IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ テイラー・ホブソン・リミテッドの特許一覧

<>
  • 特許-物体を幾何学的に測定する装置及び方法 図1
  • 特許-物体を幾何学的に測定する装置及び方法 図2
  • 特許-物体を幾何学的に測定する装置及び方法 図3
  • 特許-物体を幾何学的に測定する装置及び方法 図4
  • 特許-物体を幾何学的に測定する装置及び方法 図5
  • 特許-物体を幾何学的に測定する装置及び方法 図6
  • 特許-物体を幾何学的に測定する装置及び方法 図7
  • 特許-物体を幾何学的に測定する装置及び方法 図8
  • 特許-物体を幾何学的に測定する装置及び方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-09
(45)【発行日】2024-08-20
(54)【発明の名称】物体を幾何学的に測定する装置及び方法
(51)【国際特許分類】
   G01B 11/24 20060101AFI20240813BHJP
【FI】
G01B11/24 Z
【請求項の数】 15
(21)【出願番号】P 2023029617
(22)【出願日】2023-02-28
(62)【分割の表示】P 2021506925の分割
【原出願日】2019-08-09
(65)【公開番号】P2023065551
(43)【公開日】2023-05-12
【審査請求日】2023-03-24
(31)【優先権主張番号】18188484.2
(32)【優先日】2018-08-10
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】597023868
【氏名又は名称】テイラー・ホブソン・リミテッド
【氏名又は名称原語表記】TAYLOR HOBSON LIMITED
(74)【代理人】
【識別番号】100101454
【弁理士】
【氏名又は名称】山田 卓二
(74)【代理人】
【識別番号】100132241
【弁理士】
【氏名又は名称】岡部 博史
(74)【代理人】
【識別番号】100113170
【弁理士】
【氏名又は名称】稲葉 和久
(72)【発明者】
【氏名】クリスティアン・アム・ヴェーク
(72)【発明者】
【氏名】ティロ・マイ
【審査官】山▲崎▼ 和子
(56)【参考文献】
【文献】特表2017-519203(JP,A)
【文献】特開2012-177620(JP,A)
【文献】特表2014-508292(JP,A)
【文献】米国特許出願公開第2006/0290942(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 11/00-11/30
(57)【特許請求の範囲】
【請求項1】
物体(14)を幾何学的に測定するための装置であって、
軸方向(z)及び径方向(x)を定義する前記物体(14)のための支持体(12)と、
前記支持体(12)に相対して前記軸方向(z)関して、及び前記径方向(x)に関して可動である保持体(26)と、
前記保持体(26)に配置されている距離測定装置(30)と、
前記支持体(12)に相対して固定可能である少なくとも1つの基準物体(18、19、20)と、を備え、
保持体(26)及び基準物体(18、19、20)の一方に、長手方向に延在する第1基準構造物(22)と長手方向に延在する第2基準構造物(24)が配置され、
前記第1基準構造物(22)及び前記第2基準構造物(24)は、互いにゼロでない所定の角度を成して延在しており、
保持体(26)及び基準物体(18、19、20)のもう一方に前記第1基準構造物(22)に方向合わせされた第1基準センサ(32)と前記第2基準構造物(24)に方向合わせされた第2基準センサ(34)が配置され、
第1基準センサ(32)と第1基準構造物(22)との間の第1の距離を測定することによって、および、第2基準センサ(34)と第2基準構造物(24)との間の第2の距離を測定することによって、前記第1基準構造物の長手方向範囲と前記第2基準構造物の長手方向範囲とによる平面内の保持体(26)の位置を決定することができ、
前記第1基準構造物(22)が径方向(x)に方向合わせされ、前記第2基準構造物(24)が前記軸方向(z)に対して予め定められた角度の分だけ傾けて方向合わせされている、あるいは、
前記第1基準構造物(22)及び前記第2基準構造物(24)はそれぞれ前記径方向(x)に対して、及び前記軸方向(z)に対して予め定められた角度の分だけ方向合わせされており、
前記距離測定装置(30)は、少なくとも第1軸(51)に関して旋回可能に前記保持体(26)に支持されている、装置。
【請求項2】
前記第2基準構造物(24)は、前記支持体(12)に対する軸方向距離が大きくなるにつれて小さくなる前記支持体(12)に対する径方向距離を有する、請求項1に記載の装置。
【請求項3】
前記第2基準構造物(24)は、前記軸方向(z)に対して5°~75°の角度、30°~60°の角度、40°~50°の角度、又は45°の角度の分だけ傾けて方向合わせされる、あるいは前記第2基準構造物(24)は、前記軸方向(z)に対して5°~30°の角度、5°~25°の角度、10~20°の角度、又は15°の角度の分だけ傾けて方向合わせされている、請求項1又は2に記載の装置。
【請求項4】
前記長手方向に延在する第1基準構造及び前記長手方向に延在する第2基準構造物(22、24)は、基準物体(18)に配置されている、請求項1から3のいずれか1項に記載の装置。
【請求項5】
長手方向に延在する前記第1及び第2基準構造物(22、24)は、2つの互いに固定された基準物体(18、20)の上に互いに固定されている、請求項1から4のいずれか一項に記載の装置。
【請求項6】
前記第1基準センサ(32)は保持体(26)に配置され、かつ前記第1基準構造物(22)の前記長手方向延在に対して垂直に方向合わせされ、前記第2基準センサ(34)は前記保持体(26)に配置され、かつ前記第2基準構造物(24)の前記長手方向延在に対して垂直に方向合わせされている、請求項4又は5に記載の装置。
【請求項7】
前記第1軸(51)は、前記第1基準センサ(32)の第1測定方向の想定される第1延長部(52)及び前記第2基準センサ(34)の第2測定方向の想定される第2延長部(54)の第1交点と一致する、請求項1から6のいずれか一項に記載の装置。
【請求項8】
前記保持体(26)に基準体(40)が配置され、前記距離測定装置(30)は、前記物体(14)が前記支持体(12)に配置されている場合に前記基準体(40)と前記物体(14)の表面(16)との間の距離を測定するように形成されている、請求項1から7のいずれか1項に記載の装置。
【請求項9】
前記保持体(26)及び前記基準物体(18、19、20)の一方に配置され、かつ前記第1基準構造物(22)及び前記第2基準構造物(24)に対して予め定められた角度で傾いて延在する、長手方向に延在する第3基準構造物(23)をさらに有する、請求項1から8のいずれか1項に記載の装置。
【請求項10】
保持体(26)及び基準物体(18、19、20)のもう一方に配置され、かつ前記第3基準構造物(23)の長手方向延在に対して垂直に方向合わせされている第3基準センサ(33)をさらに有する、請求項9に記載の装置。
【請求項11】
前記第3基準構造物(23)が基準平面(25)を有し、前記基準平面は、前記第1基準構造物(22)及び前記第2基準構造物(24)に対して予め定められた角度で傾いて延在する、請求項9又は10に記載の装置。
【請求項12】
前記距離測定装置(30)が少なくとも第2軸(53)に関して旋回可能に前記保持体(26)に支持され、前記第2軸(53)は、前記第1軸(51)に対して予め定められた角度で傾けて方向合わせされる、請求項1から11のいずれか1項に記載の装置。
【請求項13】
第1基準構造物及び第2基準構造物(22、24)の少なくとも一方は、直線的に延び長手方向に延在する、鏡反射する条片を有する、請求項1から12のいずれか1項に記載の装置。
【請求項14】
請求項1から13のいずれか1項に記載の装置によって物体(14)を幾何学的に測定するための方法であって、支持体(12)に支持された物体(14)の表面(16)が距離測定装置(30)によって、スキャンして検出され、その際、
前記距離測定装置(30)によって、前記物体(14)の測定点に対する複数の距離と前記物体(14)の1つの表面画像とが生成され、
第1基準センサ及び第2基準センサ(32、34)によって、前記基準物体(18、20)に相対する保持体(26)又は前記保持体に配置された基準体(40)のポジション及び向きが検知され、
前記基準物体(18、20)に相対する前記保持体(26)又は前記基準体(40)のポジション及び向きにもとづいて前記表面画像が補正される、方法。
【請求項15】
コンピュータでプログラムを実行する場合に、検出する工程、測定及び生成する工程、検知する工程、及び補正する工程を前記コンピュータに実行させるプログラム手段を備える、請求項1~13のいずれか1項に記載の装置によって物体(14)を幾何学的に測定するためのコンピュータプログラムであって、
支持体(12)に支持された物体(14)の表面輪郭(15)を距離測定装置(30)によってスキャンして検出するためのプログラム手段と、
前記物体(14)の表面(16)における測定点(17)に対する複数の距離を測定するための、及び前記物体(14)の表面画像を生成するためのプログラム手段と、
前記第1基準センサ及び前記第2基準センサ(32、34)によって前記基準物体(18、20)に相対する保持体(26)又は前記距離測定装置(30)のポジション及び向きを検知するためのプログラム手段と、
前記基準物体(18、20)に相対する前記保持体(26)又は前記距離測定装置(30)の前記ポジション及び向きにもとづいて前記表面画像を補正するためのプログラム手段と
を備える、コンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、物体、例えばレンズなどの特に光学部品を幾何学的に測定する装置に関する。これに加えて、本発明は、この種の物体を幾何学的に測定するための対応する方法及びコンピュータプログラムに関する。
【背景技術】
【0002】
品質保証のために、及び特に精密機械工学、光学の分野、ならびに機械的及び電気的微細構造の製造技術における工業生産プロセスの監視のために、工作物又は一般に物体の高分解能での正確な測定に関する要求が増している。
【0003】
DE102011011065B4から、支持体上に支持された物体の少なくとも1つの表面部分を測定するための装置が知られている。この場合、装置は、支持体に対して固定可能な基準物体と、基準物体に対して少なくとも1つの第1方向に可動の保持体とを有している。保持体には、互いに相対回転可能に支持される基準体と距離センサとが配置されている。その際、距離測定装置が物体の表面部分の第1点に対する第1距離と、第1点に対応する基準体の第2点に対する第2距離とを決定するように形成されている。その際、距離測定器と呼ばれる距離測定装置は、物体の方に向いた第1距離センサと、基準体の方に向いた第2距離センサとを有する。その際、第1距離センサと第2距離センサとは正反対に方向合わせされている。
【0004】
この種の装置により、物体の表面を高精度かつ非接触で光学的に走査若しくはスキャンすることができる。
【0005】
DE102011011065B4から基本的に知られている装置が図1に模式的に示される。装置100は、例えばレンズなどの測定すべき物体14が回転可能又は変位可能に支持される支持体12を有する。装置100は、図1に示されたx-z平面上で可動の保持体26をさらに有し、この保持体に距離測定装置30が配置されている。距離測定装置30は、物体14の方に向いた第1距離センサ36と、物体から離反した基準体40に方向合わせされている第2距離センサ38とを有する。基準体は、円筒内壁として形成された反射若しくは鏡反射する(spiegelnd)基準面42を有することができる。基準面を、例えば中空鏡として形成することができる。第2距離センサ38は、第1距離センサ36に相対して正反対に配置され、かつに逆に方向合わせされ得る。2つの距離センサ36、38は互いに固定結合されている。
【0006】
距離センサ36は、物体14の測定すべき表面16に向けられている。距離センサ36、38は、光学距離センサとして、かつそれに伴い光信号を発し、かつ検出するように形成されている。センサ36、38は、反射ジオメトリで測定する。すなわち物体14の測定点17に向けられた測定ビームが物体14の表面輪郭に対応して反射され、跳ね返され、かつ物体14の表面16に対して略直交する向きにもとづいて再びセンサ36によって検出され、最終的に距離センサ36と結合された、センサ及び検出ユニットの制御器に送られる。測定すべき物体14の輪郭、及び物体14に対する保持体26の相対位置決めに応じて、保持体26の回転軸51に対する距離センサ36、38の向き若しくは方位を変化させることができ、測定のために必要な直交性の条件を遵守するべく、それぞれ適応的に適合させることができる。
【0007】
距離測定装置30、特に2つの距離センサ36、38のポジションとx-z平面上の基準体40のポジションとを正確に決定するために、保持体26には2つの別の、本明細書中で基準センサ32、34と呼ばれる距離センサが設けられ、これらの距離センサは、定置の基準物体18、20に相対する支持体26の変位方向又は運動方向(x、z)に対応して方向合わせされ、これらの距離センサによって、基準物体18の基準面22に対してz方向に支持体26の軸方向の距離と、別の定置に配置された基準物体20及びこの基準物体の基準面24に対してx方向に径方向の距離を測定することができる。
【0008】
特に測定すべき物体14の表面16が大きく曲がっている、例えば凹状に湾曲する場合、距離測定装置30を物体14の表面16に相対して必要とされる距離で、及び距離測定のために必要な向きで位置決めすることが困難であることが明らかになり得る。例えば図2に示されるように、基準センサ34が軸方向(z)に関して物体14の表面16の中空空間に入り込み、それによって基準センサ34により発せられる信号が物体14若しくは物体の表面16で吸収又は散乱されるという状況が生じ得る。その場合、相応の基準物体20を基準とする(Referenzierung)ことができなくなる。それに対応して、表面16に対する距離測定装置30の距離が拡大せざるを得なくなり、このことが測定精度及び測定速度に不利になることがある。
【0009】
距離センサ36の受光角が限られていることから、測定装置の実運用のために距離センサ36と物体14の測定すべき表面16との間の距離を可能な限り小さく選択すべきである。それに加えて、物体表面のスキャン検出をするべく可能な限り高い横方向の空間分解能を得るために、距離センサ36から物体に向けられる測定ビームは典型的には物体表面に集束される。
【先行技術文献】
【特許文献】
【0010】
【文献】DE102011011065B4
【発明の概要】
【0011】
これに対して本発明は、測定すべき物体の比較的大きく曲がった表面を高い信頼性で、正確に、かつ迅速に検出する、特にスキャンするのに適した、物体を幾何学的に測定するための改善された装置、及び方法、ならびにコンピュータプログラムを提供するという課題にもとづいている。この場合、場合によって起こり得る衝突、あるいは物体又は物体の表面により引き起こされ得る基準センサの信号の遮蔽が、測定精度又は測定速度が制約されることなしに確実に回避されるべきである。
【0012】
これに加えて、比較的大きい面積の物体、特に径方向又は横方向に関して、すなわち支持体の軸方向に対して垂直に比較的大きく延在する物体の測定が、このために装置の空間寸法をほとんど大きくすることなしに可能にされるべきである。装置の体積(Kubatur)は可能な限りそのまま変わらず、装置が比較的大きい物体を測定するのに適するべきである。
【0013】
上記課題は、独立請求項1に記載の装置、請求項14に記載の方法、及び請求項15に記載のコンピュータプログラムにより解決される。その場合、有利な実施形態は従属請求項の主題である。
【0014】
その限りにおいて、物体を幾何学的に測定する装置が予定されている。装置は、物体のための支持体を有する。物体のための支持体は軸方向(z)及び径方向(x)を定義する。軸方向及び径方向は、典型的には一般に用いられる円筒座標に準拠する。物体のための支持体は、特に光学部品のための支持体として機能する。物体、例えばレンズが支持体に配置されているか、又は組み付けられている場合、物体の光学軸は典型的には支持体の軸方向と一致するか、あるいは光学軸は支持体の軸方向に対して平行である。
【0015】
支持体は回転可能に基部に支持され得る。しかし支持体を物体性状に応じて装置の基部に相対して横方向に、若しくは縦方向に変位可能に、例えば軸方向に対して垂直に支持することもできる。
【0016】
装置は、支持体に相対して軸方向に関して、及び径方向に関して可動である保持体をさらに有する。典型的には保持体は、支持体の軸方向と径方向に広がる平面上を支持体に相対して移動可能又は変位可能である。それに伴い保持体は、軸方向と径方向に広がる平面上で支持体をスキャンすることができる。
【0017】
支持体を回転可能に支持することができ、それにより支持体に配置された物体が回転することによって、保持体の方に向いた物体の表面を保持体に配置された距離測定装置により完全にスキャンすることができる。装置は、保持体に配置された距離測定装置をさらに備える。
【0018】
距離測定装置は、支持体に配置された物体の表面に対する距離を決定するように形成されている。距離測定装置は、典型的には非接触距離測定装置として形成されている。距離測定装置は、例えば光学的に実装される距離測定器を有し、この距離計測器は、反射ジオメトリで物体の表面上の1つ若しくは複数の点に対する1つ又は複数の距離を検知し、それに伴い表面輪郭をいわば点状又は線状にスキャンする。
【0019】
装置は、支持体に対して固定可能な基準物体をさらに有する。支持体と基準物体とは、典型的には定置に配置されるとともに固定の幾何学的関係にある。
【0020】
保持体及び基準物体の一方に、長手方向に延在する第1基準構造物と長手方向に延在する第2基準構造物が配置されている。保持体及び基準物体のもう一方には第1基準構造に方向合わせされた第1基準センサと第2基準構造物に方向合わせされた第2基準センサがさらに配置されている。基準構造物が1つの定置の基準物体に、又は複数の定置の基準物体に配置されていること、ならびにそれぞれの基準構造物の方に向いた基準センサが装置の保持体に配置されていることが考えられ、かつ予定されている。
【0021】
第1基準構造物及び第2基準構造物は互いに予め定められた角度で延在する。第1基準センサと第1基準構造物との間の距離を測定することによって、及び第2基準センサと第2基準構造物との間の第2距離を測定することによって、2つの基準構造物の長手方向延在がなす平面上の保持体のポジションを正確に検知することができる。
【0022】
他の実施形態は、第1基準構造物及び第2基準構造物が保持体に配置されていることを予定する。その場合、これと対応する基準センサが、1つの基準物体に、又は利用可能な複数の基準物体に配置され、それぞれの基準構造物の方向に方向合わせされる。それに伴い、支持体に相対する、若しくは1つの基準物体又は複数の基準物体に相対する保持体の軸方向(z)及び径方向(x)に関する距離若しくはポジションを同じように検知及び決定することができる。
【0023】
第1基準構造物が径方向(x)に方向合わせされ、第2基準構造物が軸方向(z)に対して予め定められた角度の分だけ傾けて方向合わせされていることがさらに予定されている。これに代えて、第1基準構造物と第2基準構造物がそれぞれ径方向(x)に対して、すなわち軸方向(z)に対して予め定められた角度の分だけ方向合わせされ得る。ここで予定される第1基準構造物及び/又は第2基準構造物の各向きについては、少なくとも第2基準センサがもはや水平にではなく、水平線に対して上に傾けて方向合わせされることが有利であることが明らかになっている。このことは、例えば物体の表面上又は表面における中空構造又はアンダーカット領域に入り込むことを可能にする。特に、このことによって物体の比較的大きい凹状の構造を正確に、かつ最大距離を遵守して正確かつ迅速にスキャン及び測定することができる。
【0024】
典型的には、2つの基準構造物のどちらも垂直方向若しくは軸方向に延在しない。これに対して、2つの基準構造物の1つが水平方向に、すなわち径方向又は横方向に、すなわち軸方向に対して直交方向に延在し得る。典型的には、第1基準構造物、したがって第1基準物体は、軸方向に関して保持体の上方に配置され得る。その際、保持体は軸方向(z)に関して支持体と基準物体との間に位置する。
【0025】
第2基準物体若しくは第2基準構造は、保持体から側方若しくは水平方向に離間して設けられ得る。第2基準構造は、典型的にはその面法線が支持体の方向に方向合わせされている。第2基準構造は、支持体の、又は支持体に配置された物体の面法線に関して径方向にずらして配置され得る。第2基準物体の、したがって第2基準構造物をこのように傾けた配置は、装置の径方向の測定領域の拡大を可能にする。さらに、比較的大きく曲がった表面構造を有する物体、特に凹状に湾曲した物体を、物体又は物体の領域が第2基準センサと第2基準構造との間に達することなしに正確に測定することができる。
【0026】
別の実施形態では、第2基準構造は、支持体に対する軸方向の距離が大きくなるにつれて小さくなる支持体に対する径方向の距離を有する。換言すると、第2基準構造物は、上へ支持体に向かって水平の方向又は径方向に傾けて方向合わせされている。第2基準構造、特に第2基準物体も実質的に直線的又は平坦な輪郭を有することができる。第2基準構造の傾きに対応して、典型的には保持体に配置される第2基準センサも上へ傾けて方向合わせされている。このことによって物体の凹状又は中空の表面領域による保持体の遮蔽を大幅に回避することができ、かつ不可能にすることができる。
【0027】
別の一実施形態では、基準構造は、軸方向(z)に対して5°~75°の角度、30°~60°の角度、40°~50°の角度、又は約45°の角度の分だけ傾けて方向合わせされている。これに代えて、第2基準構造は、軸方向(z)に対して5°~30°の角度、5°~25°の角度、10°~20°の角度、又は約15°の角度の分だけ傾けて方向合わせされ得る。
【0028】
このような傾きは、装置の外寸をほとんど拡大することなしに装置の径方向の測定領域の拡大を可能にする。第2基準構造物の方向合わせの、したがってさらに第2基準物体の方向合わせのこの角度範囲は、典型的には保持体に配置される第2基準センサの対応する方向合わせを可能にする。
【0029】
これに対応して、結果として装置の径方向若しくは水平の測定領域が拡大される。第1基準構造物は、第2基準構造物に対して固定の角度比率で方向合わせすることができる。例えば、第1基準構造物を第2基準構造物に対して直角に、又は90°の角度に方向合わせすることができる。それにより第1基準構造物の長手方向延在と第2基準構造物の長手方向延在との間の角度を60°~175°、75~115°、75°~135°、75°~145°、あるいは約90°又はより大きくすることができる。物体の幾何学的測定のために、第1基準構造物の長手方向延在が径方向に対して平行に、すなわち水平に延びるならば有利であり得る。それに対して第2基準構造物の長手方向延在は、これに対して下へ、すなわち支持体に向かって約90°~175°、90°~160°、90°~145°、90°~135°、又は90°~120°の角度範囲で延びることができる。
【0030】
第1基準構造物及び第2基準構造物の相互の方向合わせに対応して、第1基準センサ及び第2基準センサも互いに方向合わせされ、したがって第1センサが第1基準構造物に対して実質的に垂直に方向合わせされ、それに伴い第2センサも第2基準構造に対して実質的に垂直に方向合わせされる。第1基準センサ及び第2基準センサは、典型的にはそれぞれの基準構造物との距離を測定するための光学センサとして形成されている。
【0031】
一実施形態では、例えば第2基準構造物は、軸方向に対して約45°の角度の分だけ傾けて方向合わせされ得る。その際、第1基準構造物は、第2基準構造物の長手方向延在に対して約90°の角度の分だけ方向合わせされ得る。したがって第1基準構造物も同様に軸方向に対して45°傾けて方向合わせされ得る。第1基準構造物と第2基準構造物の直交方向の方向合わせは、例えばデカルト座標系にもとづいて特に簡単な基準設定を可能にする。
【0032】
第2基準構造物が軸方向に対して10°~20°の角度、例えば約15°の角度の分だけ傾けて方向合わせされる別の実施形態は、比較的大きい物体を測定するように形成されている装置の場合に特に有利であることが明らかになっている。支持体の軸方向の位置調節性(Verstellbarkeit)又は移動距離が予め定められる場合、軸方向に対する第2基準構造物の角度が大きくなるにつれて、これに対応して当該基準構造物の長さを適合させなければならない。
【0033】
この場合、基準構造物の長さは、軸方向から逸脱する角度が大きくなるにつれて増加するということになる。しかし製造技術的及び測定技術的には、例えば鏡の形の基準構造物が可能な限りコンパクトに形成されていることが有利である。そのため上記の10°~20°の角度範囲は最善であり得るか、又は測定領域を拡大することと同時に装置をコンパクトな形式にすることとの間の少なくとも1つの良好な妥協案であり得る。
【0034】
別の一実施形態では、長手方向に延在する第1基準構造物及び第2基準構造物が少なくとも1つの共通の基準物体に、又は互いに固定された2つの基準物体に配置されている。唯一の基準物体、例えばL字形の基準物体を設ける場合、典型的には鏡面として形成される第1基準構造物及び第2基準構造物が互いに固定かつ不動に唯一の基準物体に配置されている。2つの基準物体が設けられる場合、第1基準構造物及び第2基準構造物を、例えば較正する目的で互いに方向合わせすることもでき、若しくは互いに必要に即して方向合わせすることもできる。
【0035】
別の一実施形態では、第1基準センサは保持体に配置され、かつ第1基準構造物の長手方向延在に対して垂直に方向合わせされている。第2基準センサも同様に保持体に配置され、かつ第2基準構造物の長手方向延在に対して垂直に方向合わせされている。保持体は、基準構造物に対して、若しくは少なくとも1つの基準物体に対して特に回転不能に配置されている。保持体は、基準構造物若しくは少なくとも1つの基準物体に対して並進的に可動に装置に配置されているにすぎない。
【0036】
基準構造物が保持体に、典型的には保持体の外面に配置されている、かつ基準構造物と協働する基準センサが少なくとも1つの基準物体に、又は複数の基準物体に割り振って配置されている逆の位置関係も同様に考えられる。基準物体における基準構造物の、及び保持体における基準センサの配置に関する上記のすべての特徴は、基準構造物が保持体に配置され、基準センサが1つ又は複数の基準物体に配置される逆の位置関係にも当てはまる。
【0037】
さらに別の実施形態では、距離測定装置は少なくとも第1軸に関して旋回可能に保持体に支持されている。第1軸は、軸方向及び径方向に対して典型的には垂直に、又は予め定められた角度で延在し得る。保持体における距離測定装置の旋回可能な支持により、物体の表面上の各点が反射ジオメトリで、及び距離測定装置の直交性の条件を遵守して目指され、かつ光学的に走査され得る。このために第3の、すなわち径方向に対して垂直及び軸方向に対して垂直の次元に関して、保持体に相対する物体の回転可能な、及び/又は並進的に変位可能な支持が必要になること、かつ予定されることがある。
【0038】
別の実施形態では、第1軸は、第1基準センサの第1測定方向の想定される第1延長部の、及び第2基準センサの第2測定方向の想定される第2延長部と一致する。距離測定装置の回転軸と第1基準センサ及び第2基準センサの測定方向の想定される延長部とのこの重なりは、保持体の、若しくはこれらの基準センサの旋回可能に支持された距離測定装置の正確なポジション決定及び位置決定のために有利である。その限りで、場合によって生じ得る公差にもとづく保持体の傾倒が、物体に対する距離測定の測定結果に影響を及ぼさないか、又は無視できる程度にしか及ぼさない。その限りで、基準センサ及び基準センサと協働する基準構造物にもとづく保持体の位置決定は、距離測定装置の回転運動に対してほとんど不変(invariant)である。
【0039】
別の実施形態では、保持体に基準体が配置されている。保持体における距離測定装置は、物体が支持体に配置されている場合に基準体と物体の表面との間の距離を測定するように形成されている。このことには距離測定装置の回転運動によって場合によって引き起こされ得るポジションの不正確さが基準体によって補償され得るという利点がある。基準体は、基準物体に対して回転不能に可動の保持体に配置されている。基準体は、典型的には鏡反射する、かつ装置の支持体の方に向いた、既知の表面ジオメトリを有する表面を具備する。物体の方向と基準体の方向の距離を測定することによって、距離測定装置の回転運動によって引き起こされる距離測定装置のポジションの不正確さを補償することができる。
【0040】
距離測定装置の回転運動によって、例えば距離測定装置と、物体の表面上の予め定められた測定点との間の距離が短縮される場合、同じように、距離測定装置と、正反対の側に位置する基準体における測定点との間の距離も同程度に拡大される。
【0041】
別の実施形態では、装置は、保持体及び基準物体の一方に配置され、かつ第1基準構造及び第2基準構造に対して予め定められた角度で傾いて延在する、長手方向に延在する第3基準構造を有する。長手方向に延在する第3基準構造によって、基準物体に対する3つのすべての空間座標に関して保持体のポジションを検知することができる。このことは原則的に3つのすべての空間次元における保持体の自由な可動性を可能にする。保持体を2つの空間次元に関して動かすことができ、かつ保持体に配置された距離測定装置を2つの軸に関して旋回させることができる。
【0042】
しかし、保持体の可動性が軸方向及び径方向に、そしてそれに伴い唯一の平面上での動きに限定される場合にも、第3基準構造物は、距離測定装置のポジション及び/又は向きを検知するために有利であり得る。特に、第3基準構造物によって、距離測定装置の傾き又は回転によって引き起こされるポジションの不正確さを、場合によっては検知され、決定され、及びこれによって引き起こされ得るポジションの不正確さに関して補償することができる。
【0043】
別の実施形態では、装置は、保持体及び基準物体のもう一方に配置され、かつ第3基準構造物の長手方向延在に対して実質的に垂直に方向合わせされる第3基準センサをさらに有する。第3基準センサによって、保持体と第3基準物体との間の距離を正確に検知することができる。その際、第3基準センサの第3測定方向の想定される第3延長部は、第1基準センサの第1測定方向の第1延長部及び第2基準センサの第2測定方向の想定される第2延長部の少なくとも一方と一致し得る。したがって、すべての基準センサのすべての延長部が一点で交わり得る。どの交点も距離測定装置の回転軸と一致することが好ましい。
【0044】
別の実施形態では、第3基準構造物は、第1基準構造物及び第2基準構造物に対して予め定められた角度で傾いて延在する基準平面を有する。基準平面を提供することは、特に軸方向と径方向とがなす平面上での保持体の移動性又は変位性を可能にする。第3基準構造物、特に第3基準構造物の基準平面は、軸方向に対して例えば90°より小さい、及び15°より大きい予め定められた角度で延在し得る。
【0045】
第3基準構造物の基準平面は、さらに、典型的には接線方向に延在し得る。第3基準構造物は、支持体に対して軸方向の距離が大きくなるにつれて小さくなる支持体に対する径方向の距離を有し得る。基準平面の面法線は、典型的には支持体の方向に方向合わせされ得る。第3基準平面は、径方向(x)に関して、支持体の面法線に対して軸方向にずらして配置され得る。その限りで第3基準構造物の基準平面は、径方向内側から径方向外側に見て下へ傾いて延在する。基準平面は、径方向外側から径方向内側に見て上に傾いて延在する。
【0046】
別の実施形態では、距離測定装置は、少なくとも第2軸に関して旋回可能に保持体に支持されている。その際、第2軸は、第1軸に対して予め定められた角度で傾いて延在する。第1軸及び第2軸に関して距離測定装置が旋回可能に保持体に支持され、第1軸及び第2軸は、例えば互いに90°の角度で延在し得る。第1軸及び第2軸の想定される延長部も、例えば一点で交わり得る。
【0047】
第3基準センサによって、及び第3基準センサと第3基準構造物との協働によって、第2軸に関する旋回運動の結果として場合によって生じ得る距離測定装置のポジションの不正確さが、正確に検知若しくは測定され、それに対応して計算により補償され得る。
【0048】
すなわち典型的な構成では、第1基準物体若しくは第1基準構造物が少なくとも一方向成分で径方向(x)に沿って延在すること、第2基準物体若しくは第2基準構造物が少なくとも一方向成分で軸方向(x)に沿って延在すること、及び距離測定装置が第1軸に関して回転可能に保持体に支持され、第1軸が接線方向に、したがって径方向に対して垂直に、かつ軸方向に垂直に延在することが予定され得る。このようにして距離測定装置は、軸方向と径方向とがなす平面の面法線に対して実質的に平行に延在する第1軸に対して旋回可能であり得る。
【0049】
これにもとづく距離測定装置が付加的に第2軸に対しても旋回可能に保持体に支持される実施形態では、これによって可能にされるいわば第2の旋回可能な支持によって、基準物体に対する距離測定装置のポジションの不正確さが生じ得る。この種のポジションの不正確さは、例えば機械的な軸線誤差(Achsenfehler)によって引き起こされ得る。しかし支持体における距離測定装置の第2軸に関する旋回性によって、この種のポジションの不正確さは距離測定装置の測定方向に位置し得る。第3基準構造物及び第3基準物体によって、ならびにこれに向けられる第3基準センサによって、測定方向に位置するこの種のポジションの不正確さを正確に検出し、それに対応して計算により補償することができる。
【0050】
別の実施形態では、第1基準構造物及び第2基準構造物の少なくとも一方が直線的に延びる、長手方向に延在する鏡反射する条片を有することがさらに予定されている。したがって、第1基準構造物及び第2基準構造物を、それぞれ保持体がそれぞれの基準構造物の長手方向に移動すること又は長手方向に変位する動きのみを可能にし、その限りで保持体の動きを制限するいわば一次元基準構造物として形成することができる。
【0051】
第1基準構造物と第2基準構造物とは直線的に延びる、長手方向に延在する鏡反射する条片を有することができる。それに伴い保持体は、軸方向及び径方向に関して唯一の、第1基準構造物及び第2基準構造物と一致する平面上で1つの基準物体に相対して、若しくは複数の基準物体に相対して可動に支持されている。
【0052】
物体又は基準体又は基準物体との距離を多波長測定原理で決定するために、距離センサ若しくは基準センサは、典型的には異なった波長の複数の光源と結合されている。この種のヘテロダイン測定法は、ナノメートル領域及びサブナノメートル領域の分解能で高精度の距離測定を可能にし、かつミリメートル領域までの測定結果の一義性領域を提供することができる。光源として、一般に、波長が1520~1630nmの範囲の単色レーザが予定されることが好ましい。典型的には、使用されるレーザ波長は光電気通信スペクトルのS帯域、C帯域、又はL帯域である。しかし基本的に可視領域、及び/又はUVスペクトル領域の波長も考えられる。
【0053】
原則的に、本発明は、単波長でしか動作しない距離測定装置のためにも実現可能である。しかし多波長測定法によって、受信信号の一義性領域を著しく拡大することができる。物体表面により反射されるビームのそれぞれの位相又は位相位置は、波長選択的に検出され、電子的評価の過程で距離を決定するために処理される。
【0054】
距離センサは、さらに光ファイバで当該光源と結合され得る。このようにすることで、場合によって生じ得る環境に起因する干渉の影響を最小限にとどめることができる。
【0055】
別の実施形態では、装置は、検出ユニットとして形成される制御器をさらに有し、この制御器によって第1距離及び第2距離から、少なくとも1つの基準物体に相対する保持体又は保持体の基準体のポジション及び向きを正確に決定することができる。特に、互いに独立して測定された第1距離と第2距離の比較により、及び/又は平均値を求めることにより測定平面(x、z)上の保持体のポジションと、保持体の傾き若しくは傾倒を決定することができる。これにより、特に距離測定装置の回転軸の位置を正確に決定することができる。
【0056】
別の態様では、本発明は、さらに上記の装置により物体を幾何学的に測定する方法に関し、支持体に支持された物体の表面が距離測定装置によってスキャンして検出若しくは測定される。その際、支持体に支持された物体の表面輪郭が、保持体に回転可能に配置された距離測定装置によってスキャンして、すなわち表面走査して検出される。物体の表面の個々の測定点に測定ビームが順次照射され、それにより測定点ごとに1つの距離を検知することができる。その限りで、スキャンプロセス中に距離測定装置によって物体の測定点に対する、場合によってはさらに基準体の基準点に対する複数の距離が測定される。これらの距離から物体の表面画像が生成され、特に計算機支援により算出される。
【0057】
さらに、第1基準センサ及び第2基準センサによって、少なくとも1つの基準物体に相対する保持体又は保持体の基準体のポジション及び向きが検知される。装置が保持体のために1つの運動自由度しか予定していない場合、典型的には平行に方向合わせされ、かつ測定方向に対して垂直に互いに離間した基準センサを2つだけ実現することで基本的に十分である。装置の一展開形態では、それに対応して方法の一展開形態でも、二次元測定平面(x、z)上の保持体のポジション及び向きが第1基準センサ、第2基準センサ、及び第3基準センサによって検知されることが予定されている。その場合、保持体若しくは基準体のポジション決定と向き決定にもとづいて表面画像が補正される。
【0058】
したがって、特に、第1基準センサ及び第2基準センサによって検知された保持体の向きが距離測定装置によって測定された物体の測定点と基準体の基準点との間の距離が使用されることが予定されている。このようにすることで、保持体のごくわずかな傾き又は傾倒にもとづいて引き起こされる距離測定誤差を計算により補正することができる。
【0059】
その際、上記の方法が先に述べた装置によって実行可能であること、及びその限りで装置に関して記載されたすべての特徴及び利点が方法にも同じように当てはまり、その逆もまたしかりであることに言及しておく。
【0060】
別の態様では、本発明は、さらに、先に述べた装置によって物体を幾何学的に測定するためのコンピュータプログラムに関する。コンピュータプログラムは、距離測定装置を用いて、支持体に支持された物体の表面輪郭をスキャンして検出するためのプログラム手段を有する。このために、コンピュータプログラムは、距離測定装置を用いて物体の測定点に対する複数の距離を測定するためのプログラム手段を備えている。さらに、コンピュータプログラムは、基準物体に相対する保持体の、又は保持体に配置された距離測定装置のポジション及び向きを、第1基準センサ及び第2基準センサによって測定された距離にもとづいて検知するために用いられるプログラム手段を有する。さらには保持体又は保持体の基準体の検知若しくは測定されたポジション及び向きにもとづいて表面画像を補正するためのプログラム手段が設けられている。
【0061】
ここでさらに言及しておきたいのは、コンピュータプログラムが装置と結合された制御器で実行され、したがってこの制御器に実装可能であるということである。コンピュータプログラムは、同様に先に説明した装置を規定通りに使用して、特に同様に先に説明した方法を計算機支援により実施するために用いられる。その限りで、装置及び方法に関して述べたすべての特徴、特性、及び利点がコンピュータプログラムにも同じように当てはまり、その逆もまたしかりである。
【0062】
以下の例示的実施例の説明をもとにして本発明の他の目的、特徴、及び有利な実施形態について詳しく説明する。
【図面の簡単な説明】
【0063】
図1図1は、従来技術により公知の物体を幾何学的に測定するための装置の模式図である。
図2図2は、比較的大きい径方向延在を有する物体及び/又は大きく曲がった、例えば凹状に湾曲した表面を有する物体を測定する場合の本展開形態を基礎付ける問題提起の図である。
図3図3は、第1実施形態による本発明の距離測定装置の図である。
図4図4は、装置の別の実施形態の図である。
図5図5は、物体を幾何学的に測定するための装置の別の実施形態の図である。
図6図6は、図5による保持体に配置された、測定すべき物体に関する距離測定装置の拡大図である。
図7図7は、装置の別の実施形態である。
図8図8は、図7による装置の向きを変えた図である。
図9図9は、方法のフローチャートである。
【発明を実施するための形態】
【0064】
すでに冒頭で述べた図1に示される装置100と比較して、図3の本発明による装置10は、例えばレンズなどの例えば光学部品である物体14のための支持体12を有する。支持体12は、軸方向(z)及び径方向(x)を定義する。支持体12及び支持体に配置された物体14は、例えば装置10の基部11に対して回転可能に支持され得る。
【0065】
装置10は、支持体12に相対して軸方向に関して、及び径方向に関して可動である保持体26をさらに有する。保持体26は、典型的には軸方向に関しても径方向に関しても支持体12に相対して並進的に可動に支持されている。このために、個々の変位ユニット、例えば1次元又は2次元の変位テーブルを有する別個の機械的アセンブリが設けられ得る。支持体、若しくは基部11は、定置に設置され得る。
【0066】
装置10は、第1基準物体18と第2基準物体20とをさらに有する。基準物体18、20は、支持体12に相対して固定可能である。典型的にはこれらの基準物体は、基部11において支持体12に相対して定置に配置されている。ここに図示される実施例では、第1基準物体18は、この基準物体18の、支持体12の方に向いた側で基準物体18に沿って延在する第1基準構造22を有する。
【0067】
第2基準物体20は、この基準物体20の、同様に支持体12の方に向いた側で延在する第2の、長手方向に延在する基準構造24を有する。保持体26には、第1基準構造22の方向に方向合わせされた第1基準センサ32が配置されている。第1基準センサ32は、典型的には保持体26に配置されている。保持体26には第2基準センサ34がさらに配置されている。第2基準センサは、第2基準物体20の第2基準構造24の方向に方向合わせされている。
【0068】
第1基準センサ32は、特に第1基準構造22の長手方向延在に対して垂直に方向合わせされている。第2基準センサ34は、典型的には第2基準構造24の長手方向延在に対して垂直に配置されている。第1基準センサ32の想定された延長部、特に第1の想定された延長部52、及び第2基準センサ34の測定方向の第2の想定された延長部54は共通の交点で交わる。この想定された交点は、典型的には回転軸線と、特に保持体26の第1軸51と一致し、距離測定装置30が第1軸に、又は第1軸に関して旋回可能に支持されている。
【0069】
図4に示されるように、距離測定装置30は、典型的には少なくとも1つの第1の、支持体12に向けられた距離センサ36を有する。距離センサ36によって、距離測定装置30は、保持体26と、物体14の表面16上の選択された測定点17との間、特に保持体26の軸51と選択された測定点との間の距離を決定することができる。距離センサ36と測定点17との間の距離を伝播時間の差によって、又は干渉計により測定できるようにするために、個々の測定点17に対する距離を決定するため、距離センサ36は発射された光線を測定点17に垂直にぶつからなければならない。
【0070】
距離センサ36、したがって距離測定装置30全体は、典型的には光ファイバにより制御部60と結合され、制御部は、一方では距離測定装置30によって測定された信号又はデータを距離に換算するように形成され、他方では物体14の表面16を点状又は線状に走査するように、かつそれに対応して保持体26及び距離測定装置30の変位運動及び/又は回転運動のために必要な調整駆動装置を制御するように形成されている。
【0071】
距離測定装置が支持体26に第1軸51に関して回転可能に支持され、この第1軸は、典型的には第1基準構造と第2基準構造22、24がなす平面に対して垂直に延在する。
【0072】
図3及び図4には、第1基準構造22と第2基準構造24とが軸方向(z)に対して傾けて配置されていることがさらに示されている。第1基準構造22と第2基準構造24との間の角度は約90°である。保持体26における第1基準センサ及び第2基準センサ32、34も第1基準構造及び第2基準構造22、24の向きに対応して方向合わせされている。
【0073】
したがって従来技術による構成と比較して、保持体26全体を支持体12に対して、又は基部11に対して予め定められた角度の分だけ回転させて方向合わせすることができる。このことは、特に第2の、従来技術では水平に方向合わせされた基準センサ34について、この第2基準センサが従来技術とは異なり図3図4図5図7図8の実施形態によれば斜め上へ傾けて方向合わせされ得ることを可能にする。
【0074】
特に図6に示されるように、第2基準センサ34を特に上へ傾けて方向合わせすることによって、装置の径方向(x)の測定領域を拡大することができる。これに加えて、比較的大きく曲げられた表面16を有する物体14、特に凹状に湾曲した表面16も正確に測定することができる。
【0075】
第2基準センサ34の上へ傾いた向きによって、基準センサから出る基準ビーム又は測定ビームが物体14によって、又はこの物体により、あるいはこの物体の表面16により遮断、偏向、又は散乱される恐れがなくなる。
【0076】
図4による実施形態では、保持体26は破線でしか示されていない。図5による実施形態では、保持体は、純粋に説明の目的でもはや明確には示されていない。しかしそれでも保持体はそこにある。
【0077】
図4による装置10の実施形態では、距離測定装置30は、物体14の表面16の方向に方向合わせされている第1距離センサ36を有する。これに加えて、距離測定装置30は、第1距離センサ36の測定方向に方向合わせされている第2距離センサ38を有する。
【0078】
両方の距離センサ36、38は、回転不能に互いに接続されている。これらの距離センサは組み合わせて、第1軸51に関して回転可能に保持体26に支持されている。第2距離センサ38は、基準体40、特に基準体40の基準面42の方向に方向合わせされ、基準体は、例えば中空鏡を有し、中空鏡の仮想中心点が第1軸51と略一致する。基準体の、特に第2距離センサ38に向いた側のジオメトリが正確に測定され、制御部60に記憶される。
【0079】
基準体40に相対する距離測定装置30、したがって2つの距離センサ36、38の具体的な角度位置は、距離測定装置30と接続された、又は機械的に結合された回転角度センサによって検知され得る。第1軸51に関して距離測定装置30が回転することにより場合によって引き起こされ得るポジションの不正確さを2つの距離センサ36、38によって計算により補償することができる。距離測定装置30は、物体表面16上の測定点17と基準体40におけるこれと対応する測定点41との距離を検知するために用いられる。
【0080】
図5による実施形態では、第1基準構造22と第2基準構造24との間の角度が約120°~135°である。
【0081】
第1基準構造22、したがって第1基準物体18は水平に方向合わせされている。この第1基準物体は距離測定装置30の上方、及び支持体26の上方にある。第2基準構造24及び第2基準物体20は、径方向に対して、及び軸方向に対して傾けて方向合わせされている。第2基準センサ34の上に向いた方向合わせを可能にするために、第2基準構造24は、支持体12に対する軸方向の距離が大きくなるにつれて小さくなる支持体12に対する径方向の距離を有する。
【0082】
径方向内側から径方向外側に見て、第2基準構造24が、若しくは第2基準物体20が下へ、すなわち支持体12に向かって傾けて方向合わせされていてもよい。
【0083】
図7及び図8による別の実施形態では、第3基準物体19により提供される第3基準構造23がさらに設けられている。図7及び図8を合わせてみることによって明らかになるように、第3基準構造23は、第1基準構造22及び第2基準構造24に対して予め定められた角度で延在する。第3基準構造23を、さらに基準平面25として形成することができ、したがって第3基準物体19はプレートのような平坦なジオメトリを有することができる。
【0084】
第3基準物体19若しくは第3基準物体の第3基準構造23も軸方向(z)に関して、及び径方向(x)に関して傾けて方向合わせされ得る。特に図8に明瞭化されるように、第3基準構造23、したがって基準平面25は、支持体12に対する軸方向距離が大きくなるにつれて小さくなる支持体12に対する径方向の距離を有することができる。第3基準センサ33は、保持体26において第3基準構造23の方向に、それに対応して第3基準物体19に対して垂直にも方向合わせされ得る。第3基準センサ33は、第3基準構造23の平面に対して実質的に垂直に方向合わせされ得る。
【0085】
この配置は、特に距離測定装置30の2次元旋回性のために有利である。さらに図7及び図8を用いて説明されるように、距離測定装置30は、例えばy方向に延びる第1軸51に関して旋回可能である。距離測定装置は、さらに、例えば径方向、すなわちx方向に延びる第2軸53に関して旋回可能である。第1軸51は、第2軸53に対して特に垂直に延びることができる。2つの軸51、53は、典型的には基準センサ32、33、34のうちの少なくとも2つの想定される延長部と一致する少なくとも1つの仮想交点を有することができる。
【0086】
このようにすることで、表面16に対して垂直に方向合わせされる距離測定装置30によって、若しくはこの距離測定装置の距離センサ36によって極めて複雑な物体表面16も光学的に走査することができ、それに対応して比較的迅速に測定することができる。2つの軸51、53に関する距離測定装置30の旋回性は、物体の表面16に対する距離センサ36を迅速に直交方向に方向合わせすることを可能にする。
【0087】
距離測定装置30が2つの軸51、53に関して旋回可能に保持体26に支持される場合、及び距離測定方向30が2つの逆に方向合わせされた距離センサ36、38を備えている場合、基準体40は、典型的には3次元基準面、例えば球面の中空鏡の形の鏡面を有する。それに伴い、基準体40に向いた距離センサ38の各角度位置について、基準体40上の測定点41と物体14の表面16上の測定点17との間の距離を決定することができる。測定点41は、基準体40の基準面42上にある。
【0088】
しかし第2軸53に関する旋回性によって、不可避の機械的な軸方向の誤差(Achsfehler)により、距離測定装置30の向きによって予め定められる測定方向に沿って測定の正確さ(Messungsgeneuigkeiten)が生じ得る。測定の正確さは、特に保持体26若しくは距離測定装置30のポジションにおいて軸方向(x)及び径方向(x)の面法線の方向に位置し得る。第3基準構造23及び第3基準物体19によって、かつ第3基準センサ33の助けにより、軸方向(x)と径方向(x)に広がる平面に対して垂直に場合によって生じ得るポジションの不正確さが測定され、かつ計算により補償され得る。換言すると、距離測定装置30の第2の旋回可能な支持によって引き起こされるy方向のポジションの誤差が第3基準センサ33によって、及び基準構造23が設けられた第3基準物体19によって正確に検出され、それに対応して計算により補償され得る。
【0089】
図9において、さらに方法のフローチャートが示されている。第1工程200において、支持体12に支持された物体14の表面輪郭が保持体26に回転可能に配置された距離測定装置30によってスキャンして、すなわち表面走査して検出される。物体14の表面16の個々の測定点17に測定ビームが順次照射され、それにより各測定点17について距離センサ36との距離が検知される。その限りで、距離測定装置30によるスキャンプロセス中に、物体14の個々の測定点17との一連の距離が測定され、あるいは基準体40における測定点と基準点との間の距離が測定される。これらのことから物体14の表面画像が生成され、特に計算機支援により算出される。
【0090】
第1工程200と同時に進行する別の工程202において、第1基準センサ及び第2基準センサ32、34によって、及び第3基準センサ33によって少なくとも1つの基準物体18、20に相対する、典型的には2つの基準物体18及び20に相対する、場合によってはさらに第3基準物体19に相対する保持体26及び/又は保持体の基準体40のポジション及び向きが検知される。別の工程204において、保持体若しくは基準体のポジション決定及び向き決定にもとづいて表面画像が補正される。
【符号の説明】
【0091】
10 測定装置
11 基部
12 支持体
14 物体
16 表面
17 測定点
18 基準物体
19 基準物体
20 基準物体
22 基準構造
23 基準構造
24 基準構造
25 基準面
26 保持体
30 距離測定装置
32 基準センサ
33 基準センサ
34 基準センサ
36 距離センサ
38 距離センサ
40 基準体
41 測定点
42 基準面
51 軸
52 延長部
53 軸
54 延長部
60 制御器
100 測定装置
図1
図2
図3
図4
図5
図6
図7
図8
図9