IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ハイパーソニックス アイピー ホールディングス インコーポレイテッドの特許一覧

特許7539585大きなマッハ数の範囲にわたる極超音速動作のための固定形状および形状遷移を有する機体一体型スクラムジェット
<>
  • 特許-大きなマッハ数の範囲にわたる極超音速動作のための固定形状および形状遷移を有する機体一体型スクラムジェット 図1
  • 特許-大きなマッハ数の範囲にわたる極超音速動作のための固定形状および形状遷移を有する機体一体型スクラムジェット 図2
  • 特許-大きなマッハ数の範囲にわたる極超音速動作のための固定形状および形状遷移を有する機体一体型スクラムジェット 図3
  • 特許-大きなマッハ数の範囲にわたる極超音速動作のための固定形状および形状遷移を有する機体一体型スクラムジェット 図4
  • 特許-大きなマッハ数の範囲にわたる極超音速動作のための固定形状および形状遷移を有する機体一体型スクラムジェット 図5
  • 特許-大きなマッハ数の範囲にわたる極超音速動作のための固定形状および形状遷移を有する機体一体型スクラムジェット 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-15
(45)【発行日】2024-08-23
(54)【発明の名称】大きなマッハ数の範囲にわたる極超音速動作のための固定形状および形状遷移を有する機体一体型スクラムジェット
(51)【国際特許分類】
   F02K 7/14 20060101AFI20240816BHJP
【FI】
F02K7/14
【請求項の数】 15
(21)【出願番号】P 2023540453
(86)(22)【出願日】2020-09-08
(65)【公表番号】
(43)【公表日】2023-11-20
(86)【国際出願番号】 US2020049750
(87)【国際公開番号】W WO2022055478
(87)【国際公開日】2022-03-17
【審査請求日】2023-08-28
(73)【特許権者】
【識別番号】523083562
【氏名又は名称】ハイパーソニックス アイピー ホールディングス インコーポレイテッド
【氏名又は名称原語表記】HYPERSONIX IP HOLDINGS, INC.
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100173794
【弁理士】
【氏名又は名称】色部 暁義
(72)【発明者】
【氏名】マイケル ケヴィン スマート
【審査官】北村 一
(56)【参考文献】
【文献】米国特許第08256706(US,B1)
【文献】特表2007-526418(JP,A)
【文献】特開平04-219452(JP,A)
【文献】特開平05-272411(JP,A)
【文献】特開2017-061294(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F02K 1/00-99/00
(57)【特許請求の範囲】
【請求項1】
(a)極超音速飛行体の機体の前部体と滑らかに一体化されるように成形された本体側前縁と、(b)前記機体から離れるように前記本体側前縁から後方に突出する一対の側部前縁と、(c)前記側部前縁の後方端から突出するとともに前記側部前縁の後方に接合されてカウリングノッチを形成する一対のカウル前縁と、によって画定される捕捉形状を含むインレットと、
前記インレットの後方に配置された燃焼器と、
前記燃焼器の後方に配置され、前記機体の後部体と滑らかに一体化されるように構成された出口形状を有するノズルと、
スクラムジェットエンジンに沿って間隔を置いて配置され、前記カウリングノッチに近接して前記インレットの本体側に配置された第1の燃料噴射器を含む第1の燃料噴射ステーションと、前記第1の燃料噴射器および前記カウリングノッチの後方かつ前記燃焼器の前方に配置された第2の燃料噴射器を含む第2の燃料噴射ステーションと、前記第2の燃料噴射器の後方の前記燃焼器に配置された第3の燃料噴射器を含む第3の燃料噴射ステーションとを含む、複数の燃料噴射器と、
を備え、
前記第1の燃料噴射器、第2の燃料噴射器および第3の燃料噴射器のうちの少なくとも1つは、マッハ5とマッハ8との間の全ての飛行マッハ数を含む前記スクラムジェットエンジンの動作マッハ範囲全体にわたって燃焼を維持するように、前記極超音速飛行体の飛行マッハ数の変化に伴って変化する割合で前記スクラムジェットエンジンに燃料を噴射し、
前記スクラムジェットエンジンの幾何学的形状が前記スクラムジェットエンジンの全長に沿って固定されており、前記スクラムジェットエンジンは少なくともマッハ5の飛行マッハ数で自己始動する、
スクラムジェットエンジン。
【請求項2】
前記側部前縁が、前記機体の前記前部体に対して90度未満の角度で後方に突出している、請求項1に記載のスクラムジェットエンジン。
【請求項3】
前記インレットが、前記捕捉形状から丸みを帯びたインレットスロートまで延在する滑らかで収縮する表面を含み、
前記丸みを帯びたインレットスロートの断面積は前記捕捉形状の断面積よりも小さく、
前記インレットは空気流が前記捕捉形状から前記丸みを帯びたインレットスロートに流れるときに前記空気流を捕捉し圧縮するように構成される、請求項1に記載のスクラムジェットエンジン。
【請求項4】
前記カウリングノッチが、前記飛行マッハ数がマッハ5以上であるとき、前記インレットから空気流を流出させるように構成される、請求項1に記載のスクラムジェットエンジン。
【請求項5】
前記インレットが混合圧縮インレットである、請求項1に記載のスクラムジェットエンジン。
【請求項6】
前記インレットによって捕捉された空気流の全てが前記燃焼器を通過する、請求項1~5のいずれか一項に記載のスクラムジェットエンジン。
【請求項7】
前記燃焼器がその全長に沿って丸みを帯びた断面積を含み、前記断面積が前記燃焼器の長さに沿って上流端から下流端まで増加する、請求項1~6のいずれか一項に記載のスクラムジェットエンジン。
【請求項8】
前記燃焼器が、前記丸みを帯びた断面積の周囲に後ろ向きステップをさらに備える、請求項7に記載のスクラムジェットエンジン。
【請求項9】
前記第2の燃料噴射ステーションは前記後ろ向きステップの上流側に配置され、
前記第3の燃料噴射ステーションは前記後ろ向きステップに隣接して配置され、
前記第3の燃料噴射ステーションの下流側に配置された第4の燃料噴射ステーションをさらに備える、請求項8に記載のスクラムジェットエンジン。
【請求項10】
前記第1の燃料噴射ステーションが、前記動作マッハ範囲の第1の部分の間に燃料を噴射せず、前記第4の燃料噴射ステーションは前記動作マッハ範囲の第2の部分の間に燃料を噴射しない、請求項9に記載のスクラムジェットエンジン。
【請求項11】
前記スクラムジェットエンジンがその動作マッハ範囲の最下部付近で動作しているとき、前記スクラムジェットエンジンに噴射される前記燃料の最大30%が、前記第4の燃料噴射ステーションを通って送出される、請求項9に記載のスクラムジェットエンジン。
【請求項12】
前記燃焼器を出る空気、燃料及び燃焼生成物の全てが、前記ノズルを通過する、請求項1に記載のスクラムジェットエンジン。
【請求項13】
前記燃料噴射器のうちの少なくとも1つは、前記動作マッハ範囲の一部の間に燃料を噴射しない、請求項1~12のいずれか一項に記載のスクラムジェットエンジン。
【請求項14】
前記動作マッハ範囲は、マッハ5~マッハ12の全ての飛行マッハ数を含む、請求項1~12のいずれか一項に記載のスクラムジェットエンジン。
【請求項15】
前記スクラムジェットエンジンがその動作マッハ範囲の最上部付近で動作しているとき、前記スクラムジェットエンジンに噴射される燃料の最大50%が、前記第1の燃料噴射ステーションを通って送出される、請求項1~12のいずれか一項に記載のスクラムジェットエンジン。
【発明の詳細な説明】
【技術分野】
【0001】
この開示は、極超音速空気吸入推進システムに関するものである。より詳細には、本開示は、超音速燃焼・ラムジェット(スクラムジェット)エンジンに関する。いくつかの実施形態では、本開示は、機体一体型スクラムジェットエンジンに関する。
【図面の簡単な説明】
【0002】
本発明の特徴および利点がより詳細に理解され得るように、簡単に説明された本発明についての説明が、添付の図面の図を参照することによって得ることができる。しかし、注目すべきことは、図面は、本発明の実施形態のみを示しており、よって、本発明の範囲を限定するものと考えるべきではないということであり、なぜなら、本発明は、同様に効果的である他のいくつかの実施形態を包含して(admit to)もよいからである。
図1】機体一体型スクラムジェットエンジンの一実施形態を含む極超音速飛行体の機体の一部の概略断面図である。
図2図1のスクラムジェットエンジンの実施形態の等角図である。
図3図1のスクラムジェットエンジンの底面図である。
図4図1のスクラムジェットエンジンのインレットの実施形態の等角図である。
図5図4のインレットの実施形態の正面図である。
図6】燃料噴射ステーションの位置を示す、図1のスクラムジェットエンジンの側面図である。
【発明を実施するための形態】
【0003】
スクラムジェットは極超音速飛行のための空気吸入エンジンである。これは、宇宙打ち上げおよび長距離、高速飛行のためのロケットの代替推進システムであることができる。極超音速はマッハ5以上の速度での移動として定義され、マッハ1は海面における空気中の音の速度である。特定の実施形態では、スクラムジェットエンジンがインレット、燃焼器、およびノズルを含むことができる。インレットは空気流を捕捉し、空気中の酸素との燃料の燃焼に適した条件に空気流を圧縮するように構成されてもよい。インレットから燃焼器に入る空気は、超音速を維持しながら燃料とともに燃焼させることができる。次いで、空気および燃焼生成物はノズルに入り、当該ノズルにおいて、スクラムジェットエンジンを出る前に膨張および加速されて、極超音速エンジンスラストを提供する。スクラムジェットエンジンは極超音速で大気中を飛行している間、極超音速飛行航空機または飛行体に動力を供給するために、前方スラストを発生させるように意図されている。スクラムジェットエンジンが特定の飛行マッハ数で前進推力を生成することができる場合、スクラムジェットエンジンは、その飛行マッハ数で動作すると考えられる。
【0004】
いくつかの実施形態では、スクラムジェットエンジンが極超音速で動くように設計された極超音速飛行機または飛行体に円滑に統合することができる。さらに、スクラムジェットエンジンは機体統合およびロバストな燃焼の相反する要件を満たすことができるように、その長さに沿った断面形状の移行部を含むことができる。加えて、スクラムジェットエンジンは、固定形状で大きなマッハ数の範囲にわたって運動方向にスラストを生成するように構成することができる。言い換えれば、スクラムジェットエンジンは、その形状を変えることなく、大きな極超音速マッハ数の範囲にわたって極超音速飛行機または飛行体を加速することができる。大きな極超音速マッハ数の範囲にわたって運動方向に推力を生成することができるということは、スクラムジェットエンジンが、極超音速機または飛行体を加速するように構成され、宇宙打上システムの一部として使用できることを意味する。
【0005】
実施形態は、同様の部分が全体にわたって同様の符号によって指定される図面を参照することによって、理解することができる。本開示の恩恵を受ける当業者は、本明細書において一般的に述べられ図に示されている実施形態の構成要素は、広範な異なる構成で構成および設計され得ることは、容易に理解されよう。したがって、図面に表されるような様々な実施形態の以下のより詳細な説明は、本開示の範囲を限定するものではなく、様々な実施形態を表すものにすぎない。実施形態の様々な態様が図面に提示されているが、図面は特に示されない限り、必ずしも縮尺通りに描かれていない。
【0006】
様々な構成が、本開示を簡素化する目的で、単一の実施形態、図またはそれらの説明において、時々、一緒にグループ化されることが理解されよう。これらの特徴の多くは、単独で、および/または互いに組み合わせて使用することができる。
【0007】
「に結合される」および「と連通する」という表現は、2つ以上のエンティティ間の任意の形態の相互作用を指し、機械的、電気的、磁気的、電磁的、流体、および熱的相互作用を含む。2つの構成要素は、それらが互いに直接接触していなかったとしても、互いに結合されるか、または互いに連通してもよい。例えば、2つの構成要素は、中間構成要素を介して互いに結合されるか、または連通してもよい。
【0008】
「前方(fore)」および「後方(aft)」という方向用語は、当技術分野におけるそれらの通常の意味を与える。すなわち、「前方」は極超音速飛行機または飛行体の前方または先頭部分を指し、「後方」は、極超音速飛行機または飛行体の後方または尾びれ部分を指す。
【0009】
図1図6は、機体一体型スクラムジェットエンジンの実施形態および関連する構成要素の異なる図を示す。特定の図では、各エンジンがすべての図に含まれない追加の構成要素に結合されるか、または追加の構成要素とともに示され得る。さらに、いくつかの図では、構成要素の関係を詳細に提供するために、選択された構成要素のみが示されている。いくつかの構成要素は複数の図で示すことができるが、すべての図に関連して説明されない。任意の図に関連して提供される開示は、任意の他の図または実施形態に関連して提供される開示に関連し、適用可能である。
【0010】
図1は、本開示に従う機体一体型スクラムジェットエンジン100を含む飛行機体190を備える極超音速飛行機の一部の概略断面図を示す。飛行体190は、機体前部体191と、機体193の中間部分と、機体後部体192とから構成されている。開示されたスクラムジェットエンジン100は、機体前部体191がスクラムジェットエンジン100によって捕捉された空気を圧縮するように飛行体190に取り付けられたものであり、機体後部体192は、スクラムジェットエンジン100からの排気を、スクラムジェットエンジン100を出た後、膨張させ続ける。
【0011】
開示されたスクラムジェットエンジン100は、飛行体190に円滑に統合することができる。このことは、スクラムジェットエンジン100が、機体前部体191に沿って流れる空気が最小限のディスラプションもしくは乱流でスクラムジェットエンジン100の中および周囲を滑らかに通過するように、並びに/またはスクラムジェットエンジン100からの排気が機体後部体192の上および上方を滑らかに流れるように、飛行体190に取り付けられることを意味する。
【0012】
図2は、開示されたスクラムジェットエンジン100の捕捉形状134、形状遷移146、および出口形状164を示す。図2に示されるように、開示されるスクラムジェットエンジン100は、極超音速飛行機または飛行体190の前部体191と滑らかに一体化することができる捕捉形状134と、その長さにわたって収縮および拡張する形状遷移146と、極超音速飛行機または飛行体190の後部体192と滑らかに一体化することができる出口形状164とを含む。形状遷移146は開示されたスクラムジェットエンジン100の構成であり、当該構成は、捕捉形状134および出口形状164の両方が、様々な極超音速飛行機または飛行体190の範囲と滑らかに統合するという幾何学的要件を満たすように独立して特定されることを可能にする。形状遷移146の別の特徴は、開示されたスクラムジェットエンジン100の内部形状が、大きなマッハ範囲にわたって、運動方向にロバストな燃焼およびスラストを生成するように構成されることを可能にすることである。
【0013】
スクラムジェットエンジンの動作マッハ範囲は、スクラムジェットエンジンが運動方向に推力を生成するマッハ数の範囲である。開示されたスクラムジェットエンジン100が動作する最小マッハ数はマッハ5である。スクラムジェットに関して大きな動作マッハ範囲は、マッハ数3の増加であると考えられる。開示されたスクラムジェットエンジン100は、マッハ5からマッハ8までの最小動作範囲を有するので、大きな動作マッハ範囲を有すると考えることができる。いくつかの実施形態では、開示されたスクラムジェットエンジン100がマッハ5~マッハ12の動作マッハ範囲を有することができる。
【0014】
図2に示される開示されたスクラムジェットエンジン100は、正味推力を生成するために、捕捉形状134および出口形状162において機体190と滑らかに一体化することができる。そうではない場合、スクラムジェットエンジン100によって生成される推力は、極超音速飛行機または飛行体190とスクラムジェットエンジン100との間の空気力学的相互作用によって生成される外部抵抗によって打ち消すことができる。他の実施形態では、形状遷移146の変化によって、スクラムジェットエンジン100が様々な形状の極超音速飛行機または飛行体190上に設置されることが可能となる。
【0015】
開示されたスクラムジェット100の捕捉形状134は、開示されたスクラムジェットエンジン100の動作範囲のより大きなマッハ数で利用可能な空気流の高い割合を捕捉するが、その動作マッハ範囲内のより小さなマッハ数で空気が流出する(spill)ように構成される。
【0016】
開示されたスクラムジェットエンジン100は、極超音速飛行中に極超音速飛行機または飛行体190に動力を供給するために使用することができる。例えば、スクラムジェットエンジン100は、極超音速飛行中に幾何学的形状の変化なしに、その動作マッハ範囲内の極超音速で極超音速飛行機または飛行体190に動力を供給することができる。
【0017】
図3は、本開示に従うスクラムジェットエンジン100の実施形態を示す。図示のように、開示されたスクラムジェットエンジン100は、3つの一般的な構成要素を備えることができる。これらの構成要素は(1)超音速空気流を捕捉し、衝撃波および空気流拡張の動作を介して燃料の燃焼に適した状態に空気流を圧縮および加熱するように構成されたインレット120と、(2)スクラムジェットエンジン100を通過する空気流にエネルギーを加えるように燃料および空気が燃焼される燃焼器140と、(3)燃焼生成物(例えば、水および二酸化炭素)および任意の未燃焼空気または燃料が膨張して推力を生むノズル160である。インレット120は、開示されたスクラムジェットエンジン100の捕捉形状134からスロート129まで延在する表面を含む。燃焼器は、スロート129からノズル入口128まで延在する表面を含む。ノズル160は、開示されたスクラムジェットエンジン100のノズル入口128から出口形状164まで延在する表面を含む。
【0018】
図4は、本開示に従うスクラムジェットエンジン100のインレット120の実施形態を示す。インレット120の捕捉形状134を、極超音速飛行機または飛行体190の前部体191と滑らかに一体化されるように構成することができる。他の実施形態では、インレット120の捕捉形状134を、有翼極超音速航空機または極超音速ミサイルを含む、任意の適切な極超音速飛行航空機または飛行体との円滑な統合を容易にするように調整することができる。例えば、前部体191は、凸形状、凹形状、平面形状などを含むことができる。
【0019】
インレット120の捕捉形状134は、本体側前縁130と、一対の側部前縁122と、一対のカウル前縁125とを含む閉じた形状である。本体側前縁130は、その全長に沿って前部体191に直接取り付けられる。一対の側部前縁122は、本体側前縁130の各端部に取り付けられ、前部体191に対して90度未満の角度で前部体191から後方にかつ離れて突出する。一対のカウル前縁125は、側部前縁122の後端に取り付けられ、一対の側部前縁122の間に配置されてカウリングノッチ126で接合する。カウリングノッチ126は以下でさらに説明されるように、過剰な空気流がインレット120から流出することを可能にするように構成されてよい。
【0020】
インレット120は、混合圧縮インレットであってもよい。インレット120の捕捉形状134は、スクラムジェットエンジン100がその動作マッハ範囲にわたって自己始動することを可能にする、外部および内部空気圧縮または収縮を提供するように構成される。自己始動は、スクラムジェットエンジン100を介して適用可能な極超音速飛行マッハ数で超音速気流が確立されることを意味する。超音速気流が確立されない場合、スクラムジェットエンジン100は、極超音速飛行条件で運動方向に推力を生むことができない。インレット120は、燃焼器140における燃料および空気のできる限りロバストな燃焼を可能にするために必要な量の空気流圧縮を提供するように構成される。
【0021】
開示されたスクラムジェット100のスロート129は、カウリングノッチ126の後方に配置することができる。スロート129は、捕捉形状134よりも小さい断面積を有することができる。スロート129はインレット120および燃焼器140と連通することができ、それにより、インレット120によって収集された空気は、インレット120からスロート129を通って燃焼器140に流れる。スロート129は、丸い形状を有することができる。例えば、丸みを帯びた形状は、楕円形、円形、長円形、または鋭い角を含まない任意の他の適切な形状であってもよい。
【0022】
図5は、下流を見た、本開示に従うインレット120の図を図示する。図5は、捕捉形状134から丸いスロート129への滑らかな形状遷移を有するインレット120を示す。滑らかな形状遷移は、捕捉形状134から丸いスロート129まで実質的に均等に離間された、与えられた輪郭線131として示される。インレット120の滑らかな形状遷移は、低い内部抗力、したがって、開示されたスクラムジェットエンジン100からより大きな全体スラストの機会をもたらすことができる。
【0023】
図3に示すように、丸いスロート129は、燃焼器140のインレットに直接接続する。丸いスロート129の形状および断面積は、燃焼器インレットと同じである。燃焼器140の断面積は、燃焼器入口から燃焼器出口までその長さに沿って増加することができる。燃焼器140は、その全長に沿って鋭い角部のない丸みを帯びた断面を有する。丸みを帯びた断面を有する燃焼器140は特定の圧力を保持するために必要とされるより低い構造的重量、および特定の流れ領域を囲むために必要とされる、空気流が通過するより小さな表面積に関して、角(例えば、正方形、長方形など)を含む断面を有する燃焼器140よりも優れている。極超音速コーナー流に関連する流体力学的問題も、燃焼器140の丸みを帯びた断面には存在しない。
【0024】
燃焼器140の面積および断面形状は、スクラムジェットエンジン100の動作マッハ数の範囲にわたって、その物理的形状を調整することなく燃料を効率的に燃焼させることができるように、その長さに沿って変化する。このことは、エンジンに複数の燃料噴射器を含め、燃料噴射器と各燃料噴射器からの燃料計量レベルとの様々な組み合わせを利用することによって達成される。
【0025】
図3に示されるように、燃焼器140はその丸みを帯びた断面領域の周囲に、単一の後ろ向きステップ141を含む。
【0026】
図6は、スクラムジェットエンジン100の長さに沿った4つの燃料噴射ステーション142、143、144、145の可能な位置を示す、本開示に従うスクラムジェットエンジン100の側面図を示す。図6に示すように、燃料噴射ステーション142、143、144、145を、インレット120の本体側133(ステーション1 142)、後ろ向きステップ141の上流(ステーション2 143)、後ろ向きステップ141の隣(ステーション3 144)、及び後ろ向きステップの下流(ステーション4 145)に配置することができる。
【0027】
開示されたスクラムジェットエンジン100に入る空気の圧力、温度および速度は、空気がマッハ5からより高いマッハ数に加速することにつれて変化する。このことは、衝撃波およびスクラムジェットエンジン100内の極超音速気流の他の特徴も変化することを意味する。開示されたスクラムジェットエンジン100は、固定形状を有するので、極超音速飛行中にスクラムジェットエンジン100の形状または幾何学的形状がその全長にわたって移動することはない。大きな動作マッハ数の範囲を有するために、燃料噴射ステーション142、143、144、145は個別に、または様々な組み合わせで、および様々な燃料計量レベルで使用されて、開示されたスクラムジェットエンジン100によって捕捉される空気中の酸素の80%超を燃焼させるという目標で、開示されたスクラムジェットエンジン100の燃焼効率を最大化することができる。
【0028】
燃料噴射ステーション142、143、144、145の使用は、個々にまたは組み合わせて、および様々な燃料計量レベルで、飛行マッハ数に応じて変化する。例えば、燃料と空気との間の混合が最大の課題である動作マッハ範囲の上部において、燃料はインレット長さを利用して燃料と空気との間の混合を増加させるために、総燃料計量レベルの最大50%の計量レベルでインレット120の本体側133のステーション1 142において噴射され、残りの燃料は、後ろ向きステップ141の上流ステーション2 143および後ろ向きステップ141に隣接するステーション3 144において、噴射されるであろう。動作マッハ範囲の中間部分では、燃料が各ステーションからの総燃料計量の40%~60%の範囲の計量レベルで、後ろ向きステップ141の上流ステーション2 143および後ろ向きステップ141に隣接するステーション3 144においてのみ噴射される。動作マッハ範囲の下部では、後ろ向きステップ141の上流側での燃料の噴射が、開示されたスクラムジェットエンジン100に大きな圧力上昇を生じさせることができ、これはエンジンの不始動につながる可能性がある。したがって、燃料は、後ろ向きステップ141の上流ステーション2 143および後ろ向きステップ141に隣接するステーション3 144において、70%未満の複合計量レベルで噴射され、後ろ向きステップ141の下流ステーション4 145において最大30%が噴射される。
【0029】
図3は、本開示に従うスクラムジェットエンジン100のノズル160の一実施形態を示す。図示のように、ノズル160は、燃焼器140から後方に延びる。ノズル160は、燃焼器140の丸みを帯びた断面形状から、極超音速飛行機または飛行体190(図3には図示せず)と滑らかに一体化する出口形状164へと拡張する形状遷移部を含む。ノズル160は、その長さに沿って面積が拡大し、出口形状164で終わる、滑らかに変化する断面形状を有する。出口形状164は、極超音速飛行機または飛行体190と滑らかに一体化されるという要件を満たすように調整することができる。異なる出口形状164を有するノズル160の他の実施形態は、湾曲したまたは他の後方ボディ形状を有する、極超音速飛行航空機または飛行体上での滑らかな機体統合を可能にする。
【0030】
本発明はその形態のいくつかにおいて図示され、または記載されているが、本発明は開示された特定の形態に限定されることを意図するものではないことを理解されたい。むしろ、本発明は、以下の特許請求の範囲によって定められる本発明の精神および範囲内に含まれるすべての修正形態、均等物、および代替形態を網羅するものである。
【0031】
本明細書に開示されている方法は、記載の方法を実施するための1つまたは複数のステップまたはアクションを含む。方法ステップおよび/またはアクションは、互いに交換さてもよい。換言すれば、特定のステップまたはアクションの順序が実施形態の適切な動作のために必要とされない限り、特定のステップおよび/またはアクションの順序および/または使用は、変更されてもよい。
【0032】
用語「実質的に」の使用などによって、本明細書全体を通して近似への言及がなされる。そのような言及の各々について、いくつかの実施形態では値、特徴、または特性は近似なしに指定され得ることを理解されたい。例えば、「約」および「実質的に」などの修飾語が使用される場合、これらの用語は、それらの修飾語がない場合、修飾された単語をこれらの用語の範囲内に含む。例えば、用語「実質的に垂直」が構成に関して記載される場合、さらなる実施形態では、構成が正確に垂直な構成を有することができることが理解される。
【0033】
同様に、実施形態の上記の説明では、開示を簡素化するために、様々な構成が単一の実施形態、図、またはそれらの説明において共にグループ化されることがある。しかし、開示のこの方法は、任意の請求項がその請求項に明示的に述べられているものより多くの特徴を必要とするという意図を反映するものと解釈されるべきでない。むしろ、以下の特許請求の範囲が反映するように、発明性のある態様は、どの単一の先に開示されている実施形態のすべての特徴より少ない組み合わせにある。
【0034】
この記載された開示に続く特許請求の範囲は、本記載の開示に明示的に組み込まれており、各請求項は、個別の実施形態として独立に成立する。本開示は、独立請求項とその従属請求項との全ての組み替えを含む。さらに、以下の独立請求項および従属請求項から導出することができる追加の実施形態も、本明細書に明示的に組み込まれる。
【0035】
さらに詳細に説明しなくても、当業者は、前述の説明を用いて、本発明を最大限に利用することができると考えられる。ここに開示された特許請求の範囲および実施形態は、単なる説明および例示として解釈されるべきであり、いかなる場合も、本開示の範囲を限定するものではない。本開示の助けを借りて、本明細書の開示の根底にある原理から逸脱することなく、前述の実施形態の詳細に対して変更が行われてもよいことは、当業者には明らかであろう。言い換えると、上記の説明において具体的に開示された本実施形態の様々な修正および改善は、添付される特許請求の範囲内にある。さらに、本明細書に開示される方法のステップまたはアクションの順序は、本開示の範囲から逸脱することなく、当業者によって変更され得る。言い換えれば、実施形態の適切な動作のためにステップまたは作用の特定の順序が必要とされない限り、具体的な手順または作用の順序または使用は変更され得る。したがって、本発明の範囲は、以下の特許請求の範囲およびそれらの均等物によって定められる。
図1
図2
図3
図4
図5
図6