、測定を行い、上記に議論されるような雑音成分Nを取り去るように構成される、例示的結像システム900を図示する。
図20A-20Eにおける結像システム900は、波長選択的(上記の
図17および18を参照して説明されるもの等)である、湾曲透過性光学要素996を含む。例えば、湾曲透過性光学要素996は、波長依存反射性コーティング998をその湾曲表面上に有する。結像システム900はまた、眼210を照明するように構成される、1つ以上の光源または照明源(図示せず)を含んでもよい。1つ以上の光源は、赤外線光を放出するように構成されてもよい。しかしながら、1つ以上の光源は、異なる時間において、異なる色または波長光を放出するように構成されることができる。そのような波長変調は、総信号Tから取り去られるように、Nの測定を別個に可能にすることができる。
【0212】
種々の実装では、例えば、1つ以上の照明源960、934は、第1の状態では、湾曲反射性光学要素によって反射される1つ以上の波長λReflectを、第2の状態では、反射されない1つ以上の波長λNot Reflectを放出するように構成されてもよい。第2の状態では、湾曲反射性光学要素によって反射される無視可能な量以下の波長λReflectが、放出される。同様に、第1の状態では、反射されない無視可能な量以下の波長λNot Reflectが、放出される。
【0213】
いくつかの実施例では、反射される波長λReflectは、約800nm~950nmであってもよい。反射される波長λReflectは、約835nm~915nmであってもよい。反射される波長λReflectは、約840nm~870nmであってもよい。いくつかの設計では、反射される波長λReflectは、約850nmである。1つ以上の光源960からの光放出928は、眼を照明し得る。
【0214】
図20Bに示されるように、湾曲反射性光学要素944によって反射されない波長λ
Not Reflectを有する光988(および湾曲反射性光学要素944によって反射された無視可能な量以下の光λ
Reflect)は、眼210の一部(例えば、角膜)から反射される。本光は、湾曲反射性光学要素944によって反射されない波長λ
Not Reflectを備えるため、光線916は、湾曲反射性光学要素996を通してユーザの前方の環境に伝搬するように示される。
【0215】
結合光学要素944上に入射する光988は、コリメートされないが、結合光学要素は、それにもかかわらず、カメラ920に誘導されるように、少なくとも一部の光914を導波管940の中に結合する。故に、カメラ920は、湾曲反射性光学要素996への初期通過において結合光学要素944によって方向転換されたコリメートされない光から生じる、雑音成分Nに対応する、画像(画像#1)を捕捉し得る。本画像(画像#1)は、背景雑音であって、眼の認識可能画像ではない。処理電子機器140は、本第1の画像(画像#1)を受信するように示される。
【0216】
図20C-20Eでは、照明源(図示せず)が、湾曲反射性光学要素によって反射される、1つ以上の波長λ
Reflectおよび反射されない無視可能な量以下の波長λ
Not Reflectを放出する。本波長λ
Reflectは、例えば、850nmであり得る。
【0217】
図20Cに示されるように、結合光学要素944を通した1回目の通過において、結合光学要素944上に入射する、眼210から反射された光988の一部が、結合光学要素944によって、導波管940の中に結合され(
図20Bにおけるように)、カメラ920に向かって指向される。加えて、波長λ
Reflectの光を選択的に反射させる、湾曲透過性光学要素996が、湾曲透過性光学要素上に入射する、眼210から反射された内部結合されない光918を反射およびコリメートする。
図20Eに図示されるように、結合光学要素944は、本コリメートされた反射された光を方向転換し、導波管940の中にカメラ920に向かって結合する。
図20Eは、カメラ920に到達する両成分、すなわち、結合光学要素によって導波管940の中に結合される、結合光学要素944を通した1回目の通過において、結合光学要素944上に入射し、眼210から反射される光988と、結合光学要素によって導波管の中に結合される、湾曲透過性光学要素996によって反射およびコリメートされる光とを示す。カメラ920は、本総画像成分Tに対応する、画像(画像#2)を捕捉し得る。処理電子機器140は、本第2の画像(画像#2)を受信するように示される。
【0218】
上記に議論されるように、処理電子機器は、雑音を画像から減算T-Nし得る。本実施例では、画像#1は、画像#2から減算されることができる。故に、処理電子機器140は、第1の画像に基づいて、第2の画像を修正するように構成されてもよい。しかしながら、他のアプローチも、可能性として考えられる。例えば、処理電子機器140は、低減された光学雑音を伴う、第2の画像のバージョンを表す、新しい画像を作成するように構成されてもよい。雑音を画像から減算するための実装は、上記に説明される実装において使用されてもよい。例えば、
図10、11A-11E、および/または
図12A-12Eに示される実装は、内部結合されない光912を選択的に反射させ、光を結像デバイス920に指向するように構成される、波長依存反射性コーティング998を有する、シャッタ936および/または湾曲透過性光学要素996を含むことができる。
【0219】
上記に議論されるように、画像#1は、光が湾曲反射性光学要素によって反射されない1つ以上の波長λNot Reflectおよび反射される無視可能な量以下の波長λReflectで照明される場合に関して取得された。画像#2は、光が湾曲反射性光学要素によって反射される1つ以上の波長λReflectおよび反射されない無視可能な量以下の波長λNot Reflectで照明される場合に関して取得された。故に、1つ以上の照明源960、934は、波長を変調させるように構成されてもよい。例えば、ある設計では、1つ以上の照明源960、934は、湾曲反射性光学要素によって反射されない1つ以上の波長λNot Reflectおよび反射される無視可能な量以下の波長λReflectを出力するように構成される、第1の照明源を備えてもよい。1つ以上の照明源はさらに、湾曲反射性光学要素によって反射される1つ以上の波長λReflectおよび反射されない無視可能な量以下の波長λNot Reflectを出力するように構成される、第2の照明源を備えてもよい。第1および第2の照明源の強度は、代替として、増加および減少され、オンおよびオフにされ、減衰されおよび減衰されず、通過および遮断され、光の波長の変調を提供し、眼を照明することができる。例えば、第1の時間インターバルの間、第1の照明源は、遮断され得る一方、第2の照明源は、遮断されない。後続の第2の時間インターバルの間、第2の照明源は、遮断され得る一方、第1の照明源は、遮断されない。本プロセスは、光の波長の変調を提供し、眼を照明するために、繰り返されることができる。他の設計では、光源の波長は、λReflectとλNot Reflectとの間で往復して波長を偏移させるように調整および調整解除されてもよい。他の配列も、可能性として考えられる。
【0220】
上記に説明されるように、結像システム900は、加えて、接眼レンズ950で光を収集することによって、眼を結像する能力を提供する、拡張現実ディスプレイ等の頭部搭載型ディスプレイ内に含まれてもよい。そのような結像システム900は、眼追跡のために使用されてもよい。眼の網膜または前部部分の複数の画像が、取得されてもよい。眼の移動および/または再位置付けが、これらの画像から確認され、眼位置および/または配向を追跡することができる。これらの結像システムはまた、バイオメトリック結像のため、および/またはユーザを識別するために使用されてもよい。例えば、網膜または虹彩等のユーザの眼の結像が、取得および記録されてもよい。装着者の眼(例えば、網膜、または虹彩)の後続画像が、後の時間に取得されてもよい。2つの画像は、比較され、その後のインスタンスにおける装着者が第1のインスタンスにおける装着者であるかどうかを決定してもよい。しかしながら、結像システムのための他の使用も、可能性として考えられる。
【0221】
照明システムは、導波管ベースであって、1つ以上の導波管を備えるように上記に説明され得るが、他のタイプの光方向転換光学要素が、導波管の代わりに、採用されてもよい。そのような光方向転換光学要素は、方向転換特徴を含み、光を光方向転換光学要素から、例えば、空間光変調器上に射出してもよい。故に、本明細書に説明される実施例のいずれかおよび下記の実施例のいずれかでは、導波管の任意の言及は、導波管の代わりに、光方向転換光学要素と置換されてもよい。そのような光方向転換光学要素は、例えば、偏光ビーム分割プリズム等の偏光ビームスプリッタを備えてもよい。
【0222】
上記に議論されるように、本明細書に説明されるシステムは、バイオメトリックデータの収集および/またはバイオメトリック識別を可能にすることができる。例えば、眼またはその一部(例えば、網膜)が、結像され、そのようなバイオメトリックデータおよび/またはバイオメトリック識別を提供することができる。網膜等の眼の画像が、頭部搭載型ディスプレイシステムが、ユーザ、おそらく、同一ユーザによって装着されているときの種々の時間に取得されてもよい。そのような画像の収集は、例えば、データベース内に記録されることができる。これらの画像は、バイオメトリックデータを収集するために分析されてもよい。そのようなバイオメトリックデータは、ユーザの健康または医療ステータスを監視するために有用であり得る。異なる医療パラメータは、患者、例えば、患者の眼(例えば、網膜)を結像することによって監視されることができる。医療パラメータは、ユーザが頭部搭載型ディスプレイシステムを装着しているときに取得される後続測定とともに、記録および比較されることができる。
【0223】
加えて、人物が、頭部搭載型ディスプレイシステムの装着を開始し、データベース内に記憶される画像に合致しない、ユーザの眼の画像が捕捉される場合、頭部搭載型ディスプレイシステムを現在装着している人物が前のユーザと異なるという結論が、導き出され得る。これは、意図されるユーザがヘッドセットを装着しているかどうか、または新しいユーザによって装着されているかどうかを決定する際に有用であり得る。そのような特徴は、ある医療、セキュリティ、および/または使い易い用途または機能性を可能にし得る。例えば、頭部搭載型ディスプレイは、装着者の眼の特性に基づいて、装着者を識別するように構成されてもよい。例えば、システムは、装着者の網膜(例えば、血管)、角膜の特徴、または他方の眼特徴に基づいて、個人を決定するように構成されることができる。いくつかの実装では、例えば、一連のマーカが、特定の装着者に関して決定されてもよい。一連のマーカに基づいて、システムは、前のユーザがヘッドセットを装着している、または代替として、別のユーザがヘッドセットを装着していることを決定することが可能であり得る。マーカは、ユーザの角膜の形状または中心、ユーザの網膜内の血管の構成、角膜からの光の反射の強度および/または位置、眼の側面の形状、および/または任意の他のバイオメトリックマーカを含んでもよい。ある実装では、混乱行列が、決定されることができる。上記に議論されるように、例えば、種々の場所における仮想/固定標的を使用して網膜マップを展開する議論(例えば、
図13B参照)では、システムは、ユーザに所定の方向または眼姿勢のセットを見させ、各方向または眼姿勢と関連付けられた眼または眼の一部(例えば、角膜、網膜等)の特性の行列を展開してもよい。そのような行列を使用して、システムは、個人の識別を決定することができる。他の方法も、可能性として考えられる。
【0224】
同様に、上記に議論されるように、システムの様々な構成も、可能性として考えられる。例えば、
図21は、同時に、ユーザの眼を結像しながら、光をユーザの眼の中に投影するために使用され得る、例示的接眼レンズ900を示す。示される接眼レンズ900は、内部結合光学要素2104と、光分散要素2108と、集光要素2116と、結合光学要素2112の反対側上の外部結合光学要素2120とを含む。これらの光学要素はそれぞれ、導波管2102内または上に配置されてもよい。導波管2102は、例えば、本明細書に説明される導波管670、680、690(例えば、
図9A-9C参照)のうちの1つに対応してもよい。内部結合光学要素2104は、本明細書に説明される内部結合光学要素700、710、720のうちの1つおよび/または内部結合光学要素942(例えば、
図10参照)に対応してもよく、画像コンテンツをプロジェクタから導波管の中に投入し、および/または光源960からの照明を投入するように構成されてもよい。光分散要素2108は、本明細書に説明される光分散要素730、740、750(例えば、
図9A-9C参照)のうちの1つに対応してもよく、光を所与の方向に拡散し、内部結合光学要素2104からの光を結合光学要素2112に再指向するために使用されてもよい。結合光学要素2112は、本明細書に説明される結合光学要素944(例えば、
図10参照)に対応してもよい。いくつかの設計では、結合光学要素2112は、外部結合光学要素800、810、820(
図9A-9C参照)に対する、本明細書に説明される機能性を含む。集光要素2116は、結合光学要素2112から受信された光の側方空間範囲を低減させ、該光を外部結合光学要素2120に向かって再指向するように構成されてもよい。外部結合光学要素2120は、本明細書に説明される外部結合光学要素952(例えば、
図10参照)に対応してもよい。
【0225】
内部結合光学要素2104は、プロジェクタ(例えば、画像プロジェクタ930)および/または照明器(例えば、光源960)から等の光を受け取るように、導波管2102内または上に配置されてもよい。光は、導波管2102を介して、関連付けられた光分散光学要素2108に通過されてもよい。内部結合光学要素2104、光分散型光学要素2108、または結合光学要素2112のいずれかは、導波管の主要表面上(例えば、上部表面または底部表面上)または導波管内に配置されてもよい。同様に、集光要素2116および/または外部結合光学要素2120の任意の1つまたは組み合わせも、導波管2102の主要表面上(例えば、上部または両主要表面上)または導波管内に配置されてもよい。
【0226】
結合光学要素2112は、光分散要素2108からの光を受け取り(例えば、TIRを介して)、光を拡張させ、ユーザの眼に入射させ得る。したがって、結合光学要素2112は、ユーザの眼の正面に配置され、画像コンテンツその中に投影し得る。加えて、または代替として、結合光学要素2112は、照明光をユーザの眼上および/または中に提供するように構成されてもよい。
【0227】
眼から反射された光(例えば、照明源からの照明光)は、反射され、結合光学要素2112によって捕捉され得る。したがって、いくつかの実施形態では、結合光学要素2112は、光分散要素2108から受け取られた光を外部結合することと、眼から受け取られた光を導波管2102の中に内部結合することとの両方の役割を果たし得る。
【0228】
いくつかの実施形態では、結合光学要素2112は、結合光学要素2112が二重機能性を有するように、1つ以上の回折光学要素(DOE)を含んでもよい。第1のDOE(例えば、格子、ホログラフィック領域)は、同様に、光を外部結合するように構成されてもよく、第2のDOEは、眼から反射された光を導波管2102の中に内部結合するように構成されてもよい。いくつかの実施形態では、第1および第2のDOEは両方とも、導波管2102内で重畳される(例えば、同一またはほぼ同一体積を占有する)。
【0229】
代替として、いくつかの実施形態では、結合光学要素2112は、他方にわたって、またはその正面にスタックされる、少なくとも2つのDOEを含む。例えば、
図21を参照すると、結合光学要素2112の第1のDOEは、第2の回折要素にわたって配置される一方、第2の回折要素は、第1のDOE下に配置されてもよい。各DOEの順序は、他の実装では、逆転されてもよい。
【0230】
コレステリック液晶ミラー
いくつかの液晶は、キラル位相またはコレステリック位相と称される、位相内にある。コレステリック位相では、液晶は、配向子と垂直な軸に沿って、分子の捻転を呈し得、分子軸は、配向子と平行である。本明細書に説明されるように、コレステリック液晶(CLC)層は、コレステリック位相内に、ある方向、例えば、層深度方向等の配向子と垂直な方向に延在し、ある回転方向、例えば、時計回りまたは反時計回りに連続的に回転または捻転される、複数の液晶分子を備える。キラル構造内の液晶分子の配向子は、螺旋ピッチ(p)を有する渦巻として特徴付けられ得、これは、第1の回転方向における1回転によるキラル構造の液晶分子の正味回転角度に対応する、層深度方向における長さに対応する。言い換えると、螺旋ピッチは、それにわたって液晶分子が完全360°捻転を受ける、距離を指す。キラリティを示す液晶はまた、例えば、層法線方向における連続液晶分子間の相対的方位角回転を指し得る、捻転角度または回転角度(φ)を有し、例えば、規定された長さ、例えば、キラル構造の長さまたは液晶層の厚さを横断した最上液晶分子と最下液晶分子との間の相対的方位角回転を指し得る、正味捻転角度または正味回転角度を有すると説明され得る。本明細書に説明されるように、キラル構造は、ある方向に、例えば、層深度方向等の配向子と垂直な方向に延在し、ある回転方向、例えば、時計回りまたは反時計回りに連続的に回転または捻転される、コレステリック位相内の複数の液晶分子を指す。一側面では、キラル構造内の液晶分子の配向子は、螺旋ピッチを有する渦巻として特徴付けられ得る。
【0231】
図22は、実施形態による、複数の均一キラル構造を備える、コレステリック液晶(CLC)層1004の断面側面図を図示する。CLC層1004では、側方方向、例えば、x-方向に隣接する、キラル構造は、同様に配列される液晶分子を有する。図示される実施形態では、キラル構造1012-1、1012-2、…1012-iは同様に、ほぼ同一深度における異なるキラル構造の液晶分子、例えば、光入射表面1004Sに最も近い液晶分子が、同一回転角度、およびほぼ同一深度における連続液晶分子の連続回転角度、および各キラル構造の液晶分子の正味回転角度を有するように構成される。
【0232】
CLC1004は、複数のキラル構造1012-1、1012-2、…1012-iとして配列される液晶分子を備える、CLC層1008を備え、各キラル構造は、複数の液晶分子を備え、iは、2を上回る任意の好適な整数である。動作時、左回り円偏光を有する光ビームと右回り円偏光を有する光ビームの組み合わせを有する、入射光が、ブラッグ反射によって、CLC層1008の表面1004S上に入射すると、円偏光掌性のうちの1つを伴う光は、CLC層1004によって反射される一方、反対偏光掌性を伴う光は、実質的干渉を伴わずに、CLC層1008を通して透過される。本明細書および本開示全体を通して説明されるように、掌性は、伝搬方向において視認されるように定義される。実施形態によると、光ビーム1016-L、1016-Rの偏光の方向または偏光の掌性が、キラル構造1012-1、1012-2、…1012-iの液晶分子と同一回転方向を有するように、合致されると、入射光は、反射される。図示されるように、表面1004S上の入射は、左回り円偏光を有する光ビーム1016-Lおよび右回り円偏光を有する光ビーム1016-Rとなる。図示される実施形態では、キラル構造1012-1、1012-2、…1012-iの液晶分子は、時計回り方向に連続的に回転され、その方向に、入射光ビーム1016-L、1016-Rが、進行する、すなわち、正のx-方向であって、これは、右回り円偏光を有する光チーム1016-Rと同一回転方向である。その結果、右回り円偏光を有する光ビーム1016-Rは、実質的に反射される一方、左回り円偏光を有する光ビーム1016-Lは、実質的にCLC層1004を通して透過される。
【0233】
上記に説明されるように、入射楕円または円偏光の偏光の掌性をCLC層のキラル構造の液晶分子の回転方向に合致することによって、CLC層は、ブラッグ反射体として構成されることができる。さらに、異なる螺旋ピッチを有する、1つ以上のCLC層は、高帯域幅を伴う、波長選択的ブラッグ反射体として構成されることができる。種々の実施形態に関して本明細書に説明される概念に基づいて、CLC層は、第1の波長の範囲、例えば、赤外線波長(例えば、近赤外線)を選択的に反射させる一方、別の波長の範囲、例えば、可視波長を透過させるように構成される、軸外または軸上ミラーとして構成されることができる。
【0234】
図23は、種々の実施形態による、視認者の眼302を結像するように構成される、コレステリック液晶反射体(CLCR)、例えば、波長選択的CLCR1150を採用する、眼追跡システム2300の実施例を図示する。
図22に関して上記に説明されるCLC層1004と異なり、側方方向、例えば、x-方向に隣接する波長選択的CLCR1150内のキラル構造は、異なるように配列される液晶分子を有する。すなわち、キラル構造は、ほぼ同一深度における異なるキラル構造の液晶分子、例えば、光入射表面1004Sに最も近い液晶分子が、異なる回転角度を有するように構成される。その結果、CLCR1150上に入射する光は、眼追跡システム2300のコンテキストにおいて下記にさらに説明されるように、層深度方向に対して角度(θ
R)で反射される。
【0235】
眼追跡は、他の用途の中でもとりわけ、仮想/拡張/複合現実ディスプレイ用途のための、本明細書のいずれかに説明されるウェアラブルディスプレイシステムを含む、双方向視覚または制御システムにおいて有用な特徴であり得る。効果的眼追跡を達成するために、眼302の画像を低目線角度で取得することが望ましくあり得、これに関して、ひいては、眼追跡カメラ702bを視認者の眼の中心位置の近傍に配置することが望ましくあり得る。しかしながら、カメラ702bのそのような位置は、ユーザのビューに干渉し得る。代替として、眼追跡カメラ702bは、より低い位置または側に配置されてもよい。しかしながら、カメラのそのような位置は、眼画像がより急峻な角度で捕捉されるため、ロバストかつ正確な眼追跡を取得する困難を増加させ得る。赤外線(IR)光2308(例えば、850nmの波長を有する)を眼302から選択的に反射させる一方、世界からの可視光2304を透過させるように、CLCR1150を構成することによって、カメラ702bは、眼画像を正常または低目線角度において捕捉する間、ユーザのビューから離れるように設置されることができる。そのような構成は、可視光が反射されないため、ユーザのビューに干渉しない。同一CLCR1150はまた、図示されるように、IR源、例えば、IR LEDからのIR光を眼302の中に反射させることによって、IR照明源2320としても構成されることができる。IR照明器の低目線角度は、例えば、睫毛からのより少ないオクルージョンをもたらし得、これは、鏡面反射のよりロバストな検出を可能にする構成であって、現代の眼追跡システムにおける有用な特徴であり得る。
【0236】
依然として、
図23を参照すると、種々の実施形態によると、CLCR1150は、それぞれ、複数のキラル構造を備える、1つ以上のコレステリック液晶(CLC)層を備え、各キラル構造は、上記に説明されるように、層深度方向(例えば、z-方向)に延在し、第1の回転方向に連続的に回転される、複数の液晶分子を備える。キラル構造の液晶分子の配列は、1つ以上のCLC層が、第1の波長(λ
1)を有する第1の入射光を実質的にブラッグ反射させる一方、第2の波長(λ
2)を有する第2の入射光を実質的に透過させるように構成されるように、層深度方向と垂直な側方方向において周期的に変動する。上記に説明されるように、1つ以上のCLC層はそれぞれ、層深度方向において視認されるとき、第1の回転方向に合致される偏光の掌性を有する、楕円または円偏光の第1および第2の入射光を実質的にブラッグ反射させるように構成される一方、層深度方向において視認されるとき、第1の回転方向と反対の偏光の掌性を有する、楕円または円偏光の第1および第2の入射光を実質的に透過させるように構成される。実施形態によると、側方方向において周期的に変動する、液晶分子の配列は、第1の波長と周期との間の比率が、約0.5~約2.0であるような側方方向における周期を有するように配列される。実施形態によると、第1の波長は、約600nm~約1.4μmの近赤外線範囲内、例えば、約850nmであって、第2の波長は、本明細書の他の場所で説明されるような1つ以上の色を有する、可視範囲内にある。種々の実施形態による、キラル構造の液晶分子は、層深度方向に対して法線方向の方向に対して事前に傾斜される。構成されるように、1つ以上のCLC層は、第1の入射光が、層深度方向に対して約50
o、約60
o、約70
o、または約80
o度を超える、層深度方向(z-方向)に対する角度(θ
R)で反射されるように構成される。
【0237】
したがって、構成される、波長選択的CLCR1150は、それぞれ、層深度方向に延在し、第1の回転方向に連続的に回転される、複数の液晶分子を備える、1つ以上のコレステリック液晶(CLC)層を備え、キラル構造の液晶分子の配列は、1つ以上のCLC層が、第1の波長、例えば、IR波長を有する第1の入射光を実質的にブラッグ反射させる一方、第2の波長、例えば、可視波長を有する第2の入射光を実質的に透過させるように構成されるように、層深度方向と垂直な側方方向に周期的に変動する。
【0238】
類似液晶層および構造が、
図17-20Eに関連して上記に説明される反射体996およびコーティング998のために使用されてもよい。コーティング998は、例えば、液晶コーティングを備えてもよく、ある実装では、波長および/または偏光選択的であってもよい。しかしながら、他のタイプのコーティング998および反射体996が、採用されてもよい。
【0239】
前述の明細書では、本発明は、その具体的実施形態を参照して説明された。しかしながら、種々の修正および変更が、本発明のより広義の精神および範囲から逸脱することなくそこに行われ得ることが明白となるであろう。明細書および図面は、故に、限定的意味ではなく、例証と見なされるべきである。
【0240】
実際、本開示のシステムおよび方法は、それぞれ、いくつかの革新的側面を有し、そのうちのいかなるものも、本明細書に開示される望ましい属性に単独で関与しない、またはそのために要求されないことを理解されたい。上記に説明される種々の特徴およびプロセスは、相互に独立して使用され得る、または種々の方法で組み合わせられ得る。全ての可能な組み合わせおよび副次的組み合わせが、本開示の範囲内に該当することが意図される。
【0241】
別個の実施形態の文脈において本明細書に説明されるある特徴はまた、単一実施形態における組み合わせにおいて実装されてもよい。逆に、単一実施形態の文脈において説明される種々の特徴もまた、複数の実施形態において別個に、または任意の好適な副次的組み合わせにおいて実装されてもよい。さらに、特徴がある組み合わせにおいて作用するものとして上記に説明され、さらに、そのようなものとして最初に例示され得るが、例示される組み合わせからの1つ以上の特徴は、いくつかの場合では、組み合わせから削除されてもよく、例示される組み合わせは、副次的組み合わせまたは副次的組み合わせの変形例を対象とし得る。いかなる単一の特徴または特徴のグループも、あらゆる実施形態に必要または必須ではない。
【0242】
とりわけ、「~できる(can)」、「~し得る(could)」、「~し得る(might)」、「~し得る(may)」、「例えば(e.g.)」、および同等物等、本明細書で使用される条件文は、別様に具体的に記載されない限り、または使用されるような文脈内で別様に理解されない限り、概して、ある実施形態がある特徴、要素、および/またはステップを含む一方、他の実施形態がそれらを含まないことを伝えることが意図されることを理解されたい。したがって、そのような条件文は、概して、特徴、要素、および/またはステップが、1つ以上の実施形態に対していかようにも要求されること、または1つ以上の実施形態が、著者の入力または促しの有無を問わず、これらの特徴、要素、および/またはステップが任意の特定の実施形態において含まれる、または実施されるべきかどうかを決定するための論理を必然的に含むことを示唆することを意図されない。用語「~を備える」、「~を含む」、「~を有する」、および同等物は、同義語であり、非限定的方式で包括的に使用され、付加的要素、特徴、行為、動作等を除外しない。また、用語「または」は、その包括的意味において使用され(およびその排他的意味において使用されず)、したがって、例えば、要素のリストを接続するために使用されると、用語「または」は、リスト内の要素のうちの1つ、いくつか、または全てを意味する。加えて、本願および添付される実施例で使用されるような冠詞「a」、「an」、および「the」は、別様に規定されない限り、「1つ以上の」または「少なくとも1つ」を意味するように解釈されるべきである。同様に、動作は、特定の順序で図面に描写され得るが、これは、望ましい結果を達成するために、そのような動作が示される特定の順序で、または連続的順序で実施される、または全ての図示される動作が実施される必要はないと認識されるべきである。さらに、図面は、フローチャートの形態で1つ以上の例示的プロセスを図式的に描写し得る。しかしながら、描写されない他の動作も、図式的に図示される例示的方法およびプロセス内に組み込まれることができる。例えば、1つ以上の付加的動作が、図示される動作のいずれかの前に、その後に、それと同時に、またはその間に実施されることができる。加えて、動作は、他の実施形態において再配列される、または再順序付けられ得る。ある状況では、マルチタスクおよび並列処理が、有利であり得る。さらに、上記に説明される実施形態における種々のシステムコンポーネントの分離は、全ての実施形態におけるそのような分離を要求するものとして理解されるべきではなく、説明されるプログラムコンポーネントおよびシステムは、概して、単一のソフトウェア製品においてともに統合される、または複数のソフトウェア製品にパッケージ化され得ることを理解されたい。加えて、他の実装も、以下の実施例の範囲内である。いくつかの場合では、実施例に列挙されるアクションは、異なる順序で実施され、依然として、望ましい結果を達成することができる。
【0243】
故に、本開示は、本明細書に示される実装に限定されることを意図されず、本明細書に開示される本開示、原理、および新規の特徴と一貫する最も広い範囲を与えられるべきである。種々の例示的システムおよび方法が、下記に提供される。
【実施例】
【0244】
実施例第I節
(実施例1)
光をユーザの眼に投影し、拡張現実画像コンテンツを該ユーザの視野内に表示するように構成される、頭部搭載型ディスプレイシステムであって、
ユーザの頭部上に支持されるように構成される、フレームと、
画像をユーザの眼の中に投影し、画像コンテンツをユーザの視野内に表示するように構成される、画像プロジェクタと、
カメラと、
少なくとも1つの導波管と、
光が、該導波管の中に結合され、その中で誘導されるように構成される、少なくとも1つの結合光学要素と、
該導波管内で誘導される光を該導波管から外に結合し、該光を該カメラに指向するように構成される、少なくとも1つの外部結合要素と、
を備え、
カメラは、画像が該カメラによって捕捉され得るように、該少なくとも1つの外部結合光学要素に対して光学経路内に配置され、結合要素を介して該導波管の中に結合され、その中で誘導され、該外部結合要素によって該導波管から外に結合される、光の少なくとも一部を受け取る、頭部搭載型ディスプレイシステム。
(実施例2)
該少なくとも1つの結合光学要素は、該環境の画像が該カメラによって捕捉され得るように、頭部搭載型ディスプレイシステムを装着しているユーザの正面の環境からの光が、該少なくとも1つの導波管の中に結合され、その中で誘導されるように構成される、実施例1に記載のシステム。
(実施例3)
該少なくとも1つの結合光学要素は、該眼の画像が該カメラによって捕捉され得るように、頭部搭載型ディスプレイシステムを装着しているユーザの眼から反射された光が、該少なくとも1つの導波管の中に結合され、その中で誘導されるように構成される、上記実施例のいずれかに記載のシステム。
(実施例4)
該少なくとも1つの結合光学要素は、該眼の画像が該カメラによって捕捉され得るように、頭部搭載型ディスプレイシステムを装着しているユーザの眼から反射された光が、該導波管の中に結合され、その中で誘導されるように構成され、該システムは、該眼の前部部分を結像するように構成される、上記実施例のいずれかに記載のシステム。
(実施例5)
該少なくとも1つの結合光学要素は、該眼の画像が該カメラによって捕捉され得るように、頭部搭載型ディスプレイシステムを装着しているユーザの眼から反射された光が、該導波管の中に結合され、その中で誘導されるように構成され、該システムは、該眼の角膜表面を結像するように構成される、上記実施例のいずれかに記載のシステム。
(実施例6)
該少なくとも1つの結合光学要素は、該眼の画像が該カメラによって捕捉され得るように、頭部搭載型ディスプレイシステムを装着しているユーザの眼から反射された光が、該導波管の中に結合され、その中で誘導されるように構成され、該システムは、該ユーザの眼の網膜を結像するように構成される、上記実施例のいずれかに記載のシステム。
(実施例7)
フレーム上に配置される、接眼レンズをさらに備え、該接眼レンズは、光を該ユーザの眼の中に指向し、拡張現実画像コンテンツをユーザの視野に表示するように構成され、該接眼レンズの少なくとも一部は、透明であって、該透明部分が、ユーザの正面の環境からの光をユーザの眼に透過させ、ユーザの正面の環境のビューを提供するように、ユーザが該頭部搭載型ディスプレイを装着すると、ユーザの眼の正面の場所に配置される、上記実施例のいずれかに記載のシステム。
(実施例8)
該接眼レンズは、該画像プロジェクタからの光を受け取り、該光を該ユーザの眼の中に指向し、拡張現実画像コンテンツをユーザの視野に表示するように構成される、実施例7に記載のシステム。
(実施例9)
該接眼レンズは、該少なくとも1つの導波管を備える、実施例7-8のいずれかに記載のシステム。
(実施例10)
該画像プロジェクタは、光を該接眼レンズの縁の中に指向するように構成される、実施例7-9のいずれかに記載のシステム。
(実施例11)
該画像プロジェクタは、光を該少なくとも1つの導波管の縁の中に指向するように構成される、実施例9または10に記載のシステム。
(実施例12)
該画像コンテンツを該ユーザの眼に提供するために、該画像プロジェクタからの光を誘導するように、該画像プロジェクタからの光を該少なくとも1つの導波管の中に内部結合するように構成される、少なくとも1つの内部結合光学要素をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例13)
該少なくとも1つの結合光学要素はまた、画像コンテンツがユーザの眼によって視認され得るように、該導波管内で誘導される該画像プロジェクタからの光を該少なくとも1つの導波管から外に結合するように構成される、上記実施例のいずれかに記載のシステム。
(実施例14)
同一結合光学要素は、画像コンテンツがユーザの眼によって視認され得るように、該導波管内で誘導される該画像プロジェクタからの光を該導波管から外に結合し、該カメラにその中で誘導されるように、光を該少なくとも1つの導波管の中に結合するように構成される、上記実施例のいずれかに記載のシステム。
(実施例15)
画像コンテンツがユーザの眼によって視認され得るように、該導波管内で誘導される該画像プロジェクタからの光を該少なくとも1つの導波管から外に結合するように構成される、少なくとも1つの画像コンテンツ外部結合光学要素をさらに備える、実施例1-12のいずれかに記載のシステム。
(実施例16)
該少なくとも1つの結合光学要素は、頭部搭載型結像システムを装着しているユーザの眼に面し、該眼からの光を受け取る、上記実施例のいずれかに記載のシステム。
(実施例17)
該少なくとも1つの結合光学要素は、該環境の画像が該カメラによって捕捉され得るように、頭部搭載型結像システムを装着しているユーザの正面の環境からの光が、該少なくとも1つの導波管の中に結合され、その中で誘導されるように構成される、上記実施例のいずれかに記載のシステム。
(実施例18)
該少なくとも1つの結合光学要素は、頭部搭載型結像システムを装着しているユーザの正面の環境に面し、該環境からの光を受け取る、上記実施例のいずれかに記載のシステム。
(実施例19)
該導波管内で誘導される該画像プロジェクタからの光を該少なくとも1つの導波管から外に結合するように構成される、該少なくとも1つの画像コンテンツ外部結合光学要素と、該光が、該導波管の中に結合され、その中で該カメラに誘導されるように構成される、少なくとも1つの結合光学要素は、相互の上に重畳される、実施例15に記載のシステム。
(実施例20)
該導波管内で誘導される該画像プロジェクタからの光を該少なくとも1つの導波管から外に結合するように構成される、該少なくとも1つの画像コンテンツ外部結合光学要素と、該光が、該導波管の中に結合され、その中で該カメラに誘導されるように構成される、少なくとも1つの結合光学要素は、他方にわたってスタックされる、実施例15に記載のシステム。
(実施例21)
該導波管内で誘導される該画像プロジェクタからの光を該少なくとも1つの導波管から外に結合するように構成される、該少なくとも1つの画像コンテンツ外部結合光学要素と、該光が、該導波管の中に結合され、その中で該カメラに誘導されるように構成される、少なくとも1つの結合光学要素は、同一回折光学要素内に統合される、実施例15に記載のシステム。
(実施例22)
該少なくとも1つの結合光学要素は、光が、第1の導波管の中に結合され、その中で該カメラに誘導されるように構成され、該少なくとも1つの画像コンテンツ外部結合光学要素は、第2の導波管内で誘導される該画像プロジェクタからの光を該第2の導波管から外に結合するように構成される、実施例15に記載のシステム。
(実施例23)
該少なくとも1つの結合光学要素は、光が、第1の導波管の中に結合され、その中で該カメラに誘導されるように構成され、該画像プロジェクタは、光を第2の導波管の中に結合し、画像コンテンツを該眼に提供するように構成される、上記実施例のいずれかに記載のシステム。
(実施例24)
該画像プロジェクタは、光源と、変調器と、投影光学とを備える、上記実施例のいずれかに記載のシステム。
(実施例25)
画像プロジェクタは、走査光ファイバを備える、上記実施例のいずれかに記載のシステム。
(実施例26)
変調器は、光変調器を備える、実施例24または25のいずれかに記載のシステム。
(実施例27)
光変調器は、空間光変調器を備える、実施例26に記載のシステム。
(実施例28)
該カメラは、検出器アレイと、結像光学とを備える、上記実施例のいずれかに記載のシステム。
(実施例29)
該結像光学は、コリメートされた光を該検出器アレイ上に集束させるように構成される、実施例28に記載のシステム。
(実施例30)
該少なくとも1つの導波管は、全内部反射によって、光を該導波管内で誘導するために十分な屈折率を有する、可視光に対して透過性である、材料を含む、上記実施例のいずれかに記載のシステム。
(実施例31)
該少なくとも1つの導波管は、導波管のスタックを備える、上記実施例のいずれかに記載のシステム。
(実施例32)
導波管のスタックの異なる導波管は、ユーザの眼からの異なる距離から投影されるかのように、異なる波面発散を伴う光を出力するように構成される、実施例31に記載のシステム。
(実施例33)
導波管のスタックの異なる導波管は、異なる色を伴う光を出力するように構成される、実施例31または32に記載のシステム。
(実施例34)
異なる導波管は、第1、第2、および第3の導波管を備え、該システムは、第1のものが、赤色光のためのものであって、第2のものが、緑色光のためのものであって、第3のものが、青色光のためのものであるように構成される、実施例31、32、または33のいずれかに記載のシステム。
(実施例35)
内部結合光学要素は、回折光学要素または反射体を備える、実施例12-34のいずれかに記載のシステム。
(実施例36)
内部結合光学要素は、回折光学要素を備える、実施例12-34のいずれかに記載のシステム。
(実施例37)
結合光学要素は、回折光学要素を備える、上記実施例のいずれかに記載のシステム。
(実施例38)
結合光学要素は、液晶を備える、上記実施例のいずれかに記載のシステム。
(実施例39)
結合光学要素は、液晶偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例40)
外部結合光学要素は、回折光学要素を備える、上記実施例のいずれかに記載のシステム。
(実施例41)
外部結合光学要素は、液晶を備える、上記実施例のいずれかに記載のシステム。
(実施例42)
外部結合光学要素は、液晶偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例43)
結合要素は、少なくとも1つの軸に沿ってアイボックスの寸法を増加させるように構成される、上記実施例のいずれかに記載のシステム。
(実施例44)
少なくとも1つの軸に直交する軸に沿ってアイボックスの寸法を増加させるように構成される、該少なくとも1つの導波管内または上の少なくとも1つの光再指向要素を備える、直交瞳エクスパンダをさらに備える、実施例43に記載のシステム。
(実施例45)
該少なくとも1つの光再指向要素は、回折光学要素を備える、実施例44に記載のシステム。
(実施例46)
同一結合要素は、(a)該カメラによって受け取られるように、光を該少なくとも1つの導波管の中に結合し、(b)該画像プロジェクタからの光を該少なくとも1つの導波管から外に該ユーザの眼へと結合するように構成される、上記実施例のいずれかに記載のシステム。
(実施例47)
同一結合要素は、(a)該カメラによって受け取られるように、該環境からの光を該少なくとも1つの導波管の中に結合し、(b)該画像プロジェクタからの光を該少なくとも1つの導波管から外に該ユーザの眼へと結合するように構成される、上記実施例のいずれかに記載のシステム。
(実施例48)
同一結合要素は、(a)該カメラによって受け取られるように、該眼からの光を該少なくとも1つの導波管の中に結合し、(b)該画像プロジェクタからの光を該少なくとも1つの導波管から外に該ユーザの眼へと結合するように構成される、上記実施例のいずれかに記載のシステム。
(実施例49)
該接眼レンズを通して通過する、ユーザの眼から反射された光を受け取り、該光を該接眼レンズに戻るように指向するように配置される、屈折力を有する、反射性表面をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例50)
該少なくとも1つの結合要素は、少なくとも1つの導波管を通して通過し、反射性表面から少なくとも1つの導波管に戻るように反射される、ユーザの眼からの光が、該少なくとも1つの導波管の中に結合され、その中で誘導されるように構成される、実施例49に記載のシステム。
(実施例51)
カメラは、該少なくとも1つの外部結合光学要素に対して光学経路内に配置され、反射性表面から反射され、結合要素を介して、該導波管の中に結合され、その中で誘導され、該外部結合要素によって、該導波管から外に結合される、ユーザの眼からの光の少なくとも一部を受け取る、実施例49-50のいずれかに記載のシステム。
(実施例52)
反射性表面は、赤外線光を反射させるが、可視光を透過させる、実施例49-51のいずれかに記載のシステム。
(実施例53)
反射性表面は、湾曲である、実施例49-52のいずれかに記載のシステム。
(実施例54)
反射性表面は、湾曲光学要素上に配置される、実施例49-53のいずれかに記載のシステム。
(実施例55)
反射性表面は、凹面ミラー上に配置される、実施例49-54のいずれかに記載のシステム。
(実施例56)
反射性表面は、反射では、正の屈折力を有し、透過では、無視可能な屈折力を有する、実施例49-55のいずれかに記載のシステム。
(実施例57)
反射性表面は、ユーザの眼からの光をコリメートするように構成される、実施例49-56のいずれかに記載のシステム。
(実施例58)
反射性表面は、ユーザの眼の網膜からの光をコリメートするように構成される、実施例49-57のいずれかに記載のシステム。
(実施例59)
反射性表面は、ユーザの眼の前部領域からの光をコリメートするように構成される、実施例49-58のいずれかに記載のシステム。
(実施例60)
反射性表面は、ユーザの眼の角膜からの光をコリメートするように構成される、実施例49-59のいずれかに記載のシステム。
(実施例61)
反射性表面は、湾曲光学要素上に形成され、赤外線反射性コーティングを備える、実施例49-60のいずれかに記載のシステム。
(実施例62)
湾曲光学要素は、それを通して透過される光に対して無視可能な屈折力を有する、実施例61に記載のシステム。
(実施例63)
湾曲光学要素は、第1および第2の湾曲表面を湾曲光学要素の反対側上に有し、該第1および第2の湾曲表面は、同一曲率を有する、実施例61または62に記載のシステム。
(実施例64)
少なくとも1つの導波管を通して通過し、反射性表面から少なくとも1つの導波管および結合光学要素に戻るように反射される、光の偏光を回転させるように、反射性表面および結合光学要素に対して配置される、リターダをさらに備える、実施例49-63のいずれかに記載のシステム。
(実施例65)
少なくとも1つの結合要素は、偏光選択的方向転換要素を備える、上記実施例のいずれかに記載のシステム。
(実施例66)
少なくとも1つの結合要素は、偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例67)
少なくとも1つの結合要素は、コリメートされた光がユーザの眼に指向されるにつれて、少なくとも1つの導波管内で誘導される光を導波管から外に眼へと方向転換させるように構成される、上記実施例のいずれかに記載のシステム。
(実施例68)
少なくとも1つの結合要素は、コリメートされた光を反射性表面から少なくとも1つの導波管の中に方向転換させるように構成される、上記実施例のいずれかに記載のシステム。
(実施例69)
少なくとも1つの外部結合要素は、軸外反射体を備える、上記実施例のいずれかに記載のシステム。
(実施例70)
少なくとも1つの外部結合要素は、偏光選択的方向転換要素を備える、上記実施例のいずれかに記載のシステム。
(実施例71)
少なくとも1つの外部結合要素は、偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例72)
少なくとも1つの外部結合要素は、液晶を備える、上記実施例のいずれかに記載のシステム。
(実施例73)
少なくとも1つの外部結合要素は、液晶偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例74)
円偏光器をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例75)
内部結合要素は、偏光選択的方向転換要素を備える、上記実施例のいずれかに記載のシステム。
(実施例76)
内部結合要素は、偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例77)
少なくとも1つの内部結合要素は、回折光学要素を備える、上記実施例のいずれかに記載のシステム。
(実施例78)
少なくとも1つの内部結合要素は、回折格子を備える、上記実施例のいずれかに記載のシステム。
(実施例79)
内部結合要素は、軸外反射体を備える、上記実施例のいずれかに記載のシステム。
(実施例80)
反射性表面は、液晶反射体を備える、実施例49-79のいずれかに記載のシステム。
(実施例81)
反射性表面は、コレステリック液晶反射性レンズを備える、実施例49-80のいずれかに記載のシステム。
(実施例82)
同一導波管は、(a)ユーザの眼の少なくとも一部の画像を捕捉するように、ユーザの眼から該少なくとも1つの導波管の中に結合される光を該カメラによって受け取られるように誘導し、(b)該画像プロジェクタからの該画像がユーザの視野内にあるように、該プロジェクタからの光が該ユーザの眼に指向され得るように、該画像プロジェクタから結合される光を誘導する、上記実施例のいずれかに記載のシステム。
(実施例83)
同一結合要素は、(a)該カメラによって受け取られるように、該ユーザの眼からの光を該少なくとも1つの導波管の中に結合し、(b)該画像プロジェクタからの光を該少なくとも1つの導波管から外に該ユーザの眼へと結合する、上記実施例のいずれかに記載のシステム。
(実施例84)
反射性表面から反射された光が遮断されると、カメラに、第1の画像を捕捉させるように構成される、電子機器をさらに備える、実施例49-83のいずれかに記載のシステム。
(実施例85)
該電子機器は、反射性表面から反射された光が遮断されないとき、カメラに、第2の画像を捕捉させるように構成される、実施例84に記載のシステム。
(実施例86)
該電子機器は、第1の画像を使用して、第2の画像を修正するように構成される、実施例85に記載のシステム。
(実施例87)
該電子機器は、第1の画像に基づいて、第2の画像から減算するように構成される、実施例85または86に記載のシステム。
(実施例88)
該システムは、該眼の画像に基づいて、眼追跡を実施するように構成される、上記実施例のいずれかに記載のシステム。
(実施例89)
該眼の画像に基づいて、眼追跡を実施するステップは、該眼の網膜の画像を記憶するステップを含む、実施例88に記載のシステム。
(実施例90)
該システムは、
該カメラを使用して、該眼の網膜の一部の画像を取得し、
該網膜の1つ以上の記憶される画像と該網膜の一部の画像を比較し、
1つ以上の記憶される画像とカメラから取得される網膜の一部の画像の比較に基づいて、ユーザの視線を決定する、
ように構成される、上記実施例のいずれかに記載のシステム。
(実施例91)
ユーザの視線を決定するステップは、該網膜の一部の画像に対応する網膜の部分を決定するステップを含む、実施例90に記載のシステム。
(実施例92)
ユーザの視線を決定するステップは、眼の配向を決定するステップを含む、実施例90-91のいずれかに記載のシステム。
(実施例93)
該システムは、該カメラで取得されたユーザの眼の1つ以上の画像に基づいて、バイオメトリックデータを取得するように構成される、上記実施例のいずれかに記載のシステム。
(実施例94)
該システムは、該カメラで取得された該眼の1つ以上の画像に基づいて、バイオメトリック感知を介して、ユーザを識別するように構成される、上記実施例のいずれかに記載のシステム。
(実施例95)
該システムは、第1の偏光の照明を提供し、該第1の偏光と異なる第2の偏光の光を使用して、該カメラで画像を優先的に捕捉するように構成される、上記実施例のいずれかに記載のシステム。
(実施例96)
該システムは、該ユーザの眼を第1の偏光の光で照明し、該第1の偏光と異なる第2の偏光の光を使用して、該カメラで該ユーザの眼の画像を優先的に捕捉するように構成される、上記実施例のいずれかに記載のシステム。
(実施例97)
該第1および第2の偏光は、直交する、実施例95または96に記載のシステム。
(実施例98)
該カメラで画像を捕捉するように、照明を提供するように配置される、光源をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例99)
ユーザの眼を照明するように配置される、光源をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例100)
該光源は、1つ以上の赤外線光源を備える、実施例98または99に記載のシステム。
(実施例101)
該光源は、1つ以上の赤外線発光ダイオード(LED)を備える、実施例98-100のいずれかに記載のシステム。
(実施例102)
該光源は、パルス状である、実施例98-101のいずれかに記載のシステム。
(実施例103)
該光源からの光を受け取り、該ユーザの眼を該光で照明するように配置される、軸外反射体をさらに備える、実施例98-102のいずれかに記載のシステム。
(実施例104)
該光源は、光を導波管の中に入力し、該照明を提供するように構成される、実施例98-103のいずれかに記載のシステム。
(実施例105)
該光源は、光を該眼に対して配置される導波管の中に入力し、照明を該眼に提供するように構成される、実施例98-104のいずれかに記載のシステム。
(実施例106)
該光源からの光を該導波管の中に結合するように構成される、照明内部結合光学要素をさらに備える、実施例104または105に記載のシステム。
(実施例107)
該光源は、光を該少なくとも1つの導波管の中に入力し、照明を提供するように構成される、実施例98-103のいずれかに記載のシステム。
(実施例108)
該光源からの光を該少なくとも1つの導波管の中に結合し、照明を提供するように構成される、照明内部結合光学要素をさらに備える、実施例107に記載のシステム。
(実施例109)
該光源は、光を画像コンテンツをユーザの眼に投影するために使用されるものと同一導波管の中に入力するように構成される、実施例98-103のいずれかに記載のシステム。
(実施例110)
該光源は、照明をユーザの眼に提供し、光をカメラに誘導するために使用されるものと同一導波管の中に光を入力するように構成される、実施例98-104のいずれかに記載のシステム。
(実施例111)
該光源は、光をユーザの眼からカメラに誘導するために使用されるものと同一導波管の中に光を入力するように構成される、実施例98-105のいずれかに記載のシステム。
(実施例112)
該光源からの光を該導波管の中に結合するように構成される、照明内部結合光学要素をさらに備える、実施例109-111のいずれかに記載のシステム。
(実施例113)
該照明内部結合光学要素は、第1の偏光の偏光選択的内部結合光である、実施例106、108、または112のいずれかに記載のシステム。
(実施例114)
該光源は、第1の偏光を有する偏光を出力するように構成される、偏光源である、実施例98-113に記載のシステム。
(実施例115)
該光源は、第1の偏光を有する偏光を該眼上に指向するように構成される、実施例98-114のいずれかに記載のシステム。
(実施例116)
第1の偏光を有し、該光源と該眼との間の光学経路内に配置され、該眼に指向される光を偏光させる、照明偏光器をさらに備える、実施例98-115に記載のシステム。
(実施例117)
照明偏光器は、該光源と該導波管との間の光学経路内に配置され、照明を提供するように構成される、実施例116に記載のシステム。
(実施例118)
該眼と該カメラとの間の光学経路内の画像入手偏光器をさらに備える、実施例98-117のいずれかに記載のシステム。
(実施例119)
該画像入手偏光器は、該カメラの近位にある、実施例118に記載のシステム。
(実施例120)
該画像入手偏光器は、(a)光を該カメラに誘導するように構成される、該少なくとも1つの導波管と、(b)該カメラとの間の光学経路内に配置される、実施例118または119に記載のシステム。
(実施例121)
該画像入手偏光器は、該カメラに到達する、該第1の偏光の光の量を低減させる、実施例118-120のいずれかに記載のシステム。
(実施例122)
該画像入手偏光器は、該第1の偏光と異なる第2の偏光の光を該カメラに選択的に結合するように構成される、偏光器を備える、実施例118-121に記載のシステム。
(実施例123)
該少なくとも1つの結合要素と該少なくとも1つの外部結合光学要素との間の光学経路内に配置され、該少なくとも1つの外部結合光学要素に到達することに先立って、該少なくとも1つの結合要素からの光の側方空間範囲を低減させる、少なくとも1つの集光要素をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例124)
該少なくとも1つの集光要素は、回折光学要素を備える、上記実施例のいずれかに記載のシステム。
(実施例125)
該少なくとも1つの集光要素は、ホログラムまたは回折格子を備える、上記実施例のいずれかに記載のシステム。
(実施例126)
該少なくとも1つの導波管は、赤外線光を全内部反射によって該導波管内で誘導するために十分な屈折率を有する、赤外線光に対して透過性の材料を含む、上記実施例のいずれかに記載のシステム。
(実施例127)
該少なくとも1つの結合光学要素は、射出瞳エクスパンダを備える、上記実施例のいずれかに記載のシステム。
(実施例128)
システムは、カメラに誘導されるように、導波管の中に結合される、眼から反射された光のコリメーションを増加させるための屈折力を含む、上記実施例のいずれかに記載のシステム。
(実施例129)
システムは、カメラに誘導されるように、導波管の中に結合される、眼の前部部分から反射された光のコリメーションを増加させるための屈折力を含む、上記実施例のいずれかに記載のシステム。
(実施例130)
システムは、導波管の中に結合され、カメラに誘導されるように、眼の角膜から反射された光のコリメーションを増加させるための屈折力を含む、上記実施例のいずれかに記載のシステム。
(実施例131)
屈折力は、正の屈折力を備える、実施例128-130のいずれかに記載のシステム。
(実施例132)
屈折力は、レンズによって提供される、実施例128-131のいずれかに記載のシステム。
(実施例133)
眼の網膜の1つ以上の記憶される画像は、眼の網膜の異なる部分の複数の画像を使用して生成された、眼の網膜の合成画像を備える、実施例88-132のいずれかに記載のシステム。
(実施例134)
網膜の合成画像は、ともにスティッチングされた網膜の複数の画像を備える、実施例88-133のいずれかに記載のシステム。
(実施例135)
ともにスティッチングされた網膜の複数の画像は、固定標的が、それぞれ、種々の場所においてユーザの視野内に表示されるときに取得される、画像を備える、実施例88-134のいずれかに記載のシステム。
(実施例136)
網膜の1つ以上の記憶される画像は、固定標的が、それぞれ、種々の場所においてユーザの視野内に表示されるときに取得される、画像を備える、実施例88-135のいずれかに記載のシステム。
(実施例137)
システムはさらに、眼の網膜の部分の取得される画像を使用して、合成画像を更新するように構成される、実施例88-136のいずれかに記載のシステム。
(実施例138)
網膜の部分の取得される画像を使用して、網膜の合成画像を更新するステップは、取得される画像を取得される画像内に示される網膜の部分に対応する合成画像のセクションの中にスティッチングするステップを含む、実施例88-137のいずれかに記載のシステム。
(実施例139)
システムはさらに、デジタルフィルタを眼の網膜の部分の取得される画像に適用し、網膜の部分のフィルタリングされた画像を取得するように構成される、実施例88-138のいずれかに記載のシステム。
(実施例140)
システムはさらに、網膜の1つ以上の記憶される画像と網膜の部分のフィルタリングされた画像を比較するように構成される、実施例139に記載のシステム。
(実施例141)
デジタルフィルタは、Frangiフィルタを備える、実施例139-140のいずれかに記載のシステム。
(実施例142)
システムは、縁を適用し、網膜の部分の取得される画像を向上させるように構成される、実施例88-139のいずれかに記載のシステム。
(実施例143)
該システムは、網膜の画像を使用して、ユーザ識別照合を実施するように構成される、上記実施例のいずれかに記載のシステム。
(実施例144)
該システムは、
該カメラを使用して、該眼の網膜の一部の画像を取得し、
該網膜の1つ以上の記憶される画像と該網膜の一部の画像を比較する、
ように構成される、上記実施例のいずれかに記載のシステム。
(実施例145)
眼の網膜の1つ以上の記憶される画像は、眼の網膜の異なる部分の複数の画像を使用して生成された、眼の網膜の合成画像を備える、実施例144に記載のシステム。
(実施例146)
網膜の合成画像は、ともにスティッチングされた網膜の複数の画像を備える、実施例144-145のいずれかに記載のシステム。
(実施例147)
ともにスティッチングされた網膜の複数の画像は、固定標的が、それぞれ、種々の場所においてユーザの視野内に表示されるときに取得される、画像を備える、実施例144-146のいずれかに記載のシステム。
(実施例148)
網膜の1つ以上の記憶される画像は、固定標的が、それぞれ、種々の場所においてユーザの視野内に表示されるときに取得される、画像を備える、実施例144-146のいずれかに記載のシステム。
(実施例149)
システムはさらに、眼の網膜の部分の取得される画像を使用して、合成画像を更新するように構成される、実施例144-148のいずれかに記載のシステム。
(実施例150)
網膜の部分の取得される画像を使用して、網膜の合成画像を更新するステップは、取得される画像を取得される画像内に示される網膜の部分に対応する合成画像のセクションの中にスティッチングするステップを含む、実施例144-149のいずれかに記載のシステム。
(実施例151)
システムはさらに、デジタルフィルタを眼の網膜の部分の取得される画像に適用し、網膜の部分のフィルタリングされた画像を取得するように構成される、実施例144-150のいずれかに記載のシステム。
(実施例152)
システムはさらに、網膜の1つ以上の記憶される画像と網膜の部分のフィルタリングされた画像を比較するように構成される、実施例151に記載のシステム。
(実施例153)
デジタルフィルタは、Frangiフィルタを備える、実施例144-152のいずれかに記載のシステム。
(実施例154)
システムは、縁を適用し、網膜の部分の取得される画像を向上させるように構成される、実施例144-153のいずれかに記載のシステム。
実施例第II節
(実施例1)
光をユーザの眼に投影し、拡張現実画像コンテンツを該ユーザの視野内に表示し、頭部搭載型ディスプレイシステムを装着しているユーザの正面の環境の少なくとも一部を結像するように構成される、頭部搭載型ディスプレイシステムであって、
ユーザの頭部上に支持されるように構成される、フレームと、
画像を投影するように構成される、画像プロジェクタと、
カメラと、
フレーム上に配置される、接眼レンズであって、該接眼レンズは、光を該ユーザの眼の中に指向し、拡張現実画像コンテンツをユーザの視野に表示するように構成され、該接眼レンズの少なくとも一部は、透明であって、該透明部分が、ユーザの正面の環境からの光をユーザの眼に透過させ、ユーザの正面の環境のビューを提供するように、ユーザが該頭部搭載型ディスプレイを装着すると、ユーザの眼の正面の場所に配置され、該接眼レンズは、
(a)少なくとも1つの導波管と、
(b)該画像プロジェクタからの光をその中で誘導するように、該画像プロジェクタからの光を該少なくとも1つの導波管の中に内部結合するように構成される、少なくとも1つの内部結合光学要素と、
(c)該導波管内で誘導される該画像プロジェクタからの光を該導波管から外に結合し、該光をユーザの眼に指向するように構成される、少なくとも1つの結合光学要素と、
(d)該導波管内の光を該導波管から外に結合し、該光を該カメラに指向するように構成される、少なくとも1つの外部結合要素と、
を備える、接眼レンズと、
を備え、
画像プロジェクタは、該プロジェクタからの該画像が、ユーザの視野内にあるように、該光が、該少なくとも1つの結合要素によって、該導波管から外に該ユーザの眼へと結合されるように、該少なくとも1つの内部結合光学要素に対して光学経路内に配置され、その中で誘導されるように、該画像プロジェクタからの光を該導波管の中に結合し、
該結合要素は、頭部搭載型ディスプレイを装着しているユーザの正面の環境からの光が、該導波管の中に結合され、その中で誘導されように構成され、
カメラは、該少なくとも1つの外部結合光学要素に対して光学経路内に配置され、該環境の画像が該カメラによって捕捉され得るように、結合要素を介して、該導波管の中に結合され、その中で誘導され、該外部結合要素によって、該導波管から外に結合される、ユーザの正面の環境からの光の少なくとも一部を受け取り、
同一導波管は、(a)ユーザの正面の環境の少なくとも一部の画像を捕捉するように、該カメラによって受け取られるように、該環境から結合される光を該導波管の中で誘導し、(b)該プロジェクタからの該画像がユーザの視野内にあるように、該プロジェクタからの光が該ユーザの眼に指向され得るように、該プロジェクタから結合される光を誘導する、
頭部搭載型ディスプレイシステム。
(実施例2)
該画像プロジェクタは、光源と、変調器と、投影光学とを備える、実施例1に記載のシステム。
(実施例3)
画像プロジェクタは、走査光ファイバを備える、実施例1または2に記載のシステム。
(実施例4)
変調器は、光変調器を備える、実施例2または3のいずれかに記載のシステム。
(実施例5)
光変調器は、空間光変調器を備える、実施例4に記載のシステム。
(実施例6)
該カメラは、検出器アレイと、結像光学とを備える、上記実施例のいずれかに記載のシステム。
(実施例7)
該結像光学は、コリメートされた光を該検出器アレイ上に集束させるように構成される、実施例6に記載のシステム。
(実施例8)
該少なくとも1つの導波管は、全内部反射によって、光を該導波管内で誘導するために十分な屈折率を有する、可視光に対して透過性である、材料を含む、上記実施例のいずれかに記載のシステム。
(実施例9)
該少なくとも1つの導波管は、導波管のスタックを備える、上記実施例のいずれかに記載のシステム。
(実施例10)
導波管のスタックの異なる導波管は、ユーザの眼からの異なる距離から投影されるかのように、異なる波面発散を伴う光を出力するように構成される、実施例9に記載のシステム。
(実施例11)
導波管のスタックの異なる導波管は、異なる色を伴う光を出力するように構成される、実施例9または10に記載のシステム。
(実施例12)
異なる導波管は、第1、第2、および第3の導波管を備え、該システムは、第1のものが、赤色光のためのものであって、第2のものが、緑色光のためのものであって、第3のものが、青色光のためのものであるように構成される、実施例9、10、または11のいずれかに記載のシステム。
(実施例13)
内部結合光学要素は、回折光学要素または反射体を備える、上記実施例のいずれかに記載のシステム。
(実施例14)
結合光学要素は、回折光学要素を備える、上記実施例のいずれかに記載のシステム。
(実施例15)
外部結合光学要素は、回折光学要素を備える、上記実施例のいずれかに記載のシステム。
(実施例16)
結合要素は、少なくとも1つの軸に沿ってアイボックスの寸法を増加させるように構成される、上記実施例のいずれかに記載のシステム。
(実施例17)
少なくとも1つの軸に直交する軸に沿ってアイボックスの寸法を増加させるように構成される、該少なくとも1つの導波管内または上の少なくとも1つの光再指向要素を備える、直交瞳エクスパンダをさらに備える、実施例16に記載のシステム。
(実施例18)
該少なくとも1つの光再指向要素は、回折光学要素を備える、実施例17に記載のシステム。
(実施例19)
同一結合要素は、(a)該カメラによって受け取られるように、該環境からの光を該少なくとも1つの導波管の中に結合し、(b)該画像プロジェクタからの光を該少なくとも1つの導波管から外に該ユーザの眼へと結合する、上記実施例のいずれかに記載のシステム。
(実施例20)
該接眼レンズを通して通過する、ユーザの眼から反射された光を受け取り、該光を該接眼レンズに戻るように指向するように配置される、屈折力を有する、反射性表面をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例21)
該少なくとも1つの結合要素は、接眼レンズを通して通過し、反射性表面から接眼レンズに戻るように反射される、ユーザの眼からの光が、該導波管の中に結合され、その中で誘導されるように構成される、実施例20に記載のシステム。
(実施例22)
カメラは、該少なくとも1つの外部結合光学要素に対して光学経路内に配置され、反射性表面から反射され、結合要素を介して、該導波管の中に結合され、その中で誘導され、該外部結合要素によって、該導波管から外に結合される、ユーザの眼からの光の少なくとも一部を受け取る、実施例20-21のいずれかに記載のシステム。
(実施例23)
反射性表面は、赤外線光を反射させるが、可視光を透過させる、実施例20-22のいずれかに記載のシステム。
(実施例24)
反射性表面は、湾曲である、実施例20-23のいずれかに記載のシステム。
(実施例25)
反射性表面は、湾曲光学要素上に配置される、実施例20-24のいずれかに記載のシステム。
(実施例26)
反射性表面は、凹面ミラー上に配置される、実施例20-25のいずれかに記載のシステム。
(実施例27)
反射性表面は、反射では、正の屈折力を有し、透過では、無視可能な屈折力を有する、実施例20-26のいずれかに記載のシステム。
(実施例28)
反射性表面は、ユーザの眼からの光をコリメートするように構成される、実施例20-27のいずれかに記載のシステム。
(実施例29)
反射性表面は、ユーザの眼の網膜からの光をコリメートするように構成される、実施例20-28のいずれかに記載のシステム。
(実施例30)
反射性表面は、ユーザの眼の前部領域からの光をコリメートするように構成される、実施例20-29のいずれかに記載のシステム。
(実施例31)
反射性表面は、ユーザの眼の角膜からの光をコリメートするように構成される、実施例20-30のいずれかに記載のシステム。
(実施例32)
反射性表面は、赤外線反射性コーティングを該反射性表面上に有する、湾曲光学要素上に形成される、実施例20-31のいずれかに記載のシステム。
(実施例33)
湾曲光学要素は、それを通して透過される光に対して無視可能な屈折力を有する、実施例33に記載のシステム。
(実施例34)
湾曲光学要素は、第1および第2の湾曲表面を湾曲光学要素の反対側上に有し、該第1および第2の湾曲表面は、同一曲率を有する、実施例32または33に記載のシステム。
(実施例35)
接眼レンズを通して通過し、反射性表面から接眼レンズおよび結合光学要素に戻るように反射される、光の偏光を回転させるように、反射性表面および結合光学要素に対して配置される、リターダをさらに備える、上記実施例のいずれかに記載のシステム。
(実施例36)
少なくとも1つの結合要素は、偏光選択的方向転換要素を備える、上記実施例のいずれかに記載のシステム。
(実施例37)
少なくとも1つの結合要素は、偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例38)
少なくとも1つの結合要素は、コリメートされた光がユーザの眼に指向されるにつれて、少なくとも1つの導波管内で誘導される光を導波管から外に眼へと方向転換させるように構成される、上記実施例のいずれかに記載のシステム。
(実施例39)
少なくとも1つの結合要素は、反射性表面からのコリメートされた光を少なくとも1つの導波管の中に方向転換させるように構成される、上記実施例のいずれかに記載のシステム。
(実施例40)
少なくとも1つの外部結合要素は、軸外反射体を備える、上記実施例のいずれかに記載のシステム。
(実施例41)
少なくとも1つの外部結合要素は、偏光選択的方向転換要素を備える、上記実施例のいずれかに記載のシステム。
(実施例42)
少なくとも1つの外部結合要素は、偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例43)
円偏光器をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例44)
内部結合要素は、偏光選択的方向転換要素を備える、上記実施例のいずれかに記載のシステム。
(実施例45)
内部結合要素は、偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例46)
内部結合要素は、軸外反射体を備える、上記実施例のいずれかに記載のシステム。
(実施例47)
反射性表面は、液晶反射体を備える、実施例20-34のいずれかに記載のシステム。
(実施例48)
反射性表面は、コレステリック液晶反射性レンズを備える、実施例20-34または47のいずれかに記載のシステム。
(実施例49)
同一導波管は、(a)ユーザの眼の少なくとも一部の画像を捕捉するように、該カメラによって受け取られるように、ユーザの眼から結合される光を該少なくとも1つの導波管の中に誘導し、(b)該画像プロジェクタからの該画像がユーザの視野内にあるように、該プロジェクタからの光が該ユーザの眼に指向され得るように、該画像プロジェクタから結合される光を誘導する、上記実施例のいずれかに記載のシステム。
(実施例50)
同一結合要素は、(a)該カメラによって受け取られるように、該ユーザの眼からの光を該少なくとも1つの導波管の中に結合し、(b)該画像プロジェクタからの光を該少なくとも1つの導波管から外に該ユーザの眼へと結合する、上記実施例のいずれかに記載のシステム。
(実施例51)
反射性表面から反射された光が遮断されると、カメラに、第1の画像を捕捉させるように構成される、電子機器をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例52)
該電子機器は、反射性表面から反射された光が遮断されないとき、カメラに、第2の画像を捕捉させるように構成される、実施例51に記載のシステム。
(実施例53)
該電子機器は、第1の画像を使用して、第2の画像を修正するように構成される、実施例52に記載のシステム。
(実施例54)
該電子機器は、第1の画像に基づいて、第2の画像から減算するように構成される、実施例53に記載のシステム。
(実施例55)
該システムは、該眼の画像に基づいて、眼追跡を実施するように構成される、上記実施例のいずれかに記載のシステム。
(実施例56)
該眼の画像に基づいて、眼追跡を実施するステップは、該眼の網膜の画像を記憶するステップを含む、実施例55に記載のシステム。
(実施例57)
該システムは、
該眼の網膜の画像を記憶し、
該眼の網膜の一部の画像を捕捉し、
該網膜の記憶された画像と該網膜の該部分の画像を比較し、
記憶された画像と網膜の部分の画像の比較に基づいて、ユーザの視線を決定する、
ように構成される、上記実施例のいずれかに記載のシステム。
(実施例58)
ユーザの視線を決定するステップは、該網膜の一部の画像に対応する網膜の部分を決定するステップを含む、実施例57に記載のシステム。
(実施例59)
ユーザの視線を決定するステップは、眼の配向を決定するステップを含む、実施例57-58のいずれかに記載のシステム。
(実施例60)
ユーザの眼を照明するように配置される、光源をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例61)
該光源は、赤外線光をユーザの眼に指向するように構成される、1つ以上の赤外線光源を備える、実施例60に記載のシステム。
(実施例62)
該光源は、1つ以上の赤外線発光ダイオード(LED)を備える、実施例60または61に記載のシステム。
(実施例63)
該光源は、パルス状である、実施例60-62のいずれかに記載のシステム。
(実施例64)
該光源からの光を受け取り、該眼を該光で照明するように配置される、軸外反射体をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例65)
頭部搭載型結像システムを装着しているユーザの正面の環境の少なくとも一部を結像するように構成される、頭部搭載型結像システムであって、
ユーザの頭部上に支持されるように構成される、フレームと、
カメラと、フレーム上に配置される、接眼レンズであって、該接眼レンズの少なくとも一部は、透明であって、該透明部分が、ユーザの正面の環境からの光をユーザの眼に透過させ、ユーザの正面の環境のビューを提供するように、ユーザが該頭部搭載型結像システムを装着すると、ユーザの眼の正面の場所に配置され、該接眼レンズは、
(a)少なくとも1つの導波管と、
(b)頭部搭載型結像システムを装着しているユーザの正面の環境からの光が、該導波管の中に結合され、その中で誘導されるように構成される、少なくとも1つの結合光学要素と、
(c)該導波管内の光を該導波管から外に結合し、該光を該カメラに指向するように構成される、少なくとも1つの外部結合要素と、
を備える、接眼レンズと、
を備え、
カメラは、該少なくとも1つの外部結合光学要素に対して光学経路内に配置され、該環境の画像が該カメラによって捕捉され得るように、結合要素を介して、該導波管の中に結合され、その中で誘導され、該外部結合要素によって、該導波管から外に結合される、ユーザの正面の環境からの光の少なくとも一部を受け取る、頭部搭載型結像システム。
(実施例66)
該カメラは、検出器アレイと、結像光学とを備える、実施例65に記載のシステム。
(実施例67)
該結像光学は、コリメートされた光を該検出器アレイ上に集束させるように構成される、実施例66に記載のシステム。
(実施例68)
該少なくとも1つの導波管は、全内部反射によって、光を該導波管内で誘導するために十分な屈折率を有する、可視光に対して透過性である、材料を含む、実施例65-67のいずれかに記載のシステム。
(実施例69)
該少なくとも1つの導波管は、導波管のスタックを備える、実施例65-68のいずれかに記載のシステム。
(実施例70)
導波管のスタックの異なる導波管は、ユーザの眼からの異なる距離から投影されるかのように、異なる波面発散を伴う光を出力するように構成される、実施例69に記載のシステム。
(実施例71)
導波管のスタックの異なる導波管は、異なる色を伴う光を出力するように構成される、実施例69または70に記載のシステム。
(実施例72)
異なる導波管は、第1、第2、および第3の導波管を備え、該システムは、第1のものが、赤色光のためのものであって、第2のものが、緑色光のためのものであって、第3のものが、青色光のためのものであるように構成される、実施例69-71のいずれかに記載のシステム。
(実施例73)
結合光学要素は、回折光学要素を備える、実施例65-72のいずれかに記載のシステム。
(実施例74)
外部結合光学要素は、回折光学要素を備える、実施例65-73のいずれかに記載のシステム。
(実施例75)
結合要素は、少なくとも1つの軸に沿ってアイボックスの寸法を増加させるように構成される、実施例65-74のいずれかに記載のシステム。
(実施例76)
少なくとも1つの軸に直交する軸に沿ってアイボックスの寸法を増加させるように構成される、該少なくとも1つの導波管内または上の少なくとも1つの光再指向要素を備える、直交瞳エクスパンダをさらに備える、実施例75に記載のシステム。
(実施例77)
該少なくとも1つの光再指向要素は、回折光学要素を備える、実施例76に記載のシステム。
実施例第III節
(実施例1)
光をユーザの眼に投影し、拡張現実画像コンテンツを該ユーザの視野内に表示し、頭部搭載型ディスプレイシステムを装着しているユーザの眼の少なくとも一部を結像するように構成される、頭部搭載型ディスプレイシステムであって、
ユーザの頭部上に支持されるように構成される、フレームと、
画像を投影するように構成される、画像プロジェクタと、
カメラと、
フレーム上に配置される、接眼レンズであって、該接眼レンズは、光を該ユーザの眼の中に指向し、拡張現実画像コンテンツをユーザの視野に表示するように構成され、該接眼レンズの少なくとも一部は、透明であって、該透明部分が、ユーザの正面の環境からの光をユーザの眼に透過させ、ユーザの正面の環境のビューを提供するように、ユーザが該頭部搭載型ディスプレイを装着すると、ユーザの眼の正面の場所に配置され、該接眼レンズは、
(a)少なくとも1つの導波管と、
(b)該画像プロジェクタからの光をその中で誘導するように、該画像プロジェクタからの光を該少なくとも1つの導波管の中に内部結合するように構成される、少なくとも1つの内部結合光学要素と、
(c)該導波管内で誘導される該画像プロジェクタからの光を該導波管から外に結合し、該光をユーザの眼に指向するように構成される、少なくとも1つの結合光学要素と、
(d)該導波管内で誘導される該光を該導波管から外に結合し、該光を該カメラに指向するように構成される、少なくとも1つの外部結合要素と、
を備える、接眼レンズと、
該接眼レンズを通して通過する、ユーザの眼から反射された光を受け取り、該光を該接眼レンズに戻るように指向するように配置される、屈折力を有する、反射性表面と、
を備え、
画像プロジェクタは、該少なくとも1つの内部結合光学要素に対して光学経路内に配置され、該プロジェクタからの該画像がユーザの視野内にあるように、該光が、該少なくとも1つの結合要素によって、該導波管から外に該ユーザの眼へと結合されるように、その中で誘導されるように、該画像プロジェクタからの光を該導波管の中に内部結合し、
該少なくとも1つの結合要素は、接眼レンズを通して通過し、反射性表面から接眼レンズに戻るように反射される、ユーザの眼からの光が、該導波管の中に結合され、その中で誘導されるように構成され、
カメラは、該少なくとも1つの外部結合光学要素に対して光学経路内に配置され、反射性表面から反射され、結合要素を介して、該導波管の中に結合され、その中で誘導され、該外部結合要素によって、該導波管から外に結合される、ユーザの眼からの光の少なくとも一部を受け取る、
頭部搭載型ディスプレイシステム。
(実施例2)
ユーザの眼を照明するように配置される、光源をさらに備える、実施例1に記載のシステム。
(実施例3)
該光源は、赤外線光をユーザの眼に指向するように構成される、1つ以上の赤外線光源を備える、実施例2に記載のシステム。
(実施例4)
該光源は、1つ以上の赤外線発光ダイオード(LED)を備える、実施例2または3に記載のシステム。
(実施例5)
該光源は、パルス状である、実施例2-4のいずれかに記載のシステム。
(実施例6)
該光源からの光を受け取り、該眼を該光で照明するように配置される、軸外反射体をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例7)
反射性表面は、赤外線光を反射させるが、可視光を透過させる、上記実施例のいずれかに記載のシステム。
(実施例8)
反射性表面は、湾曲である、上記実施例のいずれかに記載のシステム。
(実施例9)
反射性表面は、湾曲光学要素上に配置される、上記実施例のいずれかに記載のシステム。
(実施例10)
反射性表面は、凹面ミラー上に配置される、上記実施例のいずれかに記載のシステム。
(実施例11)
反射性表面は、反射では、正の屈折力を有し、透過では、無視可能な屈折力を有する、上記実施例のいずれかに記載のシステム。
(実施例12)
反射性表面は、ユーザの眼からの光をコリメートするように構成される、上記実施例のいずれかに記載のシステム。
(実施例13)
反射性表面は、ユーザの眼の網膜からの光をコリメートするように構成される、上記実施例のいずれかに記載のシステム。
(実施例14)
反射性表面は、ユーザの眼の前部領域からの光をコリメートするように構成される、上記実施例のいずれかに記載のシステム。
(実施例15)
反射性表面は、ユーザの眼の角膜からの光をコリメートするように構成される、上記実施例のいずれかに記載のシステム。
(実施例16)
反射性表面は、赤外線反射性コーティングを該反射性表面上に有する、湾曲光学要素上に形成される、上記実施例のいずれかに記載のシステム。
(実施例17)
湾曲光学要素は、それを通して透過される光に対して無視可能な屈折力を有する、実施例9または16に記載のシステム。
(実施例18)
湾曲光学要素は、第1および第2の湾曲表面を湾曲光学要素の反対側上に有し、該第1および第2の湾曲表面は、同一曲率を有する、実施例9または16または17のいずれかに記載のシステム。
(実施例19)
接眼レンズを通して通過し、反射性表面から接眼レンズおよび結合光学要素に戻るように反射される、光の偏光を回転させるように、反射性表面および結合光学要素に対して配置される、リターダをさらに備える、上記実施例のいずれかに記載のシステム。
(実施例20)
少なくとも1つの結合要素は、偏光選択的方向転換要素を備える、上記実施例のいずれかに記載のシステム。
(実施例21)
少なくとも1つの結合要素は、偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例22)
少なくとも1つの結合要素は、コリメートされた光がユーザの眼に指向されるにつれて、少なくとも1つの導波管内で誘導される光を導波管から外に眼へと方向転換させるように構成される、上記実施例のいずれかに記載のシステム。
(実施例23)
少なくとも1つの結合要素は、反射性表面からのコリメートされた光を少なくとも1つの導波管の中に方向転換させるように構成される、上記実施例のいずれかに記載のシステム。
(実施例24)
少なくとも1つの外部結合要素は、軸外反射体を備える、上記実施例のいずれかに記載のシステム。
(実施例25)
少なくとも1つの外部結合要素は、偏光選択的方向転換要素を備える、上記実施例のいずれかに記載のシステム。
(実施例26)
少なくとも1つの外部結合要素は、偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例27)
円偏光器をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例28)
内部結合要素は、偏光選択的方向転換要素を備える、上記実施例のいずれかに記載のシステム。
(実施例29)
内部結合要素は、偏光格子を備える、上記実施例のいずれかに記載のシステム。
(実施例30)
内部結合要素は、軸外反射体を備える、上記実施例のいずれかに記載のシステム。
(実施例31)
反射性表面は、液晶反射体を備える、上記実施例のいずれかに記載のシステム。
(実施例32)
反射性表面は、コレステリック液晶反射性レンズを備える、上記実施例のいずれかに記載のシステム。
(実施例33)
該画像プロジェクタは、光源と、変調器と、投影光学とを備える、上記実施例のいずれかに記載のシステム。
(実施例34)
画像プロジェクタは、走査光ファイバを備える、上記実施例のいずれかに記載のシステム。
(実施例35)
変調器は、光変調器を備える、上記実施例のいずれかに記載のシステム。
(実施例36)
光変調器は、空間光変調器を備える、実施例34に記載のシステム。
(実施例37)
該カメラは、検出器アレイと、結像光学とを備える、上記実施例のいずれかに記載のシステム。
(実施例38)
該結像光学は、コリメートされた光を検出器アレイ上に集束させるように構成される、実施例36に記載のシステム。
(実施例39)
該少なくとも1つの導波管は、光を全内部反射によって該導波管内で誘導するために十分な屈折率を有する、可視光に対して透過性である材料を含む、上記実施例のいずれかに記載のシステム。
(実施例40)
該少なくとも1つの導波管は、導波管のスタックを備える、上記実施例のいずれかに記載のシステム。
(実施例41)
導波管のスタックの異なる導波管は、ユーザの眼からの異なる距離から投影されるかのように、異なる波面発散を伴う光を出力するように構成される、実施例40に記載のシステム。
(実施例42)
導波管のスタックの異なる導波管は、異なる色を伴う光を出力するように構成される、実施例40または41に記載のシステム。
(実施例43)
異なる導波管は、第1、第2、および第3の導波管を備え、該システムは、該第1のものが、赤色光のためのものであって、第2のものが、緑色光のためのものであって、第3のものが、青色光のためのものであるように構成される、実施例40、41、または42のいずれかに記載のシステム。
(実施例44)
内部結合光学要素は、回折光学要素または反射体を備える、上記実施例のいずれかに記載のシステム。
(実施例45)
結合光学要素は、回折光学要素を備える、上記実施例のいずれかに記載のシステム。
(実施例46)
外部結合光学要素は、回折光学要素を備える、上記実施例のいずれかに記載のシステム。
(実施例47)
結合要素は、少なくとも1つの軸に沿ってアイボックスの寸法を増加させるように構成される、上記実施例のいずれかに記載のシステム。
(実施例48)
少なくとも1つの軸に直交する軸に沿ってアイボックスの寸法を増加させるように構成される、該少なくとも1つの導波管内または上の少なくとも1つの光再指向要素を備える、直交瞳エクスパンダをさらに備える、実施例47に記載のシステム。
(実施例49)
該少なくとも1つの光再指向要素は、回折光学要素を備える、実施例48に記載のシステム。
(実施例50)
同一導波管は、(a)ユーザの眼の少なくとも一部の画像を捕捉するように、該カメラによって受け取られるように、ユーザの眼から結合される光を該少なくとも1つの導波管の中に誘導し、(b)該画像プロジェクタからの該画像がユーザの視野内にあるように、該プロジェクタからの光が該ユーザの眼に指向され得るように、該画像プロジェクタから結合される光を誘導する、上記実施例のいずれかに記載のシステム。
(実施例51)
同一結合要素は、(a)該カメラによって受け取られるように、該ユーザの眼からの光を該少なくとも1つの導波管の中に結合し、(b)該画像プロジェクタからの光を該少なくとも1つの導波管から外に該ユーザの眼へと結合する、上記実施例のいずれかに記載のシステム。
(実施例52)
反射性表面から反射された光が遮断されると、カメラに、第1の画像を捕捉させるように構成される、電子機器をさらに備える、上記実施例のいずれかに記載のシステム。
(実施例53)
該電子機器は、反射性表面から反射された光が遮断されないとき、カメラに、第2の画像を捕捉させるように構成される、実施例52に記載のシステム。
(実施例54)
該電子機器は、第1の画像を使用して、第2の画像を修正するように構成される、実施例53に記載のシステム。
(実施例55)
該電子機器は、第1の画像に基づいて、第2の画像から減算するように構成される、実施例54に記載のシステム。
(実施例56)
該システムは、該眼の画像に基づいて、眼追跡を実施するように構成される、上記実施例のいずれかに記載のシステム。
(実施例57)
該眼の画像に基づいて、眼追跡を実施するステップは、該眼の網膜の画像を記憶するステップを含む、実施例56に記載のシステム。
(実施例58)
該システムは、
該眼の網膜の画像を記憶し、
該眼の網膜の一部の画像を捕捉し、
該網膜の記憶された画像と該網膜の該部分の画像を比較し、
記憶された画像と網膜の部分の画像の比較に基づいて、ユーザの視線を決定する、
ように構成される、上記実施例のいずれかに記載のシステム。
(実施例59)
ユーザの視線を決定するステップは、該網膜の一部の画像に対応する網膜の部分を決定するステップを含む、実施例58に記載のシステム。
(実施例60)
ユーザの視線を決定するステップは、眼の配向を決定するステップを含む、実施例58-59のいずれかに記載のシステム。
(実施例61)
該結合要素は、頭部搭載型ディスプレイを装着しているユーザの正面の環境からの光が、該導波管の中に結合され、その中で誘導されるように構成される、上記実施例のいずれかに記載のシステム。
(実施例62)
カメラは、該少なくとも1つの外部結合光学要素に対して光学経路内に配置され、該環境の画像が該カメラによって捕捉され得るように、結合要素を介して、該導波管の中に結合され、その中で誘導され、該外部結合要素によって、該導波管から外に結合される、ユーザの正面の環境からの光の少なくとも一部を受け取る、上記実施例のいずれかに記載のシステム。
(実施例63)
同一導波管は、(a)ユーザの正面の環境の少なくとも一部の画像を捕捉するように、該カメラによって受け取られるように、該環境から結合される光を該導波管の中で誘導し、(b)該プロジェクタからの該画像がユーザの視野内にあるように、該プロジェクタからの光が該ユーザの眼に指向され得るように、該プロジェクタから結合される光を誘導する、上記実施例のいずれかに記載のシステム。
(実施例64)
同一結合要素は、(a)該カメラによって受け取られるように、該環境からの光を該少なくとも1つの導波管の中に結合し、(b)該画像プロジェクタからの光を該少なくとも1つの導波管から外に該ユーザの眼へと結合する、上記実施例のいずれかに記載のシステム。
(実施例65)
光をユーザの眼に投影し、拡張現実画像コンテンツを該ユーザの視野内に表示し、頭部搭載型ディスプレイシステムを装着しているユーザの眼の少なくとも一部を結像するように構成される、頭部搭載型ディスプレイシステムであって、
ユーザの頭部上に支持されるように構成される、フレームと、
画像を投影するように構成される、画像プロジェクタと、
カメラと、
フレーム上に配置される、接眼レンズであって、該接眼レンズは、光を該ユーザの眼の中に指向し、拡張現実画像コンテンツをユーザの視野に表示するように構成され、該接眼レンズの少なくとも一部は、透明であって、該透明部分が、ユーザの正面の環境からの光をユーザの眼に透過させ、ユーザの正面の環境のビューを提供するように、ユーザが該頭部搭載型ディスプレイを装着すると、ユーザの眼の正面の場所に配置され、該接眼レンズは、
(a)少なくとも1つの導波管と、
(b)該画像プロジェクタからの光をその中で誘導するように、該画像プロジェクタからの光を該少なくとも1つの導波管の中に内部結合するように構成される、少なくとも1つの内部結合光学要素と、
(c)該導波管内で誘導される該画像プロジェクタからの光を該導波管から外に結合し、該光をユーザの眼に指向するように構成される、少なくとも1つの結合光学要素と、
(d)該導波管内で誘導される該光を該導波管から外に結合し、該光を該カメラに指向するように構成される、少なくとも1つの外部結合要素と、
を備える、接眼レンズと、
ユーザの眼から反射された光が、該レンズを通して該接眼レンズに透過されるように、ユーザの眼と該接眼レンズとの間の光学経路内に配置される、正の屈折力を有する、正のレンズと、
接眼レンズの正のレンズと反対側上に配置され、ユーザの正面の環境からの光に関する該正のレンズの屈折力をオフセットするために、負の屈折力を有する、負のレンズと、
を備え、
画像プロジェクタは、該少なくとも1つの内部結合光学要素に対して光学経路内に配置され、該画像プロジェクタからの該画像がユーザの視野内にあるように、該光が、該少なくとも1つの結合要素によって、該導波管から外に該ユーザの眼へと結合されるように、その中で誘導されるように、該画像プロジェクタからの光を該導波管の中に結合し、
該少なくとも1つの結合要素は、接眼レンズのレンズを通して通過する、ユーザの眼からの光が、該導波管の中に結合され、その中で誘導されるように構成され、
カメラは、該少なくとも1つの外部結合光学要素に対して光学経路内に配置され、反射性表面から反射され、結合要素を介して、該導波管の中に結合され、その中で誘導され、該外部結合要素によって、該導波管から外に結合される、ユーザの眼からの光の少なくとも一部を受け取る、
頭部搭載型ディスプレイシステム。
(実施例66)
該正のレンズは、フレネルレンズを備える、実施例65に記載のシステム。
(実施例67)
該正のレンズは、該ユーザの眼の前部領域からの光をコリメートするように構成される、実施例65または66に記載のシステム。
(実施例68)
該正のレンズは、該ユーザの眼の角膜からの光をコリメートするように構成される、上記実施例65、66、または67のいずれかに記載のシステム。
(実施例69)
該システムは、該眼の画像に基づいて、眼追跡を実施するように構成される、実施例65-68のいずれかに記載のシステム。
(実施例70)
ユーザの眼を照明するように配置される、光源をさらに備える、実施例65-69のいずれかに記載のシステム。
(実施例71)
該光源は、赤外線光をユーザの眼に指向するように構成される、1つ以上の赤外線光源を備える、実施例70に記載のシステム。
(実施例72)
該光源は、1つ以上の赤外線発光ダイオード(LED)を備える、実施例70または71に記載のシステム。
(実施例73)
該システムは、該眼の画像に基づいて、バイオメトリック感知を介して、ユーザを識別するように構成される、上記実施例のいずれかに記載のシステム。