(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-09
(45)【発行日】2024-08-20
(54)【発明の名称】電池劣化評価装置
(51)【国際特許分類】
H01M 10/42 20060101AFI20240813BHJP
H01M 10/48 20060101ALI20240813BHJP
H02J 7/00 20060101ALI20240813BHJP
G01R 31/392 20190101ALI20240813BHJP
G01R 31/367 20190101ALI20240813BHJP
G01R 31/382 20190101ALI20240813BHJP
G01R 31/385 20190101ALI20240813BHJP
G01R 31/387 20190101ALI20240813BHJP
G01R 31/389 20190101ALI20240813BHJP
【FI】
H01M10/42 P
H01M10/48 P
H01M10/48 301
H02J7/00 Y
G01R31/392
G01R31/367
G01R31/382
G01R31/385
G01R31/387
G01R31/389
(21)【出願番号】P 2020066250
(22)【出願日】2020-04-01
【審査請求日】2023-03-14
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】598076591
【氏名又は名称】東芝インフラシステムズ株式会社
(74)【代理人】
【識別番号】100091487
【氏名又は名称】中村 行孝
(74)【代理人】
【識別番号】100105153
【氏名又は名称】朝倉 悟
(74)【代理人】
【識別番号】100107582
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100118843
【氏名又は名称】赤岡 明
(74)【代理人】
【識別番号】100213654
【氏名又は名称】成瀬 晃樹
(72)【発明者】
【氏名】寺井 清寿
(72)【発明者】
【氏名】阿邊 優一
(72)【発明者】
【氏名】小屋 貴
(72)【発明者】
【氏名】山本 雅秋
(72)【発明者】
【氏名】坂本 義行
(72)【発明者】
【氏名】弓削 晶郎
(72)【発明者】
【氏名】吉川 賢一
(72)【発明者】
【氏名】今井 桂一郎
【審査官】小林 秀和
(56)【参考文献】
【文献】特開2017-195727(JP,A)
【文献】特開2019-168453(JP,A)
【文献】特開2018-032506(JP,A)
【文献】特開2014-235782(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 10/42
H01M 10/48
H02J 7/00
G01R 31/392
G01R 31/367
G01R 31/382
G01R 31/385
G01R 31/387
G01R 31/389
(57)【特許請求の範囲】
【請求項1】
電池の劣化状態を前記電池の運用前にシミュレーションするシミュレーション部と、
前記電池
の稼働デー
タと、前記シミュレーション部のシミュレーション結果と、に基づいて、運用中の前記電池の劣化を評価する分析評価部と、を備え
、
前記分析評価部は、前記稼働データに基づいて前記電池の前記劣化状態を算出し、算出した前記劣化状態と、シミュレーションされた前記劣化状態との比較に基づいて、運用中の前記電池の劣化を評価し、
前記分析評価部は、前記電池が使用される機器の動作情報に基づいて設定される抽出条件に対応する前記稼働データを抽出し、抽出した前記稼働データに基づいて前記劣化状態を算出する、電池劣化評価装置。
【請求項2】
前記シミュレーション部は、前記電池の所定の使用条件を模擬する試験の結果に基づいて、運用前に前記電池の劣化状態をシミュレーション
する、請求項1に記載の電池劣化評価装置。
【請求項3】
前記分析評価部は、算出した前記劣化状態の推移、前記稼働データ、および、前記電池の稼働状況の少なくとも1つに基づいて、前記電池の将来の前記劣化状態を推定する、請求項2記載の電池劣化評価装置。
【請求項4】
前記分析評価部は、シミュレーションされた前記劣化状態と、算出された前記劣化状態と、の差が所定値以上であるか否かに基づいて、運用中の前記電池の劣化を評価する、請求項1から請求項3のいずれか一項に記載の電池劣化評価装置。
【請求項5】
前記差が前記所定値以上である場合、前記差が前記所定値以上であることを報知するように報知部を制御する報知制御部をさらに備える、請求項4に記載の電池劣化評価装置。
【請求項6】
前記分析評価部は、前記電池の所定の稼働状況に対応する前記稼働データを抽出し、抽出した前記稼働データに基づいて前記劣化状態を算出する、請求項1から請求項5のいずれか一項に記載の電池劣化評価装置。
【請求項7】
前記分析評価部は、前記電池が使用される機器の状態および前記電池の前日の使用履歴の少なくとも1つと、前記稼働データと、に基づいて、前記劣化状態を算出する、請求項1から請求項
6のいずれか一項に記載の電池劣化評価装置。
【請求項8】
前記電池は、複数の電池セルを有する、請求項1から請求項
7のいずれか一項に記載の電池劣化評価装置。
【請求項9】
前記分析評価部は、前記電池セル毎の前記稼働データに基づいて、運用中の前記電池の劣化を評価する、請求項
8に記載の電池劣化評価装置。
【請求項10】
前記分析評価部は、複数の前記電池セルの前記稼働データの代表値、少なくとも1つの前記電池セルを有する電池モジュールの前記稼働データ、または、少なくとも1つの前記電池モジュールを有する電池ユニットの前記稼働データに基づいて、前記劣化状態を算出する、請求項
8または請求項
9に記載の電池劣化評価装置。
【請求項11】
前記分析評価部は、前記電池の充電状態を算出し、算出した前記充電状態、充放電中における前記電池を流れる電流の電流変化、および、前記電池の電圧変化に基づいて、前記電池の内部抵抗を算出する、請求項1から請求項
10のいずれか一項に記載の電池劣化評価装置。
【請求項12】
前記分析評価部は、前記電池の温度に基づいて、算出した前記内部抵抗を補正する、請求項
11に記載の電池劣化評価装置。
【請求項13】
前記分析評価部は、充放電中における、前記電池の充電状態と前記電池の電圧との関係に基づいて、前記劣化状態を算出する、請求項1から
12のいずれか一項に記載の電池劣化評価装置。
【請求項14】
前記分析評価部は、前記電池の閉回路電圧および前記電池の充電状態に基づいて、前記劣化状態を算出する、請求項1から請求項
13のいずれか一項に記載の電池劣化評価装置。
【請求項15】
前記分析評価部は、前記電池の劣化評価後、算出した前記劣化状態の推移、前記稼働データ、および、前記電池の稼働状況の少なくとも1つに基づいて、時系列分析、RNN(Recurrent Neural Network)、および、前記シミュレーション部によるシミュレーションの少なくとも1つにより、前記電池の将来の前記劣化状態を推定する、請求項1から請求項
14のいずれか一項に記載の電池劣化評価装置。
【請求項16】
前記電池は、鉄道車両、バス、BRT(Bus Rapid Transit)およびLRT(Light Rail Transit)の少なくとも1つに設けられる、請求項1から請求項
15のいずれか一項に記載の電池劣化評価装置。
【請求項17】
前記分析評価部は、クラウド上に設けられ、クラウド上に設けられるデータ保存部に保存される前記稼働データに基づいて、前記電池の劣化を評価する、請求項1から請求項
16のいずれか一項に記載の電池劣化評価装置。
【請求項18】
前記分析評価部は、少なくとも1つの前記電池、もしくは、少なくとも1つの前記電池が使用される少なくとも1つの車両の前記稼働データに基づいて、前記電池の劣化を評価する、請求項1から請求項
17のいずれか一項に記載の電池劣化評価装置。
【請求項19】
前記分析評価部は、前記電池の評価結果に基づいて、メンテナンスの順序およびスケジュールの少なくとも1つを最適化する、請求項1から請求項
18のいずれか一項に記載の電池劣化評価装置。
【請求項20】
前記分析評価部の評価結果を表示するように表示部を制御する表示制御部をさらに備える、請求項1から請求項
19のいずれか一項に記載の電池劣化評価装置。
【請求項21】
電池
の稼働デー
タに基づいて前記電池の劣化状態を算出し、算出した前記劣化状態の推移、前記稼働データ、および、前記電池の稼働状況の少なくとも1つに基づいて、前記電池の将来の前記劣化状態を推定する分析評価部を備え
、
前記分析評価部は、前記稼働データに基づいて前記電池の前記劣化状態を算出し、算出した前記劣化状態と、シミュレーションされた前記劣化状態との比較に基づいて、運用中の前記電池の劣化を評価し、
前記分析評価部は、前記電池が使用される機器の動作情報に基づいて設定される抽出条件に対応する前記稼働データを抽出し、抽出した前記稼働データに基づいて前記劣化状態を算出する、電池劣化評価装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明による実施形態は、電池劣化評価装置に関する。
【背景技術】
【0002】
蓄電池の劣化を評価する方法として、電池容量や内部抵抗を計測することが知られている。例えば、現在の電池容量や内部抵抗の初期値からの変化によって、劣化状態が算出される。また、例えば、初期値からの変化が閾値を越えるか否かにより劣化の判定が行われる。
【0003】
しかし、例えば、電池の使用状況によっては、劣化の進み具合が異なる場合がある。従って、上記の閾値による判定では、様々な用途の蓄電池に対する適切な交換タイミングを推測することが困難になる場合があった。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
蓄電池の劣化の評価精度を向上させることができる電池劣化評価装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本実施形態による電池劣化評価装置は、シミュレーション部と、分析評価部と、を備える。シミュレーション部は、電池の劣化状態を前記電池の運用前にシミュレーションする。分析評価部は、電池の実使用環境および稼働データの少なくとも1つと、シミュレーション部のシミュレーション結果と、に基づいて、運用中の電池の劣化を評価する。
【図面の簡単な説明】
【0007】
【
図1】第1実施形態による電池劣化評価システムの構成を示すブロック図。
【
図2】劣化状態と運用期間との関係の一例を示す図。
【
図4】運用前と或る運用期間時の電池セルの内部抵抗の度数分布の一例を示す図。
【
図5】運用前と或る運用期間時の電池セルの電池容量の度数分布の一例を示す図。
【
図6】第2実施形態としてクラウドを用いた時の電池劣化評価システムの構成を示すブロック図。
【発明を実施するための形態】
【0008】
以下、図面を参照して本発明に係る実施形態を説明する。本実施形態は、本発明を限定するものではない。図面は模式的または概念的なものであり、各部分の比率などは、必ずしも現実のものと同一とは限らない。明細書と図面において、既出の図面に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
【0009】
(第1実施形態)
図1は、第1実施形態による電池劣化評価システム100の構成を示すブロック図である。電池劣化評価システム100は、鉄道車両1に設けられる蓄電池12の劣化評価や異常判定を行う。鉄道車両1等のインフラ設備では、電池交換等により車両を止めてしまう場合の影響が大きい。従って、蓄電池12の劣化状態や異常判定をより高い精度で行い、蓄電池12の適切な交換時期を推定する必要がある。尚、電池劣化評価システム100は、鉄道車両1に限られず、他のインフラ設備や車両システム等に搭載される蓄電池の劣化評価や異常判定を行ってもよい。従って、蓄電池12は、例えば、鉄道車両、バス、BRT(Bus Rapid Transit)およびLRT(Light Rail Transit)等の移動体の少なくとも1つに設けられる。
【0010】
電池劣化評価システム100は、鉄道車両1と、地上システム2と、を備える。
【0011】
鉄道車両1は、車両監視制御部11と、蓄電池12と、を備える。ここで、蓄電池12は、鉄道車両1に少なくとも1以上の複数ある。
【0012】
車両監視制御部11は、鉄道車両1の監視制御を行う。車両監視制御部11は、例えば、鉄道車両1に設けられるセンサ(図示せず)等から運行情報、動作情報、車両状態、運行履歴、外環境情報等の車両監視に用いるデータを取得する。また、車両監視制御部11は、車両監視に用いるデータを地上システム2に送信する。
【0013】
電池としての蓄電池12は、上位装置121と、電池ユニットUと、を備える。
図1に示す例では、蓄電池12は、複数の電池ユニットUを備えている。
【0014】
上位装置121は、蓄電池12の状態に関するデータを各電池ユニットUから取得する。また、上位装置121は、蓄電池12の状態に関するデータを車両監視制御部11や地上システム2に送信する。
【0015】
電池ユニットUは、電池モジュールMと、CMU(Cell Management Unit)122と、BMU(Battery Management Unit)123と、を備えている。
図1に示す例では、電池ユニットUは、複数の電池モジュールMを備えている。
【0016】
電池モジュールMは、電池ユニットU内において直列接続されている。また、電池モジュールMは、電池セルCを有する。電池セルCは、例えば、電池モジュールM内において、複数設けられ、直列に接続されている。また、電池モジュールMは、
図1に示す例では、直列に接続されている。すなわち、蓄電池は、複数の電池セルCを有する。電池セルCは、電池としての最小単位を示す。尚、電池モジュールMおよび電池セルCは、各々直列接続に限られず、直並列接続されていてもよい。この場合、電池モジュールMおよび電池セルCの直列もしくは並列接続が並列もしくは直列に複数接続される。
【0017】
CMU122は、電池モジュールM毎に設けられ、電池モジュールと接続している。CMU122は、センサ(図示せず)を有し、蓄電池12の状態に関するデータを取得する。CMU122は、例えば、電圧および温度のデータを取得する。CMU122は、蓄電池12の状態に関するデータをBMU123に送信する。CMU122は、例えば、電池セルC毎の電圧および温度等のデータをBMU123に送信する。尚、温度は隣接する電池セルC間ではほとんど変化がないため、CMU122は、複数の電池セルC毎の温度データを取得してもよい。
【0018】
BMU123は、CMU122と接続している。BMU123は、センサ(図示せず)を有し、蓄電池12の状態に関するデータを取得する。BMU123は、例えば、電流のデータを取得する。CMU122は、対応する電池モジュールMの状態に関するデータをBMU123に送信する。BMU123は、例えば、電池モジュールMに流れる電流の電流値と、CMU122から受信した電圧および温度等のデータと、を上位装置121に送信する。尚、BMU123は、必要に応じてデータを加工し、上位装置121に送信してもよい。
【0019】
上位装置121は、各電池ユニットUからデータを取得し、車両監視制御部11や地上システム2との間でデータを送受信する。尚、上位装置121は、必要に応じてデータを加工し、車両監視制御部11や地上システム2に送信してもよい。
【0020】
地上システム2は、データベース21と、電池劣化評価装置22と、を備える。
【0021】
データ保存部としてのデータベース21は、各種データを保存する。データベース21は、例えば、車両監視制御部11および上位装置121から送られたデータを保存する。
【0022】
電池劣化評価装置22は、蓄電池シミュレータ221と、分析評価部222と、表示制御部223と、報知制御部224と、を備える。ここで、蓄電池シミュレータ221は必ずしも電池劣化評価装置22になくてもよく、事前にシミュレーションした結果やデータを分析評価部222もしくはデータベース21中などに含めてもよい。
【0023】
シミュレーション部としての蓄電池シミュレータ221は、蓄電池12の想定される使用条件(温度、充放電や休止パターンなど)及び電池構成に対して、電池セルの充放電試験装置等で得られている試験結果を用いて、設計時に電池劣化状態(運用前の劣化予測)をシミュレーションする。すなわち、蓄電池シミュレータ221は、蓄電池12の劣化状態を蓄電池12の運用前にシミュレーションする。より詳細には、蓄電池シミュレータ221は、蓄電池12の所定の使用条件を模擬する試験の結果に基づいて、運用前に蓄電池12の劣化状態をシミュレーションする。
【0024】
また、電池の劣化状態は、電池の健全性を示すSOH(State of Health)とも呼ばれる場合がある。劣化状態は、例えば、電池容量の減少や、内部抵抗の上昇等を含む。劣化状態は、例えば、初期の電池容量に対する劣化後(或る時点)の電池容量の比率を示す容量維持率、および、初期の内部抵抗に対する劣化後(或る時点)の内部抵抗の増加率が含まれる。また、劣化状態は、電池電圧の変化から算出される。劣化状態は、例えば、標準偏差法または充電曲線解析法等により評価されてもよい。尚、劣化状態の詳細については、後で説明する。
【0025】
分析評価部222は、運用中の蓄電池12の稼働データに基づいて劣化状態を算出する。「運用中」は、充放電中だけではなく、動作せずに搭載されているだけの状態も含む。稼働データは、実測のデータであり、例えば、電流、電圧、温度、SOC、使用時間等を含む。分析評価部222は、例えば、劣化度を評価して蓄電池12の寿命や交換時期を推定する。稼働データを用いることにより、蓄電池の劣化の算出精度を向上させることができる。また、分析評価部222は、複数の算出された劣化状態を組み合わせて、蓄電池12の劣化を評価してもよい。すなわち、分析評価部222は、蓄電池12の実使用環境および稼働データの少なくとも1つと、蓄電池シミュレータ221のシミュレーション結果と、に基づいて、運用中の蓄電池12の劣化を評価する。実使用環境は、外環境情報および充放電パターンを含む。外環境情報は、例えば、車両運行時の湿度および気温、電池設置場所の温度、振動等を含む。充放電パターンは、蓄電池シミュレータ221において説明した、充放電や休止パターンである。また、分析評価部222は、実使用環境および稼働データの少なくとも1つに基づいて蓄電池12の劣化状態を算出し、算出した劣化状態と、シミュレーションされた劣化状態との比較に基づいて、運用中の蓄電池12の劣化を評価する。また、分析評価部222は、算出した劣化状態の推移、稼働データ、および、蓄電池12の稼働状況の少なくとも1つに基づいて、蓄電池12の将来の劣化状態を推定する。稼働状況は、実際に運用が行われた実使用環境である。
【0026】
また、稼働データは、所定の周期(例えば、数秒に1回)でデータベースに蓄積される。分析評価部222は、この稼働データを用いて、最新の劣化状態を算出する。また、分析評価部222は、所定の期間毎に、劣化状態を算出し、蓄電池12の劣化を評価する。分析評価部222は、例えば、週に1回、劣化状態の算出および蓄電池12の劣化の評価を行う。また、分析評価部222は、データベースに既に蓄積されている稼働データ(過去の稼働データ)を用いて、将来の劣化状態を推定する。
【0027】
図2は、SOHと運用期間との関係の一例を示す図である。縦軸はSOHを示し、横軸は運用期間を示す。L1は、運用前に蓄電池シミュレータ221によりシミュレーションされたSOH(電池容量でのケース)の予測の一例を示す。L2は、分析評価部222により運用中の情報に基づいて計算されたSOHの一例を示す。
図2に示すように、L1およびL2は、運用期間が増える毎にSOHが減少することを示す。
図2に示す例では、L1はL2より大きい。Dは、L1とL2との差を示す。
【0028】
また、分析評価部222は、上記のように、例えば、1週間毎に、劣化状態を算出する。L2は稼働データの蓄積によって計算されるため、運用期間が増える毎に、データ点が増えていく。これにより、蓄電池12の劣化を最新の状態で評価することができる。また、比較により、使用条件等によるシミュレーション(初期の予測)とのずれが無いかを確認することもできる。
【0029】
より詳細には、分析評価部222は、或る運用期間Tにおいて差Dが所定値以上である場合、蓄電池12の異常を判定する。所定値は、例えば、予め設定されてもよく、稼働データに基づいて設定されてもよい。また、分析評価部222は、差Dには関係なく予め設定されたSOH値(例えば、初期電池容量値の80%)を用いて蓄電池12の劣化を評価してもよい。
図2の低運用期間に示すように、差Dが小さい場合、分析評価部222は、例えば、蓄電池12がシミュレーション通りに劣化していると評価する。一方、
図2の高運用期間に示すように、差Dが大きい場合、分析評価部222は、例えば、シミュレーションよりも劣化が速く、蓄電池12の寿命がシミュレーションよりも短くなっていると評価する。すなわち、分析評価部222は、蓄電池12に異常が発生していると評価する。尚、差Dが所定値以上であり、かつ、L2がL1よりも大きい場合、分析評価部222は、例えば、シミュレーションよりも劣化が遅く、蓄電池12の寿命がシミュレーションよりも長くなっていると評価することができる。また、L2実データによる算出結果に基づいて、或る運用期間Tで劣化推定を行い、L3推定結果を求めることができる。それ以降は、この推定結果と実データによる算出結果により、分析評価を行う。
【0030】
また、分析評価部222は、蓄電池12の充電状態を算出する。分析評価部222は、例えば、蓄電池12の開回路電圧に基づいて、充電状態を算出する。算出した充電状態は、後で説明する劣化状態の算出に用いられる。開回路電圧は、蓄電池に流れる電流がゼロの状態(開回路状態)における電圧を示す。尚、開回路電圧は、以下では、OCV(Open Circuit Voltage)とも呼ばれる場合がある。分析評価部222は、例えば、0.1C等の低いCレート(充電及び放電のスピード)の充放電電流による電圧に基づいて、開回路電圧を算出することもできる。
【0031】
図3は、セル電圧とSOC(State of Charge)との関係の一例を示す図である。縦軸は、電池セルCの端子電圧(セル電圧)を示し、横軸は、SOCを示す。充電時では、内部抵抗が存在するため、OCVのカーブに過電圧が加わる。従って、充電時のセル電圧は、OCVよりも高くなる。一方、放電時のセル電圧は、内部抵抗により、OCVよりも低くなる。先に、0.1C等の低いCレートと述べたのは、充放電電流の大きさによりセル電圧が変化するためである。
【0032】
また、分析評価部222は、測定した充電状態に基づいて蓄電池12の劣化を算出する。
図3に示すように、SOCによって、セル電圧(内部抵抗)、すなわち、劣化状態が変化してしまう。そこで、劣化評価の際に、分析評価部222は、開回路電圧から現在のSOCを算出する。分析評価部222は、例えば、所定のSOCを基準として劣化状態を評価する。これにより、蓄電池12の劣化の評価精度を向上させることができる。
【0033】
また、
図1に示すように、分析評価部222は、電池セルC毎の稼働データに基づいて、運用中の蓄電池12の劣化を評価する。分析評価部222は、例えば、電池セルC毎の温度、電流および電圧の挙動に基づいて、電池セルC毎の劣化状態を算出する。分析評価部222は、例えば、算出した電池セルC毎の劣化状態に基づいて、蓄電池12の劣化を評価する。これにより、詳細な検証により蓄電池12の劣化を評価することができる。尚、温度は、電池セルC毎に限られない。これは、隣接する電池セルC間では温度差がほとんどないためである。従って、例えば、電池セルCの温度として、該電池セルCに最も近い温度センサの検出値を用いられてもよい。
【0034】
また、分析評価部222は、蓄電池12が使用される機器の状態(車両状態)および蓄電池12の前日の使用履歴の少なくとも1つと、稼働データと、に基づいて、劣化状態を算出する。車両状態は、例えば、走行速度、重量、動作状態等を含む。動作状態は、例えば、無通電状態や、停車、力行、惰行、回生、主幹制御器(アクセル)の状態等を含む。劣化状態は、車両状態によって変化する。そこで、車両状態を考慮することにより、劣化状態の算出精度を向上させ、電池の劣化の評価精度を向上させることができる。
【0035】
前日の使用履歴は、鉄道車両1の前日の運行履歴である。前日の運行履歴は、例えば、運行していない、充電で終わった、放電で終わった等を含む。前日の運行履歴によっては、SOCが同じあっても、蓄電池12の抵抗値が異なってくる場合がある。例えば、リチウムイオン電池の電極内のリチウムイオン濃度の影響について見た場合について説明をする。充電を行った場合、リチウムイオンは正極表面から負極表面に移動するので、充電後の正極表面のリチウムの濃度は、正極内部よりも低くなり、負極表面のリチウムの濃度は負極内部よりも高くなる。また放電を行った場合、リチウムイオンは負極表面から正極表面へ移動するので、放電後の正極表面のリチウムの濃度は、正極内部よりも高くなり、負極表面のリチウムの濃度は負極内部よりも低くなる事から充電後と放電後では電極内のリチウムイオン濃度の状態に差が発生している。従って、充電後の電池に対して充電抵抗を計測すると、負極ではリチウムイオン濃度が更に高まる方向であり抵抗の上昇となり、放電抵抗を計測するとリチウムイオン濃度が低い正極へのリチウム移動となり抵抗は低い方向となる。放電後の電池に対する充電抵抗測定、放電抵抗測定においてはこの逆の挙動となる。このように、前日の運行履歴によって、抵抗値が変化してしまう。そこで、前日の使用履歴を考慮することにより、劣化状態の推定精度を向上させ、蓄電池12の劣化の評価精度を向上させることができる。
【0036】
また、分析評価部222は、地上システム2上に設けられる。また、分析評価部222は、データベース21に保存される稼働データに基づいて、劣化状態を算出する。稼働データは、データベース21にリアルタイムに記憶される。従って、分析評価部222は、電池の劣化をリアルタイムに評価することができる。また、分析評価部222は、蓄電池12の評価結果に基づいて(劣化状態に応じて)、メンテナンス(メンテナンスサービス)の順序およびスケジュール等の少なくとも1つを最適化してもよい。
【0037】
表示制御部223は、分析評価部222の評価結果を表示するように表示部を制御する。表示部(図示せず)は、例えば、地上システム2や車両監視制御部11内に設けられてよく、その他データを送受信する表示部であってもよい。
【0038】
報知制御部224は、差Dが所定値以上である場合、差Dが所定値以上であることを報知するように報知部を制御する。より詳細には、報知制御部224は、差Dが所定値以上である場合、蓄電池12の異常を報知するように報知部を制御する。報知部(図示せず)は、例えば、電池劣化評価システム100内に設けられ、メンテナンス員にメンテナンスサービスを実施することを報知する。これにより、例えば、電池交換が行われる。尚、報知制御部224は、
図2において、L2がL1よりも所定値以上大きくなっている場合も、報知してもよい。この場合、シミュレーションよりも、劣化が抑制されている。従って、メンテナンスの頻度を減らす等により、劣化状態に適した管理を行うことができる。
【0039】
次に、稼働データの抽出の詳細について説明する。
【0040】
分析評価部222は、蓄電池12の所定の稼働状況に対応する稼働データを抽出し、抽出した稼働データに基づいて劣化状態を算出する。所定の稼働状況は、蓄電池12の特徴的な動作である。所定の稼働状況は、例えば、蓄電池12が搭載(使用)される機器の所定の動作である。所定の稼働状況は、例えば、鉄道車両1のエンジン起動後の何秒後や、モータに電流が流れることによる加速中、減速中等である。また、所定の稼働状況は、ハイブリッド車やバス等に設けられる蓄電池の充電中等でもよい。これにより、劣化の評価精度を向上させることができる。尚、所定の稼働状況は、例えば、予めユーザにより設定される。
【0041】
尚、電池の特徴的な動作パターンを選択することが難しい場合もある。この場合、分析評価部222は、蓄電池12が使用される機器の動作情報に基づいて設定される抽出条件に対応する稼働データを抽出し、抽出した稼働データに基づいて劣化状態を算出すればよい。抽出条件は、例えば、劣化の傾向が認識できるように、上記の所定の使用条件よりも長い期間が設定される。抽出条件は、例えば、力行区間等である。この場合も、劣化の評価精度を向上させることができる。尚、抽出条件は、例えば、予めユーザにより設定される。
【0042】
次に、劣化状態として、ΔV/ΔI法を用いる場合、標準偏差法を用いる場合、および充電曲線解析法について、説明する。尚、上記のように、劣化状態として、容量維持率が用いられてもよい。
【0043】
(ΔV/ΔI法)
分析評価部222は、蓄電池12の充電状態を算出する。また、分析評価部222は、算出した充電状態、充放電中における蓄電池12を流れる電流の電流変化、および、蓄電池12の電圧変化に基づいて、蓄電池の内部抵抗を算出する。例えば、或る時点で電流値I1および電圧V1が測定される。例えば、或る時点から数秒後に、電流値I2および電圧V2が測定される。この場合、内部抵抗Rは、式1により算出される。
R=(V1-V2)/(I1-I2) (式1)
尚、分析評価部222は、2点に限られず、複数のデータ点を近似する直線の傾きを算出することにより、内部抵抗を算出してもよい。
【0044】
また、分析評価部222は、蓄電池12の温度に基づいて、算出した内部抵抗を補正する。内部抵抗は、温度によって変化する。そこで、分析評価部222は、例えば、予め設定される温度と内部抵抗との関係のテーブルを用いて、内部抵抗を補正する。これにより、温度による内部抵抗の変化を考慮して、蓄電池12の劣化の評価精度を向上させることができる。
【0045】
(標準偏差法、充電曲線解析法)
分析評価部222は、充放電中における、蓄電池12の充電状態(SOC)と蓄電池12の電圧との関係に基づいて、劣化状態を評価する。より詳細には、分析評価部222は、蓄電池12のSOCと蓄電池12の電圧の分布(ばらつき)との関係に基づいて、劣化状態を評価する。
図3に示すように、内部抵抗によって、充放電間に電圧差が生じる。SOHが低下して内部抵抗が大きくなると、充放電カーブにおけるセル電圧の分布が広くなる。これを利用することにより、セル電圧からSOHを推定することができる。例えば、セル電圧の分布と、SOHが対応づけられたテーブルが、予め作成される。また、充電時における閉回路電圧により電池の劣化状態を、例えば充電曲線解析法により、算出することができる。すなわち、分析評価部222は、蓄電池12の閉回路電圧および蓄電池12の充電状態に基づいて、劣化状態を算出してもよい。充電曲線解析法では、例えば、SOCに対する閉回路電圧の変化をフィッティングすることにより、内部抵抗および容量維持率を算出できる。なお、取得したデータの分析評価においてここで示した以外の劣化状態評価手法、例えばウェーブレット変換法、SOC差を用いた電池容量推定方式などを用いてもよい。さらに、蓄電池シミュレータ221に運用中の稼働データを用いて電池劣化状態をシミュレーションすることも可能である。
【0046】
また、複数の劣化状態評価手法を用いて、各手法結果を比較することにより評価し劣化状態評価の最適化を行ってもよい。劣化状態評価手法により求めた、運用前と或る運用期間T時の電池セルの内部抵抗の度数分布の一例を
図4に示す。運用前に電池セルの内部抵抗は平均値R
0を中心に分布しており、或る運用期間Tには、内部抵抗が高くなるとともに平均値R
tを中心に運用前より広がって分布している。内部抵抗値R
d(例えば、初期内部抵抗値R
0の150%)を超える領域(劣化領域)にある電池セルを劣化していると判断し、交換が必要である。モジュール毎に交換する場合は、これらの電池セルを含むモジュールを交換すればよい。また、劣化状態評価手法により求めた、運用前と或る運用期間T時の電池セルの電池容量の度数分布の一例を
図5に示す。運用前に電池セルの電池容量は平均値Q
0を中心に分布しており、或る運用期間Tには、電池容量が減少しており平均値Q
tを中心に運用前より広がって分布している。電池容量値Q
d(例えば、初期電池容量値Q
0の80%)より低い領域(劣化領域)にある電池セルを劣化していると判断し、交換が必要である。モジュール毎に交換する場合は、これらの電池セルを含むモジュールを交換すればよい。
【0047】
さらに、
図2の或る運用期間Tで運用前(設計時)のシミュレーションによる劣化状態推定予測と比較した後は、それ以降は、時系列分析(ARモデル、MAモデル、ARMAモデル、ARIMAモデル、SARIMAモデル、状態空間モデル等)、機械学習としてリカレントニューラルネットワーク(RNN)のLSTM(Long Short Term Memory)等、もしくは蓄電池シミュレータ221に運用中の実使用条件を用いたシミュレーション予測など、のいずれかの一つもしくは複数の比較により寿命を推定してもよい。すなわち、ここからこの推定結果が最初に行った蓄電池シミュレーションによる予測に置き換わり、以降実データによる算出結果との比較を行っていく。このように、順次予測もしくは推定を置き換えて、寿命予測(推定)の精度を上げていく。実使用条件は、実際に実行された使用条件であり、稼働状況でもある。将来の劣化状態の推定方法として、例えば、劣化状態の推移を外挿する、すでに得られた稼働データおよび稼働状況を用いシミュレーションする、または、機械学習による推定が用いられる。尚、シミュレーションが行われる場合、「稼働状況」は、L1のシミュレーション時の「使用条件」に対応する。従って、L3のシミュレーション方法は、L1と同じでよい。しかし、充放電試験装置等で得られている試験結果ではなく、稼働データおよび稼働状況の少なくとも1つが用いられているため、L3はL1よりも精度が高い。また、実際の使用条件は、シミュレーション時点での使用条件と異なる場合があるため、L3はL1と異なる場合もある。また、分析評価部222は、L3とL1との差も蓄電池12の劣化の評価に用いてもよい。
【0048】
鉄道車両1中には少なくとも1以上の複数の蓄電池12があるため、分析評価部222は、蓄電池12毎に劣化状態評価を行い、蓄電池12の劣化状態に応じてメンテナンスサービスの順序、スケジュールなどの最適化を行ってもよい。とりわけ複数の蓄電池12がある場合に効果を発揮する。例えば、鉄道車両1の編成構成に応じて、力行アシストに主に用いた蓄電池12と、補機(照明、エアコン、ブレーキのコンプレッサーなど)に主に用いた蓄電池12は、その劣化状態が異なるためである。なお、このようなサービスの分析は、分析評価部222以外(図示しない)が行ってもよい。
【0049】
以上のように、第1実施形態によれば、蓄電池シミュレータ221は、蓄電池12の想定される使用条件に基づいて、電池セルの定型充放電試験等で得られる試験結果を用いて、運用前に蓄電池12の劣化状態をシミュレーション(運用前の劣化予測)する。また、分析評価部222は、運用中の蓄電池12の稼働データ稼働データに基づいて劣化状態を算出する。分析評価部222は、シミュレーションされた劣化予測と運用中のデータにより算出された劣化状態との比較に基づいて、蓄電池12の劣化を評価する。例えば、分析評価部222は、現状の劣化状態を算出し、また、想定した使用目的(条件)での予想寿命との比較も評価することもできる。劣化状態のシミュレーションを用いた比較により、蓄電池12の劣化の評価精度を向上させることができる。さらに、現状までの劣化状態の推移と過去の稼働データにより、寿命があと何年もつかを推定することができる。これにより、蓄電池12の適切な交換タイミングを決定することができる。従って、鉄道車両1を止める際の影響が小さくなるよう電池交換のタイミングを決定することができる。
【0050】
シミュレーション結果との比較が行われない場合、通常、例えば、SOHの初期値からの変化を見て、寿命を判断する必要がある。これに対し、第1実施形態では、実際の劣化の進み具合と、使用目的に対応するシミュレーションと、を比較し、実際の結果とシミュレーション結果とのずれを評価することができる。この結果、当初の使用目的から逸脱した使い方がされているか等、蓄電池の劣化をより適切に評価することができる。また、劣化の進み具合が異なる様々な蓄電池12に対しても適切に劣化を評価することができる。また、報知制御部224は、実際の劣化の進み具合とシミュレーション結果とのずれが大きくなることを報知部に報知させることにより、故障診断としても機能する。
【0051】
尚、データベース21および電池劣化評価装置22は、地上システム2上に限られず、例えば、鉄道車両1等の所定の位置に設けられてもよい。
【0052】
(変形例)
第1実施形態の変形例は、電池モジュールM毎または電池ユニットU毎に劣化状態を評価する点で、第1実施形態と異なる。
【0053】
分析評価部222は、複数の電池セルCの稼働データ(例えば、電圧)の代表値、少なくとも1つの電池セルCを有する電池モジュールMの稼働データ、または、少なくとも1つの電池モジュールMを有する電池ユニットUの稼働データに基づいて、劣化状態を推定する。例えば、BMU123または上位装置121は、CMU122からセル電圧のデータを取得し、またはデータベース21もしくは分析評価部222などでセル電圧のデータを取得し、代表値を算出する。代表値は、例えば、最小値や、最大値、中央値、平均値等である。この場合、電池セルC毎ではなく、電池モジュールM毎や電池ユニットUに、稼働データがデータベース21に保存される。また、電池モジュールM毎や電池ユニットU毎に電圧センサが設けられ、電池モジュールMの電圧や電池ユニットUの電圧が直接測定されてもよい。
【0054】
第1実施形態では、各電池セルCを評価する。しかし、例えば、1つの蓄電池12に数千個の電池セルが設けられる場合、セル単位のデータが多くなるため、地上システム2上のデータベース21で保存することが困難になる場合がある。そこで、一部の評価については、電池セルC毎ではなく、電池モジュールM毎や電池ユニットU毎のデータにより評価が行われてもよい。この場合、例えば、
図3に示すセル電圧がモジュール電圧、ユニット電圧であってもよい。また、評価項目によって、電池セルC毎、電池モジュールM毎、電池ユニットU毎の使い分けが行われてもよい。
【0055】
変形例による電池劣化評価装置22は、第1実施形態と同様の効果を得ることができる。
【0056】
本実施形態による電池劣化評価装置22の少なくとも一部は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、電池劣化評価装置22の少なくとも一部の機能を実現するプログラムをフレキシブルディスクやCD-ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。また、電池劣化評価装置22の少なくとも一部の機能を実現するプログラムを、インターネット等の通信回線(無線通信も含む)を介して頒布してもよい。さらに、同プログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、あるいは記録媒体に収納して頒布してもよい。
【0057】
次に、第2実施形態としてクラウドを用いた時の電池劣化評価システムを説明する。ここで、第1の実施形態と同じものについては説明を省く。
【0058】
(第2実施形態)
図6は、第2実施形態による電池劣化評価システム100aの構成を示すブロック図である。電池劣化評価システム100aは鉄道車両1などに設けられる蓄電池12の劣化評価や異常判定を行う。
【0059】
電池劣化評価システム100aは、鉄道車両1と、クラウドサーバ2aと運行管理・監視センター3と、を備える。車両監視制御部11は、車両監視に用いるデータを運行管理・監視センター3やクラウドサーバ2aに送信する。また、上位装置121は、蓄電池12に関するデータを車両監視制御部11、クラウドサーバ2aや運行管理・監視センター3に送信する。
【0060】
運行管理・監視センター3は、鉄道車両1との間でデータを送受信し、鉄道車両1の運行管理、監視を行う。例えば、監視員が鉄道車両1から送られたデータを確認しながら車両の監視を行う。
【0061】
クラウドサーバ2aは、データベース21と、電池劣化評価装置22と、を備える。その他の構成等については第1実施形態と同じである。
【0062】
クラウドを用いるとシステムの拡張性があるため容易に大容量のデータを扱えるようになる。このため、システムの大きな変更なしに1以上の複数の鉄道車両のデータを扱えるようになる。したがって、データベース21は1以上の複数の鉄道車両のデータを取得し、分析評価部222は劣化状態評価をすることが可能になるため、車両の劣化状態に応じてメンテナンスサービスの順序、スケジュールなどの最適化を行ってもよい。とりわけ複数の車両がある場合に効果を発揮する。また、鉄道軌道上の車両の位置、部品のストック、作業員の数、スケジュール、費用などに応じて最適なサービスステーションなどを見出すことを行ってもよい。すなわち、メンテナンスサービスのために起こすべき次の意思決定/選択肢を導く分析を行ってもよい。なお、このようなサービスの分析は、分析評価部222以外(図示しない)が行ってもよい。
【0063】
以上のように、クラウドを利用した場合においても第1実施形態と同様な効果を得ることができる。
【0064】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0065】
100、100a 電池劣化評価システム、1 鉄道車両、12 蓄電池、U 電池ユニット、M 電池モジュール、C 電池セル、21 データベース、22 電池劣化評価装置、221 蓄電池シミュレータ、222 分析評価部、223 表示制御部、224 報知制御部、D 差