IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ルミラディーエックス ユーケイ リミテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-16
(45)【発行日】2024-08-26
(54)【発明の名称】流体制御
(51)【国際特許分類】
   G01N 35/08 20060101AFI20240819BHJP
   G01N 37/00 20060101ALI20240819BHJP
【FI】
G01N35/08 A
G01N37/00 101
【請求項の数】 16
【外国語出願】
(21)【出願番号】P 2023044975
(22)【出願日】2023-03-22
(62)【分割の表示】P 2018569046の分割
【原出願日】2017-06-30
(65)【公開番号】P2023088981
(43)【公開日】2023-06-27
【審査請求日】2023-04-20
(31)【優先権主張番号】1611442.3
(32)【優先日】2016-06-30
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】518459846
【氏名又は名称】ルミラディーエックス ユーケイ リミテッド
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100196221
【弁理士】
【氏名又は名称】上潟口 雅裕
(72)【発明者】
【氏名】キーチ スティーヴン アレクサンダー
(72)【発明者】
【氏名】ロウ フィル
(72)【発明者】
【氏名】マクギガン ブライアン
(72)【発明者】
【氏名】フェラン アンドリュー ピーター
(72)【発明者】
【氏名】カーン アマン
【審査官】永田 浩司
(56)【参考文献】
【文献】特開平10-132712(JP,A)
【文献】特開2005-345259(JP,A)
【文献】特開2004-117178(JP,A)
【文献】米国特許出願公開第2013/0299003(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 35/00
G01N 37/00
(57)【特許請求の範囲】
【請求項1】
液体試料のアッセイを行うのに用いる内蔵式マイクロ流体システムであって、
少なくとも1つのマイクロ流体流路に接続された前記液体試料を受け入れる試料入力ポートを備え、
前記マイクロ流体流路の各々は、前記アッセイを行うのに用いる内部に堆積した1又は2以上の試薬と、試料又は分析物反応生成物に存在する可能性がある何らかの分析物を検出するのに用いる検出ゾーンとを含み、
前記マイクロ流体流路の各々は、前記検出ゾーンの各々の下流側で、加圧可能な気体充填チャンバに流体接続されており、
前記マイクロ流体流路の各々は、前記試料入力ポートと前記気体充填チャンバとの間の前記マイクロ流体流路の各々に沿って位置決めされた通気孔をさらに含み、該通気孔は、空気が前記マイクロ流体システムの外側に排出されることを許可するとともに、前記試料入力ポートに受け入れられた前記液体試料が該通気孔への毛細管作用によって前記マイクロ流体流路の各々を充填することを可能にするように構成され、
前記システムは、前記マイクロ流体流路の各々と、前記マイクロ流体流路の検出ゾーンの各々と、前記気体充填チャンバとを定めるために一緒にサンドイッチされた3つの別個の平面基材から形成され、前記3つの別個の平面基材は、上部基材と、底部基材と、前記上部基材と前記底部基材との間に配置された中央基材と、を含、前記上部基材及び前記底部基材は、厚さが実質的に均一であり、前記気体充填チャンバの上部外面は、弾性力があり、前記気体充填チャンバの前記上部外面を加圧又は減圧することで、気体が、前記気体充填チャンバから排出されるか又は前記気体充填チャンバに引き込まれ、これによって、前記マイクロ流体流路の各々の中で前記液体試料の交換的な移動が生じる、内蔵式マイクロ流体システム。
【請求項2】
前記システムは、複数のマイクロ流体流路を備え、各マイクロ流体流路は、前記試料入力ポートに流体接続されており、各マイクロ流体流路は、通気孔を含む、請求項1に記載の内蔵式マイクロ流体システム。
【請求項3】
各マイクロ流体流路は、弁を含み、前記弁は、通気孔と、前記内蔵式マイクロ流体システムの前記マイクロ流体流路の各々よりも小さな寸法のマイクロ流体流路と、を含む、請求項2に記載の内蔵式マイクロ流体システム。
【請求項4】
前記複数のマイクロ流体流路の各々は、それぞれの気体充填チャンバに流体接続されている、請求項2又は3に記載の内蔵式マイクロ流体システム。
【請求項5】
前記マイクロ流体流路の各々の中での前記液体試料の移動が独立して制御可能である、請求項4に記載の内蔵式マイクロ流体システム。
【請求項6】
前記複数のマイクロ流体流路の各々は、流体停止特徴部をさらに含む、請求項2に記載の内蔵式マイクロ流体システム。
【請求項7】
請求項1から6のいずれか一項に記載の内蔵式マイクロ流体システムと、関連のリーダーとを備える、アッセイシステム。
【請求項8】
前記内蔵式マイクロ流体システムは、前記マイクロ流体流路の各々の内部に1又は2以上の電極を備え、該電極は、前記リーダー内で電気接点と接触するように設計されている、請求項7に記載のアッセイシステム。
【請求項9】
前記電極は、試料が前記マイクロ流体流路を充填していることを検出するように設計されている、請求項8に記載のアッセイシステム。
【請求項10】
リーダーは、試料が前記カートリッジ内に充填されたという適切な信号を検出すると、前記アッセイを開始する、請求項9に記載のアッセイシステム。
【請求項11】
前記電極の各々は、前記マイクロ流体流路の各々の検出領域内からの試料の移動を検出するために用いられる、請求項8に記載のアッセイシステム。
【請求項12】
前記電極の各々は、前記液体試料の電気測定を実行する、請求項8に記載のアッセイシステム。
【請求項13】
前記電気測定は、電気測定、インピーダンス測定、導電性測定、又は電気化学測定からなる群から選択される、請求項12に記載のアッセイシステム。
【請求項14】
前記リーダーは、前記内蔵式マイクロ流体システム内の流体移動を制御するように構成された力制御手段を含む、請求項7に記載のアッセイシステム。
【請求項15】
前記力制御手段は、前記内蔵式マイクロ流体システムの気体充填チャンバの加圧又は減圧を制御する、請求項14に記載のアッセイシステム。
【請求項16】
前記力制御手段は、圧電式曲げアクチュエータを含み、前記圧電式曲げアクチュエータは、前記気体充填チャンバの加圧又は減圧を前記圧電式曲げアクチュエータの変位によって直接的に又は間接的に行うように設計されている、請求項15に記載のアッセイシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロ流体アッセイシステム及び関連のリーダー、並びに個別の構成要素自体に関する。本発明は、使い捨てシステム及び関連のリーダーを用いてアッセイを行う方法、並びにアッセイを行うためのキットに関する。
【背景技術】
【0002】
マイクロ流体カートリッジは、通常、様々なアッセイ、つまり、生物学的アッセイ及び化学的アッセイの両方、及び/又は生理化学的アッセイを実行するのに使用され、アッセイの結果は、カートリッジが導入された関連のリーダー装置を使用して特定される場合が多い。
【0003】
カートリッジ内の流体移動は、試薬に確実に接触できることを必要とする場合が多く、試料は、カートリ内に堆積しており、試料内に存在する場合がある1又は2以上の標的分析物と反応することができる。多くの場合、1又は2以上の試薬との反応後に、さらなる反応が生じ得るように又は単に何らかの反応生成物の検出を可能にするために、反応が起きた領域から試料を取り出すことが望ましく、これは、試料が所定の位置に残っている場合は、例えば、光干渉に起因して実現が難しい場合がある。
【0004】
カートリッジ内の流体移動は、毛細管作用だけによって、又は例えばカートリッジ内に存在し得るマイクロポンプ及びバルブを使用してもたらされた作用力によるカートリッジ内の流体の制御によって、又は、カートリッジ自体の中の流体移動を制御するためにカートリッジと相互作用して流体をカートリッジからポンプ圧送で出入りさせるように設計されたリーダー装置内に存在する機構によって生じ得る。例えば、欧州特許第2613881号明細書を参照されたい。もしくは毛細管作用及び作用力の組み合わせを使用することもできる。
【0005】
米国特許第7238324号では、例えば、毛細管作用及び外部ポンプの利用の両方を用いるマイクロ流体デバイスが説明されている。試料は、毛細管作用によって第1のポートを通ってマイクロ流体カートリッジに入ることができ、アッセイが行われる感知チャンバに流れる。アッセイ反応後、液体は、外部ポンプを使用して第2のポートを通ってチップへ導入される。この液体の目的は、元の試料を洗い流すことであり、検出することができる反応生成物のみが後に残る。しかしながら、これは、別個の液体を外部から、さらには、別のポートを通してチップに導入する必要があり、別のポートは、目詰まりし、及び/又は、汚濁が発生する可能性があることを意味する。さらに、液体は、経時的に汚染されるか又は劣化する可能性がある。従って、試料以外の流体をカートリッジの外部から導入すること及び/又は試料が導入される試料ポート以外のポートを有することを必要としないマイクロ流体カートリッジを提供する必要性がある。一部のデザインは、適切な洗浄試薬/バッファを供給するためにカートリッジ自体に液体が充填されたポーチを備えることが知られているが、これは、カートリッジの複雑性及びコストが著しく増大し、さらに液体試薬が劣化する可能性がある。
【0006】
米国特許第5821399号では、導電率を用いて試料及び試料間の流体を測定するシステム及びカートリッジが説明されている。洗浄流体が、カートリッジ内に流体充填ポーチで供給され、洗浄流体は、カートリッジ内で移送することができ、リーダーによってその導電率でもって検出することができる。試料と洗浄流体又は空気セグメントとの間の導電率の差は、簡単に特定することができる。
【0007】
国際公開第2013154946号では、毛細管作用及び気体圧力の組み合わせを使用してマイクロ流体デバイス内の液体試料の移動を制御するマイクロ流体システムが説明されている。最初に、装置へ導入される液体試料が、部分的に毛細管路に沿って毛細管作用によって輸送される。液体が前進すると、遠位気液界面での気体圧力は、液体の移動を停止するのに十分な大きさに増加する。液体試料のさらなる移動を開始するために、毛細管路の遠位部分に接続されたポンプは、液体試料をマイクロ流体デバイスの毛細管路に沿って毛細管作用によってさらに移動させるのに十分な量だけ、液体試料の遠位気液界面に作用する気体の圧力を低下させる。
【0008】
米国特許第5096669号では、リーダー装置と関連して使用される使い捨て装置が説明されている。試料は、最初に毛細管作用によって使い捨て装置へ引き込むことができ、流体試料をセンサー上方に流して化学種の濃度を特定するために、デバイス内で、リーダーは、可撓膜を備える空気袋を自動的に押下することによってデバイス内の試料の移動を生じさせることができる。
【0009】
国際公開第2013/096801号では、流体特徴部を含むことができる側方流検知システムが説明されている。1つの実施形態では、クロマトグラフィ媒体及び固定抗体を含む側方流デバイスを含むが、リーダー内のポンプによって作動される空気袋をさらに含むカートリッジが説明されている。空気袋の押下は、流体試料をカートリッジの流体流路内で及び捕捉区域に移動する役割を果たす。適切な捕捉後、流体試料は、空気袋上の作用によって洗浄チャンバ内にさらに押し込められる。洗浄流体の使用によって、赤血球などの試料流体の成分を洗い流すと説明されており、この成分は、検出を妨害する可能性がある。しかしながら、側方流特徴部をマイクロ流体特徴部と組み合わせることによって、ある程度の複雑性がもたらされ、側方流試験は、一般的に量的測定ではなく定性的測定又は半定量的測定である。
【0010】
本出願人の先願である欧州特許第2613881号では、マイクロ流体カートリッジ及び関連のリーダーが説明されている。カートリッジ内の流体ポートは、気体をリーダーによってカートリッジ内で及びカートリッジを通して移送することができるように、流体密封シールをリーダーとともに形成するように設計される。
【0011】
国際公開第03/049860号では、脆弱な第3の層によって分離された第1及び第2の層を備える化学分析又は生化学分析用の複雑な装置が説明されている。脆弱な第3の層を破断すると、第2の層内に存在する流体は、第1の層の流体ネットワークに流入することができる。様々な試薬を供給して何らかの特定のアッセイを行うために、連続的に加圧する必要がある多数のチャンバが設けられている。
【0012】
米国公開第2015/0004680では、試料内の1又は2以上の構成要素を検出するバイオセンサカートリッジが説明されている。各カートリッジは、マイクロ流体路だけでなく、空気ポンプチャンバ及び試薬ポンプチャンバを含み、空気ポンプチャンバ及び試薬ポンプチャンバは、複数の孔を上面上に備える。関連のセンサーが光検出を用いる場合、洗浄バッファはカートリッジ内に設けられる。チャンバは、カートリッジの凹部に挿入される別個のポーチとして記載されている。試薬及びバッファーポーチには適切な液体が充填されている。
【0013】
また、被検者からの血液試料などの流体をより迅速かつ単純に試験する必要がある。被検者が自宅で自己診断試験を行うことができるという要望さえある。
【0014】
典型的には、被検者が近くの内科診療所又は病院に在所するとき、比較的大量の流体又は血液の試料が分析のたに採取され、実施される試験によっては、いくつかの別個のバイアル又は試料が必要となる場合もある。試験が試料収集時に実施されない場合、多くの場合、検出される特定の分析物の劣化又は損失を最小限に抑えるために試料を保管する必要がある。一部の試験は時間の影響を受けやすく、試験を行うのに要する時間によって、被検者が治療中であった場合は、病気が望ましくないほどに進行することがある。
【0015】
また、被検者が定期的に自己診断試験を行うことができ、試験結果に基づいて自己治療することができることが望ましいであろう病気及び疾患がある。このように、被検者は、服用する必要がある薬物に関して、試験結果に基づいて、場合により医療従事者からの入力で指導を受けることができる。
【0016】
さらに、試料の臨床分析は、従来、臨床分析法を利用して行われており、臨床分析法では、分析を実施する大規模な機械を有する専門研究所の利用が必要である。ここ数年間にわたって、このような試験を行うことができる卓上サイズ又は携帯式装置さえ開発すれている。しかしながら、このような装置の能力では、小さな試料容積を処理できるだけであり、及び/又は様々な異なる形式の分析を実施するのに限界がある。さらに、異なる形式の試験を行うために、ユーザーが複数の異なるリーダーを有する必要がないように、単一のリーダーが様々な異なる試験パネルを実行できることが望ましいであろう。
【0017】
米国特許第8435738号では、例えば、複数のアッセイを単一の血液試料から行うことができるモジュラーシステムが説明されている。しかしながら、個別の別々のモジュールが、異なる機能を実行するために設けられ、試料は、試料処理装置によって各モジュールに移送されることが明らかである。また、システムは、試料調製を処理するように並びに様々なアッセイを実行するように設計されたハウジング備えることが示されるが、分析されると各試料はどうなるのかは明らかではない。
【先行技術文献】
【特許文献】
【0018】
【文献】欧州特許第2613881号
【文献】米国特許第7238324号
【文献】米国特許第5821399号
【文献】国際公開第2013154946号
【文献】米国特許第5096669号
【文献】国際公開第2013/096801号
【文献】国際公開第03/049860号
【文献】米国公開第2015/0004680号
【文献】米国特許第8435738号
【発明の概要】
【課題を解決するための手段】
【0019】
本発明は、マイクロ流体カートリッジ内の液体試料の移動の制御、さらに、流体をカートリッジの外部から導入すること、もしくはカートリッジ又は関連のリーダー内に存在する可能性がある洗浄液体又は他の液体を使用することを必要とせず、試料を効果的に除去うる及び/又は結合成分をカートリッジ内の分析物検出ゾーンから洗い流すことに関する本発明者の研究に基づいている。本発明者は、分析物又は分析物反応生成物を含む複合体を含む場合がある何らかの検出可能要素を気体環境で検出できるように、カートリッジ内の液体試料の非常に正確な制御された移動を容易にして、カートリッジ内の試料及び未結合材料を分析物検出ゾーンから除去するために使用することができる気体充填チャンバを含む、「乾式」マイクロ流体カートリッジを開発した。重要なことは、本発明のカートリッジでは、試料そのもの以外の追加的な液体が、カートリッジ内に存在すること及び/又はカートリッジに導入する必要がない。さらに、カートリッジと共に使用される関連のリーダー装置が提供される。
【0020】
1つの領域では、本発明は、マイクロ流体カートリッジ内に存在するチャンバ内の空気などの気体のみを使用して、カートリッジ内の液体試料の移動を制御する、又は随意的に、検出が実行される前に液体試料及び未結合材料を検出領域から除去する方法及びカートリッジを教示する。
【0021】
別の代替的及び/又は相補的な領域では、本発明は、単一のカートリッジ及び関連のリーダーを使用して多数の異なるアッセイを実行するための、カートリッジ、リーダー、及び方法を提供する。
【0022】
第1の態様では、液体試料上のアッセイを行うのに用いる内蔵式マイクロ流体システムを提供し、マイクロ流体システムは、
少なくとも1つのマイクロ流体流路に接続された前記液体試料を受け入れる試料入力ポートを備え、
マイクロ流体流路の各々は、アッセイを行うのに用いる内部に堆積した1又は2以上の試薬と、試料又は分析物反応生成物に存在する可能性がある何らかの分析物を検出するのに用いる検出ゾーンとを含み、
マイクロ流体流路の各々は、検出ゾーンの各々の下流側で、加圧可能な気体充填チャンバに流体接続されており、
システムは、マイクロ流体流路の各々及び気体充填チャンバを定めるために一緒にサンドイッチされる3層から形成されており、チャンバを加圧又は減圧することで、気体が、チャンバから排出されるか又は前記チャンバに引き込まれ、これによって、マイクロ流体流路の各々の中で前記液体試料の移動が生じる。
【0023】
典型的には、限定されないが、システムは、関連のリーダー装置に挿入されるように設計されているカートリッジの形態とすることができる。簡潔にするために、以下ではカートリッジの形態のシステムを参照するが、これに限定されるものではない。
【0024】
誤解を避けるために、本発明では、カートリッジ内に存在する液体充填ポーチを使用すること又は液体充填ポーチを設ける必要はなく、及び/又は、流体(液体又は気体)を関連のリーダーからカートリッジまで移送する能力は不要である。この点に関して、本発明のカートリッジは内蔵式とみなされる。試料の付与前の本発明のカートリッジは、実質的に液体がなく、乾燥していると考えることができる。液体試料の付与の前にカートリッジ内に存在する可能性がある唯一の流体は、気体、典型的には空気である。好都合には、本発明のアッセイにおいて必要とされる唯一の液体は液体試料そのものである。
【0025】
特定の実施形態では、上記1又は2以上の試薬は、上記マイクロ流体流路の各々の中の第1の場所に堆積することができる。他の実施形態では、上記1又は2以上の試薬は、上記マイクロ流体流路の各々の中の2以上の場所に堆積ることができる。上記1又は2以上の試薬の少なくとも1つは、検出ゾーン内に堆積することができ、もしくは、試薬は、検出ゾーン内に堆積していない。試薬は、最初は蒸発又は他の手段によって乾燥することができる液体状態で供給することができる。本発明の観点から、上記試薬が最初に液体の形態で提示され、その後乾燥する場合、用語「乾燥」は、初期液体の10%未満、5%未満、又は1%未満が乾燥後に残ることを意味すると理解されたい。
【0026】
特定の実施形態では、検出ゾーンは、上記1又は2以上の試薬が堆積した場所から下流側とすることができる。
【0027】
本発明の文脈における用語「下流側」は、試料がシステムに付与される場所から試料が流れる方向を指す。
【0028】
随意的に、液体試料の上記マイクロ流体流路の各々の中に堆積した上記1又は2以上の試薬との反応、及び、検出ゾーンへの試料及び他の試薬の移送後に、チャンバから排出された気体は、随意的に、検出ゾーン内の何らかの捕捉分析物又は分析物反応生成物を実質的に液体のない環境において検出することができるように、液体をマイクロ流体流路内の検出ゾーンから除去する役割を果たす。従って、1つの実施形態では、本発明は、検出が実質的に液体のない環境で行われるカートリッジ及び方法を提供する。さらに、本発明者は、チャンバからの気体の対応する容積を使用して検出ゾーンから液体を動かすことのみが必要であることを観察している。従って、信号干渉を防止する及び/又は最小化するようにデザインされている有意な容積の流体を用いる場合がある、従来の洗浄ステップを使用する必要はない。従って、好都合には、本発明は、わずかな容量の気体を使用して、液体及び液体内の材料を分析物検出ゾーンから除去する。これは、従来の洗浄ステップを実行する観点から理解されるであろうこととは全く異なる。
【0029】
マイクロ流体カートリッジは、複数のマイクロ流体流路を備えることができる。複数のマイクロ流体流路の全ては、試料入力ポートと流体連通する。本発明によれば、試料ポートは、上記複数のマイクロ流体流路に分かれるマイクロ流体流路と連通することができる。上記複数のマイクロ流体流路の各々は、それぞれの気体充填チャンバと流体連通することができ、又は、2又は3以上のマイクロ流体流路は、単一の気体充填チャンバと流体連通することができる。本発明によれば、各チャンバは、別々に又は独立して制御することができるので、個々のマイクロ流体流路内の試料の移動の独立した制御が可能であるか、又は、同時に複数の上記マイクロ流体流路内の試料の移動を制御することができる。一部の実施形態では、上記気体充填チャンバは、カートリッジの1又は2以上のマイクロ流体流路と流体連通する以外に、マイクロ流体カートリッジ又は関連のリーダー内に存在する可能性がある他の特徴部とは接続しない。例えば、気体充填チャンバからの唯一の開口部/出口は、上記マイクロ流体流路を有する開口部とすることができる。従って、上記気体充填チャンバは、バルブ、ポートを有していないという観点から封止することができ、そうでない場合は、カートリッジの外部と連通することができる。1つの実施形態では、試料ポートは、上記マイクロ流体流路の各々の第1の端部に接続されており、上記マイクロ流体流路の各々第2の端部は、上記気体充填チャンバの1又は2以上の上記開口部に接続されている。このような実施形態では、気体充填チャンバは、試料入力ポートの下流側で、試料入力ポートに対して上記マイクロ流体流路の各々の反対側の端部にあると考えることができる。
【0030】
文脈上別段の指示がないかぎり、用語「流体連通」は、気体又は液体を含む流体を、関連の部分間で移送することを意味すると理解されている。
【0031】
随意的に、マイクロ流体システムは、流体廃棄物及び/又は過剰な液体試料を受け入れるように設計された1又は2以上のシンク特徴部をさらに備えることができる。誤解を避けるために、本発明の一部の実施形態では、特に1又は2以上のシンク特徴部が除外されており、これは好都合である。
【0032】
本発明のカートリッジ設計は、複数の異なるアッセイを容易に実行することができるので、様々な同様の及び/又は異なるアッセイのアッセイプラットフォームを想定することができる。内部に配置されるカートリッジ及び流路は、当業者には公知の何らかの方法で形成することができ、例えば、フォトリソグラフィ、湿式化学エッチング、レーザーアブレーション、射出成形、打ち抜き、エンボス加工、及び印刷技術を挙げることができる。本発明の第1の態様によれば、カートリッジ、流路、及び内部に配置された他の特徴部は、第1、第2、及び第3の基材(上部基材、底部基材、及び上部と底部基材との間に配置された中央基材といった3つの別個の基材)のサンドイッチによって形成されている。3つの層は、熱を加えること又は接着剤を使用して一緒に封止することができる。さらに、中間層自体は、上部及び底部基材を接着することができる接着剤層の形態とすることができる。
【0033】
1つの実施形態では、3つの基材は平面である。典型的には、第1及び第3(例えば、上部及び底部)基材、並びに随意的に第2の(例えば、中間)基材は、実際は、実質的に均一である。すなわち、上記基材の厚さは均一であり、基材面にわたって一定である。
【0034】
特定の実施形態では、底部基材は、内部に流路が既に配置された中間基材に接着されている。アッセイを実行するために必要な試薬は、特定の堆積ゾーンで底部基材上へ堆積しており、試料によって再構成されると、流路壁部(中間接着剤層によって形成された)によって所定の位置に保持され、例えば疎水性インクによって底部基材上へ印刷された特徴部によって、形成された流路のあらゆる場所に拡散するのが防止される。このようにして、試薬は、4つの側面の全ての特徴部によって堆積ゾーンの外側に拡散するのが防止される。その後、試薬が乾燥すると、基材の最終的な最上層は、完全に形成されたカートリッジを製造するために中層に接着される。当業者であればカートリッジへのアッセイ試薬の堆積の多くの他の方法を考えることができる。
【0035】
本発明のカートリッジは、屈曲性高分子フィルム、プラスチック、又は金属箔のロールから、当技術分野において公知のウェブ又はロールツーロール法によって形成することができる。
【0036】
好都合には、本件発明者は、カートリッジを3つの別個の平面基材のサンドイッチから形成する際に、カートリッジの上部及び底部基材が異なる厚さでありこと、及び/又は異なる厚さの又は他の材料から形成された部分を有することは必要ないことを見出した。従って、最上層及び最下層は、均一な厚さを有することができるので単一の材料から形成することができる。これによって、カートリッジの製造が簡素化され、関連のコストは低減される。上部層及び随意的に底部層を形成するために使用される材料は、可撓性とすることができるが、流路及び気体チャンバ寸法ではかなり剛性があるが、幾分弾力性がある。驚くべきことに、気体充填チャンバの各々の上面及び底面、特に上部外面を形成する基材は、たとえ上面の厚さが基材の表面全体にわたって均一であっても、弾力性があるものとすることができる。
【0037】
各層を一緒に封止するために使用できる接着剤を組み合わせて、上記チャンバの各々の加圧性を促進することもできる。従って、チャンバの加圧性は、接着剤が弾力性をもち、上部及び随意的に底部基材が弾力性をもつことに部分的に起因することができる。従来技術とは異なり、本発明の気体充填チャンバは、上部及び随意的に底部層の残りを形成するために用いた基材に照らして、異なる材料から作製される及び/又は異なる厚さ又は可撓性のチャンバの外面を形成する可撓膜又はシートを備える必要がない。従って、最上層及び随意的に最下層は、層全体にわたって均一な厚さの単一の材料から作製される。理想的には、最上層及び最下層は同じ材料で作製され均一な厚さである。これによってカートリッジの製造が簡単になり、これはコストの観点から重要な検討事項である。
【0038】
カートリッジは、ポリカーボネート、環状オレフィン共重合体(COC)などのポリオレフィン、ポリエステル、ポリスチレン、PMMAといった何らかの適切な材料で形成することができ、各基材は、単一の又は複数の材料で形成することができる。3つの基材を備える実施形態では、中間基材は、上記流路、気体充填チャンバ、廃棄物シンクなどのカートリッジの特定の特徴部に対応する基材を通り抜けるパターンを備える。中間基材を上部と底部基材との間にサンドイッチするために、適切に切断された上部及び底部基材を当てて(例えばヒートシール、糊付け、ステープル留めなどによって)サンドイッチすることによって、流路及び他の特徴部が配置されたカートリッジを形成することができる。各層は、別々に準備して一緒にサンドイッチすること、又は、3つの層を互いに結合することができ、サンドイッチは、カートリッジを形成するために重ねて折り曲げることによって形成することができる。上部及び/又は底部基材は、3つの基材を一緒に固着するのを促進するために基材のいずれかに施した中間基材及び/又は接着材とは異なる材料から形成すること又はその材料で被覆することができる。上部及び/又は底部基材の特徴は、以下で検討するように、リーダー装置の特徴部と同じ位置に配置するように設計することができ、これはリーダー内でのカートリッジの正しい場所を促進することができる。
【0039】
便宜的な実施形態では、本発明のアッセイの読み取りは、光学的に検出されるように設計されている。この点に関して、関連したリーダーは、カートリッジの検出領域から放出されたた電磁放射線を検出するように設計されている、分光計又は蛍光光度計などの光検出手段を含むことになる。蛍光検出に関して、リーダー内の分光計又は蛍光光度計は、材料から放出された蛍光を検出ゾーン内で検出することになる。従って、リーダー内でスペクトロメータ又は蛍光光度計の方に向くように設計されているカートリッジの第1又は第3の層(例えば、最上層又は最下層)の少なくとも一部は、電磁放射線スペクトルの適切な範囲において光学的に透過可能である必要がある。蛍光検出の場合、少なくともカートリッジの第1又は第3の(例えば、最上又は最下)層の少なくとも一部は、励起波長及び検出波長を包含する範囲において光学的に透過可能である必要がある。例えば、カートリッジの第1及び第3の(例えば最上又は最下)層の少なくとも一部は、200~1200nmの範囲において光学的に透過可能である必要がある。
【0040】
第1又は第3の(例えば、最上及び/又は最下)層が単一の材料から作製される場合、第1又は第3の(例えば、最上及び/又は最下)層全体は、光学的に透過可能であり、単にその一部ではないことを理解できるはずである。しかしながら、インク及び/又はマスクを用いて、適切な波長の電磁放射線が検出ゾーンの外側に出る又は散乱するのを防止すること又は最小限にすることができる。1つの実施形態では、従って、検出ゾーン又はその部分を包含する第3の(例えば最下)層の一部は、リーダーの光検出手段の方への蛍光シグナルの放出を最大限にするようにデザインされた材料で被覆することができる。
【0041】
第1及び第3の(例えば、最上又は最下)基材は、2つの基材が互いに隣接して折り重なることを可能にするヒンジによって接続することができ、中間基材は、その間に配置される。代替的に、ヒンジは、第1及び第2の(例えば最上及び中間)基材の間、並びに第2及び第3の(例えば、中間及び最下)基材の間に設けられることができ、第1、第2、及び第3の(例えば、最上、中間、及び最下)基材は、互いに隣接して折り重なり、基材の単一シートから形成することができる。
【0042】
重要なことは、上記気体充填チャンバは、リーダー内の1又は複数の特徴部と一緒に用いられ、この特徴部は、上記気体充填チャンバの外面(すなわち、実質的に水平にリーダーに対して設ける必要がある3つの基材のサンドイッチの形態の場合には最上及び/又は最下部基材)に接触し、さらに力(例えば、加圧)をチャンバの外面に付与するか又はそこから除去するよう制御できるように設計されている。力を各チャンバの外面に付与すると、チャンバは変形し、チャンバ内の気体はチャンバからマイクロ流体流路に排出される。逆に、各チャンバに付与された力を低下(例えば、減圧)させると、チャンバは変形が少なくなり、随意的に非変形状態に戻り、気体は、マイクロ流体流路からチャンバに引き戻される。
【0043】
力の付与がないと、気体充填チャンバは、典型的には気体の最大量を含むことになることが認識されるであろう。力を付与すると、気体は、気体充填チャンバから排出されることになり、チャンバ内の気体の容積が低減する。その後のチャンバに付与された力の低減によって、気体をチャンバに引き戻すことができ、その結果、気体充填チャンバ内の気体の容積が増加する。
【0044】
各チャンバ内の気体は、典型的には空気であるが、他の気体又は気体の混合物を導入することができる。例えば、上記マイクロ流体流路の各々の中に堆積する試薬のいずれかが空気内に存在すると酸化する傾向があるかそうでなければ寿命が短くなる場合、カートリッジ及び関連した流路及びチャンバは、窒素などの不活性気体を充填することができる。全体的に、空気である気体に言及することになるが、これは制限的ではないないと解釈されたい。
【0045】
典型的には、使用時、試料の付与前にリーダーへカートリッジを提供する又は挿入することができ、上記チャンバの各々から上記マイクロ流体流路の各々へ気体を排出するために、上記チャンバの各々に力を付与することができる。カートリッジは、試料の付与に備えて「事前準備されている」と考えることができる。
【0046】
血液又は何らかの他の液体試料の試料などの試料は、試料入力ポートからカートリッジへ導入することができる。試料は、試料を入力ポートと接触することによって直接導入することができる。代替的に、試料は、最初に試料収集手段を使用して収集することができ、計量バー、マイクロピペット、導管などの試料収集手段は、試料をカートリッジ及びマイクロ流体流路に導入することができるように、試料入力ポートに接触させるか又は試料入力ポートに挿入することができる。一部の実施形態では、例えば核酸分析を実行する際に、何らかの分析を閉鎖されたシステム内で実行することが望ましいであろう。従って、マイクロ流体カートリッジに試料を導入するように設計された試料収集手段は、試料を導入する、及び、試料収集手段を試料入力ポートに挿入/接触すると試料入力ポートを封止するという2つの目的に対応することができる。
【0047】
試料が試料入力ポートと接触/導入された後、試料は、最初は毛細管作用によってマイクロ流体流路に引き込むことができる。代替的に、試料は、気体がチャンバへ引き込まれるように上記チャンバの各々に付与された力を低減することによって、マイクロ流体流路に能動的に引き込むことができ、結果的に、液体試料は、上記マイクロ流体流路の中にそれに沿って引き込まれる。
【0048】
1つの実施形態では、液体試料は、最初は単一のマイクロ流体流路に沿って引き込まれ、単一のマイクロ流体流路は、複数のマイクロ流体流路に分かれており、上記複数の流路の各々は、1又は2以上のアッセイを実行することができる。このようにして、単一の試料を供給することができ、結果的に、単一の試料は、複数の部分つまり一定分量に分割される。
【0049】
試料が、毛細管作用によって及び/又はカートリッジを通して試料を能動的に引く込むことによって、カートリッジ及び上記マイクロ流体流路の各々に導入されると、カートリッジ及び関連した流路内、及びあらゆる場所のさらなる流体移送は、上記気体チャンバの各々に付与された制御圧力によって細かく制御/促進され、これによって、気体が上記気体充填チャンバの各々に導入される及び/又はそこからから排出される。上記チャンバの各々に引き戻される気体は、典型的には、真空効果によって、液体試料を上記マイクロ流体流路の各々に上記チャンバの各々に向かって引く込む役割を果たすことになり、上記チャンバの各々から排出された気体は、上記チャンバの各々から離れて、液体を上記マイクロ流体流路の各々の中に入力ポートに向かって、随意的に存在する場合は流体廃棄物の中に押し込むことになる。
【0050】
上述したように、シンク特徴部は随意的である。本発明によれば、試料がカートリッジへ導入されると、適切な流体制御及び気体チャンバ管理によって、試料又は他の液体を試料ポートから排出から排出されないことを保証することが可能である。試料の付与前に、上記チャンバの各々は、試料を試料入力ポートから排出することができないように最大限に加圧することができる。好都合には、試料付与前の上記気体充填チャンバの各々の加圧は、何らかのアッセイを行って上記気体充填チャンバの各々にかかる何らかの加圧圧力を放出した後に、液体試料が、試料入力ポートから離れて、カートリッジ及び場合によっては気体充填チャンバにさらに引き込まれることを意味する。これは、何らかの試料をアッセイ後にユーザーから隔離するという観点から有用な安全機能と見ることができる。
【0051】
流体移動は、リーダー内の力制御手段によって非常に正確に制御することができる。さらに、各流路内の流体の位置は、電極などのマイクロ流体流路に沿って位置決めされた手段によって随意的にリーダーによって検出することができ、この手段は、リーダーと接触しており上記マイクロ流体流路の各々野中の何らかの液体及び/又は流体の位置をフィードバックすることができ、その結果、リーダーは、気体/空気充填チャンバへの力/圧力の付与によって、流体移動の位置及び/又は速度を非常に細かく特定することができる。
【0052】
特定されるように、使用時、試料は、被検者/患者による直接的な接触によって、又は他の手段、例えばピペットや導管などによって試料入力ポートを通ってカートリッジに付与される。好適な実施形態では、試料入力ポートは、カートリッジの側面又は面(例えば上面)の開口である。望ましくは、カートリッジは、上面及び底面及び4つの縁部を備える概して薄い平面デバイスの形態とすることができる。この構成では、試料入力ポートは、カートリッジの縁部又は上面の1つに形成することができ、ユーザーは、カートリッジへの試料取り込みを可能にするために、試料を縁部又は上面に形成された開口に接触させるだけでよい。使用時、ユーザーが流体試料をポート/開口と接触させると、特定の実施形態では、カートリッジ内の上記流路の寸法に起因して、流体は、毛細管作用によってカートリッジへ引き込まれる。試料ポート/開口の寸法は、流路の寸法よりも小さくすることができる。上記マイクロ流体流路の各々から流体を排出する際に、随意的な流体廃棄物は、大きい空隙領域となり、廃液試料及び何らかの反応前の試薬/標識を、試料入力ポートを通して外部ではなく、廃棄物シンクに向けてその中に導くことができる。
【0053】
特定の実施形態では、廃棄物シンクは設けられていない。試料を除去することが必要ないか又は試料及び未反応の試薬/標識を上記マイクロ流体流路の各々の中の検出ゾーンから除去することだけが必要なので、上記気体充填チャンバの各々から排出された気体は、単に、試料及び何らかの未反応/不必要な試薬/標識を検出ゾーンから離れて除去するのに十分であるように、流体移動の細かな制御を行うことができる。液体試料付与前の上記気体充填チャンバの初期最大加圧は、試料入力ポートを越えて試料を押し込むことができないことを保証する。マイクロ流体流路内の流体移動のこのような細かな制御は、廃棄物シンク及び/又は大容積の洗浄流体が不要になり、製造/使用の簡略化及びコストの低減が可能となることを意味する。
【0054】
システム内の上記マイクロ流体流路は、1又は2以上の流体停止特徴部を備えることもでき、これは試料が毛細管作用だけで停止特徴部を通過するのを防止するように設計されている。すなわち、試料は、気体充填チャンバに作用する加圧力及び/又は減圧力などの力の作用によって、上記停止特徴部を超えて及び/又はさらに上記マイクロ流体流路に沿って能動的に押し込む必要があり、この加圧力及び/又は減圧力は、カートリッジ内の液体試料を引き込む又は押し込む役割を果たす。停止特徴部は、疎水性材料(例えば、印刷可能な導電又は非導電性インク)、又は流路面の表面特性を変えて親水性/疎水性差を生成する(例えばレーザーアブレーション、表面切れ目、表面材料除去、蒸発金属材料などによって)プロセス又は材料とすることができ、これは、壁部特徴部であるかそれに当接するように設計されるか又は流路の壁部(例えば、上部、側面及び/又は底部)上に被覆される、従って、一緒にサンドイッチされて流路を形成する3つの基材によって流路が形成される実施形態では、疎水性材料は、3つの基材が一緒にサンドイッチされる際に、疎水性停止材料が(壁部が中間層によって形成されている)上記流路の上面及び/又は下面上の特徴部を形成するように、最上及び/又は最下基材に塗布することができる。代替的に又は付加的に、小さな一方向通気孔は、流路に隣接して又は流路内に設けることができ、この通気孔は、空気をカートリッジの外側に又はカートリッジの空隙に排出できるが、空気又は液体が上記マイクロ流体流路に流入するのを阻止する。毛細管作用によってカートリッジに入る液体は、通気孔まで充填されることになるが、追加の力が加えられない限り通気孔を越えることはない。
【0055】
複数のチャネルが別々の及び/又は反復的なアッセイを実行するために設けられている実施形態では、流体停止特徴部は、試料入力ポートから下流側の各流路内に設けることができる。このように、試料は、最初は試料入力ポートを通ってカートリッジに入るが、流体停止特徴部によって各マイクロ流体流路の長さを満たすことが防止されることになる。各アッセイを開始するために、気体を上記気体チャンバの各々に引き戻すことによって上記1又は2以上の試薬に接触させるために、試料は、流体停止部を超えて各マイクロ流体流路に沿って能動的に引き込む必要がある。好都合には、このことは、各アッセイが、必要に応じて、同時に又は異なる時間に開始できることを保証し、これは、血液ヘマトクリット値、従って、例えば粘度差などの試料の違いに起因して生じる可能性がある問題を最小限にする役割も果たす。
【0056】
停止特徴部は、試料が初期付与時に廃棄物チャンバに流れ込まないように、流体廃棄物(存在する場合)の上流側に位置することも好ましい。液体試料を上記流路の各々の中で能動的に押し込むのに十分な力が上記気体充填チャンバの各々に付与される場合、液体は、流体廃棄物の上流側で停止特徴部を通過して廃棄物シンクに入ることができる。この停止特徴部は、流体が初期接触でシンクに入るのを防止するが、試料は、試料が一回だけ試料流路を充填したときに限り、最終的にこの停止特徴部上方で湿潤化してシンクに流れ込むことができるように設計することもできる。これらの流路が充填されると、停止特徴部に掛かる毛細管力が増加し、過剰試料は、停止特徴部を超えてシンクに流れ込むことができる。このように、シンクは、過剰試料付与分の越流部として作用することができ、流体停止特徴部は、タイミングゲートとして作用することができ、この液体移動が制御される。他の実施形態では、この停止特徴部は必要ない。シンクは、試料で充填され、この試料をシンクから試料流路に移送するために、気体充填チャンバに付与される力の低下によって試料を引く抜くことができるリザーバとして機能することができる。
【0057】
実施形態では、廃棄物シンクは、不要であるか又は好ましくないと考えられる使用済みの流体/試料又は流体を排出することができるカートリッジの空隙領域として設計されている。例えば、全血は、アッセイ反応、及び/又は、例えば、蛍光検出による捕捉分析物の検出を妨げる可能性がある多くのタンパク質及び他の作用薬を含有する。本発明では、初期結合及び/又は何らかの分析物の反応を試料(例えば全血)内で実行することができるが、液体試料内に存在する未結合材料及び反応後の残留液体の全て又は実質的に全ては、その後、検出ゾーンから随意的に廃棄物チャンバに排出することができ、さらなる反応及び/又は検出を実質的に液体のないか又は気体環境において実行することができる。
【0058】
しかしながら、上述したように、廃棄物シンクは必須ではない。好都合には、本発明者は、上記気体チャンバの各々への力の付与で上記気体チャンバの各々から排出された気体は、液体試料及び未結合/未反応の材料を検出ゾーンから離れて押しやる/移送するのに十分であることを観察した。従って、捕捉材料、結合材料、又は固定材料のみが、実質的に液体のない環境で検出ゾーンに保持され、好都合には、何らかのこのような材料の検出が簡単になる。
【0059】
本発明のカートリッジは、上記マイクロ流体流路の各々だけではなく、上記流路、従ってカートリッジへ導入された後の試料と接触する1又は2以上の電極特徴部を備えることができる。電極は、リーダー内の電気接点に接触するように設計されており、様々な読み取りを適切な場合に行うことができる。例えば、カートリッジ内の1又は2以上の電極は、カートリッジの正しい装着を検出するように設計することができ、リーダーは、a)カートリッジは正しくリーダーに挿入されたか、及び/又は、b)試料は、正しくカートリッジ内に、例えば、流体停止特徴部に取り込まれたか否かをユーザーに指示することができる。電極は、1又は2以上の電気測定を試料自体上で実行することもできる。例えば、試料が全血の試料である場合、電極は、試料のヘマトクリット測定を行うことができ、この測定は、検出される分析物の正確な濃度を特定する際に重要である場合がある。研究対象の試料に応じて導電性及び/又はインピーダンス測定値を求めることができる。従って、本発明のカートリッジは、何らかの分析物と反応/結合することによって分析物が試料内に存在するかどうか検出することができるだけではなく、試料の電気測定を行うこともできる。液体が存在する又は存在しない場合に検出される導電性に有意な変化があるので、電極を使用して、検出領域からの試料の除去が、気体充填チャンバから排出された気体によって正しく行われたことを確認することもできる。電極は、上記チャンバの各々の加圧の程度を指示するために気体充填チャンバに設けることもできる。
【0060】
カートリッジに付与された試料は、何らかの適切な液体試料とすることができる。試料は、例えば、全血、血漿、唾液、精液、汗、血清、月経、羊水、涙、組織綿棒、尿、脳脊髄液、粘液試料など、被検者から取得された流体の試料とすることができる。本発明のアッセイシステムは、大きく成長中のIVD市場(例えば、癌、心臓病、乱用薬物検出及び、細菌感染症、真菌感染及びウイルス感染を含め、感染症)を含め、ヒトの健康領域において適用することができることを認識されたい。アッセイを使用して、薬物及び薬物作用を試験することもできる。しかしながら、このシステムを使用して、例えば、毒物、又は、バクテリア、真菌又はウイルスなどの感染因子を検出することが望ましい環境設定において適用することもできる。従って、河川又は湖から試料又は固体面からの標本を、カートリッジに供給する液体試料を取得するために採取することができる。アッセイシステムは、獣医科用途に利用することもできる。本質的に、試料を液体状態で供給することができるか又は液体状態にすることができる何らかのアッセイを、本発明において利用することができ、例えば、呼吸の試料は、液体への吹き込みによって取得することができ、液体は、本発明により使用することができる。標本は、液体試料を提供するために、表面から取り出して液体中に配置することもできる。
【0061】
試料は、全血の試料など、例えば、供給源から直に取得される材料、ならびに、濾過、析出、希釈、蒸留、混合、濃縮、干渉する作用薬の不活性化など、各種技法を使用して前処理された材料を含むことができる。これらのステップは、試料がカートリッジに導入される前に実行することができるか又はカートリッジ自体によって実行することができる。
【0062】
試料は、カートリッジがリーダー装置に挿入される前に又はカートリッジがリーダーに挿入された後に導入することができる。一部の実施形態では、カートリッジは、試料が付与される前にリーダー装置に挿入されることになり、力が、上記チャンバの各々から気体を排出するために気体充填チャンバに付与されることになる。これにより、試料付与する態勢となるようにカートリッジを効果的に準備できる。上記チャンバの各々に付与された力を低減すると、気体は、チャンバに引き戻され、次に、液体試料は、上記マイクロ流体流路の各々の中にそれに沿って引き込まれることになる。カートリッジは、最初は試料を毛細管作用によって導入することができるように設計することもできる。このようにすると、前述したように、停止特徴部を上記マイクロ流体流路への試料進入を制限するために設けることができる。試料のさらなる移送は、上記気体充填チャンバの各々からの気体の排出/導入の結果である。試料を最初に毛細管作用によって導入することができるように、マイクロ流体流路内に存在する気体は、試料によって動かすことが必要である。これは、弁などによって、マイクロ流体流路からカートリッジの外側へ出ることによって達成することができる。1つの実施形態では、弁は、気体がカートリッジを出ることを可能にし、気体又は液体をカートリッジに導入しないように設計されている一方向弁である。
【0063】
弁は、例えば、毛細管作用単独によって上記マイクロ流体流路の各々の中の試料のさらなる移送を防止するように設計された疎水性停止特徴部に隣接又は近接して配置されている小さな孔又はスリットとすることができる。各弁は、上記マイクロ流体流路の各々自体よりも小さな寸法(例えば、上記マイクロ流体流路の各々の幅の50%未満、25%未満又は20%未満)の流路によって上記マイクロ流体流路の各々と流体連通することができる。使用時、試料が、反応プロセスが行われた後に上記マイクロ流体流路の各々に沿って検出ゾーンから除去される際に、試料は、好都合には、上記マイクロ流体流路の各々の寸法がマイクロ流体流路を弁に接続する流路よりも大きいことに起因して、弁の方にではなく、試料入力ポート及び/又は存在する場合は流体廃棄物の方に導かれる。さらに、初期試料付与時に、少量の試料は、小さな寸法の方の流路を充填して、試料付与の後に弁とマイクロ流体流路との間のさらなる流体流れに対するバリアとして機能することができる。理論に縛られずに、バリアは、上記大きい方の主マイクロ流体流路を比較すると小さい方の流路の親水性が相対的に高くなることによって生じることが予想される。この小量の試料は、毛細管作用での充填後に小さい方の流路内に残って、事実上、弁を封止することができる。このように、弁は、初期毛細管作用での充填中にのみ影響力を有し、その後、カートリッジ内の液体移送は、気体が上記チャンバの各々へ引き込まれるか又は上記チャンバの各々から排出されることによって生じるか又は制御される。
【0064】
さらなる態様では、本発明によって使用される弁システムを提供し、弁システムは、
本発明によるアッセイシステムの上面又は底面の通気孔又はスリット開口部と、
アッセイシステムの上記マイクロ流体流路までのより小さな寸法のマイクロ流体流路と、
を備え、より小さな寸法のマイクロ流体流路は、アッセイシステムの通気孔又はスリップ開口部及び上記マイクロ流体流路と流体連通している。
【0065】
好都合には、弁システムは、上記マイクロ流体流路の毛細管停止部に隣接するように位置決めされており、試料がアッセイシステムに導入されると、試料は、毛細管作用単独によって毛細管停止部を充填する。試料の一部は、より小さな寸法のマイクロ流路を少なくとも部分的に充填する。より小さな寸法のマイクロ流路を少なくとも部分的に充填する試料の一部は、より小さな寸法のマイクロ流路に沿ったさらなる流体移送、及び、通気孔又はスリットを通る流体の排出のバリアとして機能する。
【0066】
望ましくは、本発明のカートリッジは、複数のアッセイ(同じアッセイ及び/又はアッセイの繰り返し)を単一の液体試料に行うように設計することができる。カートリッジ及び関連した流路の寸法は、全てのこのようなアッセイは、理想的には、指に刺すことによって取得可能な血液の試料など、液体試料から実行されるようになっており、該血液の試料は、100μl未満、40μl未満、30μl未満、又はさらには20μl以下など50μl未満である。このようにして、アッセイ、つまり、カートリッジの単一流路内でのアッセイを7μl未満、5μl未満、又はさらには2μl以下など10μl未満の血液などの液体試料を採用して行うことが可能である。これは、大型卓上分析器又は他の公知の診療現場のプラットフォームを使用して病院内で実行されている分析の所要量よりもかなり少ない。
【0067】
検出される分析物は、何らかの所望の分析物とすることができ、タンパク質、ペプチド、抗体、核酸、微生物(例えば、バクテリア、真菌及びウイルス)、化学薬剤、生化学物質、毒素、医薬品、酵素、代謝生成物、細胞成分、抗原などを含むことができる。例えば、本システムでは、適切な結合剤を結合するか又は適切な試薬と反応することができる何らかの形式の分析物を検出するように適合することができ、その生成物は、検出すること及び随意的に適切な結合剤に結合することができる。結合剤は、特に分析物又は検出される反応生成物に結合することができる何らかの適切な作用薬とすることができる。例えば、分析物がタンパク質又はペプチドである場合、結合剤は、特にタンパク質/ペプチドに結合することができる受容体又は抗体とすることができる。逆に、抗体は、抗体が特に結合するように設計されているタンパク質/ペプチドによって結合される場合がある。核酸は、特に分析物核酸に結合することができる他の核酸によって結合される場合がある。微生物は、特に微生物の表面上のタンパク質に結合する抗体によって結合される場合がある。化学薬剤、毒素、医薬、代謝生成物は、反応するか、又は、適切な接合反応又は親和力によって上記化学物質分析物と反応するか又は該不分析物に結合することができる化学成分によって結合される場合がある。多くの形式の結合技法が、当業者には良く知られている。
【0068】
さらに、上記試薬は、酵素又は酵素基材とすることができる。例えば、よく説明されている酵素方法による血糖などの分析物は、酵素が血糖と反応した後に形成された反応生成物として検出することができ、血糖は、当業者に知られている電気化学検出技法又は光学検出技法を使用することによって検出することができる。このような測定は、独立型測定として又は試料中で検出される他の分析物と組み合わせて行うことができる。
【0069】
分析物/分析物結合剤複合体への本明細書での言及は、液体試料中に見られる形態から改質していないか又は分析物が追加の試薬との反応によって改質しているので分析物反応生成物と考えることができる複合体を含むことを認識されたい。
【0070】
結合剤は、それ自体、例えば、物理吸着、共有化学結合、非共有化学結合(例えばビオチン-アビジン)又は上記の何らかの組み合わせによる壁部又は表面への適切な結合によって、カートリッジ内で上記マイクロ流体流路の壁部又は表面に直接的に又は間接的に付着することができる。好適な実施形態では、結合剤は、結合成分を含む磁気粒子又は常磁性粒子の形であり、結合成分は、例えば、粒子の表面への非共有化学結合(例えば、ビオチン-アビジン)によって直接的に又は間接的に結合することができる。さらなる実施形態は、磁性粒子などの、磁性剤の表面への物理吸着、共有化学結合、非共有化学結合(例えば、ビオチン-アビジン)又はこれらの何らかの組み合わせを含むこともできる。結合する結合剤を含むように官能化されている磁性剤/磁性粒子は、単にカートリッジの上記マイクロ流体流路内に堆積することができ、試料がカートリッジに付与されて上記流路の中にそれに沿って引き込まれると、官能化した磁性剤/粒子は、液体試料によって再懸濁して試料中の何らかの分析物と接触するようになっている。結合試薬及び/又は他の試薬のための1又は複数の堆積領域は、具体的には、随意的にこの領域を検出領域/ゾーンから切り離すために、前述した技法によって堆積領域の一方又は両方の端部に疎水性停止部又は他の特徴部を使用して規定することができる。適切な場合には、このことは、試薬構成材(例えば、蛍光ラテックス粒子)が測定/検出領域/ゾーン内で乾燥してしまうことに起因して、高いバックグラウンド読み取り値が取得されないことを保証することができる。
【0071】
上述したように、結合剤だけではなく、カートリッジは、(及び/又は代替的に)上記マイクロ流体流路内に堆積した1又は2以上の試薬を含むことができ、この試薬は、分析物又は捕捉分析物の検出を促進することができる。例えば、上記1又は2以上の試薬は、特に分析物に結合して、その検出が促進されるように適合された標識、又は分析物反応生成物を生成するために分析物と反応する酵素を含むことができる。従って、本発明によれば、本明細書で説明するアッセイを使用して、分析物又はその分析物反応生成物を検出することができる。
【0072】
結合分析物は、結合分析物を検出出可能なシグナルを生成できる場合は直接検出することができ、又は、分析物が結合すると、反応生成物を生成して反応生成物を検出できるように反応が生じることができる。しかしながら、好適な実施形態では、結合分析物は、結合分析物を結合することができる標識と接触し、標識/結合剤/分析物複合体が、その後検出される。標識は、それ自体、特に複雑な結合剤/分析物に結合することもできるさらなる結合成分に結合される場合がある。典型的には、標識は、第1の結合剤が結合する分析物の異なる部分に結合することができるか、又は、このような複合体が生成されたときに限り形成される結合剤/分析物複合体の領域に結合することができる。
【0073】
結合分析物は、気体が流体充填チャンバに引き戻されることによって、マイクロ流体流路の異なる領域内の標識に移送することができ、結果として、流体試料は、さらにマイクロ流体流路に沿って上記気体充填チャンバの各々の方向に引き込まれる。
【0074】
望ましくは、結合剤及び何らかの検出剤/標識は、カートリッジのマイクロ流体流路内に堆積しているときには乾燥状態であり、長期保管が可能であり、液体試料がマイクロ流体流路に流入してそれに沿って流れると液体試料によって再構成される。
【0075】
1つの実施形態では、分析物の検出を促進するようにデザインされている結合剤及び/又は検出剤/標識は、最初は、第1の停止特徴部から下流側に位置する(試料が導入後にカートリッジに流入する方向の観点から)。このように、上記結合剤及び/又は検出剤は、最初はカートリッジ内の初期試料付与及び毛細管作用での充填で試料と接触しない。上記気体充填チャンバの各々に付与された力が低減されて気体が気体充填チャンバに引き戻されるときに限り、試料は、上記マイクロ流体流路の各々に沿ってさらに引き込まれて結合剤及び/又は検出剤と接触する。
【0076】
1つの実施形態では、マイクロ流体流路に沿った試料の移送は、複数の段階で発生することができる。例えば、初期試料付与及び毛細管作用での充填後、上記気体チャンバの各々に付与された力が制御状態で低減されて、気体が上記気体充填チャンバの各々に制御状態で正確に引き戻されることによって、試料は、上記マイクロ流体流路の各々の第1の部分に沿って引き込むことができる。上記マイクロ流体流路の各々の第1の部分は、例えば、上記結合剤を備えることができる。従って、第1の部分への流体試料の導入によって、結合剤は、液体試料内に存在する可能性のある何らかの分析物と反応することができる。その後、上記気体チャンバの各々に付与される力のさらなる制御された低減によって、試料及び結合剤は、上記マイクロ流体流路の各々の第2の部分に引き込むことができ、より多くの気体が上記気体充填チャンバの各々へ引き込まれると、結果的に、試料及び結合剤が上記/各流路の第2の部分に引き込まれる。追加の試薬又は標識は、例えば、第2の部分に存在することができ、試料及び結合剤は、これと接触する。このように、特定のアッセイに関係する複数の別個のステップ又は段階を簡単に実現することができ、各ステップ/段階は、互いと異なる期間を必要とする場合がある。3段階、4段階、又は5段階以上など3以上の段階を簡単に想定することができ、各段階は、各気体充填チャンバに付与される力のさらなる制御された低減によって行われることを認識されたい。好都合には、各気体チャンバは、独立して制御することができる。このように、複数の異なる形式のアッセイを本発明の単一のカートリッジを使用して行うことも可能である。このように、各々の別個の流路には、特定のアッセイ又は複数のアッセイを行うための必要な試薬が提供され、リーダーは、必要な数の気体チャンバの加圧/減圧ステップを各特定のアッセイについて行うようにプログラムされている。従って、本発明のカートリッジ及び関連したリーダーは、異なる試薬、反応期間、ステップ数などを必要とする場合がある複数の別個で異なるアッセイを実質的に同時に行うことができる。
【0077】
上記の説明では段階的方法での液体試料の引き込み又は押し込みが検討されているが、力制御手段の制御可能性によって、例えば、何らかの時点での液体試料の押し込み及び引き込みを可能にして混合効果を可能にするために、気体充填チャンバを微細な又は可変の度合いで可逆的に加圧及び減圧することが可能であることが認識されるであろう。従って、例えば、液体試料が、該液体試料によって再構成されることになる1又は2以上の試薬を含むマイクロ流体流路の領域に移送される際に、上記1又は2以上の試薬が堆積している領域に到達すると、液体試料は、液体試料内の上記1又は2以上の試薬の再構成及び/又は混合を促進するために一定期間にわたる上記気体充填チャンバの各々の小さな加圧/減圧を使用して、前後に押し込む及び引き込むことができる。
【0078】
本発明の方法及びアッセイの必要な制御及び実行は、適切なマイクロ処理装置及びリーダー内の関連したソフトウェアの使用によって促進することができる。
【0079】
別の実施形態では、試料と磁性粒子などの結合剤との間の初期結合相の後で、試料液体内に形成された結合剤-分析物複合体は、流路の下流側領域に移送することができ、標識は、マイクロ流体流路内に乾燥した形態で配置される。試料液体によって、標識は再懸濁/再水和して、結合剤-分析物複合体への標識の結合が可能である。液体試料及び何らかの再構成された材料のこの移送は、上記気体充填チャンバの各々に対する減圧によって気体が上記気体充填チャンバの各々に引き戻されることによる。気体/空気を上記気体充填チャンバの各々に引き戻すことによって、上記マイクロ流体流路の各々に沿って液体試料を引き込む役割を果たす真空効果が生じる。この方法は、堆積した試薬の再水和及び試薬拡散の均質性の優れた管理を可能にする。
【0080】
別の実施形態では、結合剤及び標識は、上記マイクロ流体流路の各々の同じ領域内に堆積する。試料は、これらの試薬を実質的に同時に再水和し、結合及び標識反応が同時に起こる。この実施形態では、すべての試薬は、試料に接触することができ、リーダーは、その後、磁石/電磁石を用いて磁性粒子-分析物-標識複合体を検出領域に集める。他の従来技術装置とは異なり、磁石/磁気力は、単に検出ゾーン内の磁性粒子を集める、つまり、集中させるようにすることができる。従って、磁石/磁気力は、磁性粒子を上記マイクロ流体流路の各々に沿って長手方向に引き込む又は移動させるのではなく、むしろ、何らかの複合体を検出ゾーンの領域に集中させて保持するように機能する。1つの実施形態では、磁粉は、最初は、磁気力が付与されることになっている場所とは反対のマイクロ流体流路内に堆積することができる。例えば、磁性粒子は、流路の底部に又はそれに沿って堆積することができ、磁石又は磁気力は、カートリッジの上面に接触する/付与されることになる。このよう、磁性粒子は、磁気力の付与で、流路を横切って側方に(又は、流路内で液体試料の流れに垂直に)引き寄せられることになる。液体試料を通して磁性粒子を能動的に引き寄せるプロセスによって、官能化された磁性粒子と液体試料内に存在する場合がある分析物との間で発生する場合がある、可能性のある捕捉イベントの回数が増えると予想される。
【0081】
1つの実施形態では、電磁石が設けられ、電磁石は、正しくリーダー内に挿入されるとカートリッジの検出ゾーンと一致するように位置決めされている。粒子-分析物-標識複合体は、制御された流体移動によって検出ゾーンに引き込むことができ、検出ゾーンに入るとはじめて電磁力が付与される。さらに、電磁石は、集中した磁界を検出ゾーン内に提供するよう構成することができる。これは、粒子-分析物-標識複合体を検出ゾーン全体ではなく、検出ゾーンの定められた部分に集中させる役割を果たすことができる。代替的に、リーダー内に存在する磁石に対して、カートリッジ自体の中に磁石又は適切な電磁界生成回路を設けることが可能である。例えば、電磁界生成回路は、検出ゾーンに隣接して位置決めすることができ、リーダー内の対応するコネクタに接触することが意図されている電気コネクタを含むことができる。コネクタが接続されると、リーダーは、電磁力を生成するのに必要な電気信号を供給することができる。
【0082】
結合分析物の検出を促進するために、使用済みの液体試料を結合分析物が検出される上記/各検出領域から除去することが望ましいであろう。必要であれば、本発明は、上記気体充填チャンバの各々の中に存在する気体の使用によってこれを達成し、反応済み又は使用済みの液体試料は、マイクロ流体流路の上記検出ゾーンの各々から、存在する場合は廃棄物チャンバの方に除去される/押し込まれる。その後、磁性粒子-分析物-標識複合体などの結合分析物は、実質的に液体がない又は実質的に気体環境で検出及び/又は定量化することができる。結合分析物は依然として「湿潤」である場合がある、すなわち、結合分析物を被覆又は取り囲む場合、そうでなければ結合分析物に関連した一部の残りの液体が存在する場合があるが、当業者によって理解されるような結合分析物は、バルク液体には存在しないことを理解されたい。例えば、結合分析物は、たとえそれがバルク液体内に存在しないとしても、検出中に水和したまま(例えば、「乾燥した」状態にはないと考えられる)である場合がある。
【0083】
好都合には、本発明は、上記気体チャンバの各々に出入りする気体の移動の細かな制御によって各流路に沿った液体移動の速度をどちらの方向でも正確に制御することができる。例えば、上記流路の各々の中に堆積している乾燥試薬の再構成は、素早く行うが、何らかの必要な反応が起こった後の液体試料及び未結合材料の除去は比較的ゆっくり行うことが望ましいであろう。従って、リーダー及び関連した力制御手段は、上記気体チャンバの各々を出入りする気体の放出速度を変更又は修正することができ、これに対応して、上記流路の各々の中の液体移動の速度/比率に影響を与える。異なるアッセイは、異なる再構成及び/又は液体の除去速度を必要とする場合があり、これは同様に、関連のプログラミング又はソフトウェアと組み合わせて力制御手段によって独立的に制御することができる。
【0084】
さらに、力制御手段の細かな制御によって、上記気体チャンバの各々を出入りする僅かな気体排出容積を細かく制御することができる(液体試料の小さな移動に対応する)。例えば、上記気体充填チャンバの各々へ排出又は導入される気体の容積は、200nl以下、100nl以下、又は、さらには50nl以下、25nl以下、15nl以下、10nl以下)又はそれ未満といった500nl以下の増分とすることができる。気体移動のこのような小さな容積によって、結果的に、上記流路の各々の中の液体の対応する非常に小さな直線運動が得られる。検出が実質的に液体のない環境で実行される本発明の実施形態では、発明者は、気体のこのような非常に小さな容積を使用して液体試料及び/又は非捕捉材料又はその一部でさえも検出ゾーンから除去し、従って、捕捉分析物又は分析物反応生成物を、バルク液体及び非捕捉材料が気体によって除去された実質的に液体のない環境にもたらすことができることを観察した。これは、当技術分野における従来の洗浄ステップで考えられるものとは著しく異なり、当技術分野における従来の洗浄ステップであれば、流体、典型的には液体の大きな容積を使用して、検出ステップを実行する前に試料検出ゾーン/結合分析物などを洗浄することになる。実際には、本発明における空気の使用は、洗浄ではなく、むしろ単に試料検出ゾーン内の液体試料及び非捕捉材料を除去することと考えることができる。従って、液体試料及び/又は非捕捉材料を検出ゾーンから除去する必要がある場合、本発明は、容積が、検出が行われる検出ゾーン又はその一部の容積と実質的に等価な(又は、わずかに大きい、例えば15nl、25nl、50nl、100nl又は200nl)気体を使用することができる。その理由は、これが液体試料を検出ゾーン又はその一部から除去するのに十分であり、分析物又は分析物反応生成物が実質的に液体のない環境に残るのからである。従来の洗浄ステップでは、試料容積と比較すると、一般に大きな洗浄容積が必要となるであろう。
【0085】
さらに、相対的に言うと、上記気体チャンバの各々の容積の一部(50%未満、未満40%又は未満25%など)のみが、上記流路の各々及び/又は液体への液体試料移送、及び/又は上記検出ゾーンの各々からの試料除去の制御に必要となるであろう(必要な場合)。
【0086】
各カートリッジは、単一の分析物検出又は複数の分析物検出を実行するように設計することができる。さらに、各カートリッジは、2以上のアッセイを単一のカートリッジを使用して実行することができるように2以上のマイクロ流体流路システムを備えることができる。マイクロ流体流路当たり2以上のアッセイを実行することも可能である。このように、上記気体チャンバの各々が独立的に制御可能なので、各カートリッジは、多くの繰り返し及び/又は明確に異なるアッセイを単一の液体試料から実行することができる。
【0087】
望ましくは、カートリッジは、簡単に量産することができる。カートリッジは、複数のカートリッジが最初は一緒に有孔シールなどによって結合されているストリップ内に設けることができる。このように、ユーザーは、使用前にカートリッジをストリップから容易に取り外すことができる。
【0088】
カートリッジに試料が取り込まれると、何らかの捕捉分析物をリーダー装置内に存在する適切な光学的又は他の手段によって検出することができる。本発明は、このようなリーダーを提供し、本発明の重要な態様は、リーダー内に存在し、気体を上記気体充填チャンバの各々において排出/導入するように、上記1又は2以上の気体充填チャンバの外面に付与された力を制御するように設計された少なくとも1つの力制御手段を提供する。力制御手段によって付与された力の低減によって、気体は、上記気体充填チャンバの各々に引き戻されることになる。本発明の1つの利点は、カートリッジ自体は、初めは「乾燥」状態とすることができること、すなわちバルク液体が、試料付与前にカートリッジ内に殆ど又は全く含まれないことである。これによって、カートリッジ自体の製造が単純になるだけでなく、保存可能期間が長くなり、本発明のカートリッジの多くを室温で保管することができ、使用前に、カートリッジ内の化学物質又は生体成分の劣化はほとんどない。
【0089】
さらなる態様では、マイクロ流体システムと共に使用されるリーダー装置が提供され、リーダー装置は、
マイクロ流体システムの気体充填チャンバの加圧又は減圧を制御する力制御手段と、マイクロ流体カートリッジへ導入された液体試料内の所望の分析物又はその分析物反応生成物の検出を可能にする検出手段とを備え、
力制御手段は、圧電式曲げアクチュエータを備え、これは気体充填チャンバの加圧又は減圧をアクチュエータの変位によって直接的に又は間接的に行うように設計されている。
【0090】
Pierre Curieは、圧電効果を1883年に発見した。彼は、水晶結晶板などの特定の材料は、機械的応力が加わると電圧を生成することに気付いた。逆に、それらの材料の形状は電圧を加えると変形する。従って、この特定の材料は、電気信号を機械的振動に変換するトランスデューサとして使用することができる。
【0091】
様々な材料が圧電特性を有し、最も一般的に使用されているのは、ジルコン酸チタン酸鉛(PZT)である。セラミックの化学組成及び製造プロセスを変更することによって、圧電式ベンダーの性能を変えることができる。PZT層は、適切な基材シート(例えば薄板金属)に接合されると、PZTプレートの何らかの電気的作動によって、基材に対してプレートの平面移動が生じ、それによって内部機械応力が引き起こされ、結果的にサーモバイメタルと同様の複合構造体の曲げモーメントが発生する。
【0092】
圧電式ベンダーは、本技術分野ではよく知られている。典型的には、圧電セラミック結晶は、両面を銀で被覆して、真鍮、ニッケル合金、又はステンレス鋼ストリップに接着することができる。
【0093】
セラミックは、フィードバック付き又はなしで構成することができる。フィードバックは、外部回路と共に使用して、圧電式ベンダーの動作を監視して一貫した出力周波数を維持するように入力信号を調整することができる。
【0094】
ベンダーは、多様な外形形状で作製することができ、PZT二層又は多重層構造からカットすることができる。本発明の圧電式ベンダーは、ストリップ-ベンダーの形を取ることができる。ストリップベンダーに関して、ストリップの一端は、固定的に取り付けられ、他端は、自由に移動する。この取り付けに関して、ストリップ-ベンダーの最大変位が達成され、変位、剛性、共振の特定のデータは、この状況を指す。変位は、ストリップの自由移動長さに左右される。通常、ベンダーの全長の約5~10%は、取り付け目的に設けられる。取り付けは、クランプによって、又はエポキシ、シアノアクリレートなどの接着剤を使用して行うことができる。
【0095】
圧電式ベンダーは、最初に付勢すること、つまり関連した足部又は指状部を気体充填チャンバの外面と接触させることができる。このように、最初に、気体チャンバに付与される際の最大力を与えることができ、これによって、気体は、気体チャンバから排出される。圧電式ベンダーは、適切な電気信号によって、気体チャンバの外面から離れて曲がるように仕向けることができ、チャンバに付与された力の低減が得られ、結果的に、チャンバへ気体を引き込むことができる。各気体チャンバは上記マイクロ流体流路の各々と流体連通しているので、当業者であれば、それぞれの気体チャンバにおいて排出又は引き込まれる気体が、それぞれのマイクロ流体流路内の液体試料の対応する指向性移動を如何に引き起こすかを容易に理解できる。
【0096】
リーダーは、カートリッジが挿入される受け入れポートを含むことができる。リーダーは、カートリッジの正しい挿入を保証するように構成することができ、様々な形態を取ることができる。例えば、カートリッジは、最初に、CDなどを取り込むためにコンピュータで見ることができるような、リーダーに入る搬送機構上に置くことができる。代替的に、受け入れポートは、カートリッジを受け入れることを可能にする大きさとするでき、内部停止部材は、リーダー内で見ることができ、正しく挿入されるとカートリッジが当接する。付加的に又は代替的に、カートリッジの表面上で見られるか又はこの表面に切り込まれた特徴部は、リーダー内で見られる特徴部と同じ位置に配置するように設計することができ、カートリッジが正しくリーダー内に配置されると初めて、カートリッジをリーダーによって制御することができることになる。異なる大きさの受け入れポートを設けることができ、又は、単一の受け入れポートは、例えば、所定数のアッセイを実行するように設計された、大きさの異なるカートリッジを受け入れるように適切に形作ることができる。
【0097】
リーダーは、場合によっては適切なソフトウェアによって、様々な異なる形式のアッセイを実行するように構成することができる。ユーザーには、アッセイカートリッジ及び随意的に試料収集デバイスを備えるキットを提供することができる。カートリッジは、リーダー装置が判別することができるバーコード又は他の表面の特徴部を備えることができ、これは、リーダーに、リーダーに挿入されたカートリッジの形式、従ってどのアッセイが行われるか、従ってリーダーがどのように機能して及び/又は例えば患者詳細情報を提供するかが想定されているかを知らせる役割を果たすことができる。このように、異なるアッセイ及び/又はアッセイパネルを実行することができる様々な異なるカートリッジを受け入れることができる単一形式のリーダーを提供することができる。
【0098】
結合剤が、磁気ビーズなどの磁性剤の表面に結合される実施形態では、リーダーは、永久磁石又は電磁石を備えることになることが理解される。磁石は、磁性剤と隣接するように設計すること、又は、電磁石は、磁性粒子をカートリッジの上記マイクロ流体流路の特定の領域内に集中させて保持するために磁界を付与するように誘導されることになる。この領域は、検出領域とすることができる。1つの実施形態では、電磁石が採用され、電磁石は、磁性粒子が検出ゾーンに移送されると初めてオンになる。適切な設計によって、磁性粒子が集中して検出ゾーンの小さな領域内に保持されることを保証するために、電磁石の磁界を制御又は集中させることも可能である。これは、磁性粒子を小さな領域に集めて検出することができるシグナルを増やす役割を果たすことができる。
【0099】
磁性粒子を特定の領域に集中させることは、何らかの捕捉分析物の検出を促進して及び/又は検出の感度を増大させる役割を果たすことができる。さらに、粒子を磁界によって保持することによって、結合分析物を取り囲む不必要な/使用済みの流体試料を上記気体充填チャンバの各々から排出された気体によって除去することもでき、その結果、初期試料内に存在する可能性がある潜在的に干渉する化学物質/汚染物質がない捕捉分析物が残る。永久磁石又は電磁界は、例えば、永久磁石をカートリッジに近づけるか又は遠ざけることによって又は付与された磁場の強度を増減することによって、増減することができる。これは、磁気粒子が、特定の場所で「緩和する」つまり集中が弱くなるが、依然とし磁界によってある程度保持されるか又は保持されないことを可能にする役割を果たすことができる。これは、粒子に行われるさらなる反応を促進することができ、磁気粒子が緩和されずに集中している場合と比較して、より効率的に行うことができる。特定の用途では、検出は、粒子の集中が弱くなっているつまり弛緩しているときに行うことが好ましい場合がある。
【0100】
使用時、磁石を使用して、磁界を試料に付与すると何らかの結合剤を保持することができる。気体は、試料内に存在する液体試料及び何らかの非結合成分を上記検出領域の各々から離れるように移送するために及び/又は検出剤などの他の試薬を捕捉分析物と接触させること可能にするために、上記気体充填チャンバの各々から排出することができる。気体移動及び対応する液体試料及び何らかの非結合成分除去の速度の細かな制御は、気体の力が磁気結合した材料を剥ぎ取るのに十分ではないことを保証するために必要である。従って、上記気体充填チャンバの各々から排出される気体の速度は、細かく制御することができる。特定の実施形態では、磁界/磁力を付与する前に、液体試料及び試薬を、検出ゾーンを通り過ぎるように引き込むことが望ましいであろう。従って、磁気粒子の何らかの捕捉は、気体が気体チャンバから排出されることによって液体試料が検出ゾーンを通って押し戻されないと起こらない。
【0101】
別の実施形態では、磁性粒子は、干渉物を試料から除去するようにデザインされた結合試薬中で被覆することができる。磁気粒子は、試料内に存在するこの干渉物と結合することができ、その後、磁気粒子を、反応が進行して特定の干渉物がない場合に測定することを可能にするために、特定の捕捉/検出試薬、及び/又は検出ゾーンとは別個の特定の場所に保持することができる。
【0102】
本発明のリーダーは、試料カートリッジ内の何らかの捕捉分析物を検出する検出手段をさらに備える。検出手段は、特定のアッセイに応じて何らかの適切な手段とすることができる。例えば、検出手段は、蛍光光度計又は分光光度計とすることができ、蛍光光度計又は分光光度計を使用して、蛍光信号を、適切に励起して、標識又は未標識結合分析物又は反応生成物から検出することができる。結合分析物/反応生成物は、適切な波長の光が分析物/生成物を励起するために使用されると当然ながら蛍光を発することができ、又は、さらなる標識は、結合分析物及び蛍光手段によって検出された標識に結合するために使用することができる。採用することができる他の標識、従って相応に適合した検出手段としては、放射性標識、蛍光標識、コロイド金属粒子、生物発光標識、比色標識(colourimetric label)、電気化学標識などが挙げられる。さらに、上述したように、分析物又はその反応生成物又は結合分析物又は反応生成物自体は、ラマン分光法などの技法を使用して直接検出することができる。一部の実施形態では、検出手段は、分析物又は分析物反応生成物又は捕捉分析物/分析物反応生成物及び/又は前述成分のいずれかに付着した標識を、光学的を検出するように設計されている。
【0103】
検出可能な標識は、単独で、又は金属酸化物、多糖類又はラテックス粒子などの微粒子又はビーズと一緒に使用することができる。多くの形式のラテックス及び他の粒子が、当技術分野で知られている。
【0104】
リーダーは、カートリッジの上記気体充填チャンバの各々に接触し、ベンダーによって形成された屈曲部を増減することによって上記気体充填チャンバの各々に付与された力を低減する、上述の1又は2以上の圧電式ベンダーを有する力制御手段を備える。2以上の気体充填チャンバが設けられる場合、別個の独立制御式の圧電式ベンダーを各気体充填チャンバに設けることができる。力制御手段は、上記チャンバの各々の外面に接触して力を該外面に付与するように設計される指状部又は足部を含むことができる。このよう、圧電式ベンダーは、指状部/足部が気体充填チャンバに作用するように指状部又は足部に作用する。使用時、力制御手段が上記チャンバの各々の外面に接触する前に、チャンバは、最大量で気体充填状態とすることができる。上記気体充填チャンバの各々の表面に接触して力が付与されると、上記チャンバの各々の中の気体は、排出されることになる。付与される力を増大すると、結果的に、さらなる気体が、上記チャンバの各々から排出されることになる。逆に、力制御手段によって上記気体充填チャンバの各々に付与された力を低減すると、気体は、上記チャンバの各々に引き戻されることになる。
【0105】
指状部/足部は、上記チャンバの各々の外面の中央部分に接触するように設計することができる。典型的には、指状部/足部は、上記気体充填チャンバの各々の外面全体の一部のみに接触することができる。例えば、使用時、指状部/足部は、カートリッジの上面に接触することができ、気体チャンバを覆う上面領域の10~50%に接触するようにサイズ決定することができる。カートリッジの表面と接触状態にある指状部/足部は、上昇及び下降する、つまり、説明したように圧電式ベンダーを使用して、気体チャンバの表面に接触されるか又はそこから弛められる。曲げ速度及び程度、従って力制御手段の作用は、上記気体充填チャンバの各々から排出されるか又は引き込まれる気体の速度及び量を制御できるように、細かく制御することができる。
【0106】
リーダーは、アッセイを特定の温度で行うことを可能にする、加熱装置などの他の特徴部、並びにリーダーを1又は2以上の異なるアッセイを実行するようにプログラムできる適切な電気回路及びソフトウェアを含むことができる。
【0107】
さらなる態様では、内蔵式マイクロ流体システム及び関連したリーダー装置を備えるアッセイシステムが提供され、内蔵式マイクロ流体システムは、
少なくとも1つのマイクロ流体流路に接続された、アッセイされる液体試料を受け入れる試料入力ポートを備え、
上記マイクロ流体流路の各々は、アッセイを行うのに用いる内部に堆積した1又は2以上の試薬と、試料又は分析物反応生成物内に存在する可能性がある何らかの分析物を検出するのに用いる検出ゾーンとを含み、
上記マイクロ流体流路の各々は、上記検出ゾーンの各々から下流側で加圧可能な気体充填チャンバに流体連通しており、
マイクロ流体システムは、上記マイクロ流体流路の各々及び上記気体充填チャンバを規定するために一緒にサンドイッチされている3つの層から形成されており、上記チャンバを加圧又は減圧することによって、気体は、チャンバから排出されるか又はチャンバに引き込まれ、これによって、上記マイクロ流体流路の各々の中での液体試料の移動が生じ、
さらにマイクロ流体システムと共に使用されるリーダー装置を備え、このリーダー装置は、
マイクロ流体システムの気体充填チャンバの加圧又は減圧を制御する力制御手段と、マイクロ流体カートリッジへ導入された液体試料内の所望の分析物又はその分析物反応生成物の検出を可能にする検出手段とを備える、
力制御手段は、圧電式曲げアクチュエータを備え、これは気体充填チャンバをアクチュエータの変位によって直接的に又は間接的に加圧又は減圧をするように設計されている。
【0108】
さらなる態様では、アッセイを液体試料に行う方法が提供され、本方法は、
a)本明細書で説明するマイクロ流体システムを本明細書で説明するリーダー装置に提供するステップと、
b)マイクロ流体システムの気体充填チャンバ/上記気体充填チャンバを加圧して、気体を上記気体充填チャンバの各々から排出するステップと、
c)液体試料をマイクロ流体システムに導入して試料が毛細管作用によって上記マイクロ流体流路の各々に引き込まれることを可能にする、及び/又は、気体が上記チャンバの各々に引き込まれて、液体試料が上記マイクロ流体流路の各々に引き込まれるように、上記気体充填チャンバの各々を部分的に減圧するステップと、
d)1又は2以上の試薬が液体試料内に存在する何らかの分析物と反応することを可能にするステップと、
e)随意的に、液体試料がさらに上記マイクロ流体流路の各々に沿って上記気体充填チャンバの各々に向かって引き込まれるようにマイクロ流体システムの上記気体充填チャンバの各々をさらに部分的に減圧して、随意的に、液体試料を分析物結合剤及び/又は1又は2以上の追加の試薬と接触させるステップと、
f)随的に、何らかの分析物又は分析物反応生成物を捕捉して、上記チャンバの各々から排出された気体によって液体試料及び未捕捉材料が何らかの捕捉分析物又は分析物反応生成物から押しやられるように、上記気体充填チャンバの各々を加圧するステップと、
g)何らかの分析物又は分析物反応生成物、又は、捕捉分析物又は分析物反応生成物を検出するステップと、
を含む。
【0109】
上記の方法のステップe)は、単一又は複数のステップとして実行することができることを認識されたい。従って、実行されるアッセイに応じて、ステップe)は、上記気体充填チャンバの各々に付与された力の低減が力の単一の低減である、試料が上記マイクロ流体流路の各々の中の単一の場所に引き込まれるように単一のステップとすることができる。代替的に、2ステップ、3ステップ、又は4ステップなど、複数のステップが存在でき、力の連続した低減が上記チャンバの各々に付与され、試料は、力の低減が実行される回数に応じて、上記マイクロ流体流路の各々の中で、何らかの数の連続した場所に引き込まれる。従って、本発明は、単一のステップ又は複数のステップが必要とされる場合のアッセイを実行することができる。
【0110】
気体充填チャンバに付与される力は、上述のように力制御手段によって提供することができ、力制御手段は、圧電式ベンダー及び圧電式ベンダーに関連した随意的に指状部又は足部を備える。
【0111】
上記気体充填チャンバの各々に付与される力の増減速度は、上記流路の各々の中の液体移動の速度を増減するために変えることができる。例えば、ステップe)において付与される力の減少は、必要であればステップf)で付与される力の上昇率よりも迅速とすることができる。
【0112】
分析物/分析物結合剤複合体の捕捉は、例えば、分析物結合剤がマイクロ流体流路の表面に結合されるか、又は、磁気性に基づいて磁気力を形成された複合体に付与することによって捕捉するかに起因することができる。複合体を形成するために用いられる磁性粒子は、最初は、磁石が密接に接触させられるか又は磁気力が付与されるカートリッジの表面とは反対側の上記マイクロ流体流路の表面上に堆積することができる。この効果は、磁性粒子が上記流路を横切って液体流れに垂直に上記マイクロ流体流路を通って側方に引き寄せられ、これによって分析物又は分析物反応生成物との磁性粒子の接触が増えて及び/又は促進され、その結果、アッセイの感度が増大することである。
【0113】
上記の方法の2以上の実施形態は、単一のカートリッジを使用して実行することが可能である。従って、例えば、上記ステップf)を含む方法は、本発明のカートリッジ内の1つの流路上で実行することができ、ステップf)を含まない方法は、別個の流路上で実行することができる。付加的に又は代替的に、ステップe)は、前述の流路及び/又はさらなる流路で一回又は複数回実行することができる。このようにして、複数の異なる形式のアッセイを、複数のアッセイ流路を備える単一のカートリッジを使用して行うことができる。
【0114】
本発明は、さらにアッセイシステムの開発に基づいており、アッセイシステムは、複数の異なるアッセイを単一の試料で行うことができる使い捨てマイクロ流体カートリッジと、複数の分析物のレベルを単一の試料から検出及び/又は特定して、出力をユーザーに提示することができる関連のリーダーとを備える。本発明は、様々な使い捨てカートリッジをリーダーで受け入れることも可能にし、上記の様々な使い捨てカートリッジの各々は、異なるアッセイの異なるパネルを実行することができる。このように、結果を異なるアッセイの様々な異なるパネルから供給するために使用することができる、単一のリーダーを提供することができる。この点に関しては、各カートリッジは、実行することができるアッセイの数及び形式に特に適合させることができる。例えば、特定のアッセイには、試料の異なる容積を必要とする場合があり、これは、各流路及び/又はチャンバの適切なサイズ決めによって独立的に対応することができる。従って、何らかの特定の流路の大きさを増減することによって、各特定の流路に導入される試料の容積を増減することが可能である。さらに、1又は2以上の流路に接続される何らかのチャンバのサイズは、アッセイの形式、ステップ数及び/又は上記流路に導入される試料の容積に応じて必要に応じて増減することができる。これは、当業者によって容易に決定される。
【0115】
従って、さらなる態様では、複数の異なるアッセイを行うのに用いる内蔵式使い捨てマイクロ流体システムが提供され、マイクロ流体システムは、液体試料をマイクロ流体カートリッジに導入する試料入力ポートと、複数のマイクロ流体流路とを備え、マイクロ流体流路の各々は、液体試料の一部を受け入れるように適合されており、1又は2以上のアッセイを液体試料導入前に上記マイクロ流体流路の各々の中に存在する1又は2以上の試薬を使用して上記試料の一部に行うことができ、各マイクロ流体流路内の流体移動は、マイクロ流体システムの2又は3以上の気体充填チャンバの加圧及び/又は減圧によって独立して制御可能であり、該チャンバは、各々、上記マイクロ流体流路の1又は2以上と流体連通している。
【0116】
本発明の上記のさらなる態様は、上述した態様及び実施形態に付加的であるか、又は代替的とすることができることを認識されたい。従って、本発明の先の態様に関して説明した全ての特徴部は、直前の態様に同様に適用することができ、従って、制限的又は随意的な特徴部として含めることができる。
【0117】
アッセイを本発明のカートリッジを使用して実行することも可能であり、本発明のカートリッジは、1又は複数のチャンバと流体連通する流路を有するだけではなく、1又は複数の気体チャンバと流体連通していない1又は2以上の流路をさらに備える。このようなアッセイの非制限的な実施例は、以下の実施例のセクションで説明する。
【0118】
本発明のマイクロ流体カートリッジは、各アッセイプロセスが実行される前に、試料そのもの以外に、各アッセイを行うのに必要な他の全ての物理試薬がマイクロ流体カートリッジ内に存在するという意味で内蔵式である。従って、反応種、バッファ、洗浄液などの他の試薬は、アッセイプロセス中にカートリッジへ導入されない。典型的には、カートリッジに入る唯一の液体は、液体試料自体である。上記流路の各々の中に堆積したと考えられる何らかの試薬は。最初に、液体によって付与することができ、これは乾燥することになり、カートリッジは、何らかの特定のアッセイを行う前に、存在する液体はないか又は実質的になく、乾燥していると考えることができる。
【0119】
加熱/冷却及び/又は磁気力の付与は、以下で論じるように、関連したリーダーからカートリッジに行うことができるが、これは、物理的反応力と解釈すべきではない。
【0120】
本発明の文脈における複合アッセイは、各マイクロ流体カートリッジが、複数のアッセイをカートリッジへ導入された単一の試料から実行することができるだけではなく、カートリッジ、複数の明確に異なる形式のアッセイを実行することもできることを意味すると理解されたい。例えば、本発明の各マイクロ流体カートリッジは、少なくとも、イムノアッセイ、核酸アッセイ、受容体ベースアッセイ、競合アッセイ、血球計算アッセイ、比色アッセイ、酵素アッセイ、電気泳動アッセイ、電気化学アッセイ、分光アッセイ、クロマトグラフィアッセイ、顕微鏡アッセイ、トポグラフィアッセイ、熱量アッセイ、比濁アッセイ、凝集アッセイ、粘性アッセイ、凝固アッセイ、凝固時間アッセイ、タンパク質合成アッセイ、組織学的アッセイ、静置アッセイ、容量オスモル濃度、浸透圧、化学、生化学、イオン、気体、又は吸収アッセイの2つ、3つ、4つ、5つ又は6以上を実行することができる。特定の実施形態では、特定の形式のアッセイを、異なる分析物を検出するために実行することができる。例えば、2以上のイムノアッセイを、異なる分析物を検出するために実行することができる。上記2以上のイムノアッセイは、単一及び/又は複数のマイクロ流体流路において実行することができる。
【0121】
実施形態では、本発明のマイクロ流体カートリッジは、特定の病気又は病状に関係するアッセイパネルを実行するように設計されている。例示的な試験パネルとしては、心疾患、副腎疾患、肝機能、腎臓機能、神経機能、糖尿病、妊娠及び妊娠状態、代謝状態及び乱用薬物のためのアッセイパネルを挙げることができる。
【0122】
例えば、心疾患に関連したマーカーのアッセイ用に設計されているマイクロ流体カートリッジは、以下の1又は2以上のレベルを検出及び/又は特定するようになっている1又は複数のアッセイを含むことができる。
・脂質プロファイル-例えば、低比重リポ蛋白(LDL)、高密度リポ蛋白質(HDL)、トリグリセリド、及び/又は総コレステロールを検出することができる。
・アポリポタンパク質―リポプロテインのタンパク質成分―これは、標準脂質プロファイル内に含まれず、別個に試験される場合がある。異常なレベルは、アテローム硬化を促進させる恐れがあり、冠動脈疾患(CAD)及び脳卒中のリスクを増大させる恐れがある。
・ホモシステイン-アミノ酸(タンパク質構築ブロック)である。高血中濃度は、アテローム硬化及びCAD、ならびに、心臓発作又は脳卒中に至る可能性がある血餅を促進させる恐れがある。
・トロポニン;BNP
・C反応性タンパク質(CRP)―全身性炎症の低いレベルを反映する物質であり、CADのリスクがある人達では増大し、
・心筋酵素研究などの心臓マーカー―心臓発作からのように、心臓にストレス、病変、又は損傷があるときに放出される、CK-MBなどの又はトロポニンなどの特定の酵素、又は脳性ナトリウム利尿ペプチドなどの心臓ホルモンを測定する。
【0123】
ストレス又は他の状態を経験している被検者は、副腎機能パネルの対象となる場合があり、副腎機能パネルは、以下の1又は2以上を含むことができる。
・アルドステロン:これは、体内の塩、カリウム、及び水分バランスを制御して血圧を調整する一助となる。このホルモンの過剰産生(高アルドステロン症)又は低産生(低アルドステロン症)は、腫瘍又は他の異常副腎(1次、例えば、副腎癌)が原因である場合があるか、又は、副腎以外の諸問題(2次)から生じる場合がある。
・コルチゾール:これは、炭水化物、タンパク質、及び脂肪の代謝を制御し、ストレスに対する体の反応の媒介となり、免疫系を調整する一助となる糖質コルチコイドホルモンである。ほとんどの場合、良性副腎腫瘍が原因である、コルチゾールの過剰分泌は、結果的にクッシング症候群になる。分泌不足は、アジソン病と知られている1つの形態の副腎機能不全を示す場合がある。血中濃度及び(遊離コレチゾールと知られている)尿レベルが、通常測定される。
・コルチゾール代謝の生成物である18-ヒドロキシコルチゾール:これは、原発性アルドステロン症患者において過剰な量で産生された異常なステロイドである。このホルモンの血中濃度を測定すると、原発性アルドステロン症の原因が、副腎腺腫と呼ばれている腫瘍であるか又は副腎組織の増殖(肥厚化)であるか特定する一助となり得る。血中濃度は、腺腫がある人たちの方が有意に高い。
・DHEA-Sつまり硫酸デヒドロエピアンドロステロン-副腎によって合成された性ホルモン(アンドロゲン)は、テストステロンの前駆体である。女性では、副腎は、アンドロゲンの主要な又は場合によっては唯一の供給源である。高DHEA-Sレベルは、多毛症(男性の身体的特徴)、男性型多毛症(過剰な発毛)、無月経(月経の欠如)、及び不妊性に関連している。腫瘍などの副腎異常は、異常に高いDHEA-Sレベルとなる場合がある。
【0124】
肝機能試験は、肝疾患に起因する場合がある黄疸などの症状の原因の特定を容易にするために使用される。また、肝機能検査は、例えば、アルコール中毒者又は肝炎ウイルス感染患者では、潜在的な肝損傷の有無を調べ、さらには異常な肝機能の変化を監視するために使用される。本発明の肝機能マイクロ流体カートリッジは、以下の1又は2以上を含むことができる。
・酵素試験:肝臓は、アラニンアミノトランスフェラーゼ(Alt)、アスパラギン酸アミノトランスフェーゼ(AST)、アルカリホスファターゼ(AIP)及びγグルタミルトランスフェラーゼ(GGT)を含め、数多くの酵素によって制御されている多くの生化学反応の部位である。血流内の肝臓酵素の高レベルは、肝損傷を示す場合があるが、必ずしも特異性肝疾患を提示するわけではない。酵素試験は、個別に発注することができるが、多くの肝臓酵素のレベルが他の器官に影響を与える病気では高い場合があるので、組み合わせて行った方が多くの情報が得られる。
・胆汁中の主要色素であるビリルビン:これは、ヘモグロビン(赤血球中の鉄含有物質)の分解産物である。通常、少しのビリルビンのみが、血液中を循環している。高血中濃度は、肝炎及び総胆管障害を含む、多くの形態の肝臓及び胆管病から生じる場合がある。血液中に過剰なビリルビンが存在すると、黄疸という皮膚及び眼の黄色がかった変色が生じる。
・アルブミン:これは、血流内の大部分のタンパク質のように、肝臓によって合成される主要なタンパク質である。血清(全血凝固後に残る血液の液体部分)中のアルブミンレベルの減少は、慢性肝炎の徴候である。
・プロトロンビン時間(PT):これは、肝臓の機能を評価するために実行することができる血液凝固研究である。プロトロンビンは、肝臓によって合成される凝固タンパク質の1つであり、異常なPTは、肝機能障害を反映することができる。
・ウイルス性肝炎試験:これは、病歴及び/又は症状で病気の疑いが高い肝臓酵素異常患者に行うことができる。(症状としては、微熱、倦怠感、食欲不振及び疲労が挙げられるが、必ずしも存在するわけではない)米国で発見されたこのウイルスの3つの最も一般的なタイプは、(HAV、HBV、及びHCVとして知られている)A型肝炎、B型肝炎、及びC型肝炎である。全て、感染個体の血液中でのみ見つかる特異性抗原又は抗体の存在について試験することによって検出される。どの肝炎タイプが疑われるかに応じて異なる抗体/抗原試験を行うことができる。さらに、特定の抗体の存在は、感染が急性段階又は慢性段階かを知らせることができる。
【0125】
試験パネルは、糖尿病を発症する被検者リスクを検討するか又は被検者がI型又はII型糖尿病であることを確認するために採用されることが多い。上述した脂質パネルと同様に、糖尿病パネルマイクロ流体カートリッジは、以下のアッセイの1又は2以上を行うように設計することができる。
・感染又は貧血などの血液疾患に関する完全血球算定(CBC)試験
・空腹時血糖値:これは、高血糖及び低血糖を検出し、糖尿病を診断しやすくして、糖尿病罹患者の血糖値を監視するために使用される。ヘモグロビンA1cでは、前糖尿病を検出し、前糖尿病を診断し、又は糖尿病が管理化にあるか確かめることができ、糖尿病検尿では、アルブミン(タンパク質)が尿中にあるか特定することになる(アルブミン(タンパク質)がある場合、被検者の腎臓は適切に機能していない可能性がある)。
【0126】
乱用薬物又はスポーツマン及び女性による使用が禁止されていると考えられている薬物の有無を試験することも可能である。被検者において乱用薬物のレベルを検出し及び/又は特定するように設計された本発明のマイクロ流体カートリッジは、以下の1又は2以上についてアッセイを実行するように設計することができる。すなわち、アンフェタミン、バルビツレート、ブプレノルフィン、ベンゾジアゼピン、コカイン、エクスタシ、メタンフェタミン、ヘロイン(アヘン剤/モルヒネ)、メタドン、三環系抗鬱薬、大麻及び/又は他の向精神薬である。
【0127】
上述したアッセイパネルは、単に例示的であり、制限的なものと解釈すべきではないことが認識されるであろう。本発明により、特定のアッセイパネルを想定することができ、本発明によるカートリッジは、特定のアッセイパネルを実行するために提供することができる。
【0128】
各アッセイパネルは、本発明のマイクロ流体カートリッジ内で実行されるが、各アッセイの結果を検出して特定する必要がある。これは、本明細書で説明するようにリーダーによって実行される。
【0129】
リーダーは、カートリッジ特定手段を含むことができ、カートリッジ特定手段は、マイクロ流体カートリッジ上のバーコード/QRコード又は他の形式のコードを読み取るように設計されているリーダー内に存在する、バーコード/QRコードリーダーなどとすることができる。コードは、特定のマイクロ流体カートリッジを実行してそこからの結果を検出/特定するようにリーダーが準備されるように、リーダーに、マイクロ流体カートリッジ及び実行されるアッセイの形式に関する情報を伝える。より単純な実施形態では、リーダーの上記受け入れポートは、ロック及びキーによく似ている、特定のマイクロ流体カートリッジ形式のみを受け入れるように設計することができる。従って、各受け入れポートは、特定の形式のカートリッジを受け入れることのみができ、それによって、カートリッジを特定の受け入れポートに導入すると、リーダーに、どの形式のカートリッジが挿入されたか及び実行されるアッセイに関する指示が行われる。また、ユーザーは、リーダーが実行するアッセイに関して指示されるように、リーダーに詳細情報を入力することができるが、このことはユーザーエラーが発生する可能性があるので、望ましくない場合がある。
【0130】
本発明のリーダーは、複数の異なるマイクロ流体カートリッジを受け入れることができるように構成されている。「異なる」とは、本発明のカートリッジは、見るからに明らかに異なっているではなく、特定のアッセイパネルを行うように適合させることができることを意味すると理解される。すなわち、横並びに配置された場合の2つのカートリッジは、見た目は全く似通っているかもしれないが、一方のカートリッジは、心疾患を検出することに適したアッセイパネルを実行するように適合させることができ、別のカートリッジは、例えば、糖尿病検出に適したアッセイパネルを実行するように適合させることができる。
【0131】
従って、さらなる態様では、複数のアッセイパネルを実行するのに用いる複合アッセイプラットフォームが提供され、複合アッセイプラットフォームは、複数のマイクロ流体カートリッジであり、各カートリッジは、定義されたアッセイパネルを試料に実行することができる、複数のマイクロ流体カートリッジと、上記複数のマイクロ流体システムの各々を受け入れて検証することができるように構成されたリーダーとを備え、リーダーは、試料内に存在する場合がある分析物のパネルのレベルを検出及び/又は特定するように構成可能である。
【0132】
使用時、被検者は、特定のアッセイパネルでの試験に対して予め決定されることになるか、又は、患者は、医者、看護婦又は他の医療専門家などの医療提供者を訪れることになり、医療提供者は、実行される試験の適切なパネル必要とする被検者を識別することになる。患者又は医療提供者は、所望のアッセイパネルを実行するように構成されたカートリッジを選択し、この選択したカートリッジをリーダーに挿入することになる。
リーダーは、カートリッジ上に存在する特徴部から、このカートリッジがどのアッセイパネルを実行するように設計されているかを特定することになり、リーダー自体は、アッセイを実行して被検者からの試料内に存在する特定の分析物パネルのレベルを検出すること及び/又は特定することができるように適切に構成することになる。試料は、被検者から提供又は取得されることになり、試料は、カートリッジの入力ポートへ導入されることになる。アッセイパネルは、協働するリーダー及びカートリッジによって試料に行われることになり、アッセイが完了すると、リーダーは、試料内に存在する分析物のレベルを検出及び/又は特定することになる。その後、リーダーは、アッセイのパネルの結果を被検者及び/又は医療提供者に提示することになる。
【0133】
医療提供者と同様に、ユーザーは、被検者が、例えば、不適切な薬物使用の有無について試験される個人である場合、例えば、警察官又はスポーツ薬物検査官とすることができる。
【0134】
本発明は、以下の番号付けされた条項を参照することによってさらに定義される。
【0135】
1.液体試料のアッセイを行うのに用いる内蔵式マイクロ流体システムであって、少なくとも1つのマイクロ流体流路に接続された上記液体試料を受け入れる試料入力ポートを備え、上記マイクロ流体流路の各々は、上記アッセイを行うのに用いる内部に堆積した1又は2以上の試薬と、検出ゾーンとを含み、上記マイクロ流体流路の各々は、加圧可能な気体充填チャンバに流体接続されており、上記チャンバの外面を加圧又は減圧することで、気体が、それぞれ上記チャンバから排出されるか又は上記チャンバに引き込まれ、これによって、上記マイクロ流体流路の各々の中で上記液体試料の交換的な移動が生じる、マイクロ流体システム。
【0136】
2.上記マイクロ流体流路の各々の中に堆積した上記1又は2以上の試薬と上記液体試料との反応後に、上記チャンバから排出された気体は、上記検出ゾーンの各々の中の何らかの分析物又は分析物反応生成物を実質的に液体のない環境で検出できるように、液体を上記マイクロ流体流路の各々の中の上記検出ゾーンから除去する役割を果たす、条項1に記載のマイクロ流体システム。
【0137】
3.複数のマイクロ流体流路を備え、上記複数のマイクロ流体流路の各々は、上記試料入力ポートと流体連通しており、随意的に、単一のマイクロ流体流路は、上記複数の流路に分かれている、条項1又は2に記載のマイクロ流体システム。
【0138】
4.上記複数のマイクロ流体流路の各々は、それぞれの気体充填チャンバに接続されており、及び/又は、2又は3以上のマイクロ流体流路は、気体充填チャンバに接続されている、条項3に記載のマイクロ流体システム。
【0139】
5.上記試料ポートは、上記マイクロ流体流路の各々の第1の端部に接続されており、上記マイクロ流体流路の各々の第2の端部は、上記気体充填チャンバの1又は2以上に接続されている、条項1から4のいずれか一項に記載のマイクロ流体システム。
【0140】
6.流体廃棄物及び/又は過剰な液体試料を受けるように設計された1又は2以上のシンク特徴部をさらに備える、条項1から5のいずれか一項に記載のマイクロ流体システム。
【0141】
7.上記カートリッジ、上記流路、及び内部に配置された他の特徴部は、上部基材と、底部基材と、上記上部と上記底部基材との間に配置された中間基材を備える3つの別々の平面基材のサンドイッチによって形成されている、条項1から6のいずれか一項に記載のマイクロ流体システム。
【0142】
8.上記層の各々は、均一な厚さを有し、同じ材料から形成されており、随意的に前記層の各々は、同じ均一な厚さを有する、条項7に記載のマイクロ流体システム。
【0143】
9.上記システムは、ウェブ又はロールツーロールプロセスで形成されている、条項7又は8に記載のマイクロ流体システム。
【0144】
10.上記平面基材は、加熱及び/又は接着剤の使用によって一緒にシールされている、条項7から9のいずれか一項に記載のマイクロ流体システム。
【0145】
11.上記平面基材は、弾力性があり、上記チャンバの各々の加圧性を促進する接着剤を使用して一緒にシールされている、条項10に記載のマイクロ流体システム。
【0146】
12.上記システム内の上記マイクロ流体流路の各々は、1又は2以上の流体停止特徴部を備え、上記1又は2以上の流体停止特徴部は、上記試料及び/又は他の流体が毛細管作用のみによって上記停止特徴部を通過するのを防止するように設計されている、条項1から11のいずれか一項に記載のマイクロ流体システム。
【0147】
13.液体試料が毛細管作用によって上記システムへ導入されると気体が上記システムを出ることのみを可能にするように設計された一方向弁を備え、流体が上記一方向弁を通って上記システムへ導入されることはできない、条項1から12のいずれか一項に記載のマイクロ流体システム。
【0148】
14.上記一方向弁は、毛細管作用だけによる上記マイクロ流体流路内での上記試料のさらなる移送を防止するように設計された停止特徴部の近傍に配置されている、条項13に記載のマイクロ流体システム。
【0149】
15.上記一方向弁は、上記マイクロ流体流路の各々よりも小径で、上記マイクロ流体流路の1つと流体連通しているマイクロ流体流路内に位置している、条項14に記載のマイクロ流体システム。
【0150】
16.上記流路の各々の中に存在する液体を測定又は検出するのに用いる、上記流路の各々と接触する1又は2以上の電極特徴部を備える、条項1から15のいずれか一項に記載のマイクロ流体システム。
【0151】
17.上記流路内に堆積した分析物結合剤をさらに備え、随意的に上記分析物結合剤は、上記流路の表面に結合する、条項1から16のいずれか一項に記載のマイクロ流体システム。
【0152】
18.上記結合剤は、磁気粒子又は常磁性粒子に付着する、条項17に記載のマイクロ流体システム。
【0153】
19.上記結合剤又は磁気/常磁性粒子は、上記システムの上記マイクロ流体流路の各々の中に堆積しており、上記試料が上記システムに付与されて上記流路の各々の引き込まれると、上記結合剤又は磁気/常磁性粒子は、上記液体試料によって懸濁される、条項17又は18に記載のマイクロ流体システム。
【0154】
20.上記結合剤又は磁気/常磁性粒子は、上記流路の各々の中に最初に堆積した際に、上記磁気/常磁性粒子の移動を制限するように設計された上記堆積領域のいずれかの端部の特徴部によって規定された上記マイクロ流体流路の各々の領域内に堆積している、条項17から19のいずれか一項に記載のマイクロ流体システム。
【0155】
21.上記磁気/常磁性粒子は、上記流路の各々の内面に堆積し、上記内面は、磁石又は磁気力が接近するようになる上記システムの外面の反対側である、条項19又は20に記載のマイクロ流体システム。
【0156】
22.上記システムは、上記マイクロ流体流路の各々の中に堆積した1又は2以上の追加の試薬をさらに備え、上記追加の試薬は、上記試料内に存在する分析物の検出を促進する、条項1から21のいずれか一項に記載のマイクロ流体システム。
【0157】
23.上記1又は2以上の追加の試薬は、分析物検出を促進する、検出される分析物に特に結合するように適合された標識を含む、条項22に記載のマイクロ流体システム。
【0158】
24.分析物は、上記マイクロ流体流路の各々のさらなる領域又は領域に移送される前に、上記マイクロ流体流路の各々の第1の領域で上記分析物結合剤に結合しており、上記1又は2以上の追加の試薬及び/又は標識は、上記気体充填チャンバの各々に引き戻される気体によって堆積する、条項22又は23に記載のマイクロ流体システム。
【0159】
25.上記システムは、同じ及び/又は異なる複数(2、3、4、5、6、7、8、9、10、又は11以上)のアッセイを単一の試料上で実行することができる、条項1から24のいずれか一項に記載のマイクロ流体システム。
【0160】
26.上記システムに付与される上記試料の容積は、100μl未満、50μl未満、例えば、40μl未満、30μl未満、又は20μl未満である、条項1から25のいずれか一項に記載のマイクロ流体システム。
【0161】
27.試料収集デバイスと共に、条項1から26のいずれか一項に記載のマイクロ流体システムを備えるキット。
【0162】
28.上記試料収集デバイスは、上記システムの試料入力ポートに挿入され、その後、シールを上記入力ポートにもたらすようになっている、条項27に記載のキット。
【0163】
29.核酸検出アッセイを行うのに用いる条項28に記載のキット。
【0164】
30.条項1から26のいずれか一項に記載のマイクロ流体システム又は条項27から29のいずれか一項に記載のキットと共に使用されるリーダー装置であって、
上記リーダー装置に上記マイクロ流体カートリッジを導入する受け入れポートと、
上記カートリッジの上記ガス充填チャンバの各々の外面に接触して、上記ガス充填チャンバの各々に可変の力を加えることができる力付与手段であって、上記ガス充填チャンバの各々の表面に接触して力が付与されると、気体は、上記チャンバの各々から離れて、上記ガス充填チャンバから上記マイクロ流体流路の各々に沿って排出され、上記ガス充填チャンバの各々に付与された力の低下によって、上記マイクロ流体流路の各々の中の気体は、上記ガス充填チャンバに向かってその中に引き戻される、力付与手段と、
上記マイクロ流体カートリッジへ導入された液体試料内に存在する所望の分析物又はその分析物反応生成物の検出を可能にする検出手段と、
を備える、リーダー装置。
【0165】
31.随意的に大きさが異なるシステムを受け入れるとうになった受け入れポートをさらに備え、上記大きさが異なるシステムの各々は所定回数のアッセイを実行するように設計されている、条項30に記載のリーダー装置。
【0166】
32.上記受け入れポートは、各々の大きさが異なるシステムの正確な挿入及び識別を保証するようになっている、条項31に記載のリーダー装置。
【0167】
33.上記磁気/常磁性粒子を上記システムの上記マイクロ流体流路の各々の上記検出ゾーン内に集中して保持するために、上記リーダーへ導入された条項18から26のいずれか一項に記載のシステムに接近することになる永久磁石(又は磁界を加えるように設計された電磁石)をさらに備える、条項30から32のいずれか一項に記載のリーダー装置。
【0168】
34.上記力付与手段は、上記カートリッジのチャンバの外面に接触して力を上記カートリッジのチャンバの外面に付与するように設計されている指状部又は足部の形態である、条項30から33のいずれか一項に記載のリーダー装置。
【0169】
35.上記指状部又は足部は、上記気体充填チャンバの上記外面の一部のみに接触するように設計されている、条項34に記載のリーダー装置。
【0170】
36.上記指状部又は足部の各々は、上記チャンバの各々の外面の10~50%に接触する大きさである、条項35に記載のリーダー装置。
【0171】
37.上記力付与手段は、上記リーダー内のモーターを使用して上昇及び下降して上記カートリッジの上記表面と接触するように設計されている、条項30から36のいずれか一項に記載のリーダー装置。
【0172】
38.上記モーターは、可変速度で上記力付与手段を上昇及び下降させることができ、前記カートリッジ内の気体は、異なる速度で上記ガス充填チャンバの各々に引き込まれるか又は排出されることができる、条項37に記載のリーダー装置。
【0173】
39.上記検出手段は、蛍光光度計又は分光光度計などの光検出装置である、条項30から38のいずれか一項に記載のリーダー装置。
【0174】
40.アッセイを特定の温度で又は複数の温度で行うのを可能にする加熱及び/又は冷却手段をさらに備える、条項30から39のいずれか一項に記載のリーダー装置。
【0175】
41.液体試料のアッセイを行う方法であって、
a)条項1から26のいずれか一項に記載のマイクロ流体システムを条項30から40のいずれか一項に記載のリーダー装置に供給するステップと、
b)気体を上記気体充填チャンバの各々から排出するように、上記マイクロ流体システムの気体充填チャンバ/上記気体充填チャンバを加圧するステップと、
c)液体試料を上記マイクロ流体システムに導入して上記試料が毛細管作用によって上記マイクロ流体流路の各々に引き込まれるのを可能する、及び/又は、気体が上記チャンバの各々に引き込まれ、上記液体試料が上記マイクロ流体流路の各々に引き込まれるように上記気体充填チャンバの各々を部分的に減圧するステップと、
d)空気が上記チャンバに引き込まれ、分析物結合剤及び/又は随意的に1又は2以上の追加の試薬との接触を可能にするために上記液体試料が記マイクロ流体流路にさらに引き込まれるように、上記マイクロ流体カートリッジの上記チャンバに付与された力を低下さるステップと、
e)何らかの分析物/分析物結合剤複合体又は分析物反応生成物/分析物結合剤複合体が上記マイクロ流体流路の検出ゾーン内で形成及び捕捉されることを可能にするステップと、
f)随意的に、上記マイクロ流体カートリッジの上記ガス充填チャンバに付与された力を増加させるステップであって、気体が、上記チャンバから排出され、液体が、上記分析物/分析物結合剤複合体が捕捉されている上記マイクロ流体流路の少なくとも一部から排されるようになっており、さらに上記捕捉分析物/分析物結合剤複合体が、実質的に液体のない環境内に存在するようになっている、ステップと、
g)何らかの分析物又は分析物反応生成物を上記実質的に液体のない環境で検出するステップと、
を含む、方法。
【0176】
42.ステップd)は、単一又は複数のステップとして実行され、上記試料は、力の低下が実行される回数に対応して、上記マイクロ流体流路の各々の中で、それぞれ別の又は複数の連続した場所に引き込まれる、条項41に記載の方法。
【0177】
43.アッセイを液体試料に行う方法であって、
a)1又は複数の加圧可能なガス充填チャンバ備えるマイクロ流体カートリッジを、上記チャンバを加圧/減圧する手段を備えるリーダー装置に導入するステップと、
b)気体の一部を上記チャンバから排出するように力を上記マイクロ流体カートリッジの上記ガス充填チャンバに付与するステップと、
c)毛細管作用によって、又は上記ガス充填チャンバに付与された力を低下することによって、液体試料を上記マイクロ流体カートリッジに導入して上記試料を上記マイクロ流体カートリッジの1又は複数のマイクロ流体流路に引き込むことを可能にし、空気は、上記チャンバに引き込まれ、液体試料が上記マイクロ流体流路へ引き込まれるようになっている、ステップと、
d)上記マイクロ流体カートリッジの上記チャンバに付与された力を低下するステップであって、空気が、上記チャンバに引き込まれ、上記流路内に存在する分析物結合剤及び/又は随意的に1又は2以上の追加の試薬との接触を可能にするために、上記液体試料が上記マイクロ流体流路にさらに引き込まれるようになっている、ステップと、
e)何らかの分析物/分析物結合剤複合体又は分析物反応生成物/分析物結合剤複合体が上記マイクロ流体流路の検出ゾーン内で形成及び捕捉されることを可能にするステップと、
f)随意的に、上記マイクロ流体カートリッジの上記ガス充填チャンバに付与された力を増加させるステップであって、気体が、上記チャンバから排出され、液体が、上記分析物/分析物結合剤複合体が捕捉されている上記マイクロ流体流路の少なくとも一部から排出されるようになっており、さらに上記捕捉分析物/分析物結合剤複合体が、実質的に液体のない環境内に存在するようになっている、ステップと、
g)何らかの捕捉分析物又は分析物反応生成物を上記実質的に液体のない環境で検出するステップと、
を含む、方法。
【0178】
44.形成される上記分析物/分析物結合剤複合体又は分析物反応生成物/分析物結合剤複合体は、磁気粒子又は常磁性粒子を含む、条項41又は43に記載の方法。
【0179】
45.上記複合体を形成するために用いた上記磁性粒子は、上記磁性粒子が上記マイクロ流体流路を通って側方に引き寄せられるように、磁石が密接な接触状態にされるか又は磁気力が加えられる上記システムの外面と反対側の上記マイクロ流体流路の内面上に最初は堆積している、条項44に記載の方法。
【0180】
46.上記ステップd)は、単一又は複数のステップとして実行され、それによって、上記試料は、力の低下が実行される回数に対応して、上記マイクロ流体流路の各々の中で、それぞれ別の又は複数の連続した場所に引き込まれる、条項43から45のいずれか一項に記載の方法。
【0181】
47.液体を上記分析物/分析物結合剤複合体が捕捉されている上記マイクロ流体流路の少なくとも一部から排出させる、上記チャンバから排出される気体の容積は、上記液体を上記検出ゾーン又はその一部から、上記マイクロ流体流路に沿ってではなく、取り除くのに十分な量である、条項41から45のいずれか一項に記載の方法。
【0182】
48.複合アッセイ、すなわち、複数の異なるアッセイを行うのに用いる内蔵式使い捨てマイクロ流体カートリッジであって、
試料を上記マイクロ流体カートリッジ及び複合マイクロ流体流路に導入する試料入力ポートを備え、上記マイクロ流体流路の各々は、上記試料の一部を受け入れるようになっており、上記マイクロ流体カートリッジが上記試料中の複数の異なる分析物レベルを検出及び/又は特定することができるように1又は2以上のアッセイを前記試料の一部に行い、前記試料の導入前に上記カートリッジ内に存在する試薬を使用して複数の異なる形式のアッセイを上記試料に行うことができる、内蔵式使い捨てマイクロ流体カートリッジ。
【0183】
49.条項41から46のいずれか一項に記載の方法において使用される条項44に記載の内蔵式使い捨てマイクロ流体カートリッジ。
【0184】
50.条項1から26に定義された上記特徴部をさらに備える、条項1から26のいずれか一項に記載の内蔵式使い捨てマイクロ流体カートリッジ。
【0185】
51.イムノアッセイ、核酸アッセイ、受容体ベースアッセイ、血球計算アッセイ、比色アッセイ、酵素アッセイ、電気泳動アッセイ、電気化学アッセイ、分光アッセイ、クロマトグラフィアッセイ、顕微鏡アッセイ、トポグラフィアッセイ、熱量アッセイ、比濁アッセイ、凝集アッセイ、粘性アッセイ、凝固アッセイ、凝固時間アッセイ、タンパク質合成アッセイ、組織学的アッセイ、静置アッセイ、又は容量オスモル濃度アッセイのうちの少なくとも2、3、4、5又は6以上を実行することができる、条項48から50のいずれか一項に記載の内蔵式使い捨てマイクロ流体カートリッジ。
【0186】
52.心疾患、妊娠、腎臓疾患、神経疾患、副腎疾患、肝臓疾患、糖尿病、病原体又は乱用薬物を試験するように設計されている別々のアッセイパネルを実行することができる、条項48から51のいずれか一項に記載の内蔵式使い捨てマイクロ流体カートリッジ。
【0187】
53.心疾患を検出するのに用いるものであって、上記別々のアッセイパネルは、脂質値、アポリポ蛋白質、ホモシステイン、C反応性タンパク質(CRP)トロポニン、BNP、及び/又は、心筋酵素の1又は2以上を検出するためのものである、条項52に記載の内蔵式使い捨てマイクロ流体カートリッジ。
【0188】
54.副腎病状を検出するのに用いるものであって、上記別々のアッセイパネルは、アルドステロン、コルチゾール、18-ヒドロキシコルゾール、及び/又はDHEA-Sの1又は2以上を検出するためのものである、条項52に記載の内蔵式使い捨てマイクロ流体カートリッジ。
【0189】
55.肝臓疾患を検出するのに用いるものであって、上記別々のアッセイパネルは、1又は2以上の肝臓酵素、ビリルビン、アルブミン、プロトロンビンのレベル、及び/又はウイルス又は複数のウイルスの存在を検出するためのものである、条項52に記載の内蔵式使い捨てマイクロ流体カートリッジ。
【0190】
56.糖尿病を発症するリスクがある被検者を検出するか又は糖尿病の被検者を確認するのに用いるものであって、上記別々のアッセイパネルは、脂質値、完全血球算定、空腹時血糖値、ヘモグロビンA1c、及び/又はアルブミンの1又は2以上を検出するためのものである、条項52に記載の内蔵式使い捨てマイクロ流体カートリッジ。
【0191】
57.乱用薬物を検出するのに用いるものであって、上記アッセイパネルは、アンフェタミン、バルビツレート、ブプレノルフィン、ベンゾジアゼピン、コカイン、エクスタシ、メタンフェタミン、ヘロイン(アヘン剤/モルヒネ)、メタドン、三環系抗鬱薬、及び/又は大麻の1又は2以上を検出するためのものである、条項52に記載の内蔵式使い捨てマイクロ流体カートリッジ。
【0192】
58.複数のアッセイパネルを実行するのに用いる複合アッセイプラットフォームであって、
上記複合アッセイプラットフォームは、各々が規定のアッセイパネルを試料に対して実行することができる条項50から60のいずれか一項に記載の複数のマイクロ流体システムと、上記複数のマイクロ流体システムの各々を受け入れて検証することができるように構成されたリーダーと、と備え、
上記リーダーは、上記試料内に存在する可能性があるパネルの分析物レベルを検出及び/又は特定するように構成可能である、複合アッセイプラットフォーム。
【0193】
59.条項58に記載の複数のアッセイパネルを実行するのに用いる複合アッセイプラットフォームであって、条項30から40のいずれか一項に記載のリーダー装置と一緒に使用される、複合アッセイプラットフォーム。
【0194】
本発明は、例示的に以下の図面を参照してさらに説明する。
【図面の簡単な説明】
【0195】
図1】本発明によるマイクロ流体カートリッジを示す。
図2図1で特定されるような部分Aを詳細に示す。
図3】本発明によるリーダーを示す。
図4図3に示すリーダーの内部機構を示す。
図5】本発明の力制御手段を備えるリーダーの内部部分を平面図で示す。
図6図5の線A-Aに沿った断面図を示す。
図7】カートリッジ当たり異なる数のアッセイを実行することができる例示的なカートリッジ構成の概略図を示す。
図8】本発明及びシーメンス・ケンタウルス C-ペプチドアッセイによる、C-ペプチドを検出する比較プロットを示す。N=350
図9】本発明対シーメンス・ケンタウルス C-ペプチドアッセイによる、C-ペプチドを検出するバイアス比較プロットを示す。N=294
図10】本発明及びHemoIL D-二量体HS500の臨床分析器試験による、D-二量体を検出する比較プロットを示す。
図11】本発明及びシーメンス・ディメンション CRP臨床分析器試験による、CRPを検出する比較プロットを示す。
図12】本発明及びシーメンス・ディメンション hsCRP臨床分析器試験による、hsCRPを検出する比較プロットを示す。
図13】血液に入った、本発明により実行される熱帯熱マラリア原虫(P.f)HRP2分析物の用量反応曲線を示す。
図14】多段階トロポニンIアッセイにおいて使用される試薬の概略図を示す。
図15】多段階トロポニンIアッセイに関与するステップの概略図を示す。
図16a】シーメンス・ケンタウルス トロポニンウルトラ試験と比較した、本発明による多段階アッセイを使用して健常人において測定したトロポニンIのプロットを示す。
図16b】シーメンス・ケンタウルス トロポニンウルトラ試験と比較した、本発明による多段階アッセイを使用して健常人において測定したトロポニンIのプロットを示す。
図17】空気によるバッファ除去の前後に本発明により行ったC-ペプチドアッセイ反応の比較を示す。
図18】空気による液体試料の除去の前後に血液の試料に本発明により行ったC-ペプチドアッセイ反応の比較を示す。
図19】INR試験及びRoche CoaguCheck INR試験を実行するために、液体充填及び/又は除去を制御するために気体チャンバのない流路を備える本発明のカートリッジを使用する方法比較プロットを示す。
【発明を実施するための形態】
【0196】
図1は、単一の試料から4の別々のアッセイを実行する、本発明によるマイクロ流体カートリッジ(1)を示す。カートリッジ(1)は、複数の別々の流路(5及び7)に分かれるマイクロ流体流路(4)に接続された液体試料入力ポート(3)を備える。各流路(5)は、カートリッジ(1)内で延びて気体充填チャンバ(10)に流体接続される。気体充填チャンバに接続されていない追加的な流路(7)は、多重制御測定において使用される制御流路である。使用時、流体試料は、流路(5及び7)を満たし、このことは、リーダー内で対応する電気接点と電気的に接触する電極(図示せず)によって検出することができる。リーダーは、試料がカートリッジ(1)内に充填されたという適切な信号を検出するとアッセイを開始することができる。また、液体を受け入れるシンク(13)が設けられている。シンクの直上流に液体止め具(15)があり、液体止め具(15)は、液体が毛細管作用だけですぐにシンク(13)に流入するのを防止する。従って、毛細管作用を用いて初期試料が適用されると、液体試料は、液体止め具(15)を通過しない。
【0197】
各流路(5)をより詳細に説明すると、印刷された特徴部(20、22、24、26)があり、これらは、製造プロセス中に各流路(5)内に堆積する何らかの試薬の移動を制限する。図2に詳細に示すように、アッセイ流路(例えば、0.75~1mm)(5)から離れて垂直に延びるより小さな寸法の流路(例えば、0.1~0.2mm)が印刷された特徴部(20)に隣接してセクションAに示されている。各流路(50)内には一方向弁(0.9mmx0.1mm)(52)があり、これは、各流路(5)に存在する気体つまり空気が、液体試料が付与されるとカートリッジ(1)から出ることを可能にする。従って、試料が毛細管作用によってカートリッジに付与されると、試料は、流路(4)を満たし、流路(5)内に存在する空気が置き換えられて一方向弁(52)を通ってカートリッジから出る。試料は、試料がほぼ各側面流路(50)に隣接するまで毛細管作用によって各側面流路(50)を満たす。印刷された特徴部(20)の上方には各アッセイ流路(5)の第1の反応ゾーン(28)が配置され、その中には特定の分析物又はその反応生成物と反応して結合するようになっている1又は2以上の結合剤及び/又は反応剤が既に堆積しており、特定の分析物又はその反応生成物はアッセイされる液体試料内に存在することができる。例えば、上記流路(5)の第1のゾーン(28)には、特に検出される分析物の第1のエピトープを結合するようにデザインされた抗体で官能化された磁性粒子が堆積することができる。各流路の第2のゾーン(30)には、特に検出される分析物の別のエピトープを結合するようにデザインされた別の抗体で官能化された蛍光標識ラテックス粒子が堆積することができる。ゾーン(28、30)の遠位/近位には、標識/分析物/磁性粒子複合体を検出することができる検出ゾーン(32)が位置する。
【0198】
検出ゾーン(32)の遠位/近位には、気体充填チャンバ(10)が位置し、気体充填チャンバ(10)は、本発明の(後述する)リーダーデバイス内に存在する力付与特徴部と結びつくようにデザインされており、力付与特徴部は、チャンバ(10)内の気体をチャンバ(10)から及びアッセイ流路(5)に排出させるように、気体充填チャンバ(10)に力を付与することができる。チャンバ(10)に付与された力の減少によって、空気がアッセイ流路(5)からチャンバ(10)に引き戻される。
【0199】
使用時、図3に示すようにカートリッジ(1)はリーダー(100)に挿入される。リーダーは、閉鎖可能な扉(102)を有し、これはリーダーのカートリッジ受け入れポート(103)にアクセスするために開放することができる。カートリッジがリーダー(100)に挿入され、試料がカートリッジ(1)に加えられると、扉(102)を閉鎖することができる。リーダーは、以下により詳細に説明するように、カートリッジ(1)に接触するように、及び/又は本発明のアッセイの実行を促進するようにデザインされた複数の特徴部を収容する。リーダー(100)の上面は、タッチスクリーンディスプレイ(104)を備え、ユーザーは、リーダー(100)と情報のやりとりを行うこと並びに何らかのアッセイの性能に関する情報を受け取ることができる。
【0200】
図4は、リーダー(100)の内部特徴部を示す。リーダーは、以下に説明するようにリーダー及び様々な機能部に給電する充電式バッテリ(110)を含む。バッテリ(110)を充電する電力は、DCジャック(106)を経由して供給される。リーダー(100)は、カートリッジ(1)を必要に応じて加熱する加熱器(111)、カートリッジ(1)からの蛍光信号を検出するのに必要な光学品を収容する光学品ブロック(112)、磁性粒子をカートリッジの検出ゾーン(32)内に固定するように設計される可動磁石(113)、及びカートリッジ(1)のチャンバ(10)に接触して空気をチャンバ(10)から排出させるように力を付与するように設計されるレバー機構(114)をさらに含む。
【0201】
使用時、カートリッジ(1)は、リーダー(100)内の位置合わせ特徴部(122)に接触するまでリーダー(100)に挿入する。カートリッジ(1)の正しい挿入は、リーダー内に存在する対応する接点を用いて、カートリッジ上に存在する電極によって検出される。これによって、カートリッジ(1)が正しく挿入さておりアッセイプロセスを開始できることがリーダーに指示される。モーター(120)は、ラックピニオン機構を作動させるように指示される。歯車(124)は、レバー(128)のラック機構(126)を垂直方向上方に移動させるように時計回りに回転する。この移動によって、指形レバー(128)の他端(132)が下方に移動してカートリッジ(1)のチャンバ(10)と接触する。モーターが連続して機能して、ラック機構(126)が上方に移動し、これに対応してレバー(128)の他端(132)が下方に移動し、大きな力がカートリッジ(1)のチャンバ(10)に加えられ、気体がチャンバ(10)から排出される。所望量の気体がチャンバ(10)から排出されると、レバー(128)の端部(132)は、気体がチャンバ(10)に引き戻されるのを防止するために、気体充填チャンバ(10)との接触状態を維持する。この時点で、ユーザーは、ディスプレイ(104)上のメッセージによって、現在、試料をカートリッジ(1)に加えることができる旨の通知を受けることになる。
【0202】
試料は、入力ポート(3)でカートリッジ(1)と接触してその中に導入される。試料は、前述したように、毛細管作用によって流路(4、5及び7)を満たし、空気は、弁(52)を通って排出される。毛細管作用での充填後、液体試料の一部は、流路(5及び7)内で電気的に検出され、リーダーに継続するよう指示する。次に、モーターは、歯車機構(124)を反時計回りに回転させ、ラック機構(126)は下方に移動し、レバー(128)の他端(132)は上方に移動し、カートリッジ(1)のチャンバ(10)に付与された力が低下する。チャンバ(10)に付与される力の低下によって、空気はチャンバ(10)に引き戻され、これによって、試料が流路(5)の第1のゾーン(28)に引き込まれる。モーター(120)及び関連したレバーの移動は、チャンバ(10)に付与された力の低下を細かく制御することができ、これによって、液体試料を第1のゾーン(28)のどこまで引き込むかが制御される。これは、電極によって検知されたフィードバックによって制御することもできる。液体試料は、流路(5)の第1のゾーン(28)に入り、第1のゾーン(28)内の機能的に誘導体化された磁性粒子が、試料によって再懸濁される。モーター(120)は、液体試料中に存在することができる何らかの所望の分析物が、分析物/磁性粒子複合体を形成するために磁性粒子の表面上で機能的分析物結合部分に結合することを可能にするために、一定期間にわたって停止する。この一定期間後、モーターは、再度作動して、チャンバ(10)に加えられた力のさらなる低下がもたらされ、より多くの空気がチャンバ(10)に引き戻され、これによって、試料及び分析物/磁性粒子複合体が流路(5)の第2のゾーン(30)に引き込まれる。各流路(5)の第2のゾーン(30)は、機能的に誘導体化された蛍光標識ラテックス粒子を収容し、これは、ラテックス粒子/分析物/磁性粒子複合体サンドイッチを形成するために分析物/磁性粒子複合体に結合することができる。さらなる期間の後で、チャンバ(10)に付与された力はさら低下し、液体及びその中に存在する関連した複合体は、検出ゾーン(32)に引き込まれる。
【0203】
液体試料及び関連した複合体が検出ゾーン(32)へ引き込まれると、磁石(113)は、カートリッジの検出ゾーン(32)に隣接するようにモーター(150)及び関連した歯車(152)及びラック(154)によって駆動され、磁気複合体は、磁石に引き付けられ、磁力によって検出ゾーン(32)内の所定位置に保持される。その後、モーター(120)は、レバー機構(114)に気体充填チャンバ(10)に加えられる力を増大させるように再び作動し、空気はチャンバ(10)から再度排出され、これによって、検出ゾーン(32)内に存在する液体試料及び非磁気結合材料は、検出ゾーン(32)から及び流路(5)に沿って押しやられ、液体の一部は、シンク(13)に出る。液体の全てをシンク(13)に排出する必要はなく、実際には、結果的に得られた磁気結合複合体が本質的に空気の環境内に存在するように液体を検出ゾーン(32)から除去することだけが必要である。これは、側方流動生成物で生じるような洗浄を行うために余分の試料容積を使用としない及びストリップ上のバッファーポーチ又は測定器内のバッファ供給システムを必要としないという観点から特に好都合とすることができる。
【0204】
モーター(120)は可変速度で動作することができるので、チャンバ(10)への空気の引き込み及びチャンバ(10)からの空気の排出は、流路(5)及び関連したゾーン(28、30及び32)内に存在する液体の対応する可変の流量に一致して、様々な速度で行うことが容易である。
【0205】
液体を検出ゾーン(32)から除去した後、捕捉した複合体は本質的に液体のない環境内に存在するので、光学ブロック(112)の検出器を使用して検出することができる。検出器は、例えば、捕捉したラテックス粒子/分析物/磁性粒子複合体上に存在する蛍光標識を検出することができる分光光度計の形態とすることができる。
【0206】
図4に関連して図示して説明したものの代替実施形態では、圧電式ベンダーを用いてカートリッジの気体充填チャンバに付与される力を制御することができる。図5は、力制御手段(200)を示す。力制御手段(200)は、第1の端部(201)が固定ブロック(204)によって固定された一連の圧電式ベンダー(202)を備える。各圧電式ベンダーは、第1の端部で電気接続部(206)に電気結合され、電気接続部(206)は、各ベンダー(202)に供給される電気信号を制御する。理解できるように、各ベンダー(202)は、各々が独立して制御可能なようにそれ自体の電気接続部(206)セットに接続されている。図6に示すように、各ベンダー(202)の他端(208)は、足部(210)の上面(209)に載り、足部(210)は、使用時に本発明のマイクロ流体カートリッジ(220)の気体チャンバの外面に接触するように設計されている。
【0207】
図6は、図5の線A-Aに沿った断面図を示し、力制御手段(200)の様々な部分及びこれらがどのように機能するかをより良く理解することができる。図6では、力制御手段(200)は、マイクロ流体カートリッジの気体充填チャンバが力制御手段(200)の足部(210)の直下に位置決めされるようにリーダー内で正しく挿入された場合のマイクロ流体カートリッジ(220)と共に示されている。足部(210)の底面(212)は、マイクロ流体カートリッジ(220)の気体チャンバの一部に接触するように形作られており、圧電式ベンダー(202)によって足部(210)に施される適切な制御によって、足部(210)は、可変力をマイクロ流体カートリッジ(220)の気体チャンバに付与することができる。
【0208】
図6に示すように、圧電式ベンダー(202)は、形成されていない剛状態である。この実施形態では、力制御手段(200)は、足部(210)の底面(212)が下方に押して気体充填チャンバを圧縮し、内部の気体がチャンバから排出されるように、圧電式ベンダー(202)が最大の力を足部(210)上に付与できるように構築されている。
【0209】
図示されていないが、圧電式ベンダー(202)に電気量を付与すると、圧電式ベンダー(202)は曲がり、圧電式ベンダー(202)の端部(208)は、上向きに曲がることになる。圧電式ベンダー(202)のこの上向きの曲がりによって、足部(210)に加えられた力が低下し、これによって、足部(210)がカートリッジ(220)の気体充填チャンバに付与する力が低下する。気体充填チャンバに付与された力の低下によって、チャンバの減圧がもたらされ、これに対応して、気体が気体充填チャンバに戻る。適切な電気信号伝達によって、圧電式ベンダー(202)を曲げること及び弛緩させることができるので、気体充填チャンバは、相応に減圧又は加圧され、気体はチャンバから排出されるか又は引き込まれる。
【0210】
当技術分野では多くの圧電式ベンダーが知られており、本発明で適切に使用することができる。当業者は、特定の目的に適したベンダーを選ぶことになる。本発明者らは、最大数ミリメートルの変位及びミリ秒範囲内のステップ反応時間を伴う様々な圧電式ベンダーを採用した。電圧をプログラム可能な増幅器を使用して各圧電式ベンダーを制御することができる。適切な増幅器としては、Axnalog Dxevices(米国マサチューセッツ州ノーウッド02062所在)から販売されている、50V~200Vのプログラム可能なフルスケール出力電圧の32チャンネル、14ビットDAC(AD5535)、及び高圧クワッドチャンネル12ビット電圧出力DAC(AD5504)が挙げられる。1N~2Nの力を得ることができる。
【0211】
上記は、本発明の特定の実施形態の説明を提示するが、本発明は、適合させることが容易なプラットフォームの形態で設計されている。例えば、通気孔位置は流路(5)内の異なる位置への毛細管作用による充填を可能にするために変更すること、又は通気孔は全て省略することができ、試料充填は、気体がチャンバ(10)から排出された後に能動的な充填によって行われ、試料は、チャンバ(10)に加えられた圧力の放出後に空気が気体チャンバに戻ることによってカートリッジ(1)及び流路(5、7)に引き込まれる。
【0212】
さらに、リーダーは、製品要件によって定義されたストリップサイズの製品系列を使用する複数の試験形式を利用するように設計することができる。ストリップは、例えば、特定の製品構成及びパネル試験のために2流路、4流路、及び10流路形式で製造されるように設計することができる(異なるストリップサイズを示す図5を参照されたい)。異なるストリップサイズが利用可能なので、本システムは、ターゲットとする市場において確立された製品と比較して、高い性能及び低コスト構造で診療市場のユーザー要件を満たすための、複合技術にわたる多重化試験を行うことができる。
【0213】
異なるサイズのストリップを示す図7を参照すると、2流路カートリッジは、制御を伴う単一のアッセイ用に設計され、4流路カートリッジは、制御を伴う2~3分析物のパネル用に設計され、10流路カートリッジでは、複合技術による、高い多重化能力を必要とする生成物(例えば、乱用薬物)の複雑なアッセイを実行することができる。説明したプラットフォームは、高度に柔軟な試料及びアッセイアーキテクチャー及びリーダー制御及び測定能力を有し、新しい試験パネル又は試験タイプが特定されるか又は診療現場に移動する際に実施される新しい機会のための上位互換性が可能である。
【0214】
主要測定技術は蛍光性であるが、プラットフォームは、電気化学測定法も組み込んでおり、他の測定法を簡単に組み込むことができる。このことは以下で詳細に検討する。
【0215】
複数の試験タイプ及び形式を単一のプラットフォーム上で遂行するために、柔軟な中核技術能力及び制御のセットが開発されており、これは、必要に応じて、異なるアッセイ形式ステップを遂行するシーケンスで使用することができる。
システムアーキテクチャ設計原理は、
磁粉捕捉相
液体移動制御
検出領域からの液体除去
空気中の標識検出
複数流路多重化
流路間多重化
動的範囲
搭載型制御装置
電気化学測定
加熱及び温度制御
試料前処理
である。
【0216】
このプラットフォームアーキテクチャによって、多くの異なる検査タイプ及び技術をシステム上でフォーマット化することができる。各技術の中核原理を以下で論じる。
【0217】
磁粉捕捉及び液体制御
粒子捕捉を用いることで、捕捉動特性が向上することがわかっている。イムノアッセイについては、本発明のプラットフォームでは、常磁性粒子を捕捉面として使用する。異なる常磁性粒子サイズを使用して、各検査タイプの性能を最適化することができる。100~1000nmの範囲の常磁性粒子をアッセイ開発中に利用した。粒子捕捉相は、蛍光粒子標識相と結合する。同様に、蛍光粒子相は、アッセイ感度及び範囲要件に応じてサイズは様々とすることができる。蛍光粒子の典型的な寸法は、40nm~4000nmの範囲とすることができる。
【0218】
C反応性タンパク質(CRP)などの一部のアッセイは、比較的高濃度の分析物を測定する必要があり、磁性粒子と組み合わせて直接蛍光物質標識抗体共役を利用するが、高感度アッセイは、一般的に蛍光粒子標識を磁性粒子と組み合わせて利用する。重要なことは、捕捉及び標識相の両者が、捕捉イベントを生じるために試料内で移動性であることである。このことは、ストリップ内の不必要な流量が最小化されることでさらに促進される。流路充填中、試料は、乾燥試験試薬上を流れる。試薬溶解、従って流頭効果は、有効な流路充填を可能にする製剤を使用することによって最小化されるが、制御された遅い溶解につながる。初期試料充填イベント後、流れは、試料の一定期間にわたる流れを防止するように停止される。これによって、非常に一貫した溶解を行うことができ、その後の結合効率が生じるが、その理由は、検査対象の試料容積又は結合動特性に影響を与えるマトリクス依存の流量誤差がないからである。
【0219】
可変流動システム(例えば、側方流、トリアージ)とは対照的に、試薬溶解及び分析物捕捉を、随意的に混ぜ合わせた静的な一定の容積で実行することによって、アッセイの精度及び正確度が向上する。
【0220】
トロポニンなどのより複雑なアッセイに関して(他の場所で説明するように)、アッセイは、複数の試薬ゾーンを使用する多段階手順としてより効率的に実行する。この場合、気体を排出して検出ゾーンからの液体の除去を実行するために気体チャンバ(10)を加圧することができる計測器の機能性を使用して、カートリッジ(1)及び関連した流路内での微細な液体移動制御を行うこともできる。試料がカートリッジ(1)に加えられる前に、気体充填チャンバ(10)は、気体をチャンバ(10)及びアッセイ流路から排出する計測器によって加圧される。チャンバ(10)は、試料の付与中に計測器によって加圧されたままであり、試料充填は、毛細管作用によって又は完全に気体駆動の流体制御の下で行われる。測定器内の高分解能モーター又は圧電式ベンダーによって、特定の試験に特有の圧力変化速度及び圧力変化量でもって、気体チャンバ(10)上の圧力の非常に制御された漸次的放出又は増大が可能である。この特徴は、何らかの圧電式ベンダーの微細な正及び負の曲げの使用を混ぜ合わせることを含むいくつかの重要な利点がもたらす。
【0221】
試料充填時間は、検査対象の試料の試薬溶解、流頭効果、及び容積の変動性を導入することによって生成物の性能に有意な影響を与える場合がある。流体制御は、試料充填速度を直接制御することによって、充填時間の変動を低減する。流体制御によって、試料は、各流路内の異なるゾーンに制御された時間で移動することができ、試料前処理及び多段階のアッセイを実行することができる(本明細書で説明する)。また、流体制御及び分離は、NATアッセイに必要とされるように、閉鎖式システムには必要である(下記を参照されたい)。
【0222】
検出領域からの液体除去
液体移動及び制御は、モーター及び流体チャンバー(10)に接触する力付与体つまり圧電式ベンダー機構を使用して試験カートリッジ上の気体チャンバ(10)を加圧する又は圧力解除することによって達成する。各チャンバ(10)からの結果的に得られた気体移動によって、未結合標識の試験流路の検出ゾーン(32)からの及び随意的にシンク領域(13)への除去を含む試料及び試薬の移動の微細な制御が可能である。
【0223】
各カートリッジ内に組み込まれた流体制御機能によって、複数の区別可能な利点がもたらされる。
【0224】
第1に、説明したシステムは、液体移動の気体制御を使用して、結合及び未結合アッセイ成分の非常に効率的な分離を行う。このことは、システムは、ストリップ上の液体試薬ポーチ又は測定器内の交換可能な液体洗浄試薬パックの複雑性及びコストを完全に回避するので重要である。
【0225】
第2に、本発明は、カートリッジコストが非常に低い積層体製造技術の使用、及び高スループットで高度な制御によるウェブ製造システムを使用した製造容易性をさらに可能にする。
【0226】
第3に、試料及び気体を使用して未結合標識を検出ゾーン(32)から除去するとは、蛍光標識の測定を本質的に液体のない気体環境で行い得ることを意味する。
【0227】
空気中の標識検出
気体中での標識測定は、従来技術による製品の標準アッセイプロトコルと比較して、蛍光測定を行うための複数の有意な技術的な利点をもたらす。
【0228】
本質的に気体環境を使用すると、液体試料の急冷効果が有意に低下するので、アッセイ変動及びマトリックス効果の主要原因が除去される。例えば、血球及び血漿タンパク質が存在すると蛍光シグナルが消え、感度が低下し、蛍光測定の変動性が増加する。蛍光物質を気体又は空気環境において測定すると、試料急冷に起因して必ずしも選択されなかった蛍光物質の使用が可能になる。これによって、光学設計の単純化、各アッセイのための蛍光物質の最適化、及び単一流路内での多重化が可能になる。以下で図15及び図16を参照して例示的に説明するように、空気中での検出によって、バッファ又は全血中での検出と比較すると、感度の有意な向上がもたらされる。
【0229】
要約すると、試料及び未結合標識手法をなくすために気体を使用すると、試料マトリクス急冷効果が低下することによってアッセイ変動が低下し、アッセイ最適化のための広範な蛍光物質へのアクセスが可能になる。このことはアッセイ設計の柔軟性、アッセイの速度、及び普遍的性能につながる。
【0230】
複数流路多重化
本発明のプラットフォームは、複数流路及び流路間多重化の機能を有する。パネル試験を、走査光学ヘッドと組み合わせた単一のストリップ内で複数流路を用いて実施して、標識、例えば各流路内の蛍光強度を測定することができる。流路の数は、生成物要件に応じて変えることができる。
【0231】
これによって、各流路が異なるアッセイを含む、例えば、心臓パネル、代謝パネルなどのパネル試験の開発が可能である。個別のアッセイが個々の流路内で空間的に区別できるので、各アッセイは、複数流路ストリップ内でそれ自体の試薬で設定することができる。これは複数の重要な利点がもたらす。
【0232】
第1に、各アッセイは、試薬の溶解、血液凝固の阻止、マトリックス効果(HAMAなど)の無効化、最適感度、直線性、レンジ及びアッセイの安定性のための、試薬、バッファ、pHなどを含む、最適製剤を使用することができる。パネル製品を開発するために、複数のアッセイ試薬セットに関する適合性のある最適化を見出すこと又はアッセイ性能を妥協する必要はない。各アッセイは、個々の流路内のそれ自体の最適製剤内に存続し、それぞれの高いアッセイ性能を維持することができる。
【0233】
対照的に、単一流路内の多重化試験は、本質的に、試薬製剤を全てのアッセイに適合可能とする必要があるので、個々の試験の性能が妥協される。個別のアッセイ要件は、競合することが多く、例えば、基本pHのような要件がアッセイ性能に有意に影響を与える。
【0234】
複数流路による多重化は、パネル試験設計の柔軟性、パネルアッセイ開発の単純化及び速度、並びに複数パネル全体にわたる単一のアッセイ性能の維持につながる。
【0235】
第2に、複数流路手法は、現在のプラットフォームが、単一ストリップ上に異なるアッセイ技術及び異なる形質導入法を組み合わせた新規なパネル製品を実現することを可能にする。
【0236】
分子ファミリの測定は、そのファミリの単一分子の測定よりも好都合な場合があるという証拠が増えている。例えば、鬱血性心不全層化で使用されるナトリウム利尿ペプチドは、一般的に、BNP試験及びNT-proBNP試験に分けられる。複数流路多重化では、1つのストリップ上でproBNP、BNP、NT-proBNP、及び他のナトリウム利尿ペプチド形態の測定が可能であり、ペプチドファミリ内の抗体エピトープ乗り換え(epitope crossover)を回避することができる。対照的に、流路間多重化は、分子ファミリ測定の非特異性の増大につながる。本明細書で説明する複数流路手法は、トロポニン試験市場に適用可能であり、これによって、異なるトロポニンイソ型を別々の流路内で測定して心筋梗塞の診断を改善することができる。
【0237】
流路間多重化
レシオメトリック測定、例えば、HbA1c及び血液イオン測定が必要な場合、流路間多重化は、最も正確なアッセイ性能を達成するために必要である。本発明のプラットフォームでは、2以上の蛍光物質を単一の流路で測定することによってこれを達成する。
【0238】
複数流路多重化及び流路間多重化を組み合わせると、正確さ及び信頼性を改善できる搭載型制御を伴う柔軟性のある効果的な製品組み合わせが可能になる。
【0239】
動的範囲
測定される分析物の大きな動的範囲は、アッセイ性能の限界となる場合が多い。例えば、トロポニン試験は、非常に高感度である必要があるが、同時に、心筋梗塞患者に観察される変化を監視するために、高い濃度を測定できる必要がある。動的範囲は、所要の測定可能範囲にわたる非線形性につながる場合が多く、このことは、精度及び正確さに影響を与える。
【0240】
複数流路設計は、大きな動的範囲を伴う困難な試験をストリップ上の複数の流路に分けて、線形様式で所要の測定可能範囲の高感度及び高濃度をカバーすることを可能にする。
【0241】
トロポニン(I形態及び/又はT形態)については、1つの流路は、0~100pg/mlの測定に最適化された試薬を含むことができ、一方、別の流路は、50~1000pg/mlを測定するように最適化された試薬を含むことができ、別の流路は、500~50000pg/mlに最適化される。感度及び範囲の各々は、それ自体の較正パラメータを有し、試料濃度は、2つの結果の信頼性区間から指定される。
【0242】
搭載型制御
本発明のプラットフォームは、搭載型制御特徴部を組み込んで取得した試験結果の妥当性を確認するようになっている。各試験形式は、固有の搭載型アッセイ制御、並びに複数の汎用特徴部を必要とする。全ての試験は、適切な試料付与を保証するために充填検出を備えることができ、使用済みカートリッジは再試験できない。必要であれば、カートリッジは、ヘマトクリット測定を組み込んでおり、ヘマトクリット変動の影響を受けた試験を調整するようになっている。特定の流路制御を実行して、残りの血液マトリクス変数を較正するために及び/又は試験結果を独立して検証するために使用される、低制御及び高制御を組み込むことができる。枯渇制御を使用して、ヒト抗マウス抗体(HAMA)又は他の試料依存変数を確認することができる。
【0243】
マイクロプロセッサ及び関連したソフトウェアは、タイミング、温度、流体制御などを各特定のアッセイについて制御することができ、これらが単一のカートリッジ内で異なる要件を有する場合があることが理由である。
【0244】
電気化学測定
説明する主たる検出法は蛍光検出法であるが、従来の電気化学試験形式(例えば、血糖試験)を組み込むために本発明のプラットフォームで他の光学測定を行うこと及び/又は電気化学測定を行うこともできる。加えて、電気化学測定及び蛍光測定の両方は、同じストリップ、例えば、電気化学血糖測定と結びついたCペプチド蛍光イムノアッセイの糖尿病パネル上で行うことができる。また、イオン及び血液ガスに対する従来のイオン選択性電極(ISE)測定手法は、本発明のプラットフォーム上に移植することができる。蛍光形質導入技術などの光学形質導入技術と電気化学形質導入技術の組み合わせによって、多様な異なるパネル試験の提供が可能である。
【0245】
加熱及び温度制御
温度は、大部分の試験において重要な変数である。一部のアッセイについては、温度の影響は、温度補正アルゴリズムを使用して補正することができる。しかしながら、このことは個別のカートリッジのバッチを測定するには問題がある場合が多く、固定的補償は、本質的に誤差の原因になる可能性がある。全てのプロセス及びマトリクス変数にわたる温度プロフィールの特徴付けは、製品の開発期間に大きな影響を与える可能性がある。PT/INR試験機及び分子試験機などの一部の製品では、適切な温度制御は、試験機の機能性及び性能に極めて重要である。本発明のプラットフォームは、各試験形式のための最適温度要件を提供する総合加熱機能を組み込むことができる。典型的な動作温度が、イムノアッセイ(34℃)、PT/INR(37℃)、及び核酸検出(>37℃)などに使用される。加熱性能は、試験プロトコルにおいて最大限の柔軟性を得るための様々なストリップ及び前処理制御温度を実現するように最適化することができる。
【0246】
試料前処理
ストリップ上の試料移動の制御は、試料がアッセイ固有の試薬に提示される前に試料の前処理を可能にする。この手法は、イムノアッセイに適用して、例えば、HAMA種などの干渉物を除去すること、又は脂質パネルに適用して特定の脂質測定(例えば、HDL)に不必要な部分を除去することができる。ストリップ上の流体ステップは、製品性能を最適化するために臨床分析器で用いられる機能を模倣し、試料マトリクス及び干渉を製品開発中に迅速に解決することができる。
【0247】
例示的な試験説明及び試験データ
ワンステップイムノアッセイ
テストシーケンスの概要
1.リーダーへのカートリッジ挿入
2.リーダーによるカートリッジ気体チャンバ加圧
3.カートリッジへの試料付与、毛細管作用又はリーダー制御充填による充填
4.カートリッジの充填検出電極の湿潤による試験開始タイミングの決定
5.試料による乾燥試薬の再水和、乾燥試薬は以下を含む。
a.抗分析物抗体(エピトープ1)によって官能化された常磁性粒子相
b.抗分析物抗体(エピトープ2)によって官能化された蛍光標識/粒子相
6.試薬は、試料に含有された分析物と混合及び結合して、イムノアッセイサンドイッチ複合体(蛍光標識/粒子-分析物-常磁性粒子)を形成する。
7.結合反応が、規定の時間量(通常は2分)にわたって起こる。
8.光学検出ゾーンに局在するストリップに磁界を加え、この場所に常磁性粒子を集めて、各流路内に粒子-分析物-標識複合体ゾーンを形成する。
9.次に、リーダーがカートリッジ気体チャンバに力を加えることで流体試料及び未結合標識除去ステップを実行する。この加圧力は、試験流路を通して気体チャンバから気体を通して排出し、結果的に、流体試料及び未結合蛍光標識/粒子が検出ゾーンから排出され、随意的に流路から試料廃棄シンクに入る。磁性流体は、このステップ全てで付与され、磁場によって常磁性体粒子-分析物-標識複合体を検出ゾーンに保持するが、試料はこの領域から排出される。
10.測定器光学ヘッドは、ストリップを横切って走査し、各流路の蛍光強度を測定しる。蛍光強度は、分析物濃度に比例する。各ストリップのバッチ及び分析物流路は、蛍光強度が分析物濃度に変換されるように、別々に較正される。
ワンステップイムノアッセイの例示的な性能データセットを図8図13に示す。
【0248】
Cペプチド
Cペプチドは、プロインスリン分子においてインスリンのA鎖をB鎖に結合する短い31アミノ酸ポリペプチドである。プロインスリンは、等モル濃度でインスリン及びCペプチドに切断される。診断との関連において、Cペプチドは、インスリンの代理生体指標として使用され、糖尿病患者のβ-細胞機能(インスリン産生)を監視するために使用される。本発明者らは、市販のADVIAなシーメンス・ケンタウルス卓上システムに対する本発明のアッセイの比較を実行した(図8を参照されたい)。
【0249】
表1は、示すようにCペプチド範囲について基準システムの所与のバイアス内にある結果の割合を以下に示す。これは、本発明のアッセイは基準システムの20%内で典型的にはほぼ95%の結果を達成することを示す。
【表1】
【0250】
本システム対シーメンス・ケンタウルス基準システムのバイアス分析は、0.5ng/ml(294ポイント)超の試料について実行し、これを、実証されている市販の臨床分析器との比較でプロットする(図9)。基準システム値に対する各点のパーセントバイアスが、基準値に対してプロットされている。プロットは、本発明のアッセイシステムは、実証されている実験室システムと遜色のない臨床精度を有することを示す。
【0251】
Dダイマー
Dダイマーは、フィブリン分解産物(FDP)であり、血餅がフィブリン溶解現象によって分解された後に、小さなタンパク質断片が血液内に存在する。Dダイマー分子は、フィブリンタンパク質の2架橋D断片を含む。
【0252】
Dダイマー濃度は、血栓症の診断を助けるために使用される。Dダイマー濃度は、血栓性疾患の疑いがある患者に施される重要な試験である。陰性結果によって血栓症はほとんど除外され、一方で、陽性結果は血栓症を示す可能性があるが、他の潜在的な原因を除外するものではない。従って、主な用途は、確率が低い血栓塞栓症を除外することである。
【0253】
本発明者らは、本明細書で説明する方法を使用した用量反応分析を実行して、結果をHemoIL DダイマーHS500(市販の臨床分析器)の結果と比較した(図10を参照されたい)。
【0254】
C反応性タンパク質(CRP)
C反応性タンパク質(CRP)は、血漿中に見られる環状(リング状の)五量体タンパク質であり、その量は炎症に呼応して増加する。五量体タンパク質は、マクロファージ及びT細胞によるインターロイキン6分泌後に増加する肝臓起源の急性期タンパク質である。
【0255】
CRPは、複数の疾病の種類に関して診断的有用性を有し、以下のように要約することができる
1.1型糖尿病患者の炎症状態
2.感染対策及び一般的な感染状態のための抗生物質管理
3.心血管疾患
4.特定の癌
【0256】
方法比較プロットを図11に示す。所要の要報告範囲は、5~200μg/mlである。
【0257】
高感度CRP(hs-CRP)
高感度CRP(hs-CRP)は、心血管疾患を発症するリスクを評価する際に使用される。一般的なガイドラインは以下の通りである。
1.低:1.0mg/L未満のhs-CRPレベル
2.中:1.0~3.0mg/L
3.高:3.0mg/L超
【0258】
方法比較プロットを図12に示す。データは、本発明のプラットフォームがhs-CRPの所要の濃度を良好に測定できることを示す。
【0259】
マラリア熱帯熱マラリア原虫HRP2
マラリア原虫熱帯熱マラリア原虫は、マラリア原虫熱帯熱マラリア原虫(Pf)の存在を検出するために生体指標として使用されている高ヒスチジンタンパク質II(HRP2)を分泌する。本発明のプラットフォームは、血液試料内のHRP2の測定結果を示すために使用した。HRP2タンパク質が血液中に入り、これを本発明のプラットフォーム及びStandard Diagnostics(SD)マラリアpf迅速試験機上で測定した。
【0260】
本発明のプラットフォーム上で測定した最低HRP2濃度は、0.25ng/mlであった。比較すると、SD試験機を用いると、5ng/mlに関して非常にかすかなバンドが観察された。5ng/mlよりも低い濃度を測定することができかった。0.25ng/mlの本発明のプラットフォーム試験結果は7分かかったが、5ng/mlの濃度を測定するためにSD試験機は30分の推奨試験時間を必要とする。競合他社の試験機は、非常に低い濃度を解像するために。未結合金溶液標識及び何らかの溶解血液を洗い落とすために30分のアッセイ時間を必要とする。この洗浄ステップを実行するために、バッファをストリップに加える別のユーザーアクションも存在する。
【0261】
データの分析結果を図13に要約する。本アッセイは、非常に短い試験時間でSD試験機よりも非常に低いHRP2濃度を測定することができた。このアッセイは、集団マラリア根絶プログラムにおいて残留感染を監視するための高速試験の要件を満たす感度を有する。
【0262】
複数ステップでのイムノアッセイ(例えば、トロポニン)
本発明のプラットフォームは、複数ステップでアッセイを実行するように構成可能であり、結合動特性、試験時間、及び感度を最適化するためにステップ的な結合反応が生じる。
【0263】
高感度トロポニンアッセイでは、抗体常磁性粒子結合ステップ及び標識/粒子結合ステップを分離して、トロポニンの非常に低い濃度に関して分析物-抗体常磁性粒子結合ステップの結合速度及び捕捉効率を有意に向上させる。それぞれ高親和性反フルオレッセインイソチオシアネート及びビオチン-ストレプトアビジン官能化粒子を使用する、後続の標識粒子及び常磁性粒子のステップ単位での結合は、結合トロポニン複合体の捕捉及び形質導入の高効率化を可能にする。
【0264】
試験シーケンスの概要
1.リーダーへのカートリッジ挿入
2.リーダーによる気体チャンバ加圧
3.カートリッジへの試料付与、第1の試薬(標識抗体)が位置する第1の通気孔停止特徴部までの毛細管作用による充填
4.試薬再可溶化及び抗体-分析物静置及び結合時間
5.小さなチャンバ減圧によって、液体試料はさらに流路に沿って引き込まれ、試料試薬混合物は2次試薬上に位置する。
6.試薬再可溶化及び抗体-分析物-粒子標識静置及び結合時間。
7.第2の小さなチャンバ減圧によって、試料はさらに流路に沿って引き込まれ、試料試薬混合物は第3の試薬上に位置する。
8.試薬再可溶化及び抗体-分析物-粒子標識-常磁性粒子静置及び結合時間。
9.光学検出ゾーンに局在するカートリッジに磁界を加え、この場所に常磁性粒子を集めて、各流路内に抗体-分析物-粒子標識-常磁性粒子複合体バンドを形成する。
10.チャンバの再加圧によって試料液体及び未結合標識を検出ゾーンから除去し、試料及び未結合標識を光学検出ゾーンから排出する。
11.リーダーの光学ヘッドがストリップを横切って走査し、各流路の蛍光強度を測定する。蛍光強度は、トロポニン分析物濃度に比例する。
【0265】
トロポニンI(TnI)アッセイ(試薬が図14で特定される)
ステップ1:
これは、受動的毛細管作用での充填である。TnIアッセイは、各々がビオチングループでタグ付けされている2つの捕捉抗体を使用する。標識抗体は、フルオレッセインイソチオシアネート(FITC)グループでタグ付けされている。ビオチングループ及びFITC分子は、第2及び第3のステップの免疫原性タグの役目をする。
ステップ2:
ステップ1からの試料は、流体リーダー制御(チャンバ減圧)によって2次試薬堆積領域に移動する。この堆積領域は、抗FITC抗体被覆ラテックス粒子を含有する。抗FITCラテックス粒子は、FTICタグ付き抗体(TnI複合体に結合されている)を結合することになる。この反応は急速である。
ステップ3:
試料は、流体リーダー制御によって第3の堆積ゾーンに移動する。第3の堆積領域は、ストレプトアビジン被覆磁性粒子を含有する。ストレプトアビジン常磁性粒子は、TnI複合体に結合されているビオチン標識抗体を急速に結合することになる。常磁性粒子蓄積に続いて試料/未結合標識除去が行われる。その後、蛍光光学走査が実行される。蛍光強度は、TnI濃度に比例する。
【0266】
図15は上記の方法の概略図を示す。
ステップ1は、毛細管作用での充填であり、ステップ2及びステップ3は、リーダー流体制御下で行われる。
この手法は、一般的な用途を有し、アッセイ試薬が大幅に簡素化され、さらには、非常に重要なことは、優れたアッセイ性能が得られ(図16(a)及び(b)に示す例示的な結果を参照されたい)、本方法の感度が広範な濃度にわたので、非常に魅力的である。例えば、反FITCラテックスは他のアッセイ(例えば、BNP)の一般的な標識であり、同様に、ストレプトアビジン常磁性粒子は、アッセイ間で一般的である。TnIなどの困難なアッセイに関して、試薬のバッチ生産が非常に簡単になるはずである。
【0267】
空気中での蛍光検出などの光検出を実行する重要性を示すために、本発明者らは、空気に対して、バッファ又は全血地中での反応を示すために追加のCペプチドアッセイを実行した。図17は、空気による除去前(白丸)及び後(黒の三角形)の本システムを使用したバッファ中のCペプチドアッセイ応答を示す。空気による液体の除去がないと、未結合標識が依然として検出領域内に存在することに起因して、高いバックグラウンドがあることがわかる。これによって、低い分析物濃度では精度不良及び感度不良となる。空気によって液体を除去した後では、この未結合標識は、効率的に除去され、非常に低いバックグラウンド残り、高感度測定を行うことができる。図18は、空気による液体の除去の前(黒丸)及び後(白の三角形)に本システムを使用した全血中でのCペプチドアッセイ反応を示す。空気による液体の除去がないと、未結合標識が依然として検出領域内に存在することに起因して、高いバックグラウンドがあり、血液試料の干渉に起因して目視で認められる勾配がなく、蛍光測定が妨げられることがわかる。空気によって液体を除去した後では、この未結合標識及び全血試料は、効率的に除去され、結合試薬が本質的に液体のない環境内に残り、干渉する血球又は未結合標識はない。これによって、バックグラウンドは非常に低く、高感度測定を行うことができる。
【0268】
本発明のカートリッジは、例えば、血液試料のプロトロンビン時間(PT)及び国際規格化率(INR)を決定する際に、アッセイを実行するために空気袋(IP)を必要としないアッセイを実行することも可能である。PT及びINRは、凝固(PT/INR)の外因経路を評価するアッセイである。これらは、ワルファリン量、肝臓障害、及びビタミンKの状態を測定する際に、血液の凝固傾向を決定するために使用される。
【0269】
図19は、PT/INR測定の方法比較プロットを示すが、これは、気体チャンバによってもたらされる何らかの流体制御を有していない流路を使用して生成したものである。これに関して、試料は、毛細管作用だけで充填されることになる。誤解を避けるために、PT/INR測定は、関連の気体チャンバを有する流路を使用して行うこともでき、これによって、試料の流体制御が可能であり、充填速度の正規化が可能である。前述したイムノアッセイの実施例と比較すると、流路は、アッセイされる試料の容積増大を可能にするためにストリップの検出領域で広くなっている。さらに、INR/PT固有の試薬が、この領域において堆積されている。試薬は、外因性凝固カスケードを開始するための全ての必須成分及びトロンビンによって非蛍光形態から蛍光形態に変換される特定のトロンビン蛍光物質基材を含有する。毛細管作用での充填は、試薬を再懸濁し、トロンビン活性の検出を可能とする。測定したトロンビン活性(蛍光強度)を使用して、PT/INR結果を特定する。
【符号の説明】
【0270】
1 カートリッジ
3 液体試料入力ポート
4 マイクロ流体流路
5 流路
7 流路
10 体充填チャンバ
13 シンク
15 液体止め具
20 特徴部
22 特徴部
24 特徴部
26 特徴部
28 第1のゾーン
30 第2のゾーン
32 検出ゾーン
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16a
図16b
図17
図18
図19