(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-09
(45)【発行日】2024-08-20
(54)【発明の名称】画像処理装置及び超音波診断装置
(51)【国際特許分類】
A61B 8/14 20060101AFI20240813BHJP
【FI】
A61B8/14
(21)【出願番号】P 2020147657
(22)【出願日】2020-09-02
【審査請求日】2023-07-04
(73)【特許権者】
【識別番号】594164542
【氏名又は名称】キヤノンメディカルシステムズ株式会社
(74)【代理人】
【識別番号】110001380
【氏名又は名称】弁理士法人東京国際特許事務所
(72)【発明者】
【氏名】後藤 功太
【審査官】永田 浩司
(56)【参考文献】
【文献】国際公開第2008/010375(WO,A1)
【文献】特開2018-139686(JP,A)
【文献】米国特許第10624612(US,B2)
【文献】米国特許第11125866(US,B2)
【文献】米国特許第9569841(US,B2)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 8/00 ー 8/15
(57)【特許請求の範囲】
【請求項1】
超音波スキャンにより取得された被検体内部を描画する画像データを取得する画像取得部と、
前記画像データに対して画像処理を施し、前記画像処理前の画像データと、前記画像処理後の画像データとを、画像部分ごとに合成率を変更して合成する画像処理部と、
を有し、
前記画像処理部は、送信超音波の周波数と、撮影部位との少なくとも1つに応じて、前記画像部分に分割する方向と、前記画像部分の分割の数と、前記合成率とのうち少なくとも1つを設定する、
画像処理装置。
【請求項2】
超音波スキャンにより取得された被検体内部を描画する画像データを取得する画像取得部と、
前記画像データに対して画像処理を施し、前記画像処理前の画像データと、前記画像処理後の画像データとを、画像部分ごとに合成率を変更して合成する画像処理部と、
を有し、
前記画像処理部は、前記画像処理として、スペックル除去処理を行い、前記画像処理前の画像データを階層的に多重解像度分解する、
画像処理装置。
【請求項3】
前記画像処理部は、前記画像処理前の画像データと、前記画像処理後の画像データとを、深さ方向に分割された画像部分ごとに前記合成率を変更して合成する、
請求項1
又は2に記載の画像処理装置。
【請求項4】
前記画像処理部は、深い画像部分と浅い画像部分とで、前記画像処理後の画像データの合成率を異ならせる、
請求項
3に記載の画像処理装置。
【請求項5】
前記画像処理部は、前記深い画像部分については、前記浅い画像部分と比較して、前記画像処理後の画像データの合成率を小さくする、
請求項
4に記載の画像処理装置。
【請求項6】
前記画像処理部は、前記画像処理前の画像データと、前記画像処理後の画像データとを、深さ方向に直交する方向に分割された画像部分ごとに前記合成率を変更して合成する、
請求項1
又は2に記載の画像処理装置。
【請求項7】
超音波スキャンにより取得された被検体内部を描画する画像データを取得する画像取得部と、
前記画像データに対して画像処理を施し、前記画像処理前の画像データと、前記画像処理後の画像データとを、画像部分ごとに合成率を変更して合成する画像処理部と、
を有
し、
前記画像処理部は、送信超音波の周波数と、撮影部位との少なくとも1つに応じて、前記画像部分に分割する方向と、前記画像部分の分割の数と、前記合成率とのうち少なくとも1つを設定する、
超音波診断装置。
【請求項8】
超音波スキャンにより取得された被検体内部を描画する画像データを取得する画像取得部と、
前記画像データに対して画像処理を施し、前記画像処理前の画像データと、前記画像処理後の画像データとを、画像部分ごとに合成率を変更して合成する画像処理部と、
を有
し、
前記画像処理部は、前記画像処理として、スペックル除去処理を行い、前記画像処理前の画像データを階層的に多重解像度分解する、
超音波診断装置。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書及び図面に開示の実施形態は、画像処理装置及び超音波診断装置に関する。
【背景技術】
【0002】
医用分野では、超音波プローブの複数の振動子(圧電振動子)を用いて発生させた超音波を利用して、被検体内部を画像化する超音波診断装置が使用されている。超音波診断装置は、超音波診断装置に接続された超音波プローブから被検体内に超音波を送信させ、反射波に基づくエコー信号を生成し、画像処理によって所望の超音波画像を得る。
【0003】
超音波診断装置において、画像データに対して種々の画像処理を行っている。画像データに対する画像処理は、画像データの中の構造物の視認性向上、ノイズ低減、スペックルリダクション効果を加えることで診断の効率化を図る目的で行われる。また、画像処理済の画像データのみを出力すると多少の違和感も生じる場合があるため、非処理の画像データと、画像処理済の画像データとを合成することでその違和感を低減することも行われている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
本明細書及び図面に開示の実施形態が解決しようとする課題の一つは、診断に適した超音波画像データを提供することである。ただし、本明細書及び図面に開示の実施形態により解決しようとする課題は上記課題に限られない。後述する実施形態に示す各構成による各効果に対応する課題を他の課題として位置づけることもできる。
【課題を解決するための手段】
【0006】
実施形態に係る画像処理装置は、画像取得部と、画像処理部とを備える。画像取得部は、超音波スキャンにより取得された被検体内部を描画する画像データを取得する。画像処理部は、画像データに対して画像処理を施し、画像処理前の画像データと、画像処理後の画像データとを、画像部分ごとに合成率を変更して合成する。
【図面の簡単な説明】
【0007】
【
図1】
図1は、第1の実施形態に係る画像処理装置を設ける超音波診断装置の構成の一例を示す概略図。
【
図2】
図2は、第1の実施形態に係る画像処理装置の画像処理回路によるスペックル除去処理を説明するための図。
【
図3】
図3は、第1の実施形態に係る画像処理装置の画像処理回路によるスペックル除去処理における、非線形異方性拡散のフィルタ処理の手順をフローチャートとして示す図。
【
図4】
図4は、第1の実施形態に係る画像処理装置の画像処理回路による合成処理機能を説明するための図。
【
図5】
図5は、第1の実施形態に係る画像処理装置の画像処理回路による合成処理機能を説明するための図。
【
図6】
図6(A)は、比較例に係る表示画像データを示す図、(B)は、第1の実施形態に係る表示画像データを示す図。
【
図7】
図7は、第1の実施形態に係る画像処理装置を備えた超音波診断装置の動作の一例をフローチャートとして示す図。
【
図8】
図8は、第2の実施形態に係る画像処理装置の構成を示す概略図。
【
図9】
図9は、第2の実施形態に係る画像処理装置の機能を示すブロック図。
【発明を実施するための形態】
【0008】
以下、図面を参照しながら、画像処理装置及び超音波診断装置の実施形態について詳細に説明する。
【0009】
実施形態に係る画像処理装置は、医用画像を生成する医用画像診断装置の一部として設けられる。以下、第1の実施形態において、画像処理装置が、医用画像診断装置としての超音波診断装置の一部として設けられる場合について説明する。また、第2の実施形態において、画像処理装置が、医用画像診断装置としての超音波診断装置の外部に設けられる場合について説明する。
【0010】
(第1の実施形態)
図1は、第1の実施形態に係る画像処理装置を設ける超音波診断装置の構成の一例を示す概略図である。
【0011】
図1は、第1の実施形態に係る画像処理装置10を設ける超音波診断装置1を示す。超音波診断装置1は、画像処理装置10と、超音波プローブ20と、入力インターフェース30と、ディスプレイ40とを示す。なお、画像処理装置10に、超音波プローブ20と、入力インターフェース30と、ディスプレイ40とのうちの少なくとも1個を加えた装置を画像処理装置と称する場合もある。以下の説明では、画像処理装置10の外部に、超音波プローブ20と、入力インターフェース30と、ディスプレイ40との全てが備えられる場合について説明する。
【0012】
画像処理装置10は、送受信回路11と、Bモード処理回路12と、ドプラ処理回路13と、画像処理回路14と、表示制御回路15と、画像メモリ16と、ネットワークインターフェース17と、制御回路18と、メインメモリ19とを備える。回路11~15は、特定用途向け集積回路(ASIC:Application Specific Integrated Circuit)等によって構成されるものである。しかしながら、その場合に限定されるものではなく、回路11~15の機能の全部又は一部は、制御回路18がプログラムを実行することで実現されるものであってもよい。
【0013】
送受信回路11は、送信回路と受信回路(図示省略)を有する。送受信回路11は、制御回路18による制御の下、超音波の送受信における送信指向性と受信指向性とを制御する。なお、送受信回路11が画像処理装置10に設けられる場合について説明するが、送受信回路11は、超音波プローブ20に設けられてもよいし、画像処理装置10と超音波プローブ20との両方に設けられてもよい。なお、送受信回路11は、送受信部の一例である。
【0014】
送信回路は、パルス発生回路と、送信遅延回路と、パルサ回路等を有し、超音波振動子に駆動信号を供給する。パルス発生回路は、所定のレート周波数で、送信超音波を形成するためのレートパルスを繰り返し発生する。送信遅延回路は、超音波プローブ20の超音波振動子から発生される超音波をビーム状に集束して送信指向性を決定するために必要な圧電振動子ごとの遅延時間を、パルス発生回路が発生する各レートパルスに対し与える。また、パルサ回路は、レートパルスに基づくタイミングで、超音波振動子に駆動パルスを印加する。送信遅延回路は、各レートパルスに対し与える遅延時間を変化させることで、圧電振動子面から送信される超音波ビームの送信方向を任意に調整する。
【0015】
受信回路は、アンプ回路、A/D(Analog to Digital)変換器、及び加算器等を有し、超音波振動子が受信したエコー信号を受け、このエコー信号に対して各種処理を行ってエコーデータを生成する。アンプ回路は、エコー信号をチャンネルごとに増幅してゲイン補正処理を行う。A/D変換器は、ゲイン補正されたエコー信号をA/D変換し、デジタルデータに受信指向性を決定するのに必要な遅延時間を与える。加算器は、A/D変換器によって処理されたエコー信号の加算処理を行ってエコーデータを生成する。加算器の加算処理により、エコー信号の受信指向性に応じた方向からの反射成分が強調される。
【0016】
Bモード処理回路12は、制御回路18による制御の下、受信回路からエコーデータを受信し、対数増幅、及び包絡線検波処理等を行って、信号強度が輝度の明るさで表現されるデータ(2次元又は3次元データ)を生成する。このデータは、一般に、Bモードデータと呼ばれる。なお、Bモード処理回路12は、Bモード処理部の一例である。
【0017】
なお、Bモード処理回路12は、フィルタ処理により、検波周波数を変化させることで、映像化する周波数帯域を変えることができる。Bモード処理回路12のフィルタ処理機能を用いることにより、コントラストハーモニックイメージング(CHI:Contrast Harmonic Imaging)や、ティッシュハーモニックイメージング(THI:Tissue Harmonic Imaging)等のハーモニックイメージングを実行可能である。すなわち、Bモード処理回路12は、造影剤が注入された被検体の反射波データから、造影剤(微小気泡、バブル)を反射源とするハーモニック成分の反射波データ(高調波データ又は分周波データ)と、被検体内の組織を反射源とする基本波成分の反射波データ(基本波データ)とを分離することができる。Bモード処理回路12は、また、ハーモニック成分の反射波データ(受信信号)から、造影画像データを生成するためのBモードデータを生成することができ、また、基本波成分の反射波データ(受信信号)から、基本波(ファンダメンタル)画像データを生成するためのBモードデータを生成することができる。
【0018】
また、Bモード処理回路12のフィルタ処理機能を用いることによるTHIにおいて、被検体の反射波データから、ハーモニック成分の反射波データ(受信信号)である高調波データ又は分周波データを分離することができる。そして、Bモード処理回路12は、ハーモニック成分の反射波データ(受信信号)から、ノイズ成分を除去した組織画像データを生成するためのBモードデータを生成することができる。
【0019】
さらに、CHIやTHIのハーモニックイメージングを行う際、Bモード処理回路12は、上述したフィルタ処理を用いた方法とは異なる方法により、ハーモニック成分を抽出することができる。ハーモニックイメージングでは、振幅変調(AM:Amplitude Modulation)法や位相変調(PM:Phase Modulation)法、AM法及びPM法を組み合わせたAMPM法と呼ばれる映像法が行われる。AM法、PM法及びAMPM法では、同一の走査線に対して振幅や位相が異なる超音波送信を複数回行う。これにより、送受信回路11は、各走査線で複数の反射波データ(受信信号)を生成し出力する。そして、Bモード処理回路12は、各走査線の複数の反射波データ(受信信号)を、変調法に応じた加減算処理することで、ハーモニック成分を抽出する。そして、Bモード処理回路12は、ハーモニック成分の反射波データ(受信信号)に対して包絡線検波処理等を行って、Bモードデータを生成する。
【0020】
例えば、PM法が行われる場合、送受信回路11は、制御回路18が設定したスキャンシーケンスにより、例えば(-1,1)のように、位相極性を反転させた同一振幅の超音波を、各走査線で2回送信させる。そして、送受信回路11は、「-1」の送信による受信信号と、「1」の送信による受信信号とを生成し、Bモード処理回路12は、これら2つの受信信号を加算する。これにより、基本波成分が除去され、2次高調波成分が主に残存した信号が生成される。そして、Bモード処理回路12は、この信号に対して包絡線検波処理等を行って、THIのBモードデータやCHIのBモードデータを生成する。
【0021】
又は、例えば、THIでは、受信信号に含まれる2次高調波成分と差音成分とを用いて映像化を行う方法が実用化されている。差音成分を用いた映像化法では、例えば、中心周波数が「f1」の第1基本波と、中心周波数が「f1」より大きい「f2」の第2基本波とを合成した合成波形の送信超音波を、超音波プローブ20から送信させる。この合成波形は、2次高調波成分と同一の極性を持つ差音成分が発生するように、互いの位相が調整された第1基本波の波形と第2基本波の波形とを合成した波形である。送受信回路11は、合成波形の送信超音波を、位相を反転させながら、例えば、2回送信させる。このような場合には、例えば、Bモード処理回路12は、2つの受信信号を加算することで、基本波成分が除去され、差音成分及び2次高調波成分が主に残存したハーモニック成分を抽出した後、包絡線検波処理等を行う。
【0022】
ドプラ処理回路13は、制御回路18による制御の下、受信回路からのエコーデータから速度情報を周波数解析し、平均速度、分散、パワー等の移動体の移動情報を多点について抽出したデータ(2次元又は3次元データ)を生成する。このデータは、一般に、ドプラデータと呼ばれる。ここで、移動体とは、例えば、血流や、心壁等の組織、造影剤である。なお、ドプラ処理回路13は、ドプラ処理部の一例である。
【0023】
Bモード処理回路12によって生成されるBモードデータや、ドプラ処理回路13によって生成されるドプラデータは、スキャンコンバート処理前の超音波画像データである。一方で、後述する表示制御回路15によって生成されるデータは、スキャンコンバート処理後の表示画像データである。なお、Bモードデータ及びドプラデータは、生データ(Raw Data)とも呼ばれる。
【0024】
画像処理回路14は、制御回路18による制御の下、スキャンコンバージョン処理前の画像データである生データを取得する。画像処理回路14は、取得された生データに基づいて、スペックル除去処理(又は、構造物強調処理)を実行する。次に、超音波診断装置1が有するスペックル除去処理について説明する。
【0025】
超音波は生体の減衰の影響が大きく、周波数依存減衰があるため、超音波画像中の浅い部分と深い部分とでは画が大きく異なる。また、超音波プローブによっては扇状に広がる画像生成をしており、深い部分では走査線密度が粗くなる分、画質も粗くなるため、浅い部分と深い部分とに画像処理の影響の仕方に差が発生する。そのため、浅い部分に適した画像処理の設定とすると深い部分に対する画像処理が強くかかり過ぎになる一方で(
図6(A)に図示)、深い部分に適した設定とすると、近い部分に対する画像処理が弱すぎてしまう結果、いずれも超音波画像全体には均一な画像処理の効果は得られない。
【0026】
そのため、画像処理回路14は、生データに対して画像処理を施し、生データと、画像処理後の画像データとを、画像部分ごとに合成率を変更して合成して調整することで、周波数依存減衰や走査線密度の差による画の差を補正するものである。
【0027】
まず、画像処理回路14は、スペックル除去処理において、生データを階層的に多重解像度分解することで、第1レベルから第nレベル(ただし、nは2以上の自然数)の低域分解画像データと、第1レベルから第nレベルの高域分解画像データとを取得する。そして、画像処理回路14は、一段下の階層からの出力データ又は最も下位の階層における前記低域分解画像データに非線形異方性拡散フィルタを施すとともに、一段下の階層からの出力データ又は最も下位の階層における低域分解画像データから、信号のエッジ情報を階層ごとに生成するフィルタリングを施す。
【0028】
また、画像処理回路14は、各階層のエッジ情報に基づいて、高域分解画像データの信号レベルを階層ごとに制御するとともに、各階層において得られる、非線形異方性拡散フィルタの出力データ及び高域レベル制御の出力データを階層的に多重解像度分解することで、多重解像度分解と非線形異方性拡散フィルタ処理との相乗効果により、スペックル除去を行う。ここで、説明を具体的にするため、多重解像度分解のレベルの数nが3である場合を例とする。しかしながら、その場合に限定されるものではなく、例えば、2以上の自然数であれば、どのような値であってもよい。
【0029】
図2は、画像処理回路14によるスペックル除去処理を説明するための図である。
【0030】
図2に示すように、画像処理回路14は、ウェーブレット変換部14a,14b,14cと、高域レベル制御部14d,14e,14fと、ウェーブレット逆変換部14g,14h,14iと、非線形異方性拡散フィルタ14j,14k,14lとを備える。まず、レベル1のウェーブレット変換部14aは、Bモード処理回路12から入力した画像データ(生データ)を多重解像度分解する。なお、ここで、「ウェーブレット変換」は、離散ウェーブレット変換を意味するものとする。また、ウェーブレット変換は、多重解像度分解のための一例を示すにすぎず、多重解像度分解は、ウェーブレット変換に限定されるものではない。例えば、ラプラシアン・ピラミッド法など他の手法によって多重解像度分解を実現するようにしてもよい。
【0031】
多重解像度分解の結果、分解後の画像データは、分解前に比べ縦横の長さが半分の低域画像データ(LL)と、水平方向高域画像データ(LH)と、垂直方向高域画像データ(HL)と、対角線方向高域画像データ(HH)とに分解される。分解された画像データのうち、低域画像データ(LL)はレベル2のウェーブレット変換部14bに出力されるとともに、水平方向高域画像データ(LH)と、垂直方向高域画像データ(HL)と、対角線方向高域画像データ(HH)とは高域レベル制御部14dに出力される。
【0032】
また、レベル2のウェーブレット変換部14bは、レベル1のウェーブレット変換部14aから入力した低域画像データ(LL)を多重解像度分解して、低域画像データ(LL)と、水平方向高域画像データ(LH)と、垂直方向高域画像データ(HL)と、対角線方向高域画像データ(HH)とを取得する。そして、レベル2のウェーブレット変換部14bは、低域画像データ(LL)をレベル3のウェーブレット変換部14cに出力するとともに、水平方向高域画像データ(LH)と、垂直方向高域画像データ(HL)と、対角線方向高域画像データ(HH)とを高域レベル制御部14eに出力する。
【0033】
さらに、レベル3のウェーブレット変換部14cは、レベル2のウェーブレット変換部14bから入力した低域画像データ(LL)を多重解像度分解して、低域画像データ(LL)と、水平方向高域画像データ(LH)と、垂直方向高域画像データ(HL)と、対角線方向高域画像データ(HH)とを取得する。そして、レベル3のウェーブレット変換部14cは、低域画像データ(LL)を当該レベル3の非線形異方性拡散フィルタ14lに出力するとともに、水平方向高域画像データ(LH)と、垂直方向高域画像データ(HL)と、対角線方向高域画像データ(HH)とを高域レベル制御部14fに出力する。
【0034】
次に、レベル3の非線形異方性拡散フィルタ14lは、低域画像データ(LL)にフィルタリングを施し、当該フィルタリング後の低域画像データ(LL)をウェーブレット逆変換部14iに出力する。また、レベル3の非線形異方性拡散フィルタ14lは、低域画像データ(LL)に基づくエッジ情報も生成し、エッジ情報をウェーブレット逆変換部14iに出力する。
【0035】
ここで、非線形異方性拡散フィルタについて説明する。非線形異方性拡散フィルタは以下の偏微分方程式(1)で表される。
【数1】
【0036】
上記式(1)の「I」は処理する画像の画素レベルを示し、「∇I」はその勾配ベクトル(Gradient Vector)を示し、「t」は処理にかかわる時刻を示す。また、「D」は拡散テンソル(Diffusion Tensor)を示し、次の式(2)ように表すことができる。
【数2】
【0037】
上記式(2)の「R」は回転行列であり、拡散テンソルDは、各画素の勾配ベクトルに対し特定の向きとその垂直方向にそれぞれ係数λ1,λ2をかける演算操作を示すことになる。その向きとは検出された画像のエッジの向きであり、係数はエッジの大きさに依存する。
【0038】
エッジの大きさと向きを検出するには、一般的に当該画像の構造テンソル(Structure Tensor)を求め、その固有値と固有ベクトルを算出する。固有値はエッジの大きさに関連付けられ、固有ベクトルはエッジの向きを表す。構造テンソルは次の式(3)ように定義される。
【数3】
【0039】
ここで、上記式(3)の「Ix」,「Iy」は処理する画像Iのx(水平)方向・y(垂直)方向の空間微分であり、「Gρ」は2次元ガウス関数、演算子「*」は畳み込みを表す。エッジの大きさと向きの算出は必ずしも上記の方法に厳密に従わなくともよく、処理の第1段階として「Ix」,「Iy」を計算するかわりに、ソーベルフィルタ(Sobel Filter)や、多重解像度分解の高域成分を適用してもよい。
【0040】
上記式(2)の係数λ1,λ2の計算方法は各診断分野における超音波画像の特性によって異なってくるが、一般的な数式を用意して、いくつかのパラメータによって調整できるようにすれば便利である。また、フィルタ自体の計算は、偏微分方程式の数値解析的解法によって行う。すなわち、時刻tにおいて、ある点における画素とその周囲の例えば9点における各画素レベル及び拡散テンソルの各要素値から、時刻t+Δtにおけるその点の新たな画素レベルを求め、次にt+Δtを新たなtとして、同様の計算を1回から数回繰り返す。
【0041】
図3は、画像処理回路14によるスペックル除去処理における、非線形異方性拡散フィルタ14l(又は14j,14k)のフィルタ処理の手順を示すフローチャートである。
図3において、「ST」に数字を付した符号はフローチャートの各ステップを示す。
【0042】
図3に示すように、非線形異方性拡散フィルタ14lは、入力した低域画像データ(LL)をx,y方向に微分し(ステップST1)、構造テンソルS
11,S
12,S
22を計算する(ステップST2)。なお、ステップST2における計算には、ガウスフィルタの計算も含まれる。
【0043】
次に、非線形異方性拡散フィルタ14lは、構造テンソルの各要素からエッジの大きさを計算する(ステップST3)。この計算結果は、後段の偏微分方程式計算及び高域レベル制御部14f(又は14d,14e)での処理に利用される。
【0044】
次に、非線形異方性拡散フィルタ14lは、構造テンソルの各要素に基づいて、非線形異方性拡散フィルタの偏微分方程式の数値解析に用いられる各係数を計算する(ステップST4)。なお、当該ステップにおいては、構造テンソルの計算も含まれ、また、処理の効率化のため、エッジの大きさも計算に用いられる。
【0045】
次に、非線形異方性拡散フィルタ14lは、1回、又は数回の偏微分方程式の数値解析的計算を繰り返し実行する(ステップST5)。当該計算によって得られた結果は、ウェーブレット逆変換部14i(又は14g,14h)に出力される。
【0046】
次に、
図2に示すように、レベル3の高域レベル制御部14fは、水平方向高域画像データ(LH)と、垂直方向高域画像データ(HL)と、対角線方向高域画像データ(HH)と、これら3成分に関するエッジ情報を入力し、これに従って高域レベルを制御する。なお、本実施形態では、エッジ情報は、前記構造テンソルの固有値に基づく規格化されたエッジの大きさで、それと各高域画像データとの画素ごとの積をとり、さらにその結果に各高域画像データの制御係数をかけているものとする。他の例としては、エッジの大きさに閾値を設定して閾値以上をエッジとみなし、エッジ以外の領域に各高域画像データの制御係数をかける方法もある。このようにして処理された3枚の高域画像データはウェーブレット逆変換部14iに入力される。
【0047】
ウェーブレット逆変換部14iは、非線形異方性拡散フィルタ14lからの低域画像データ(LL)と、高域レベル制御部14fからの水平方向高域画像データ(LH)と、垂直方向高域画像データ(HL)と、対角線方向高域画像データ(HH)とに基づいて、1枚の合成画像データを生成する。合成画像の縦横の長さは、入力画像の2倍となる。
【0048】
レベル3のウェーブレット逆変換部14iから出力された合成画像は、レベル2の非線形異方性拡散フィルタ14kに入力され、レベル3と同様のフィルタリング処理がなされた後、ウェーブレット逆変換部14hの低域画像入力に送出される。一方、ウェーブレット変換部14bから出力された水平方向高域画像データ(LH)と、垂直方向高域画像データ(HL)と、対角線方向高域画像データ(HH)とは、高域レベル制御部14eにおいてレベル3と同様の高域レベル制御がなされ、ウェーブレット逆変換部14hの高域画像入力へ送出される。ウェーブレット逆変換部14hは、レベル3と同様に、1枚の低域画像データと3枚の高域画像データとに基づいて、1枚の合成画像データを生成する。
【0049】
また、レベル2のウェーブレット逆変換部14hから出力された合成画像データは、レベル1の非線形異方性拡散フィルタ14jに入力され、レベル2,3と同様のフィルタリング処理がなされた後、ウェーブレット逆変換部14gの低域画像入力に送出される。一方、ウェーブレット変換部14aから出力された水平方向高域画像データ(LH)と、垂直方向高域画像データ(HL)と、対角線方向高域画像データ(HH)とは、高域レベル制御部14dにおいてレベル2,3と同様の高域レベル制御がなされ、ウェーブレット逆変換部14gの高域画像入力へ送出される。ウェーブレット逆変換部14gは、レベル2,3と同様に、1枚の低域画像データと3枚の高域画像データとに基づいて、1枚の合成画像データを生成する。
【0050】
図2に示すように、画像処理回路14は、画像合成部14mをさらに備える。画像合成部14mは、生データである画像処理前の画像データと、多重解像度分解後の画像データである画像処理後の画像データとを取得し、画像処理前の画像データと、画像処理後の画像データとをそれぞれ分割する。そして、画像処理回路14は、画像部分ごとの合成率に従って、画像処理前の画像データと、画像処理後の画像データとを合成して、合成画像データを生成する。例えば、画像合成部14mは、画像処理前のデータと、画像処理後の画像データとを深さ方向に複数の画像部分にそれぞれ分割し、画像処理前の画像データと、画像処理後の画像データとを、画像部分ごとに合成率を異ならせるように合成して合成画像データを生成する。例えば、画像合成部14mは、深い画像部分については、浅い画像部分と比較して、画像処理後の画像データの合成率を小さく(元画像である画像処理前の画像データに近く)する。
【0051】
図4及び
図5は、画像処理回路14による合成処理機能を説明するための図である。
【0052】
図4は、深さ方向に複数に分割された、画像処理前の画像データと、画像処理後の画像データとを示す。ここでは、画像処理前の画像データの全体を便宜上「黒」として表現し、画像処理後の画像データの全体を便宜上「白」として表現する。また、各画像データが、深さ方向に3つの画像部分に分割されている。そして、画像処理前と画像処理後との合成率が、浅い画像部分について「0.3:0.7」と設定され、中間の画像部分について「0.6:0.4」と設定され、深い画像部分について「0.9:0.1」と設定される。
【0053】
このように、各画像データを深さ方向に複数に分割し、画像部分ごとに画像処理の設定を変更して合成することで、浅い画像部分にはそれに適した画像処理の設定(画像処理後の「白」に近い薄いグレー)とするとともに、深い画像部分にはそれに適した画像処理の設定(画像処理前の「黒」に近い濃いグレー)とすることができる。それにより、超音波の減衰により深さごとに解像度の差がみられる場合でも、深さごとに強調したい解像度を分けて調整することができるので、均一な合成画像データを生成することができる。
【0054】
なお、画像データを画像部分に分割する数は、
図4に示すような3つに限定されるものではない。また、画像部分の大きさは、
図4に示すような均等である場合に限定されるものではない。加えて、
図4に示す他、画像合成部14mは、深い画像部分について、浅い画像部分と比較して、画像処理後の画像データの合成率を大きく(画像処理後の画像データに近く)することもできる。また、
図4に示すような、浅い画像部分から深い画像部分にかけて画像処理後の画像データの合成率を連続的に小さくする場合に限定されるものではなく、その逆の場合でもよく、また、1又は複数の局所的な画像部分、例えば中央の画像部分における画像処理後の画像データの合成率をその他の画像部分より大きく(又は、小さく)する場合であってもよい。さらに、深さ方向に複数に分割されるものに限定されるものではない。次の、
図5に示すように、深さ方向に直交するチャンネル方向に複数に分割されるものであってもよい。
【0055】
図5は、チャンネル方向に複数に分割された、画像処理前の画像データと、画像処理後の画像データとを示す。ここでは、画像処理前の画像データの全体を便宜上「黒」として表現し、画像処理後の画像データの全体を便宜上「白」として表現する。また、各画像データが、深さ方向に3つの画像部分に分割されている。そして、画像処理前と画像処理後との合成率が、中央の画像部分について「0.6:0.4」と設定され、左右の部分領域についてそれぞれ「0.9:0.1」と設定される。
【0056】
このように、各画像データをチャンネル方向に複数に分割し、画像部分ごとに画像処理の設定を異ならせるように合成することで、中央の画像部分にはそれに適した画像処理の設定(画像処理後の「白」に近い薄いグレー)とするとともに、両側の画像部分にはそれに適した画像処理の設定(画像処理前の「黒」に近い濃いグレー)とすることができる。それにより、ビーム密度の差によりスキャン中心からの距離ごとに解像度の差がみられる場合でも、距離ごとに強調したい解像度を分けて調整することができるので、均一な合成画像データを生成することができる。
【0057】
なお、画像データを画像部分に分割する数は、
図5に示すような3つに限定されるものではない。また、画像部分の大きさは、
図5に示すような均等である場合に限定されるものではない。加えて、
図5に示す他、画像合成部14mは、左右の画像部分について、中央の画像部分と比較して、画像処理後の画像データの合成率を大きく(画像処理後の画像データに近く)することもできる。また、
図5に示すような、1又は複数の局所的な画像部分、例えば中央の画像部分における画像処理後の画像データの合成率をその他の画像部分より大きくする場合に限定されるものではなく、その逆の場合でもよく、また、左の画像部分から右の画像部分にかけて画像処理後の画像データの合成率を連続的に小さく(又は、大きく)する場合であってもよい。
【0058】
さらに、
図4及び
図5に示すような一次元的な分割に限定されるものではなく、二次元的な分割であってもよい。例えば、
図4に示す分割と、
図5に示す分割とが組み合わされる場合である。これにより、深さ、かつ、スキャン中心からの距離に応じて、強調したい解像度を分けて調整することができるので、より均一な合成画像データを生成することができる。
【0059】
図1の説明に戻って、表示制御回路15は、一般的には、画像処理回路14によって生成された合成画像データを、超音波走査の走査線信号列を、テレビ等に代表されるビデオフォーマットの走査線信号列に変換(スキャンコンバート)し、表示画像データを生成する。具体的には、表示制御回路15は、超音波プローブ20による超音波の走査形態に応じて座標変換を行うことで、表示画像データを生成する。また、表示制御回路15は、スキャンコンバート以外に、種々の画像処理として、例えば、スキャンコンバート後の複数の画像フレームを用いて、輝度の平均値画像を再生成する画像処理(平滑化処理)や、画像内で微分フィルタを用いる画像処理(エッジ強調処理)等を行う。また、表示制御回路15は、表示画像データに、種々のパラメータの文字情報、目盛り、ボディーマーク等を合成する。
【0060】
図6(A)は、比較例に係る表示画像データを示す図であり、
図6(B)は、第1の実施形態に係る表示画像データを示す図である。
【0061】
図6(A)は、生データである画像処理前の画像データと、画像処理後の画像データとを、浅い画像部分に適した画像処理の設定で合成した場合の画像合成データに、スキャンコンバート処理を施した場合の超音波画像データ(表示画像データ)を示す。深い画像部分(例えば、破線領域)では、浅い画像部分に適した画像処理の設定により、画像処理が強くかかり過ぎた状態となり、深い画像部分に多少の違和感がでてしまう。
【0062】
一方で、
図6(B)は、画像処理前の画像データと、画像処理後の画像データとを、深さ方向に沿って合成率を変更して合成した場合の画像合成データに、スキャンコンバート処理を施した場合の超音波画像データ(表示画像データ)を示す。深い画像部分(例えば、破線領域)では、深い画像部分に適した画像処理の設定により、画像処理が強くかかり過ぎることを抑制することができ、深い画像部分の違和感を解消することができる。
【0063】
図1の説明に戻って、表示制御回路15は、合成画像データに対して座標変換を行うことで、3次元の合成画像データをボリュームデータとして生成することもできる。そして、表示制御回路15は、3次元メモリに記憶されたボリュームデータをディスプレイ40にて表示するための各種の2次元画像データを生成するために、ボリュームデータに対してレンダリング処理を行う。表示制御回路15は、レンダリング処理として、例えば、断面再構成法(MPR:Multi Planer Reconstruction)を行ってボリュームデータからMPR画像データを生成する処理を行う。また、表示制御回路15は、レンダリング処理として、例えば、3次元の情報を反映した2次元画像データを生成するボリュームレンダリング(VR:Volume Rendering)処理を行う。なお、表示制御回路15は、画像生成部の一例である。
【0064】
画像メモリ16は、例えば、磁気的若しくは光学的記録媒体、又は半導体メモリ等のプロセッサにより読み取り可能な記録媒体等を有する。画像メモリ16は、制御回路18の制御による制御の下、表示制御回路15によって生成された超音波画像データを、2次元データとしてのみならず、ボリュームデータとして記憶してもよい。なお、画像メモリ16は、記憶部の一例である。
【0065】
ネットワークインターフェース17は、ネットワークの形態に応じた種々の情報通信用プロトコルを実装する。ネットワークインターフェース17は、この各種プロトコルに従って、超音波診断装置1と、外部の画像管理装置60及び画像処理装置70等の他の機器とを接続する。この接続には、電子ネットワークを介した電気的な接続等を適用することができる。ここで、電子ネットワークとは、電気通信技術を利用した情報通信網全般を意味し、無線/有線の病院基幹のLAN(Local Area Network)やインターネット網のほか、電話通信回線網、光ファイバ通信ネットワーク、ケーブル通信ネットワーク及び衛星通信ネットワーク等を含む。
【0066】
また、ネットワークインターフェース17は、非接触無線通信用の種々のプロトコルを実装してもよい。この場合、画像処理装置10は、例えば超音波プローブ20と、ネットワークを介さず直接にデータ送受信することができる。なお、ネットワークインターフェース17は、ネットワーク接続部の一例である。
【0067】
制御回路18は、専用又は汎用のCPU(Central Processing Unit)、MPU(Microprocessor unit)、又はGPU(Graphics Processing Unit)の他、ASIC、及び、プログラマブル論理デバイス等を意味する。プログラマブル論理デバイスとしては、例えば、単純プログラマブル論理デバイス(SPLD:Simple Programmable Logic Device)、複合プログラマブル論理デバイス(CPLD:Complex Programmable Logic Device)、及び、フィールドプログラマブルゲートアレイ(FPGA:Field Programmable Gate Array)等が挙げられる。
【0068】
また、制御回路18は、単一の回路によって構成されてもよいし、複数の独立した回路要素の組み合わせによって構成されてもよい。後者の場合、メインメモリ19は回路要素ごとに個別に設けられてもよいし、単一のメインメモリ19が複数の回路要素の機能に対応するプログラムを記憶するものであってもよい。なお、制御回路18は、処理部の一例である。
【0069】
メインメモリ19は、RAM(Random Access Memory)、フラッシュメモリ(Flash Memory)等の半導体メモリ素子、ハードディスク、光ディスク等によって構成される。メインメモリ19は、USB(Universal Serial Bus)メモリ及びDVD(Digital Video Disk)等の可搬型メディアによって構成されてもよい。メインメモリ19は、制御回路18において用いられる各種処理プログラム(アプリケーションプログラムの他、OS(Operating System)等も含まれる)や、プログラムの実行に必要なデータを記憶する。また、OSに、操作者に対するディスプレイ40への情報の表示にグラフィックを多用し、基礎的な操作を入力インターフェース30によって行うことができるGUI(Graphical User Interface)を含めることもできる。なお、メインメモリ19は、記憶部の一例である。
【0070】
超音波プローブ20は、前面部に複数個の微小な振動子(圧電素子)を備え、スキャン対象を含む領域、例えば管腔体を含む領域に対して超音波の送受波を行う。各振動子は電気音響変換素子であり、送信時には電気パルスを超音波パルスに変換し、また、受信時には反射波を電気信号(受信信号)に変換する機能を有する。超音波プローブ20は小型、軽量に構成されており、ケーブル(又は無線通信)を介して画像処理装置10に接続される。
【0071】
超音波プローブ20は、スキャン方式の違いにより、リニア型、コンベックス型、及びセクタ型等の種類に分けられる。また、超音波プローブ20は、アレイ配列次元の違いにより、アジマス方向に1次元(1D)的に複数個の振動子が配列された1Dアレイプローブと、アジマス方向かつエレベーション方向に2次元(2D)的に複数個の振動子が配列された2Dアレイプローブとの種類に分けられる。なお、1Dアレイプローブは、エレベーション方向に少数の振動子が配列されたプローブを含む。
【0072】
ここで、3Dスキャン、つまり、ボリュームスキャンが実行される場合、超音波プローブ20として、リニア型、コンベックス型、及びセクタ型等のスキャン方式を備えた2Dアレイプローブが利用される。又は、ボリュームスキャンが実行される場合、超音波プローブ20として、リニア型、コンベックス型、及びセクタ型等のスキャン方式を備え、エレベーション方向に機械的に揺動する機構を備えた1Dプローブが利用される。後者のプローブは、メカ4Dプローブとも呼ばれる。
【0073】
入力インターフェース30は、操作者によって操作が可能な入力デバイスと、入力デバイスからの信号を入力する入力回路とを含む。入力デバイスは、トラックボール、スイッチ、マウス、キーボード、操作面に触れることで入力操作を行うタッチパッド、表示画面とタッチパッドとが一化されたタッチスクリーン、光学センサを用いた非接触入力デバイス、及び音声入力デバイス等によって実現される。操作者により入力デバイスが操作されると、入力回路はその操作に応じた信号を生成して制御回路18に出力する。なお、入力インターフェース30は、入力部の一例である。
【0074】
ディスプレイ40は、例えば液晶ディスプレイやOLED(Organic Light Emitting Diode)ディスプレイ等の一般的な表示出力装置により構成される。ディスプレイ40は、制御回路18の制御に従って各種情報を表示する。なお、ディスプレイ40は、表示部の一例である。
【0075】
また、
図1は、超音波診断装置1の外部機器である画像管理装置60と画像処理装置70とを示す。画像管理装置60は、例えば、DICOM(Digital Imaging and Communications in Medicine)サーバであり、ネットワークNを介してデータ送受信可能に超音波診断装置1等の機器に接続される。画像管理装置60は、超音波診断装置1によって生成された超音波画像等の医用画像をDICOMファイルとして管理する。
【0076】
画像処理装置70は、ネットワークNを介してデータ送受信可能に超音波診断装置1や画像管理装置60等の機器に接続される。画像処理装置70としては、例えば、超音波診断装置1によって生成された超音波画像に対して各種画像処理を施すワークステーションや、タブレット端末等の携帯型情報処理端末等が挙げられる。なお、画像処理装置70はオフラインの装置であって、超音波診断装置1によって生成された超音波画像を可搬型の記憶媒体を介して読み出し可能な装置であってもよい。
【0077】
続いて、画像処理装置10を備えた超音波診断装置1の動作について説明する。
【0078】
図7は、画像処理装置10を備えた超音波診断装置1の動作の一例をフローチャートとして示す図である。
図7において、「ST」に数字を付した符号はフローチャートの各ステップを示す。
【0079】
画像処理装置10の制御回路18は、例えば、HIS(Hospital Information Systems)等の検査依頼装置(図示省略)から検査オーダ情報を受信した後、入力インターフェース30を介して心エコー検査の超音波スキャンの開始指示を受け付ける。制御回路18は、送受信回路11と、Bモード処理回路12と、ドプラ処理回路13と、表示制御回路15等を制御して、超音波プローブ20を用いた超音波スキャンを開始させる(ステップST11)。制御回路18は、各フレームの超音波画像データをディスプレイ40にライブ表示させることもできる。
【0080】
Bモード処理回路12(又は、ドプラ処理回路13)は、受信回路からエコーデータを受信し、対数増幅、及び包絡線検波処理等を行って、信号強度が輝度の明るさで表現されるBモードデータを、生データとして取得する(ステップST12)。
【0081】
画像処理回路14は、ステップST12によって取得された生データ(画像処理前の画像データ)に対してスペックル除去処理等の画像処理を施す(ステップST13)。ステップST13による画像処理は、
図2及び
図3等を用いて説明したとおりである。
【0082】
画像処理回路14は、ステップST12によって取得された画像処理前の画像データと、ステップST13によって生成された画像処理後の画像データとを、深さ方向に分割された画像部分ごとに合成率を変更して合成するような合成率を設定する(ステップST14)。なお、超音波の減衰を考慮して合成率を変化させる場合、画像処理回路14は、送信超音波の周波数と、スキャン領域に減衰の大きい構造物を含むか否か(撮影部位)との少なくとも1つに応じて、画像部分に分割する方向(深さ方向、チャンネル方向等)と、画像部分の分割の数と、合成率とのうち少なくとも1つを設定することができる。
【0083】
そして、画像処理回路14は、ステップST14によって設定された合成率に従って、画像処理前の画像データと、画像処理後の画像データとを合成して、合成画像データを生成する(ステップST15)。
【0084】
表示制御回路15は、ステップST15によって生成された合成画像データのスキャンコンバート処理により表示画像データを生成する(ステップST16)。表示制御回路15は、ステップST16によって生成された表示画像データをディスプレイ40に表示させる(ステップST17)。ステップST17によって表示される画像は、例えば、
図6(B)に示される。
【0085】
画像処理装置10において、スキャンコンバート前の画像データに対して多重解像度分解を行って画像処理を行う場合について説明したがその場合に限定されるものではない。例えば、画像処理装置10は、スキャンコンバート後の画像データに対して多重解像度分解を行って画像処理を行ってもよい。
【0086】
以上のように、画像処理装置10によれば、所定の方向(例えば、深さ方向)に画像の差があったとしても、画像処理後の画像データとの間の、深さに応じた合成率を調整することで、全体的に均一な画像処理が施された画像を提供することができる。
【0087】
(第2の実施形態)
前述したスペックル除去処理等の画像処理や合成処理は、超音波診断装置1の外部の装置によっても実施可能である。
【0088】
図8は、第2の実施形態に係る画像処理装置の構成を示す概略図である。
【0089】
図8は、実施形態に係る画像処理装置70を示す。画像処理装置70は、医用画像管理装置(画像サーバ)や、ワークステーションや、読影端末等であり、ネットワークNを介して接続された医用画像システム上に設けられる。なお、画像処理装置70は、オフラインの装置であってもよい。
【0090】
画像処理装置70は、制御回路71と、メモリ72と、入力インターフェース73と、ディスプレイ74と、ネットワークインターフェース75とを備える。制御回路71と、メモリ72と、入力インターフェース73と、ディスプレイ74と、ネットワークインターフェース75とは、
図1に示す制御回路18と、メインメモリ19と、入力インターフェース30と、ディスプレイ40と、ネットワークインターフェース17とそれぞれ同等の構成を有するものであるので、説明を省略する。
【0091】
続いて、画像処理装置70の機能について説明する。
【0092】
図9は、画像処理装置70の機能を示すブロック図である。
【0093】
制御回路71は、メモリ72に記憶されたプログラムを実行することで、画像取得機能711と、画像処理機能712と、表示制御機能713とを実現する。なお、機能711~713の全部又は一部は、画像処理装置70のプログラムの実行により実現される場合に限定されるものではなく、画像処理装置70にASIC等の回路として備えられる場合であってもよい。
【0094】
画像取得機能711は、ネットワークインターフェース75を介して画像管理装置60又は超音波診断装置1から、超音波スキャンにより取得された被検体内部を描画する生データを画像処理前の画像データとして取得する機能を含む。なお、画像取得機能711は、画像取得部の一例である。
【0095】
画像処理機能712と、表示制御機能713とは、
図1に示す画像処理回路14と、表示制御回路15とそれぞれ同等の機能を有するので、説明を省略する。なお、画像処理機能712は、画像処理部の一例であり、表示制御機能713は表示制御部の一例である。
【0096】
以上のように、画像処理装置70によれば、画像処理装置10と同様に、所定の方向(例えば、深さ方向)に画像の差があったとしても、画像処理後の画像データとの間の、深さに応じた合成率を調整することで、全体的に均一な画像処理が施された画像を提供することができる。
【0097】
以上説明した少なくとも1つの実施形態によれば、診断に適した超音波画像データを提供することができる。
【0098】
なお、画像取得機能711は、画像取得部の一例である。画像処理機能712は、画像処理部の一例である。表示制御機能713は、表示制御部の一例である。
【0099】
なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、実施形態同士の組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0100】
1 超音波診断装置
10,70 画像処理装置
14 画像処理回路
18,71 制御回路
711 画像取得機能
712 画像処理機能