(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-08
(45)【発行日】2024-08-19
(54)【発明の名称】ポリカーボネート樹脂及び製造方法
(51)【国際特許分類】
C08G 64/02 20060101AFI20240809BHJP
C08G 64/16 20060101ALI20240809BHJP
【FI】
C08G64/02
C08G64/16
(21)【出願番号】P 2020501068
(86)(22)【出願日】2019-02-22
(86)【国際出願番号】 JP2019006883
(87)【国際公開番号】W WO2019163964
(87)【国際公開日】2019-08-29
【審査請求日】2020-03-09
【審判番号】
【審判請求日】2022-08-26
(31)【優先権主張番号】P 2018030563
(32)【優先日】2018-02-23
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2018148514
(32)【優先日】2018-08-07
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003001
【氏名又は名称】帝人株式会社
(74)【代理人】
【識別番号】100099759
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100141977
【氏名又は名称】中島 勝
(74)【代理人】
【識別番号】100117019
【氏名又は名称】渡辺 陽一
(74)【代理人】
【識別番号】100123593
【氏名又は名称】関根 宣夫
(72)【発明者】
【氏名】常守 秀幸
(72)【発明者】
【氏名】今里 健太
(72)【発明者】
【氏名】古野 毅
(72)【発明者】
【氏名】山中 克浩
【合議体】
【審判長】藤原 浩子
【審判官】岡谷 祐哉
【審判官】小出 直也
(56)【参考文献】
【文献】特開平2-180954(JP,A)
【文献】特開2015-137355(JP,A)
【文献】特開2014-231582(JP,A)
【文献】国際公開第2014/133114(WO,A1)
【文献】特開2011-117008(JP,A)
【文献】特開2013-227547(JP,A)
【文献】特開2016-148047(JP,A)
【文献】特開2000-128974(JP,A)
【文献】特開2000-128976(JP,A)
【文献】特表平8-506341(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08G64
C08L
(57)【特許請求の範囲】
【請求項1】
ホウ酸含有量が100重量ppm以下で
ある、ホウ素系還元剤を使用して得られた下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含み、更に下記式(2)で表される炭酸ジエステルに由来する末端フェニル基を有し、該末端フェニル基濃度が30μeq/g以上であることを特徴とするポリカーボネート樹脂であって、
該ポリカーボネート樹脂から成形された成形板(厚さ3mm)の、波長320nmにおける光線透過率が30%以上であり、波長350nmにおける光線透過率が55%以上であり、
該ポリカーボネート樹脂から成形された成形体(厚さ3mm)を、63℃、相対湿度50%の環境下にて、キセノンランプを用い、波長300nm~400nmの放射照度180W/m
2で1000時間照射処理した後に、透過光で測定したJIS K7373に準拠したイエローインデックス(YI)値が10以下であるポリカーボネート樹脂。
【化1】
(式(1)中、R
1、R
2、R
3、R
4は夫々独立に、水素原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数6~10のアリール基、炭素原子数7~20のアラルキル基、炭素原子数6~10のアリールオキシ基または炭素原子数7~20のアラルキルオキシ基、またはハロゲン原子を示す。シクロブタン環はシス・トランス異性体混合物、シス異性体単独、トランス異性体単独のいずれかを示す。)
【化2】
(式(2)中、R
5、R
6は夫々独立に、置換若しくは無置換の芳香族基である。)
【請求項2】
第三級アミン含有量が1000重量ppm以下である、請求項1に記載のポリカーボネート樹脂。
【請求項3】
前記式(1)で表されるジヒドロキシ化合物がシス-トランス異性体混合物からなる請求項1
または2に記載のポリカーボネート樹脂。
【請求項4】
前記式(1)で表されるジヒドロキシ化合物がシス-トランス異性体混合物からなり、シス異性体比率が30~90%である請求項1
~3のいずれか1項に記載のポリカーボネート樹脂。
【請求項5】
前記式(1)で表されるジヒドロキシ化合物のホウ酸含有量が0.1重量ppm以上80重量ppm以下である請求項1~
4のいずれか1項に記載のポリカーボネート樹脂。
【請求項6】
前記式(1)で表されるジヒドロキシ化合物の第三級アミン含有量が0.1重量ppm以上500重量ppm以下である請求項1~
5のいずれか1項に記載のポリカーボネート樹脂。
【請求項7】
前記第三級アミンがトリエチルアミンである請求項
6に記載のポリカーボネート樹脂。
【請求項8】
前記式(1)で表されるジヒドロキシ化合物が2,2,4,4-テトラメチル-1,3-シクロブタンジオールである請求項1~
7のいずれか1項に記載のポリカーボネート樹脂。
【請求項9】
さらに脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物および芳香族ジヒドロキシ化合物からなる群より選ばれた少なくとも1種の化合物に由来する構造単位を含む請求項1~8のいずれか1項に記載のポリカーボネート樹脂。
【請求項10】
前記式(1)で表されるジヒドロキシ化合物に由来する構造単位(A)と脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物および芳香族ジヒドロキシ化合物からなる群より選ばれた少なくとも1種の化合物に由来する構造単位(B)とのモル比(A/B)が10/90~90/10である請求項
9に記載のポリカーボネート樹脂。
【請求項11】
前記脂肪族ジヒドロキシ化合物が、下記式(3)からなる群より選ばれる少なくとも1種の化合物である請求項
9または
10に記載のポリカーボネート樹脂。
【化3】
(式(3)中、mは2~12の整数を示す)
【請求項12】
前記脂環式ジヒドロキシ化合物が、シクロヘキサンジメタノール、トリシクロデカンジメタノール、アダマンタンジオール、ペンタシクロペンタデカンジメタノール、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンおよびイソソルビドからなる群より選ばれる少なくとも1種の化合物である請求項
9または
10に記載のポリカーボネート樹脂。
【請求項13】
前記芳香族ジヒドロキシ化合物が、下記式(4)からなる群より選ばれる少なくとも1種の化合物である請求項
9または
10に記載のポリカーボネート樹脂。
【化4】
(式(4)中、Wは下記式(5)~(8)からなる群より選択される少なくとも1種の二価の有機残基、単結合、または下記式(9)のいずれかの結合を表し、XおよびYはそれぞれ独立して0または1~4の整数であり、R
7およびR
8はそれぞれ独立して、ハロゲン原子、または炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数6~10のアリール基、炭素原子数7~20のアラルキル基、炭素原子数6~10のアリールオキシ基、および炭素原子数7~20のアラルキルオキシ基からなる群より選択される有機残基を表す。)
【化5】
(式(5)中、R
9、R
10、R
11、R
12は夫々独立して、水素原子、ハロゲン原子または炭素原子数1~3のアルキル基を表す。)
【化6】
(式(6)中、R
13、R
14は夫々独立して、水素原子、ハロゲン原子または炭素原子数1~3のアルキル基を表す。)
【化7】
(式(7)中、Uは4~11の整数を表し、かかる複数のR
15およびR
16は夫々独立して水素原子、ハロゲン原子、および炭素原子数1~3のアルキル基から選択される基を表す。)
【化8】
(式(8)中、R
17、R
18は夫々独立して、水素原子、ハロゲン原子、および炭素原子数1~10の炭化水素基から選択される基を表す。)
【化9】
【請求項14】
芳香族モノヒドロキシ化合物の含有量が1500重量ppm以下である請求項1~
13のいずれか1項に記載のポリカーボネート樹脂。
【請求項15】
請求項1~
14のいずれか1項に記載のポリカーボネート樹脂を成形してなるポリカーボネート樹脂成形品。
【請求項16】
ホウ酸含有量が100重量ppm以下で
ある前記式(1)で表されるジヒドロキシ化合物と前記式(2)で表される炭酸ジエステルとを、アルカリ金属触媒及び/又はアルカリ土類金属触媒の存在下でエステル交換反応させることを特徴とする請求項1に記載のポリカーボネート樹脂の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐候性、耐熱性、透明性、色相、機械的強度に優れたポリカーボネート樹脂、成形品、及び製造方法に関する。
【背景技術】
【0002】
ポリカーボネート樹脂(以下、PCと称する)は、透明性、耐衝撃性、耐熱性、寸法安定性に優れていることから、エンジニアリングプラスチックとして電気・電子用途、自動車用途、建材、家具、楽器、雑貨類などの幅広い分野で使用されている。また、無機ガラスと比較して、加工形状の自由度が高く、複数部品の一体化が可能なことから車体のデザイン性や軽量化、生産性の向上が期待されている。
【0003】
しかしながら、従来のPCは長時間屋外に暴露されると太陽光線によって色相や透明性、機械的強度が低下するため、屋外で使用される用途において制限があった。
【0004】
このような問題を解決するために、紫外線吸収剤をPCに添加する方法が知られている。紫外線吸収剤を添加した場合、紫外線照射時の色相などの改善は認められるものの、樹脂自体の色相や耐熱性、透明性の低下を招き、且つ成形時に紫外線吸収剤が揮発して金型を汚染し、成形品の外観不良となる等の課題があった。
【0005】
そこで、分子骨格中にベンゼン環構造を持たない脂肪族ジヒドロキシ化合物や脂環式ジヒドロキシ化合物、イソソルビドに代表される分子内にエーテル結合を有する含酸素脂環式ジヒドロキシ化合物を原料とした耐候性に優れたポリカーボネート樹脂が提案されている(例えば特許文献1~6)。これらのポリカーボネート樹脂は通常、エステル交換法または溶融重合法と呼ばれる方法で製造され、上記ジヒドロキシ化合物とジフェニルカーボネート等の炭酸ジエステルとを塩基性触媒の存在下、200℃以上の高温でエステル交換させ、副生するフェノール等を系外に取り除くことにより重合を進行させ、ポリカーボネート樹脂を得る。ところが、上記のようなフェノール性水酸基を有しないモノマーを用いて得られるポリカーボネート樹脂は、ビスフェノールA等のフェノール性水酸基を有するモノマーを用いて得られたポリカーボネート樹脂に比べ、高温にさらされる重合中や成形中に色相が悪化し、結果的に紫外線や可視光線を照射した際に更に色相が悪化するという課題があった。
【0006】
したがって、耐候性、耐熱性、透明性、色相、機械的強度に優れたポリカーボネート樹脂は未だ存在しないといえる。
【0007】
なお、2,2,4,4-テトラメチル-1,3-シクロブタンジオール(以下、TMCBDと称す)をモノマーとして用いたポリカーボネート共重合体が従来から知られている(特許文献7~10及び非特許文献1)。また、TMCBDを製造するための方法が、特許文献11に記載されており、TMCBDの原料を製造するための方法が、非特許文献2に記載されている。
【先行技術文献】
【特許文献】
【0008】
【文献】特開2012-214665号公報
【文献】特開2012-214675号公報
【文献】特開平2-86618号公報
【文献】特公昭38-26798号公報
【文献】特公昭39-1546号公報
【文献】特開2015-78257号公報
【文献】特開昭63-92644号公報
【文献】特開平2-222416号公報
【文献】特開平11-240945号公報
【文献】特開2015-137355号公報
【文献】特表平8-506341号公報
【非特許文献】
【0009】
【文献】CAREY CECIL GEIGER, JACK D.DAVIES, WILLIAM H.DALY,Aliphatic-Aromatic Copolycarbonates Derived from 2,2,4,4-Tetramethyl-1,3-cyclobunatnediol,Journal of Polymer Science: Part A: Polymer Chemistry, 1995, Vol.33, 2317-2327
【文献】Bulletine of the Faculty of Enfineering, Hokkaido University, 67:155-163(1973)
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明の目的は、耐熱性、機械的強度に優れ、重合時や成形時に着色しにくく透明性、色相に優れ、良好な耐候性を有する新規なポリカーボネート樹脂を提供する。
【課題を解決するための手段】
【0011】
本発明者は、上記課題を解決するべく鋭意検討を重ねた結果、ベンゼン環構造を持たないジヒドロキシ化合物でありながら、不純物を特定量以下とした2,2,4,4-テトラメチル-1,3-シクロブタンジオール(以下、TMCBと称する)に代表されるシクロブタン環を有するジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂が耐熱性、機械的強度に優れ、重合時や成形時に着色しにくく透明性、色相に優れ、さらに良好な耐候性を有することを見出し、本発明に到達した。
すなわち、本発明によれば、下記(構成1)~(構成15)が提供される。
【0012】
(構成1)
ホウ酸含有量が100重量ppm以下であり、かつ/又は第三級アミン含有量が1000重量ppm以下である下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含み、更に下記式(2)で表される炭酸ジエステルに由来する末端フェニル基を有し、該末端フェニル基濃度が30μeq/g以上であることを特徴とするポリカーボネート樹脂。
【0013】
【化1】
(式(1)中、R
1、R
2、R
3、R
4は夫々独立に、水素原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数6~10のアリール基、炭素原子数7~20のアラルキル基、炭素原子数6~10のアリールオキシ基または炭素原子数7~20のアラルキルオキシ基、またはハロゲン原子を示す。シクロブタン環はシス・トランス異性体混合物、シス異性体単独、トランス異性体単独のいずれかを示す。)
【0014】
【化2】
(式(2)中、R
5、R
6は夫々独立に、置換若しくは無置換の芳香族基である。)
【0015】
(構成2)
前記式(1)で表されるジヒドロキシ化合物がシス-トランス異性体混合物からなる前記1記載のポリカーボネート樹脂。
(構成3)
前記式(1)で表されるジヒドロキシ化合物がシス-トランス異性体混合物からなり、シス異性体比率が30~90%である前記1または2に記載のポリカーボネート樹脂。
(構成4)
前記式(1)で表されるジヒドロキシ化合物のホウ酸含有量が0.1重量ppm以上80重量ppm以下である前記1~3のいずれか1項に記載のポリカーボネート樹脂。
(構成5)
前記式(1)で表されるジヒドロキシ化合物の第三級アミン含有量が0.1重量ppm以上500重量ppm以下である前記1~4のいずれか1項に記載のポリカーボネート樹脂。
(構成6)
前記第三級アミンがトリエチルアミンである前記5に記載のポリカーボネート樹脂。
(構成7)
前記式(1)で表されるジヒドロキシ化合物が2,2,4,4-テトラメチル-1,3-シクロブタンジオールである前記1~6のいずれか1項に記載のポリカーボネート樹脂。
(構成8)
さらに脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物および芳香族ジヒドロキシ化合物からなる群より選ばれた少なくとも1種の化合物に由来する構造単位を含む前記1~7のいずれか1項に記載のポリカーボネート樹脂。
(構成9)
前記式(1)で表されるジヒドロキシ化合物に由来する構造単位(A)と脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物および芳香族ジヒドロキシ化合物からなる群より選ばれた少なくとも1種の化合物に由来する構造単位(B)とのモル比(A/B)が10/90~90/10である前記8に記載のポリカーボネート樹脂。
(構成10)
前記脂肪族ジヒドロキシ化合物が、下記式(3)からなる群より選ばれる少なくとも1種の化合物である前記8または9に記載のポリカーボネート樹脂。
【0016】
【化3】
(式(3)中、mは2~12の整数を示す)
【0017】
(構成11)
前記脂環式ジヒドロキシ化合物が、シクロヘキサンジメタノール、トリシクロデカンジメタノール、アダマンタンジオール、ペンタシクロペンタデカンジメタノール、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンおよびイソソルビドからなる群より選ばれる少なくとも1種の化合物である前記8または9に記載のポリカーボネート樹脂。
(構成12)
前記芳香族ジヒドロキシ化合物が、下記式(4)からなる群より選ばれる少なくとも1種の化合物である前記8または9に記載のポリカーボネート樹脂。
【0018】
【化4】
(式(4)中、Wは下記式(5)~(8)からなる群より選択される少なくとも1種の二価の有機残基、単結合、または下記式(9)のいずれかの結合を表し、XおよびYはそれぞれ独立して0または1~4の整数であり、R
7およびR
8はそれぞれ独立して、ハロゲン原子、または炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数6~10のアリール基、炭素原子数7~20のアラルキル基、炭素原子数6~10のアリールオキシ基、および炭素原子数7~20のアラルキルオキシ基からなる群より選択される有機残基を表す。)
【0019】
【化5】
(式(5)中、R
9、R
10、R
11、R
12は夫々独立して、水素原子、ハロゲン原子または炭素原子数1~3のアルキル基を表す。)
【0020】
【化6】
(式(6)中、R
13、R
14は夫々独立して、水素原子、ハロゲン原子または炭素原子数1~3のアルキル基を表す。)
【0021】
【化7】
(式(7)中、Uは4~11の整数を表し、かかる複数のR
15およびR
16は夫々独立して水素原子、ハロゲン原子、および炭素原子数1~3のアルキル基から選択される基を表す。)
【0022】
【化8】
(式(8)中、R
17、R
18は夫々独立して、水素原子、ハロゲン原子、および炭素原子数1~10の炭化水素基から選択される基を表す。)
【0023】
【0024】
(構成13)
芳香族モノヒドロキシ化合物の含有量が1500重量ppm以下である前記1~12のいずれか1項に記載のポリカーボネート樹脂。
(構成14)
前記1~13のいずれか1項に記載のポリカーボネート樹脂を成形してなるポリカーボネート樹脂成形品。
(構成15)
ホウ酸含有量が100重量ppm以下であり、かつ/又は第三級アミン含有量が1000重量ppm以下である前記式(1)で表されるジヒドロキシ化合物と前記式(2)で表される炭酸ジエステルとを、アルカリ金属触媒及び/又はアルカリ土類金属触媒の存在下でエステル交換反応させることを特徴とする前記1に記載のポリカーボネート樹脂の製造方法。
【発明の効果】
【0025】
本発明のポリカーボネート樹脂は、耐熱性、機械的強度に優れ、重合時または成形時に着色しにくく、且つ良好な耐候性を有するため、屋外で使用する部材として好適に使用することができる。したがって、その奏する産業上の効果は格別である。
【発明を実施するための形態】
【0026】
以下、本発明の詳細について説明するが、以下に記載する構成要件の説明は、本発明の実施態様の代表例であり、本発明はその要旨を超えない限り、以下の内容に限定されない。
【0027】
<ポリカーボネート樹脂>
本発明のポリカーボネート樹脂は、ホウ酸含有量が100重量ppm以下であり、かつ/又は第三級アミン含有量が1000重量ppm以下である下記式(1)で表されるジヒドロキシ化合物に由来する構造単位を含み、更に下記式(2)で表される炭酸ジエステルに由来する末端フェニル基を有し、該末端フェニル基濃度が30μeq/g以上であることを特徴とするポリカーボネート樹脂である。
【0028】
【化10】
(式(1)中、R
1、R
2、R
3、R
4は夫々独立に、水素原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数6~10のアリール基、炭素原子数7~20のアラルキル基、炭素原子数6~10のアリールオキシ基または炭素原子数7~20のアラルキルオキシ基、またはハロゲン原子を示す。シクロブタン環はシス・トランス異性体混合物、シス異性体単独、トランス異性体単独のいずれかを示す。)
【0029】
【化11】
(式(2)中、R
5、R
6は夫々独立に、置換若しくは無置換の芳香族基である。)
以下、本発明のポリカーボネート樹脂について詳述する。
【0030】
<シクロブタン環を含有するジヒドロキシ化合物>
前記式(1)において、R1、R2、R3、R4は夫々独立に、水素原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数6~10のアリール基、炭素原子数7~20のアラルキル基、炭素原子数6~10のアリールオキシ基または炭素原子数7~20のアラルキルオキシ基、またはハロゲン原子を示す。式中、R1、R2、R3、R4は夫々独立して、水素原子、炭素数1~6のアルキル基、炭素数3~6のシクロアルキル基、炭素原子数6~10のアリール基であることが好ましく、メチル基がより好ましい。
【0031】
前記式(1)で表されるジヒドロキシ化合物としては、2-メチル-1,3-シクロブタジオール、2,4-ジメチル-1,3-シクロブタンジオール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、2-エチル-1,3-シクロブタンジオール、2,4-ジエチル-1,3-シクロブタンジオール、2,2,4,4-テトラエチル-1,3-シクロブタンジオール、2-ブチル-1,3-シクロブタンジオール、2,4-ジブチル-1,3-シクロブタンジオール、2,2,4,4-テトラブチル-1,3-シクロブタンジオール等が挙げられる。最も好適なジヒドロキシ化合物は、2,2,4,4-テトラメチル-1,3-シクロブタンジオールである。これらのジヒドロキシ化合物は2種類以上併用して用いてもよい。
【0032】
前記式(1)で表されるジヒドロキシ化合物は、シス-トランス異性体混合物であることが好ましい。その比率は限定されるものではないが、シス異性体比率の下限としては30%以上が好ましく、45%以上がより好ましく、50%以上がさらに好ましい。シス異性体比率の上限としては90%以下が好ましく、85%以下がより好ましく、80%以下がさらに好ましい。シス異性体が下限未満の場合、重合したポリマーの融点が高くなるため、成形加工温度を高くする必要があり、樹脂分解を生じ成形品の機械的強度が低下することがある。シス-トランス異性体比率は、日本電子社製JNM-AL400を用いて1H-NMRスペクトル測定することで算出することができる。
【0033】
前記式(1)で表されるジヒドロキシ化合物は、下記式(10)で表されるケテンの付加または二量化によりジケテンを生成し、次いで水素添加することによってシクロブタン環を含有するジオールを合成することができる。
【0034】
【化12】
(式(10)中、R
19、R
20は夫々独立に、水素原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数3~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数6~10のアリール基、炭素原子数7~20のアラルキル基、炭素原子数6~10のアリールオキシ基または炭素原子数7~20のアラルキルオキシ基、またはハロゲン原子を示す。)
【0035】
本発明で好ましく使用される2,2,4,4-テトラメチル-1,3-シクロブタンジオールの合成例としては、下記(I)の合成例が例示される。
【0036】
【0037】
合成例(I)は、イソ酪酸を出発物質とし、熱分解によって生成するジメチルケテンの付加、または二量化反応を進行させ、次いで水素添加することによって製造する方法である。イソ酪酸を原料とすることは工業的に有利な方法であり、上記特許文献11に詳細が記載されている。ジメチルケテンを生成するその他の方法としては、ジメチルマロン酸無水物の脱炭酸による方法、N-イソブチリルフタルイミドの熱分解による方法、α-カルボメトキシ-α,β-ジメチル-β-ブチロラクトンの熱分解による方法、ジメチルケテン二量体の熱分解による方法等が挙げられる。
【0038】
ジメチルケテンの付加または二量化反応後の環状ジケトンに水素を付加させる方法としては、金属水素化物を用いる方法、金属触媒存在下で水素ガスを作用させる方法が一般的に用いられる。金属水素化物を用いる方法としては、水素化アルミニウムリチウム等のアルミニウム系還元剤を用いる方法、または水素化ホウ素ナトリウム等のホウ素系還元剤を用いる方法が挙げられる。工業的利用において、化合物の安定性、取り扱い性からホウ素系還元剤が適しており、水素化ホウ素ナトリウムが還元剤として使用されることが多い。ホウ素系還元剤を用いた水添反応において副生成物としてホウ酸が生成されることが特徴である。
【0039】
本発明者らは、そのような製法で得られた式(1)で表されるジヒドロキシ化合物をポリカーボネート樹脂のモノマーとして用いた場合、そのジヒドロキシ化合物に残留したホウ酸が、樹脂の色相及び透明性に悪影響を与えることを見出した。
【0040】
本発明においては、前記式(1)で表されるジヒドロキシ化合物中に含まれるホウ酸含有量が100重量ppm以下であり、80重量ppm以下が好ましく、50重量ppm以下がより好ましく、20重量ppm以下がさらに好ましい。ただし、そのホウ酸含有量は、0.1重量ppm以上、1.0重量ppm以上、5重量ppm以上、又は10重量ppm以上であってもよい。例えば、本発明で用いられる式(1)で表されるジヒドロキシ化合物のホウ酸含有量は、0.1重量ppm以上100重量ppm以下、又は5重量ppm以上100重量ppm以下である。ホウ酸含有量が上記上限より多いとポリカーボネート樹脂の溶融重合時に着色し、成形品の色相及び透明性が悪化するため好ましくない。ジヒドロキシ化合物中のホウ酸含有量は、シリル化剤を用いた誘導体化によるガスクロマトグラフィー質量分析法を用いて定量することができる。なお、本発明においては、前記式(1)で表されるジヒドロキシ化合物は、該ジヒドロキシ化合物を製造する際にホウ素系還元剤を使用したものを対象とする。
【0041】
また、上記(I)の合成例において、熱分解によるケテンの製造には、触媒としてリン酸トリエチルに代表される種々のリン化合物が添加されるとともに収率を向上させるために少量の第三級アミン化合物を添加することが北海道大学の研究報告(非特許文献1)に記載されている。
【0042】
本発明者らは、そのような製法で得られた式(1)で表されるジヒドロキシ化合物をポリカーボネート樹脂のモノマーとして用いた場合、そのジヒドロキシ化合物に残留した第三級アミンが、樹脂の色相及び透明性に悪影響を与えることを見出した。
【0043】
そこで、前記式(1)で表されるジヒドロキシ化合物中に含まれる第三級アミン量は1000重量ppm以下であることが好ましく、500重量ppm以下が好ましく、100重量ppm以下がより好ましい。ただし、その第三級アミン量は、0.1重量ppm以上、1.0重量ppm以上、10重量ppm以上、又は100重量ppm以上であってもよい。例えば、本発明で用いられる式(1)で表されるジヒドロキシ化合物の第三級アミン含有量は、0.1重量ppm以上1000重量ppm以下、又は5重量ppm以上1000重量ppm以下である。第三級アミンの具体的な例としては、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン、トリデシルアミン、N,N-ジメチルシクロヘキシルアミン、ピリジン、キノリン、ジメチルアニリンなど挙げられる。特に第三級アミンとしては工業的な観点からもトリエチルアミンが好ましく用いられる。ジヒドロキシ化合物中の第三級アミン含有量は、イオンクロマトグラフィー法にて陽イオン交換カラム、電気伝導度検出器を用いて定量することができる。なお、本発明においては、前記式(1)で表されるジヒドロキシ化合物は、該ジヒドロキシ化合物を製造する際に第三級アミンを使用したものを対象とする。
【0044】
例えば、本発明で用いられる式(1)で表されるジヒドロキシ化合物は、ホウ酸含有量が0.1重量ppm以上100重量ppm以下又は5重量ppm以上100重量ppm以下であり、かつ第三級アミン含有量が0.1重量ppm以上1000重量ppm以下、又は5重量ppm以上1000重量ppm以下である。
【0045】
<その他のジヒドロキシ化合物>
本発明のポリカーボネート樹脂は前記式(1)で表されるジヒドロキシ化合物以外の構造単位を含む共重合体とすることができる。その他の共重合構成単位を誘導するジヒドロキシ化合物としては、脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、芳香族ジヒドロキシ化合物のいずれでも良く、国際公開第2004/111106号パンフレット、国際公開第2011/021720号パンフレットに記載のジオール化合物やジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコールなどのオキシアルキレングリコール類を有するジヒドロキシ化合物類が挙げられる。
脂肪族ジヒドロキシ化合物としては、好ましくは下記式(3)で表されるジヒドロキシ化合物を使用することができる。
【0046】
【化14】
(式(3)中、mは2~12の整数を示す)
【0047】
脂肪族ジヒドロキシ化合物の具体例としては、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1.9-ノナンジオール、1,10-デカンジオール、1,12-ドデカンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,2-ヘキサングリコール、1,2-オクチルグリコール、2-エチル-1,3-ヘキサンジオール、2,3-ジイソブチル-1,3-プロパンジオール、2,2-ジイソアミル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオールなどが挙げられる。これらのジヒドロキシ化合物は2種類以上併用して用いてもよい。
【0048】
前記脂環式ジオール化合物としては、シクロヘキサンジメタノール、トリシクロデカンジメタノール、アダマンタンジオール、ペンタシクロペンタデカンジメタノール、3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、イソソルビドなどが挙げられる。これらの二価フェノールは2種類以上併用して用いてもよい。
【0049】
前記オキシアルキレングリコール類としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール等が挙げられる。これらの化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
【0050】
芳香族ジヒドロキシ化合物としては、下記式(4)で表されるジヒドロキシ化合物を使用することができる。
【0051】
【化15】
(式(4)中、Wは下記式(5)~(8)からなる群より選択される少なくとも1種の二価の有機残基、単結合、または下記式(9)のいずれかの結合を表し、XおよびYはそれぞれ独立して0または1~4の整数であり、R
7およびR
8はそれぞれ独立して、ハロゲン原子、または炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数6~20のシクロアルキル基、炭素原子数6~20のシクロアルコキシ基、炭素原子数6~10のアリール基、炭素原子数7~20のアラルキル基、炭素原子数6~10のアリールオキシ基、および炭素原子数7~20のアラルキルオキシ基からなる群より選択される有機残基を表す。)
【0052】
【化16】
(式(5)中、R
9、R
10、R
11およびR
12はそれぞれ独立して、水素原子、ハロゲン原子または炭素数1~3のアルキル基を表す。)
【0053】
【化17】
(式(6)中、R
13およびR
14はそれぞれ独立して、水素原子、ハロゲン原子または炭素数1~3のアルキル基を表す。)
【0054】
【化18】
(式(7)中、Uは4~11の整数を表し、かかる複数のR
15およびR
16はそれぞれ独立して水素原子、ハロゲン原子、および炭素数1~3のアルキル基から選択される基を表す。)
【0055】
【化19】
(式(8)中、R
17およびR
18はそれぞれ独立して、水素原子、ハロゲン原子、および炭素数1~10の炭化水素基から選択される基を表す。)
【0056】
【0057】
前記式(4)におけるWが単結合である構成単位を誘導するジヒドロキシ化合物の具体例としては、4,4’-ビフェノールおよび4,4’-ビス(2,6-ジメチル)ジフェノール等が挙げられる。
【0058】
Wが式(5)である構成単位を誘導するジヒドロキシ化合物の具体例としては、α,α’-ビス(4-ヒドロキシフェニル)-o-ジイソプロピルベンゼン、α,α’-ビス(4-ヒドロキシフェニル)-m-ジイソプロピルベンゼン(通常“ビスフェノールM”と称される)、およびα,α’-ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン等が挙げられる。
【0059】
Wが式(6)である構成単位を誘導するジヒドロキシ化合物の具体例としては、9,9-ビス(4-ヒドロキシフェニル)フルオレン、および9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等が挙げられる。
【0060】
Wが式(7)である構成単位を誘導するジヒドロキシ化合物の具体例としては、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3メチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-イソプロピルシクロヘキサン、および1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン1,1-ビス(3-メチル-4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等が挙げられる。
【0061】
Wが式(8)である構成単位を誘導するジヒドロキシ化合物の具体例としては、1,1-ビス(4-ヒドロキシフェニル)メタン、2,4’-ジヒドロキシジフェニルメタン、ビス(2-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-2,6-ジメチル-3-メトキシフェニル)メタン、ビス(4-ヒドロキシフェニル)シクロヘキシルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシ-2-フェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-2-クロロフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)プロパン(通常“ビスフェノールA”と称される)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン(通常“ビスフェノールC”と称される)、2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-エチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-イソプロピルフェニル)プロパン、2,2-ビス(3-t-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-ヒドロキシフェニル)-1-フェニルプロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)デカン、および1,1-ビス(2,3-ジメチルー4-ヒドロキシフェニル)デカン等が例示される。
【0062】
上記二価フェノールの中でも、式(5)ではビスフェノールM、式(6)では9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、式(7)では1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3メチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、式(8)では3,3’-ジメチル-4,4’-ジヒドロキシジフェニルスルフィド、並びに式(9)ではビスフェノールA、ビスフェノールC、および1,1-ビス(4-ヒドロキシフェニル)デカンが好ましい。
【0063】
Wが式(9)のいずれかである構成単位を誘導するジヒドロキシ化合物の具体例としては、4,4’-ジヒドロキシジフェニルエ-テル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエ-テル、4,4’-ジヒドロキシジフェニルスルホン、2,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシジフェニルスルフィド、3,3’-ジメチル-4,4’-ジヒドロキシジフェニルスルフィドおよびビス(3,5-ジメチル-4-ヒドロキシフェニル)スルホン等が挙げられる。
【0064】
さらに式(4)以外の構成単位に誘導される二価フェノールとして、好適には2,6-ジヒドロキシナフタレン、ヒドロキノン、レゾルシノール、炭素数1~3のアルキル基で置換されたレゾルシノール、3-(4-ヒドロキシフェニル)-1,1,3-トリメチルインダン-5-オール、1-(4-ヒドロキシフェニル)-1,3,3-トリメチルインダン-5-オール、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチルスピロインダン、1-メチル-1,3-ビス(4-ヒドロキシフェニル)-3-イソプロピルシクロヘキサン、1-メチル-2-(4-ヒドロキシフェニル)-3-[1-(4-ヒドロキシフェニル)イソプロピル]シクロヘキサン、1,6-ビス(4-ヒドロキシフェニル)-1,6-ヘキサンジオン、およびエチレングリコールビス(4-ヒドロキシフェニル)エーテル等が例示される。
【0065】
かかるポリカーボネートのその他詳細については、例えばWO03/080728号パンフレット、特開平6-172508号公報、特開平8-27370号公報、特開2001-55435号公報、および特開2002-117580号公報等に記載されている。 なお、例示した化合物は、本発明でポリカーボネート共重合体の構成単位として使用し得るジヒドロキシ化合物の一例であって、何らこれらに限定されるものではない。
【0066】
(組成)
本発明のポリカーボネート樹脂は、前記式(1)で表されるジヒドロキシ化合物に由来する構造単位(A)と脂肪族ジヒドロキシ化合物、脂環式ジヒドロキシ化合物、芳香族ジヒドロキシ化合物からなる群より選ばれた少なくとも1種の化合物に由来する構造単位(B)とのモル比(A/B)が10/90~90/10であることが好ましく、20/80~85/15であることがより好ましく、30/70~80/20であることがさらに好ましい。単位(A)が上記下限以上になると耐候性が良好であり、上記上限以下になると耐熱性に優れる。共重合組成のモル比(A/B)は、日本電子社製JNM-AL400の1H-NMR法にて測定することができる。
【0067】
また、本発明のポリカーボネート樹脂は、前記式(2)で表される炭酸ジエステルに由来する末端フェニル基を有し、該末端フェニル基濃度が30μeq/g以上であり、好ましくは40μeq/g以上、特に好ましくは50μeq/g以上であり、上限は160μeq/g以下が好ましく、より好ましくは140μeq/g以下、さらに好ましくは100μeq/g以下である。
【0068】
末端フェニル基の濃度が、高すぎると重合直後や成型時の色相が良くても、紫外線曝露後の色相の悪化を生じることがある。また、低すぎると熱安定性が低下する。末端フェニル基の濃度を制御するには、原料であるジヒドロキシ化合物と炭酸ジエステルのモル比率を制御する他、エステル交換反応時の触媒の種類や量、重合時の圧力や温度を制御する方法等が挙げられる。
【0069】
(ポリカーボネート樹脂の製造方法)
本発明のポリカーボネート樹脂は、前記式(1)で表されるジヒドロキシ化合物を用いること以外は、通常のポリカーボネート樹脂を製造するそれ自体公知の反応手段、例えばジヒドロキシ成分に炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造される。次にこれらの製造方法について基本的な手段を簡単に説明する。なお、本発明の製造方法によって得られるポリカーボネート樹脂の構成については、上記及び下記の本発明のポリカーボネート樹脂についての構成を参照することができる。
【0070】
カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下所定割合の芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点などにより異なるが、通常120~300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また、必要に応じて末端停止剤、酸化防止剤等を加えてもよい。
【0071】
前記エステル交換反応に使用される炭酸ジエステルとしては、置換されてもよい炭素数6~12のアリール基、アラルキル基等のエステルが挙げられる。具体的には、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネートおよびm-クレジルカーボネート等が例示される。なかでもジフェニルカーボネートが特に好ましい。ジフェニルカーボネートの使用量は、ジヒドロキシ化合物の合計1モルに対して、好ましくは0.97~1.10モル、より好ましは1.00~1.06モルである。
【0072】
また溶融重合法においては重合速度を速めるために、重合触媒を用いることができ、かかる重合触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、含窒素化合物、金属化合物等が挙げられる。
【0073】
このような化合物としては、アルカリ金属やアルカリ土類金属の、有機酸塩、無機塩、酸化物、水酸化物、水素化物、アルコキシド、4級アンモニウムヒドロキシド等が好ましく用いられ、これらの化合物は単独もしくは組み合わせて用いることができる。
【0074】
アルカリ金属化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、水酸化リチウム、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム、酢酸リチウム、ステアリン酸ナトリウム、ステアリン酸カリウム、ステアリン酸セシウム、ステアリン酸リチウム、水素化ホウ素ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸セシウム、安息香酸リチウム、リン酸水素2ナトリウム、リン酸水素2カリウム、リン酸水素2リチウム、フェニルリン酸2ナトリウム、ビスフェノールAの2ナトリウム塩、2カリウム塩、2セシウム塩、2リチウム塩、フェノールのナトリウム塩、カリウム塩、セシウム塩、リチウム塩等が例示される。
【0075】
アルカリ土類金属化合物としては、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、炭酸マグネシウム、炭酸カルシウム、炭酸ストロンチウム、炭酸バリウム、二酢酸マグネシウム、二酢酸カルシウム、二酢酸ストロンチウム、二酢酸バリウム等が例示される。
【0076】
含窒素化合物としては、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド等のアルキル、アリール基等を有する4級アンモニウムヒドロキシド類が挙げられる。また、トリエチルアミン、ジメチルベンジルアミン、トリフェニルアミン等の3級アミン類、2-メチルイミダゾール、2-フェニルイミダゾール、ベンゾイミダゾール等のイミダゾール類が挙げられる。また、アンモニア、テトラメチルアンモニウムボロハイドライド、テトラブチルアンモニウムボロハイドライド、テトラブチルアンモニウムテトラフェニルボレート、テトラフェニルアンモニウムテトラフェニルボレート等の塩基あるいは塩基性塩等が例示される。
【0077】
金属化合物としては亜鉛アルミニウム化合物、ゲルマニウム化合物、有機スズ化合物、アンチモン化合物、マンガン化合物、チタン化合物、ジルコニウム化合物等が例示される。これらの化合物は1種または2種以上併用してもよい。
【0078】
これらの重合触媒の使用量は、ジヒドロキシ成分1モルに対し好ましくは0.1μモル~500μモル、より好ましくは0.5μモル~300μモル、さらに好ましくは1μモル~100μモルである。
【0079】
また、反応後期に触媒失活剤を添加することもできる。使用する触媒失活剤としては、公知の触媒失活剤が有効に使用されるが、この中でもスルホン酸のアンモニウム塩、ホスホニウム塩が好ましい。更にドデシルベンゼンスルホン酸テトラブチルホスホニウム塩等のドデシルベンゼンスルホン酸の塩類、パラトルエンスルホン酸テトラブチルアンモニウム塩等のパラトルエンスルホン酸の塩類が好ましい。
【0080】
またスルホン酸のエステルとして、ベンゼンスルホン酸メチル、ベンゼンスルホン酸エチル、ベンゼンスルホン酸ブチル、ベンゼンスルホン酸オクチル、ベンゼンスルホン酸フェニル、パラトルエンスルホン酸メチル、パラトルエンスルホン酸エチル、パラトルエンスルホン酸ブチル、パラトルエンスルホン酸オクチル、パラトルエンスルホン酸フェニル等が好ましく用いられる。なかでも、ドデシルベンゼンスルホン酸テトラブチルホスホニウム塩が最も好ましく使用される。
【0081】
これらの触媒失活剤の使用量はアルカリ金属化合物および/またはアルカリ土類金属化合物より選ばれた少なくとも1種の重合触媒を用いた場合、その触媒1モル当たり好ましくは0.5~50モルの割合で、より好ましくは0.5~10モルの割合で、更に好ましくは0.8~5モルの割合で使用することができる。
【0082】
(粘度平均分子量)
本発明のポリカーボネート樹脂は、その粘度平均分子量(Mv)が、好ましくは10,000~50,000であり、より好ましくは12,000~45,000であり、さらに好ましくは15,000~40,000である。粘度平均分子量が上記下限値未満では、実用上十分な靭性や耐衝撃性が得られないことがある。一方、粘度平均分子量が50,000を超える場合は、高い成形加工温度を必要とするか、または特殊な成形方法を必要とすることから汎用性に劣り、更に溶融粘度の増加により、射出速度依存性も高くなりやすく、外観不良等により歩留まりが低下することがある。
【0083】
本発明におけるポリカーボネート樹脂の粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t-t0)/t0
[t0は塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出したものであ
る。
ηSP/c=[η]+0.45×[η]2c(但し[η]は極限粘度)
[η]=1.23×10-4Mv0.83
c=0.7
【0084】
(ガラス転移温度)
本発明のポリカーボネート樹脂は、示差走査熱量測定(DSC)を行ったとき、単一のガラス転移温度(以下、Tgと略す)を示すことが好ましい。Tgの下限は、好ましくは100℃以上、より好ましくは110℃以上、さらに好ましくは120℃以上であり、Tgの上限は、好ましくは200℃以下、より好ましくは180℃以下、さらに好ましくは160℃以下である。ガラス転移温度(Tg)が、上記下限値以上であると耐熱性が十分となり、また、上記上限値以下であると成形加工性が良好となり好ましい。
Tgはティー・エイ・インスツルメント・ジャパン(株)製2910型DSCを使用し、昇温速度20℃/minにて測定することができる。
【0085】
(光線透過率)
本発明のポリカーボネート樹脂は、該ポリカーボネート樹脂から成形された成形板(厚さ3mm)の波長320nmにおける光線透過率が30%以上であることが好ましく、より好ましくは40%以上、さらに好ましくは45%以上、特に好ましくは50%以上である。該波長における光線透過率が上記下限より下回ると、吸収が大きくなり太陽光線や人工照明などに晒された場合に耐光性が悪化することがある。
【0086】
本発明のポリカーボネート樹脂は、該ポリカーボネート樹脂から成形された成形板(厚さ3mm)の波長350nmにおける光線透過率が55%以上であることが好ましく、より好ましくは60%以上、さらに好ましくは65%以上、特に好ましくは70%以上である。該波長における光線透過率が上記下限より下回ると、吸収が大きくなり太陽光線や人工照明などに晒された場合に耐光性が悪化することがある。
【0087】
(耐候性)
本発明のポリカーボネート樹脂は、該ポリカーボネート樹脂から成形された成形体(厚さ3mm)を、63℃、相対湿度50%の環境下にて、キセノンランプを用い、波長300nm~400nmの放射照度180W/m2で1000時間照射処理した後に、透過光で測定したJIS K7373に準拠したイエローインデックス(YI)値が10以下であるのが好ましく、より好ましくは9以下、特に好ましくは8以下である。
【0088】
(芳香族モノヒドロキシ化合物含有量)
本発明のポリカーボネート樹脂中の芳香族モノヒドロキシ化合物含有量は好ましくは1500重量ppm以下であり、より好ましくは1200重量ppm以下であり、さらに好ましくは1000重量ppm以下であり、特に好ましくは700重量ppm以下である。上記範囲内であるとポリカーボネート共重合体の色調や流動性が良好であり好ましい。芳香族モノヒドロキシ化合物は重合反応時の副生成物である。芳香族モノヒドロキシ化合物量は、重合時の圧力や温度を制御する方法等により低減できる。
【0089】
<ポリカーボネート樹脂以外の成分>
本発明のポリカーボネー樹脂は、本発明の効果を損なわない範囲で、離型剤、熱安定剤、紫外線吸収剤、流動改質剤および帯電防止剤などのそれ自体公知の機能剤を含有できる。
(i)離型剤
本発明のポリカーボネート樹脂は、本発明の効果を損なわない範囲で、離型剤を併用しても良い。離型剤としては、例えば、脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックス、1-アルケン重合体などであり、酸変性などの官能基含有化合物で変性されているものも使用できる)、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。これらの中でも入手の容易さ、離型性および透明性の点から脂肪酸エステルが好ましい。離型剤を含有させる割合は、ポリカーボネート樹脂100重量部に対して、好ましくは0.001~2重量部、より好ましくは0.005~1重量部、さらに好ましくは0.007~0.5重量部、特に好ましくは0.01~0.3重量部である。含有量が上記範囲の下限以上では、離型性の改良効果が明確に発揮され、上限以下の場合、成形時の金型汚染などの悪影響が低減され好ましい。
【0090】
上記の中でも好ましい離型剤として用いられる脂肪酸エステルについて、さらに詳述する。かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数としては、好適には3~32の範囲、より好適には5~30の範囲である。かかる一価アルコールとしては、例えばドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール、エイコサノール、テトラコサノール、セリルアルコール、およびトリアコンタノールなどが例示される。かかる多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリグリセロール(トリグリセロール~ヘキサグリセロール)、ジトリメチロールプロパン、キシリトール、ソルビトール、およびマンニトールなどが挙げられる。脂肪酸エステルにおいては多価アルコールがより好ましい。
【0091】
一方、脂肪族カルボン酸は炭素数3~32であることが好ましく、特に炭素数10~22の脂肪族カルボン酸が好ましい。該脂肪族カルボン酸としては、例えばデカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、イコサン酸、およびドコサン酸(ベヘン酸)などの飽和脂肪族カルボン酸、並びにパルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エイコセン酸、エイコサペンタエン酸、およびセトレイン酸などの不飽和脂肪族カルボン酸を挙げることができる。上記の中でも脂肪族カルボン酸は、炭素原子数14~20であるものが好ましい。なかでも飽和脂肪族カルボン酸が好ましい。かかる脂肪族カルボン酸は通常、動物性油脂(牛脂および豚脂など)や植物性油脂(パーム油など)などの天然油脂類から製造されるため、これらの脂肪族カルボン酸は、通常炭素原子数の異なる他のカルボン酸成分を含む混合物である。したがって脂肪族カルボン酸の製造においてもかかる天然油脂類から製造され、他のカルボン酸成分を含む混合物の形態からなる。脂肪酸エステルにおける酸価は、20以下(実質的に0を取り得る)であることが好ましい。しかしながら全エステル(フルエステル)の場合には、離型性を向上させるため、少なくからず遊離の脂肪酸を含有することが好ましく、この点においてフルエステルにおける酸価は3~15の範囲が好ましい。また脂肪酸エステルのヨウ素価は、10以下(実質的に0を取り得る)が好ましい。これらの特性はJIS K 0070に規定された方法により求めることができる。
【0092】
前述の脂肪酸エステルは、部分エステルおよびフルエステルのいずれであってもよいが、より良好な離型性および耐久性の点で部分エステルが好ましく、特にグリセリンモノエステルが好ましい。グリセリンモノエステルは、グリセリンと脂肪酸のモノエステルが主成分であり、好適な脂肪酸としてはステアリン酸、パルチミン酸、ベヘン酸、アラキン酸、モンタン酸、およびラウリン酸等の飽和脂肪酸やオレイン酸、リノール酸、およびソルビン酸等の不飽和脂肪酸が挙げられ、特にステアリン酸、ベヘン酸、およびパルチミン酸のグリセリンモノエステルを主成分としたものが好ましい。尚、かかる脂肪酸は、天然の脂肪酸から合成されたものであり、上述のとおり混合物となる。そのような場合でも、脂肪酸エステル中のグリセリンモノエステルの割合は60重量%以上であることが好ましい。
【0093】
なお、部分エステルは、熱安定性の点ではフルエステルに対して劣る場合が多い。かかる部分エステルの熱安定性を向上するため、部分エステルは、好ましくは20ppm未満、より好ましくは5ppm未満、更に好ましくは1ppm未満のナトリウム金属含有量とすることが好ましい。ナトリウム金属含有量が1ppm未満の脂肪酸部分エステルは、脂肪酸部分エステルを通常の方法で製造した後、分子蒸留などにより精製して製造することができる。
【0094】
具体的には、スプレーノズル式脱ガス装置によりガス分および低沸点物質を除去した後に流下膜式蒸留装置を用い蒸留温度120~150℃、真空度0.01~0.03kPaの条件にてグリセリン等の多価アルコール分を除去し、更に遠心式分子蒸留装置を用いて、蒸留温度160~230℃、真空度0.01~0.2Torrの条件にて高純度の脂肪酸部分エステルを留出分として得る方法などがあり、ナトリウム金属は蒸留残渣として除去できる。得られた留出分に対し、繰り返し分子蒸留を行うことにより、更に純度を上げ、ナトリウム金属含有量の更に少ない脂肪酸部分エステルを得ることもできる。また前もって適切な方法にて分子蒸留装置内を十分に洗浄し、また気密性を高めるなどにより外部環境からのナトリウム金属成分の混入を防ぐことも肝要である。かかる脂肪酸エステルは、専門業者(例えば理研ビタミン(株))から入手可能である。
【0095】
(ii)リン系安定剤
本発明のポリカーボネート樹脂には、その成形加工時の熱安定性を向上させることを主たる目的として各種のリン系安定剤が更に配合されることが好ましい。かかるリン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステルなどが例示される。更にかかるリン系安定剤は第3級ホスフィンを含む。
【0096】
具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-iso-プロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。
【0097】
更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2’-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2’-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイトなどを挙げることができる。
【0098】
ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。
【0099】
ホスホナイト化合物としては、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3’-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト等があげられ、テトラキス(ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましく、テトラキス(2,4-ジ-tert-ブチルフェニル)-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
【0100】
ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。
【0101】
第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ-p-トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。
【0102】
上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でも、ホスファイト化合物またはホスホナイト化合物が好ましい。殊にトリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイトおよびビス(2,4-ジ-tert-ブチルフェニル)-フェニル-フェニルホスホナイトが好ましい。またこれらとホスフェート化合物との併用も好ましい態様である。
【0103】
(iii)ヒンダードフェノール系安定剤(酸化防止剤)
本発明のポリカーボネート樹脂には、その成形加工時の熱安定性、および耐熱老化性を向上させることを主たる目的としてヒンダードフェノール系安定剤を配合することができる。かかるヒンダードフェノール系安定剤としては、例えば、α-トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、n-オクタデシル-β-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェル)プロピオネート、2-tert-ブチル-6-(3’-tert-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニルアクリレート、2,6-ジ-tert-ブチル-4-(N,N-ジメチルアミノメチル)フェノール、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホネートジエチルエステル、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-メチル-6-シクロヘキシルフェノール)、2,2’-ジメチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)2,2’-エチリデン-ビス(4,6-ジ-tert-ブチルフェノール)、2,2’-ブチリデン-ビス(4-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、トリエチレングリコール-N-ビス-3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート、1,6-へキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ビス[2-tert-ブチル-4-メチル6-(3-tert-ブチル-5-メチル-2-ヒドロキシベンジル)フェニル]テレフタレート、3,9-ビス{2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1,-ジメチルエチル}-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、4,4’-チオビス(6-tert-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2’-チオビス(4-メチル-6-tert-ブチルフェノール)、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド、4,4’-ジ-チオビス(2,6-ジ-tert-ブチルフェノール)、4,4’-トリ-チオビス(2,6-ジ-tert-ブチルフェノール)、2,2-チオジエチレンビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’,5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、N,N’-ヘキサメチレンビス-(3,5-ジ-tert-ブチル-4-ヒドロキシヒドロシンナミド)、N,N’-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)イソシアヌレート、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(4-tert-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、1,3,5-トリス2[3(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、およびテトラキス[メチレン-3-(3’,5’-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタンなどが例示される。これらはいずれも入手容易である。上記ヒンダードフェノール系酸化防止剤は、単独でまたは2種以上を組み合わせて使用することができる。
【0104】
上記(ii)リン系安定剤および/または(iii)ヒンダードフェノール系酸化防止剤の量は、ポリカーボネート樹脂100重量部に対して、好ましくは0.0001~1重量部、より好ましくは0.001~0.5重量部、さらに好ましくは0.005~0.1重量部である。安定剤が上記範囲以上の場合には良好な安定化効果を得ることができ、上記範囲以下の場合は、材料の物性低下や、成形時の金型汚染を起こし難く好ましい。
【0105】
本発明のポリカーボネート樹脂には、適宜上記ヒンダードフェノール系酸化防止剤以外の他の酸化防止剤を使用することもできる。かかる他の酸化防止剤としては、例えばペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)、およびグリセロール-3-ステアリルチオプロピオネートなどが挙げられる。これら他の酸化防止剤の使用量は、ポリカーボネート共重合体100重量部に対して0.001~0.05重量部が好ましい。
【0106】
(iv)紫外線吸収剤
本発明に使用されるポリカーボネート樹脂は紫外線吸収剤を含有することができる。本発明の紫外線吸収剤としては、具体的にはベンゾフェノン系では、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-ベンジロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホキシトリハイドライドレイトベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシ-5-ソジウムスルホキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2-ヒドロキシ-4-n-ドデシルオキシベンソフェノン、および2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノンなどが例示される。
【0107】
紫外線吸収剤としては、具体的に、ベンゾトリアゾール系では、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジクミルフェニル)フェニルベンゾトリアゾール、2-(2-ヒドロキシ-3-tert-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-クミル-6-ベンゾトリアゾールフェニル)、2,2’-p-フェニレンビス(1,3-ベンゾオキサジン-4-オン)、および2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミドメチル)-5-メチルフェニル]ベンゾトリアゾール、並びに2-(2’-ヒドロキシ-5-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2-(2’-ヒドロキシ-5-アクリロキシエチルフェニル)-2H-ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2-ヒドロキシフェニル-2H-ベンゾトリアゾール骨格を有する重合体などが例示される。
【0108】
紫外線吸収剤としては、具体的に、ヒドロキシフェニルトリアジン系では、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-メチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-エチルオキシフェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-プロピルオキシフェノール、および2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-ブチルオキシフェノールなどが例示される。さらに2-(4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4-ジメチルフェニル基となった化合物が例示される。
【0109】
紫外線吸収剤としては、具体的に環状イミノエステル系では、例えば2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、および2,2’-(2,6-ナフタレン)ビス(3,1-ベンゾオキサジン-4-オン)などが例示される。
【0110】
また紫外線吸収剤としては、具体的にシアノアクリレート系では、例えば1,3-ビス-[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3-ビス-[(2-シアノ-3,3-ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
【0111】
さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。
【0112】
上記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。上記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。
【0113】
紫外線吸収剤の含有量は、ポリカーボネート樹脂100重量部に対して好ましくは0.01~2重量部、より好ましくは0.03~2重量部、さらに好ましくは0.04~1重量部、特に好ましくは0.05~0.5重量部である。
【0114】
(v)流動改質剤
本発明のポリカーボネート樹脂は、本発明の効果を損なわない範囲で、流動改質剤を含むことができる。かかる流動改質剤としては、スチレン系オリゴマー、ポリカーボネートオリゴマー(高度分岐型、ハイパーブランチ型および環状オリゴマー型を含む)、ポリアルキレンテレフタレートオリゴマー(高度分岐型、ハイパーブランチ型および環状オリゴマー型を含む)高度分岐型およびハイパーブランチ型の脂肪族ポリエステルオリゴマー、テルペン樹脂、並びにポリカプロラクトン等が好適に例示される。かかる流動改質剤は、ポリカーボネート樹脂100重量部当たり、好ましくは0.1~30重量部、より好ましくは1~20重量部、さらに好ましくは2~15重量部である。特にポリカプロラクトンが好適であり、組成割合はポリカーボネート樹脂100重量部あたり、特に好ましくは2~7重量部である。ポリカプロラクトンの分子量は数平均分子量で表して1,000~70,000であり、1,500~40,000が好ましく、2,000~30,000がより好ましく、2,500~15,000が更に好ましい。
【0115】
(vi)帯電防止剤
本発明のポリカーボネート樹脂は、帯電防止性を向上させることを主たる目的として帯電防止剤を配合することができる。帯電防止剤としては、スルホン酸ホスホニウム塩、亜リン酸エステル、カプロラクトン系重合体等を使用することができ、スルホン酸ホスホニウム塩が好ましく使用される。かかるスルホン酸ホスホニウム塩の具体例としては、ドデシルスルホン酸テトラブチルホスホニウム、ドデシルベンゼンスルホン酸テトラブチルホスホニウム、ドデシルベンゼンスルホン酸トリブチルオクチルホスホニウム、ドデシルベンゼンスルホン酸テトラオクチルホスホニウム、オクタデシルベンゼンスルホン酸テトラエチルホスホニウム、ジブチルベンゼンスルホン酸トリブチルメチルホスホニウム、ジブチルナフチルスルホン酸トリフェニルホスホニウム、ジイソプロピルナフチルスルホン酸トリオクチルメチルホスホニウム等が挙げられる。中でも、ポリカーボネートとの相溶性及び入手が容易な点で、ドデシルベンゼンスルホン酸テトラブチルホスホニウムが好ましい。帯電防止剤の量は、ポリカーボネート共重合体100重量部に対し、好ましくは0.1~5.0重量部、より好ましくは0.2~3.0重量部、さらに好ましくは0.3~2.0重量部、特に好ましくは0.5~1.8重量部配合される。0.1重量部以上では、帯電防止の効果が得られ、5.0重量部以下であると透明性や機械的強度に優れ、成形品表面にシルバーや剥離が生じず外観不良を引き起こし難い。
【0116】
本発明のポリカーボネート樹脂は、他にも、ブルーイング剤、蛍光染料、難燃剤、および染顔料などの各種の添加剤を含有することができる。これらは、本発明の効果を損なわない範囲で、適宜選択して含有することができる。
【0117】
ブルーイング剤は、ポリカーボネート樹脂中0.05~3.0ppm(重量割合)含んでなることが好ましい。ブルーイング剤としては代表例として、バイエル社のマクロレックスバイオレットB及びマクロレックスブルーRR、並びにクラリアント社のポリシンスレンブルーRLSなどが挙げられる。
【0118】
蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。蛍光染料(蛍光増白剤を含む)の配合量は、ポリカーボネート樹脂100重量部に対して0.0001~0.1重量部が好ましい。
【0119】
難燃剤としては、例えば、スルホン酸金属塩系難燃剤、ハロゲン含有化合物系難燃剤、燐含有化合物系難燃剤、および珪素含有化合物系難燃剤などを挙げることができる。これらの中でも、スルホン酸金属塩系難燃剤が好ましい。難燃剤の配合量は、通常、ポリカーボネート樹脂100重量部に対し、0.01~1重量部が好ましく、0.05~1重量部の範囲がより好ましい。
【0120】
本発明のポリカーボネート樹脂は、本発明の効果を著しく損なわない限り、適宜、上述したもの以外にその他の成分を含有していてもよい。その他の成分の例を挙げると、ポリカーボネート樹脂以外の樹脂が挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。その他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂(PET樹脂)、ポリトリメチレンテレフタレート(PTT樹脂)、ポリブチレンテレフタレート樹脂(PBT樹脂)等の熱可塑性ポリエステル樹脂;ポリスチレン樹脂(PS樹脂)、高衝撃ポリスチレン樹脂(HIPS)、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)等のスチレン系樹脂;ポリエチレン樹脂(PE樹脂)、ポリプロピレン樹脂(PP樹脂)、環状シクロオレフィン樹脂(COP樹脂)、環状シクロオレフィン共重合体(COP)樹脂等のポリオレフィン樹脂;ポリアミド樹脂(PA樹脂);ポリイミド樹脂(PI樹脂);ポリエーテルイミド樹脂(PEI樹脂);ポリウレタン樹脂(PU樹脂);ポリフェニレンエーテル樹脂(PPE樹脂);ポリフェニレンサルファイド樹脂(PPS樹脂);ポリスルホン樹脂(PSU樹脂);ポリメタクリレート樹脂(PMMA樹脂);等が挙げられる。
【0121】
本発明のポリカーボネート樹脂に添加剤等を配合させる方法は、特に限定されるものではなく公知の方法が利用できる。最も汎用される方法として、ポリカーボネート樹脂および添加剤を予備混合した後、押出機に投入して溶融混練を行い、押出されたスレッドを冷却し、ペレタイザーにより切断して、ペレット状の成形材料を製造する方法が挙げられる。
【0122】
上記方法における押出機は単軸押出機、および二軸押出機のいずれもが利用できるが、生産性や混練性の観点からは二軸押出機が好ましい。かかる二軸押出機の代表的な例としては、ZSK(Werner & Pfleiderer社製、商品名)を挙げることができる。同様のタイプの具体例としてはTEX((株)日本製鋼所製、商品名)、TEM(東芝機械(株)製、商品名)、KTX((株)神戸製鋼所製、商品名)などを挙げることができる。押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部手前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。
【0123】
更に添加剤は、独立して押出機に供給することもできるが、前述のとおり樹脂原料と予備混合することが好ましい。かかる予備混合の手段には、ナウターミキサー、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、および押出混合機などが例示される。より好適な方法は、例えば原料樹脂の一部と添加剤とをヘンシェルミキサーの如き高速攪拌機で混合してマスター剤を作成した後、かかるマスター剤物を残る全量の樹脂原料とナウターミキサーの如き高速でない攪拌機で混合する方法である。
【0124】
押出機より押出されたポリカーボネート樹脂組成物は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の更なる低減、運送または輸送時に発生する微小粉の更なる低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を行うことが好ましい。ミスカットの低減には、ペレタイザーでの切断時のスレッドの温度管理、切断時のイオン風の吹き付け、ペレタイザーのすくい角の適正化、および離型剤の適切な配合などの手段、並びに切断されたペレットと水との混合物を濾過してペレットと水およびミスカットとを分離する方法などが挙げられる。その測定方法の一例は例えば特開2003-200421号公報に開示されている。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。
【0125】
成形材料(ペレット)におけるミスカット量は、好ましくは10ppm以下、より好ましくは5ppm以下である。ここで、ミスカットとは、目開き1.0mmのJIS標準篩を通過する所望の大きさのペレットより細かい粉粒体を意味する。ペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱(楕円柱を含む)であり、かかる円柱の直径は好ましくは1.5~4mm、より好ましくは2~3.5mmである。楕円柱において長径に対する短径の割合は、好ましくは60%以上、より好ましくは65%以上である。一方、円柱の長さは好ましくは2~4mm、より好ましくは2.5~3.5mmである。
【0126】
<ポリカーボネート樹脂成形品>
本発明のポリカーボネート樹脂からなる成形品の製造方法は、特に限定されず、ポリカーボネート樹脂について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法などが挙げられる。また、ホットランナー方式を使用した成形法を用いることも出来る。
【0127】
また、本発明のポリカーボネート樹脂は、溶融押出法、溶液キャスティング法(流延法)等などの方法によりシート状、フィルム状の成形品を得ることもできる。溶融押出法の具体的な方法は、例えば、ポリカーボネート共重合体または樹脂組成物を押出機に定量供給して、加熱溶融し、Tダイの先端部から溶融樹脂をシート状に鏡面ロール上に押出し、複数のロールにて冷却しながら引き取り、固化した時点で適当な大きさにカットするか巻き取る方式が用いられる。溶液キャスティング法の具体的な方法は、例えば、ポリカーボネート共重合体または樹脂組成物を塩化メチレンに溶解した溶液(濃度5%~40%)を鏡面研磨されたステンレス板上にTダイから流延し、段階的に温度制御されたオーブンを通過させながらシートを剥離し、溶媒を除去した後、冷却して巻き取る方式が用いられる。
【0128】
さらに、本発明のポリカーボネート樹脂は、成形して積層体とすることもできる。積層体の製法としては、任意の方法を用いればよく、特に熱圧着法または共押出法で行うことが好ましい。熱圧着法としては任意の方法が採用されるが、例えばポリカーボネート樹脂または樹脂組成物のシートをラミネート機やプレス機で熱圧着する方法、押出し直後に熱圧着する方法が好ましく、特に押出し直後のシートに連続して熱圧着する方法が工業的に有利である。
【実施例】
【0129】
以下、実施例をあげて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。以下の実施例、および比較例において、各特性の測定法は次のとおりである。
【0130】
《評価方法》
(1)ホウ酸含有量
下記装置、条件にてホウ酸の定量を行った。定量には所定濃度のホウ酸水溶液を用いて検量線を作成した。なお、表中のN.D.は1ppm未満であることを示す。
GC-MS分析装置:アジレント社GC6890N、MSD5975B
カラム:アジレント社19091S-433 HP-5MS
測定条件:流量1mL/分、カラムオーブン50~310℃、測定時間60分
シリル化法:試料10mgをアセトニトリルに溶解し、ピリジン0.1mLとBSTFA(シリル化剤)0.1mLを添加し、フィルター濾過後1μLを装置に注入
【0131】
(2)第三級アミン量
下記装置、条件にてトリエチルアミンの定量を行った。定量には所定濃度のトリエチルアミン水溶液を用いて検量線を作成した。なお、表中のN.D.は1ppm未満であることを示す。
イオンクロマトグラフィー装置:ダイオネクス社ICS-2000、
陽イオン測定用カラム:ダイオネクス社IonPac CS17(30℃)
溶離液:5mmol/Lメタンスルホン酸
流速:1.0mL/分
検出器:電気伝導度(オートサプレッサ使用)
試料導入量:100μL
【0132】
(3)シス-トランス比率
日本電子社製JNM-AL400を用いて常温での1H-NMRスペクトルを測定し、シス-トランス異性体比率をシグナル強度比より算出した。
試料 50mg
溶媒 重DMSO 0.6mL
積算回数:512回
【0133】
(4)ポリマー組成比及び末端フェニル基濃度
日本電子社製JNM-AL400(共鳴周波数400MHz)を用いて常温での1H-NMRスペクトルを測定し、各ジヒドロキシ化合物に由来する構造単位に基づくシグナル強度比よりポリマー中の各構造単位の組成比を算出した。また、末端フェニル基濃度は1,1,2,2-テトラブロモエタンを内標として、1H-NMRを測定し、内標と末端フェニル基に基づくシグナル強度比より求めた。
ポリマー量 40mg
溶媒 重クロロホルム0.6mL
積算回数:256回
【0134】
(5)粘度平均分子量
ポリカーボネート樹脂の粘度平均分子量を、以下の方法で測定した。ポリカーボネート樹脂ペレット0.7gを塩化メチレン100mlに溶解した溶液から、その溶液の20℃における比粘度(ηsp)を測定した。そして、下記式により算出されるMvを粘度平均分子量とした。
ηsp/c=[η]+0.45×[η]2c
[η]=1.23×10-4Mv0.83
ηsp:比粘度
η:極限粘度
c:定数(=0.7)
Mv:粘度平均分子量
【0135】
(6)ガラス転移温度
ポリカーボネート樹脂8mgを用いてティー・エイ・インスツルメント(株)製の熱分析システムDSC-2910を使用して、JIS K7121に従い窒素雰囲気下(窒素流量:40ml/min)、昇温速度:20℃/minの条件下でガラス転移温度(Tg)を測定した。
【0136】
(7)初期色相
ポリカーボネート樹脂ペレットを100℃で12時間乾燥し、射出成形機(東芝機械株式会社製EC100NII-2Y)に供給し、樹脂温度260℃、金型温度80℃にて成形板(幅100mm×横100mm×厚さ3mm)を成形した。成形板の初期色相(YI0)をJIS K6735に準拠して、日本電飾工業(株)製NDH-2000(C光源、視野角2°)により測定した。
【0137】
(8)分光光線透過率(320nm、350nm)
上記成形板(厚さ3mm)の光線透過率を、紫外可視分光光度計(日立ハイテクノロジーズ社製U4100)を用いて測定した。
【0138】
(9)耐候性試験
スガ試験機株式会社製スーパーキセノンウェザーメーターを用いて、63℃、相対湿度50%の条件下、上記成形板を1000時間静置し、成形板の色相(YI1)をJIS K7373に準拠して、日本電飾工業(株)製SE-2000(C光源、視野角2°)により測定し、色差(ΔYI=YI1-YI0)を算出した。
【0139】
(10)モノヒドロキシ化合物含有量
樹脂組成物1.25gを塩化メチレン7mLに溶解後、総量が25mlとなるようにアセトンを添加して再沈澱処理を行った。次いで、該処理液を0.2μmディスポーザブルフィルターでろ過し、液体クロマトグラフィーにて定量を行った。
【0140】
(11)曲げ弾性率
日本製鋼所製射出成形機J-75E3を用いて、シリンダ温度260℃、金型温度80℃の条件で成形した曲げ試験片を用い、IS0 178に則して、23℃における曲げ弾性率を測定した。
【0141】
実験A:ホウ酸含有量による影響の検討
以下の原料を用いた。
TMCB-A1:和光純薬工業より購入した(製品名;2,2,4,4-テトラメチル-1,3-シクロブタンジオール)。シス異性体比率は60%、ホウ酸含有量は250重量ppmであった。
【0142】
TMCB-A2:TMCB-A1をトルエンに溶解後、室温のイオン交換水を用いて攪拌し、洗浄水のpHが7~8となった時点で、洗浄水を分離した。得られたトルエン溶液からトルエンを完全に留去し白色粉末を得た後、80℃で48時間真空乾燥した。シス異性体比率は60%、ホウ酸含有量は120重量ppmであった。
【0143】
TMCB-A3:TMCB-A1をトルエンに溶解後、40℃のイオン交換水を用いて攪拌し、洗浄水のpHが7~8となった時点で、洗浄水を分離した。得られたトルエン溶液からトルエンを完全に留去し白色粉末を得た後、80℃で48時間真空乾燥した。シス異性体比率は60%、ホウ酸含有量は80重量ppmであった。
【0144】
TMCB-A4:TMCB-A1をトルエンに溶解後、60℃のイオン交換水を用いて攪拌し、洗浄水のpHが7~8となった時点で、洗浄水を分離した。得られたトルエン溶液からトルエンを完全に留去し白色粉末を得た後、80℃で48時間真空乾燥した。シス異性体比率は60%、ホウ酸含有量は20重量ppmであった。
【0145】
[実施例A1]
原料としてTMCB-A4を490部、ジフェニルカーボネート(以下、DPCと略す)728部を使用し、触媒として酢酸リチウム5.9×10-2部を窒素雰囲気下180℃に加熱し溶融させた。その後、30分かけて減圧度を13.4kPaに調整した。その後、60℃/hrの速度で250℃まで昇温を行い、10分間その温度で保持した後、1時間かけて減圧度を133Pa以下とした。合計6時間攪拌下で反応を行い、反応後、反応槽の底より窒素加圧下吐出し、水槽で冷却しながらペレタイザーでカットしてペレットを得た。該ペレットについて各種評価を行い、評価結果を表1に記載した。
【0146】
[実施例A2]
原料としてTMCB-A3を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表1に記載した。
【0147】
[比較例A1]
原料としてTMCB-A2を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表1に記載した。
【0148】
[実施例A3]
原料としてTMCB-A4を441部、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(以下、TMCと略す、本州化学工業製)106部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表2に記載した。
【0149】
[実施例A4]
原料としてTMCB-A3を245部、TMC527部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表2に記載した。
【0150】
[実施例A5]
原料としてTMCB-A3を49部、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、BPAと略す、三井化学製)697部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表2に記載した。
【0151】
[実施例A6]
原料としてTMCB-A4を392部、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチルスピロビインダン(以下、SBIと略す)209部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表2に記載した。
【0152】
[比較例A2]
原料としてTMCB-A1を使用した以外は実施例A3と同様に操作し、各種評価を行った。結果を表2に記載した。
【0153】
[実施例A7]
原料としてTMCB-A4を245部、イソソルビド(以下、ISSと略す、ロケットフルーレ社製)248部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表3に記載した。
【0154】
[実施例A8]
原料としてTMCB-A4を147部、ISS347部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表3に記載した。
【0155】
[実施例A9]
原料としてTMCB-A3を441部、1,4-シクロヘキサンジメタノール(以下、CHDMと略す、東京化成工業製)49部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表3に記載した。
【0156】
[比較例A3]
原料としてTMCB-A2を使用した以外は実施例A7と同様に操作し、各種評価を行った。結果を表3に記載した。
【0157】
[実施例A10]
原料としてTMCB-A4を451部、1,6-ヘキサンジオール(以下、HDと略す、東京化成工業製)32部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表4に記載した。
【0158】
[実施例A11]
原料としてTMCB-A4を465部、1,12-ドデカンジオール(以下、DDDと略す、東京化成工業製)34部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表4に記載した。
【0159】
[実施例A12]
原料としてTMCB-A3を470部、1,9-ノナンジオール(以下、NDと略す、東京化成工業製)22部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表4に記載した。
【0160】
[比較例A4]
原料としてTMCB-A1を使用した以外は実施例A10と同様に操作し、各種評価を行った。結果を表4に記載した。
【0161】
[実施例A13]
原料としてTMCB-A3を343部、TMC263部、ND27部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表5に記載した。
【0162】
[実施例A14]
原料としてTMCB-A4を172部、ISS298部、ND27部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表5に記載した。
【0163】
[実施例A15]
原料としてTMCB-A3を147部、ISS248部、CHDM98部を使用した以外は実施例A1と同様に操作し、各種評価を行った。結果を表5に記載した。
【0164】
[比較例A5]
原料としてTMCB-A2を使用した以外は実施例A13と同様に操作し、各種評価を行った。結果を表5に記載した。
【0165】
【0166】
【0167】
【0168】
【0169】
【0170】
《実験B:第三級アミン含有量による影響の検討》
以下の原料を用いた。
【0171】
TMCB-B1:和光純薬工業より購入した(化合物名;2,2,4,4-テトラメチル-1,3-シクロブタンジオール)。シス異性体比率は60%、トリエチルアミン含有量は1350重量ppmであった。
【0172】
TMCB-B2:TMCB-B1をトルエンに溶解後、1%塩酸水溶液にて水洗を行い、その後イオン交換水で再度洗浄し、洗浄水のpHが7~8となった時点で、トルエンを完全に留去した。得られた白色粉末を80℃で48時間真空乾燥した。シス異性体比率は60%、トリエチルアミン含有量は900重量ppmであった。
【0173】
TMCB-B3:TMCB-B2を上記と同様の操作で塩酸酸性にて水洗後、トルエンを完全に留去した。得られた白色粉末を80℃で48時間真空乾燥した。シス異性体比率は60%、トリエチルアミン含有量は重量350ppmであった。
【0174】
TMCB-B4:TMCB-B3をトルエンに溶解後、1%塩酸水溶液にて水洗を行い、その後純水で洗浄し、洗浄水のpHが7~8となった時点で、トルエンを留去し再結晶精製を行った。室温で24時間静置後、析出した結晶を濾過し、得られた白色粉末を80℃で48時間真空乾燥した。シス異性体比率は60%、トリエチルアミン含有量は検出されなかった。
【0175】
TMCB-B5:東京化成工業より購入した(化合物名;2,2,4,4-テトラメチル-1,3-シクロブタンジオール)。シス異性体比率は45%、トリエチルアミン含有量は1650重量ppmであった。
【0176】
TMCB-B6:TMCB-B5をトルエンに溶解後、1%塩酸水溶液にて水洗を行い、その後純水で洗浄し、洗浄水のpHが7~8となった時点で、トルエンを留去し再結晶精製を行った。室温で24時間静置後、析出した結晶を濾過し、得られた白色粉末を80℃で48時間真空乾燥した。シス異性体比率は45%、トリエチルアミン含有量は検出されなかった。
【0177】
[実施例B1]
原料としてTMCB-B4を490部、ジフェニルカーボネート(以下、DPCと略す)728部を使用し、触媒として酢酸リチウム5.9×10-2部を窒素雰囲気下180℃に加熱し溶融させた。その後、30分かけて減圧度を13.4kPaに調整した。その後、60℃/hrの速度で250℃まで昇温を行い、10分間その温度で保持した後、1時間かけて減圧度を133Pa以下とした。合計6時間攪拌下で反応を行い、反応後、反応槽の底より窒素加圧下吐出し、水槽で冷却しながらペレタイザーでカットしてペレットを得た。該ペレットについて各種評価を行い、評価結果を表6に記載した。
【0178】
[実施例B2]
原料としてTMCB-B3を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表6に記載した。
【0179】
[実施例B3]
原料としてTMCB-B2を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表6に記載した。
【0180】
[比較例B1]
原料としてTMCB-B1を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表6に記載した。
【0181】
[実施例4]
原料としてTMCB-B3を441部、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(以下、TMCと略す、本州化学工業製)106部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表7に記載した。
【0182】
[実施例B5]
原料としてTMCB-B6を使用した以外は実施例B4と同様に操作し、各種評価を行った。結果を表7に記載した。
【0183】
[実施例B6]
原料としてTMCB-B2を245部、TMC527部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表7に記載した。
【0184】
[実施例B7]
原料としてTMCB-B3を49部、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、BPAと略す、三井化学製)697部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表7に記載した。
【0185】
[実施例B8]
原料としてTMCB-B3を392部、6,6’-ジヒドロキシ-3,3,3’,3’-テトラメチルスピロビインダン(以下、SBIと略す)209部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表7に記載した。
【0186】
[比較例B2]
原料としてTMCB-B5を使用した以外は実施例B4と同様に操作し、各種評価を行った。結果を表7に記載した。
【0187】
[実施例B9]
原料としてTMCB-B3を245部、イソソルビド(以下、ISSと略す、ロケットフルーレ社製)248部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表8に記載した。
【0188】
[実施例B10]
原料としてTMCB-B2を147部、ISS347部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表8に記載した。
【0189】
[実施例B11]
原料としてTMCB-B4を441部、1,4-シクロヘキサンジメタノール(以下、CHDMと略す、東京化成工業製)49部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表8に記載した。
【0190】
[比較例B3]
原料としてTMCB-B5を使用した以外は実施例B9と同様に操作し、各種評価を行った。結果を表8に記載した。
【0191】
[実施例B12]
原料としてTMCB-B3を451部、1,6-ヘキサンジオール(以下、HDと略す、東京化成工業製)32部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表9に記載した。
【0192】
[実施例B13]
原料としてTMCB-B2を465部、1,12-ドデカンジオール(以下、DDDと略す、東京化成工業製)34部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表9に記載した。
【0193】
[実施例B14]
原料としてTMCB-B4を470部、1,9-ノナンジオール(以下、NDと略す、東京化成工業製)22部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表9に記載した。
【0194】
[比較例B4]
原料としてTMCB-B5を使用した以外は実施例B13と同様に操作し、各種評価を行った。結果を表9に記載した。
【0195】
[実施例B15]
原料としてTMCB-B3を343部、TMC263部、ND27部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表10に記載した。
【0196】
[実施例B16]
原料としてTMCB-B2を172部、ISS298部、ND27部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表10に記載した。
【0197】
[実施例B17]
原料としてTMCB-B4を147部、ISS248部、CHDM98部を使用した以外は実施例B1と同様に操作し、各種評価を行った。結果を表10に記載した。
【0198】
[比較例B5]
原料としてTMCB-B1を使用した以外は実施例B15と同様に操作し、各種評価を行った。結果を表10に記載した。
【0199】
【0200】
【0201】
【0202】
【0203】
【産業上の利用可能性】
【0204】
本発明のポリカーボネート樹脂は、優れた耐熱性、実用的な機械強度、高い透明性、初期色相を有し、長期使用時の黄変を抑制したものであり、種々の成形品の材料として有用である。