(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-20
(45)【発行日】2024-08-28
(54)【発明の名称】結合プラットフォームの自動調心素子用のラジアル反発型磁気軸受
(51)【国際特許分類】
F16C 32/04 20060101AFI20240821BHJP
G02B 6/26 20060101ALI20240821BHJP
A61F 9/008 20060101ALI20240821BHJP
【FI】
F16C32/04 Z
G02B6/26
A61F9/008 120F
(21)【出願番号】P 2021502877
(86)(22)【出願日】2019-07-19
(86)【国際出願番号】 US2019042527
(87)【国際公開番号】W WO2020018869
(87)【国際公開日】2020-01-23
【審査請求日】2022-07-08
(32)【優先日】2018-07-19
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】509019761
【氏名又は名称】アルコン, インコーポレイテッド
(74)【代理人】
【識別番号】100099759
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100160705
【氏名又は名称】伊藤 健太郎
(72)【発明者】
【氏名】シバダス,クランガラ
【審査官】沖 大樹
(56)【参考文献】
【文献】特開2002-081445(JP,A)
【文献】実開昭49-098652(JP,U)
【文献】米国特許出願公開第2008/0027418(US,A1)
【文献】特開2015-049404(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F16C 32/04
G02B 6/26
A61F 9/008
(57)【特許請求の範囲】
【請求項1】
結合プラットフォームの自動調心素子用の装置であって:
他方のプラットフォームに結合されるように構成された一方のプラットフォームのためのハウジングであって、前記ハウジングは、
光路を画定する光学素子に結合された第1の軸方向の分極磁石;及び
前記第1の軸方向の分極磁石に同心であり且つそれにラジアル反発する第2の軸方向の分極磁石であって、前記ハウジングに結合された、第2の軸方向の分極磁石
を含む、ラジアル反発型磁気軸受を備える、ハウジングと、
前記ハウジング及び前記第1の軸方向の分極磁石に結合されたスラスト軸受であって、前記スラスト軸受は、前記第1の軸方向の分極磁石に結合された前記光学素子を、前記軸方向に対して直角の方向に動かすことができるようにし、かつ、前記第1の軸方向の分極磁石の構造的な対称軸と前記第1の軸方向の分極磁石及び前記第2の軸方向の分極磁石の磁気中立軸との間のオフセットによって生じる磁力を相殺するように構成されている、スラスト軸受と、
を含み;
前記ラジアル反発型磁気軸受は、前記ハウジングが前記他方のプラットフォームに結合されると、前記他方のプラットフォームの光学素子と前記第1の軸方向の分極磁石に結合された前記光学素子とを光学的に整列させるように構成されている、装置。
【請求項2】
前記第1の軸方向の分極磁石は、第1の光学素子に結合されるように構成され、
前記一方のプラットフォームと前記他方のプラットフォームとが互いに結合されると、前記ハウジングはキャビティを画成し、かつ、前記第2の軸方向の分極磁石は、前記キャビティの壁に結合されている、請求項1に記載の装置。
【請求項3】
前記第1の軸方向の分極磁石の軸方向長さは、前記第2の軸方向の分極磁石の軸方向長さと等しくない、請求項1に記載の装置。
【請求項4】
前記第1及び第2の軸方向の分極磁石は、ネオジム磁石及び電磁石の1つ以上を含む、請求項1に記載の装置。
【請求項5】
前記スラスト軸受は、ころ軸受、流体軸受、膜軸受、たわみ軸受、及び磁気軸受のうちの1つ以上を含む、請求項1に記載の装置。
【請求項6】
前記一方のプラットフォームと前記他方のプラットフォームとが結合されると、前記ハウジングはキャビティを画成し、及び前記第2の軸方向の分極磁石は、前記キャビティの壁に結合されている、請求項1に記載の装置。
【請求項7】
前記ハウジングは、第1の端に開口部を画成し、前記ハウジングは、前記第1の端において前記一方のプラットフォームと前記他方のプラットフォームとを結合するように構成され、及び前記第1の軸方向の分極磁石は、前記第1の端と反対側の前記ハウジングの第2の端において、前記スラスト軸受によって前記ハウジングに結合されている、請求項6に記載の装置。
【請求項8】
前記一方のプラットフォームと前記他方のプラットフォームとは、締結具を使用して取り外し可能に結合され、
前記第1の軸方向の分極磁石は、第1の光学素子に結合されるように構成さ
れ、
前記締結具及び前記スラスト軸受は、前記一方のプラットフォームと前記他方のプラットフォームが連結されると、少なくとも一部には、前記第1の光学素子と第2の光学素子との間に間隙を形成する、請求項6に記載の装置。
【請求項9】
眼科用手術システムであって:
光パルスを発生させ、且つ前記光パルスを、1つ以上の光学素子によって画定された光路に沿って方向付けるように構成されたレーザ源と、
ハンドピースに結合されるように構成されたハウジングであって:
前記光路を画定する光学素子に結合された第1の軸方向の分極磁石;及び
前記第1の軸方向の分極磁石に同心であり且つそれにラジアル反発する第2の軸方向の分極磁石であって、前記ハウジングに結合された第2の軸方向の分極磁石
を含む、ラジアル反発型磁気軸受
を含む、ハウジングと、
前記ハウジング及び前記第1の軸方向の分極磁石に結合されたスラスト軸受であって、前記スラスト軸受は、前記第1の軸方向の分極磁石に結合された前記光学素子を、前記軸方向に対して直角の方向に動かすことができるようにし、かつ、前記第1の軸方向の分極磁石の構造的な対称軸と前記第1の軸方向の分極磁石及び前記第2の軸方向の分極磁石の磁気中立軸との間のオフセットによって生じる磁力を相殺するように構成されている、スラスト軸受と、
を含み、
前記ラジアル反発型磁気軸受は、前記ハウジングが前記ハンドピースに結合されると、前記ハンドピースの光学素子を、前記第1の軸方向の分極磁石に結合された前記光学素子と光学的に整列させるように構成されている、眼科用手術システム。
【請求項10】
前記第1の軸方向の分極磁石の軸方向長さは、前記第2の軸方向の分極磁石の軸方向長さと等しくない、請求項9に記載の眼科用手術システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、例えば、光学素子などの、結合プラットフォームの自動調心素子用のラジアル反発型磁気軸受に関する。
【背景技術】
【0002】
いくつかのシステムは、2つの素子(例えば、光学素子、電磁気素子、流路素子)間の整列を維持する必要があり得る。素子若しくは素子のハウジングにおける熱的変動、構造変動、又は他の変動によるドリフトが、一方又は双方の素子に導入され得、素子間に芯ずれを引き起こし得る。2つの素子間、例えば光学素子間の整列を維持するための現在のシステムは、位置センサー及びマイクロアクチュエータを利用するサーボベースの能動制御機構を含み得る。しかしながら、そのようなシステムは、複雑で高価な電子部品、サーボチャンネルのチューニング、連続的な電力供給、及び/又は較正/保守を必要とし得る。それゆえ、そのようなシステムは、多くの構成要素が含まれているがゆえに信頼性が低いことがあり、及び構成品による放熱に起因する性能低下を見込み得る。現在のシステムはまた、シリンダー状フェルール、整列スリーブ、及びV字形状溝などの正確に制御された形状を有することによって、素子を強制的に整列させる受動機構を含み得る。しかしながら、これらのシステムは、関係する複数の表面間の接触条件における変動に起因する挿入物間の非反復性の整列させる力(嵌合解除動作/嵌合動作)を受け得る。
【発明の概要】
【課題を解決するための手段】
【0003】
いくつかの実施形態では、結合プラットフォームの自動調心素子用の装置が、ラジアル反発型磁気軸受を含む。ラジアル反発型磁気軸受は、第1の軸方向の分極磁石と、第1の軸方向の分極磁石の周りに同心に配置され且つ第1の軸方向の分極磁石に対してラジアル反発する第2の軸方向の分極磁石とを含む。ラジアル反発型磁気軸受は、第1のプラットフォームと第2のプラットフォームが連結されると、第1のプラットフォームの第1の素子を第2のプラットフォームの第2の素子と整列するように構成されている。いくつかの実施形態では、第1及び第2の軸方向の分極磁石は、同じプラットフォーム(例えば、第1のプラットフォーム又は第2のプラットフォームのいずれか)に装着され得る。他の実施形態では、第1及び第2の軸方向の分極磁石は、別個のプラットフォームに装着され得る(例えば、第1のプラットフォームに第1の軸方向の分極磁石、及び第2のプラットフォームに第2の軸方向の分極磁石)。
【0004】
いくつかの実施形態では、眼科用手術システムは、光パルスを発生させてその光パルスを1つ以上の光学素子によって画定された光路に沿って方向付けるように構成されたレーザ源と、ハンドピースに結合されるように構成されたハウジングとを含む。ハウジングは、ラジアル反発型磁気軸受を含み、この軸受は、光学素子のうちの少なくとも1つに結合された第1の軸方向の分極磁石、及び第2の軸方向の分極磁石を含む。第2の軸方向の分極磁石は、第1の軸方向の分極磁石に同心であって、それにラジアル反発し、且つハウジングに結合されている。ラジアル反発型磁気軸受は、ハウジングがハンドピースに結合されると、ハンドピースの光学素子を、第1の軸方向の分極磁石に結合された少なくとも1つの光学素子と光学的に整列するように構成されている。
【0005】
いくつかの実施形態では、ラジアル反発型磁気軸受を含むアセンブリの製造方法は、非磁化の磁性材料の第1及び第2のリングを形成することを含む。リングは、全体的に環状形状であり、及び第1のリングの外半径は、第2のリングの内半径を下回る。方法はまた、第2のリング内に第1のリングを位置決めして、第1及び第2のリングが互いに同心になり、且つ第1のシムによって分離されるようにすること、並びにハウジングによって画成されたキャビティ内にスラスト軸受、第1のリング、及び第2のリングを位置決めして、スラスト軸受が、ハウジングによって画成された開口部とは反対側のハウジングの第1の端に配置され、スラスト軸受は、第2のシムによってキャビティの壁から分離され、且つ第1のリングは、第3のシムによってハウジングの一部分から分離されるようにすることを含む。方法は、第1及び第2のリングの軸方向に磁場を加えること、並びにアセンブリから第1、第2、及び第3のシムを除去することをさらに含む。
【0006】
いくつかの実施形態は、場合によっては、1つ以上の技術的利点を提供し得る。例として、本開示の態様は、素子のうちの1つによる横断方向のドリフトがある場合でも(例えば、プラットフォームの熱膨張、構造変動、又は外力に起因するドリフト)、結合プラットフォームの素子(例えば、光学素子、電磁気素子、又は流路)が、整列を維持できるようにし得る。それゆえ、2つの光学素子(例えば、光ファイバー、レンズ、ミラー)が整列される実施形態では、2つの光学素子間に高度の光結合が維持され得る。さらに、本開示の態様は、エレクトロニクスをチューニング、保守又は温度制御する必要なく、すぐに利用できる受動手段(例えば、永久磁石)を使用して実装され得、これは、より低いコスト及びより高い信頼性につながり得る。
【0007】
本開示及びその利点をより完全に理解するために、ここで、添付図面と併せて以下の説明を参照し、添付図面では、同様の参照符号は、同様の特徴を示す。
【図面の簡単な説明】
【0008】
【
図1】
図1は、患者に外科的処置を行うための付属ハンドピースを備える例示的な眼科用手術システムの図である。
【
図2】
図2は、眼科用手術システムとハンドピースを接続するための例示的なシステムを示す図である。
【
図3A】
図3Aは、ラジアル反発型磁気軸受を使用する2つのプラットフォームの自動調心素子用の例示的なシステムの断面図である。
【
図4A】
図4Aは、
図3Aに示すラジアル反発型磁気軸受を含むアセンブリの例示的な製造プロセスを示す図である。
【
図4B】
図4Bは、
図3Bに示すラジアル反発型磁気軸受を含むアセンブリの例示的な製造プロセスを示す図である。
【
図5】
図5は、ラジアル反発型磁気軸受を使用する2つのプラットフォームの自動調心素子用の別の例示的なシステムの断面図である。
【
図6】
図6は、ラジアル反発型磁気軸受を使用する2つのプラットフォームの自動調心素子用のさらに例示的なシステムの断面図である。
【
図7】
図7は、ラジアル反発型磁気軸受を使用する2つのプラットフォームの自動調心素子用のさらに別の例示的なシステムの断面図である。
【発明を実施するための形態】
【0009】
当業者は、下記で説明する図面は、説明のためにすぎず、本出願人の開示の範囲を限定するものではないことを理解する。
【0010】
本開示の原理の理解を促すために、ここで、図面に示す実施形態を参照し、及びそれを説明するために特定の言語を使用する。それにもかかわらず、本開示の範囲の限定は意図しないことが理解される。説明されるシステム、機器、及び方法に対する代替例及びさらなる修正例、並びに本開示の原理のいずれのさらなる適用例も、本開示に関係する当業者に通常思いつくものとみなされる。特に、1つの実施形態に関して説明されるシステム、機器、及び/又は方法は、本開示の他の実施形態に関して説明される特徴、構成要素、及び/又はステップと組み合わせられ得ると考えられる。しかしながら、簡潔にするために、これらの組み合わせの多数の反復は、別々に説明されるわけではない。簡潔にするために、場合によっては、図面を通して、同じ又は同様の部分を指すために同じ参照符号を使用する。
【0011】
図1は、患者108に外科的処置を行うための、付属ハンドピース106のある例示的な眼科用手術システム100の図である。眼科用手術システム100は、制御システム104と、レーザ源110と、動力源114とを備えるコンソール102を含む。コンソール102は、患者108に外科的処置を行う外科プローブを含み得るハンドピース106に結合される。ハンドピース106は、コンソール102のレーザ源110に結合される光ケーブル112、及びコンソール102の動力源に結合されるケーブル116によって、コンソールに結合される。ハンドピース106は、別の方法でコンソール102に結合されてもよく、これは、コンソール102のタイプ、ハンドピース106のタイプ、又はそれら双方に依存し得る。図示の例では、眼科用手術システム100は、ハンドピース106を使用して、患者108の眼に光破壊ベースの硝子体切除処置を行うように構成されている。しかしながら、眼科用手術システム100は、レーザ源110を使用して他の眼科外科的処置を行うように構成され得る。眼科用手術システム100は、
図1に示すものに追加的な又はそれよりも少数の構成要素及び特徴を含み得る。
【0012】
例示的な制御システム104は、コンソール102の様々な構成要素の動作を制御する。例えば、場合によっては、制御システム104は、患者108に外科的処置を行うためにハンドピース106に送られる光パルスの発生などの、レーザ源110の動作を制御する。制御システム104は、コンソール102の様々な構成要素又はハンドピース106を制御するために、プロセッサー、メモリ、及び他のハードウェアを含み得る。
【0013】
例示的なレーザ源110は、外科的処置を行うために、ハンドピース106に伝達する光信号を生成する。レーザ源110は、フェムト秒レーザ、又は別のタイプのレーザを含み得る。一部の例では、レーザ源110によって生成された光信号は、患者108の眼内で光破壊を引き起こすように構成されている。レーザ源110は、光信号を、光ケーブル112を通してハンドピース106に通信する。光ケーブル112は、光信号をレーザ源110からハンドピース106へ効果的に伝搬するように設計された導波路を含む。
【0014】
例示的な動力源114は、ハンドピース106に動力をもたらすために使用される。様々なタイプの動力源が、動力源114に含まれ得る。例えば、ハンドピース106が、電気駆動を必要とする場合、動力源114は、適切な電圧又は電流を提供するためのバッテリー又は電圧源などの電源を含み得る。そのような場合には、ケーブル116は、電力ケーブルを含む。別の例として、ハンドピース106が空気動力を必要とする場合、動力源114は、圧縮流体供給部を含み得る。そのような場合には、ケーブル116は、圧縮流体供給部をハンドピース106に接続する気送管を含む。
【0015】
ハンドピース106とコンソール102との間の他の接続部も使用され得る。例えば、コンソールは、ハンドピース106にある吸引ルーメンと接続する吸込み(suction)又は吸引(aspiration)機構を含み得る。
図1では光ケーブル112及びケーブル116を別々に示すが、場合によっては、コンソール102とハンドピース106との間の全ての接続部が、単一のケーブル内にあってもよい。
【0016】
図2は、眼科用手術システム(例えば、
図1の眼科用手術システム100)のコンソール202とハンドピース220を接続する例示的なシステム200を示す図である。図示の例では、コンソール202は、レーザ源204、ミラー205、レンズ206、ラジアル反発型磁気軸受208、及びコンソール202をハンドピース220に結合するためのハウジング210を含む。コンソール202及びレーザ源204は、
図1のコンソール102及びレーザ源110とそれぞれ同様に実装され得る。ハンドピース220は、ハンドピース220の外科プローブ218まで延在する光ケーブル216(光導波路214を含む)に取り付けられるコネクター212を含む。
【0017】
ハンドピース220は、コネクター212によってコンソール202のハウジング210に結合するように構成されている。コネクター212及びハウジング210は、例えば、ねじ接続部品、磁気結合締結具、簡易着脱接続締結具、又は別のタイプの接続機構などの任意の好適な手段を使用する締結具を使用して連結するように構成され得る。コネクター212は、レーザ源204によって生成された光信号をハンドピース220へ伝達するための導波路214を含む光ケーブル216に結合される。
【0018】
図2に示すように、レーザ源204、ミラー205、及びレンズ206は、コンソール202内に光路を形成する。すなわち、レーザ源204によって生成された光信号(例えば、光パルス)は、ミラー205の方へ向けられ得、このミラーは、光信号をレーザ源204からレンズ206の方へ反射させるように配置され得る。光路は、
図2に示すものに追加的な、それよりも少数の、又はそれとは異なる光学素子を含み得る。例えば、ミラー205は、光信号をあるレンズ(レンズ206以外)に向け、これが、さらに、光信号を、ラジアル反発型磁気軸受内に配置された光ファイバー(例えば、
図3A~3Bの光ファイバー304)に向け得る。
【0019】
ハウジング210及びコネクター212が連結されると、ラジアル反発型磁気軸受208は、2つのプラットフォーム(例えば、コンソール202及びハンドピース220)の光学素子を整列できるようにし得る。すなわち、ラジアル反発型磁気軸受208は、レーザ源204と、ミラー205と、レンズ206とによって生じた光路と、光ケーブル216の導波路214を自動調心する働きをし得る。ラジアル反発型磁気軸受208は、
図3A~3Bのラジアル反発型磁気軸受208と同様の方法で、又は別の方法で実装され得る。例えば、ラジアル反発型磁気軸受208は、導波路214をコンソール202内の光路と整列させる働きをする同心の2つのラジアル反発型の磁石(永久又は電磁)を含み得る。
【0020】
例示的なシステム200は、
図2に示すものに追加的な、それよりも少数の、又はそれとは別の構成要素を含み得る。例えば、
図2は、光ケーブル216の導波路214を、ミラー205及びレンズ206によって生じた光路と整列させるためのハウジング210内のラジアル反発型磁気軸受208を示すが、追加的な又は他のラジアル反発型磁気軸受が、システム200の他の素子を整列させるために、例えばミラー205とレンズ206を整列させるために用いられてもよい。
【0021】
図3A~3Bは、ラジアル反発型磁気軸受を使用する2つのプラットフォームの自動調心素子のための例示的なシステム300の図である。特に、
図3Aは、例示的なシステム300の断面図を示す一方、
図3Bは、例示的なシステム300の例示的なラジアル反発型磁気軸受302の斜視図を示す。例示的なシステム300は、2つの結合プラットフォームの素子をラジアルに自動調心するために使用され得る。一部の例では、例えば、これらの素子は、光学素子(例えば、
図3A~3Bに示すような光ファイバー、又は他のタイプの光学素子、例えばレンズ、ミラー、プリズム、回折格子など)、電磁導波路(例えば、マイクロ波導波管)、音響導波路、流路素子、又は他のタイプの素子とし得る。多くの例では、ラジアル反発型磁気軸受は、長手方向軸に沿って不安定であり得る。しかしながら、システム300は、結合プラットフォームの素子を半径方向に自動調心する、長手方向に安定的な磁気軸受302を提供する。この磁気軸受はまた、長手方向軸に対して直角の軸に沿って、プラットフォームに、著しいねじれ剛性、それゆえ安定性を与える。
【0022】
図示の例では、システム300は、光ファイバー304、306を整列させるラジアル反発型磁気軸受302を含む。光ファイバー304は、第1のプラットフォーム(例えば、
図2のコンソール202)の構成要素であるか又はそれに結合され、及び光ファイバー306は、第2のプラットフォーム(例えば、
図2のハンドピース220)の構成要素であるか又はそれに結合される。光ファイバー304及び/又は光ファイバー306の例は、それぞれ、シングルコアファイバー、マルチコアファイバー、又は複数の光ファイバーを含み得る。ラジアル反発型磁気軸受302は、第1のプラットフォームのハウジング308(例えば、
図2のハウジング210)によって画成されるキャビティ309内に位置決めされる。ハウジング308は、ねじ部品311、バヨネット・マウント、又はスナップキャップ取付具(snap cap fitting)によって第2のプラットフォームのコネクター310(例えば、
図2のコネクター212)に結合される。
【0023】
ラジアル反発型磁気軸受302は、第1の軸方向の分極磁石312と、第1の軸方向の分極磁石312の周りに配置された第2の軸方向の分極磁石314とを含む。
図3Aでは、軸方向は、左から右への方向を指し得る。第1の軸方向の分極磁石312及び第2の軸方向の分極磁石314は、磁石312と314との間に間隙を保つように、位置決めされる。第2の軸方向の分極磁石314は、第1の軸方向の分極磁石312に対して同心であり、且つラジアル反発するため、光ファイバー304は、図示の通り第1のプラットフォームと第2のプラットフォームが連結されるとき、光ファイバー306と整列される。図示の例では、第2の軸方向の分極磁石314は、キャビティ309の壁に結合されているため、磁石314は、ハウジング308とコネクター310が連結されると、コネクター310に結合される(ねじ部品311によって)。図示の例では、光ファイバー304は、第1の軸方向の分極磁石312内に配置され(例えば、その内部に結合される)、及び光ファイバー306は、コネクター310内に配置される(例えば、その内部に結合される)。軸方向の分極磁石312は、永久磁石、例えばネオジム磁石(例えば、NdFeB磁石)、電磁石、他のタイプの磁石、又はそれらの組み合わせを使用して、実装され得る。
【0024】
図示の例では、第1の軸方向の分極磁石312の軸方向長さは、第2の軸方向の分極磁石314の軸方向長さよりも長い。しかしながら、特定の実施形態では、第1の軸方向の分極磁石の軸方向長さは、第2の軸方向の分極磁石の軸方向長さ以下とし得る。
図3Bに示すように、磁石312、314は、全体的に環状形状である;しかしながら、磁石は、別の方法で形成されてもよい。さらに、
図3Aに示すように、磁石312、314の磁気中立軸315は、第1の軸方向の分極磁石312の構造的な対称軸313からオフセットされている。磁石312と314との間のオフセットによって、第1の軸方向の分極磁石312に力を生じ、これは、第1の軸方向の分極磁石312に結合されたスラスト軸受316によって相殺され、ラジアル反発型磁気軸受302に軸方向の安定性を生じる。スラスト軸受316は、主に、磁石312、314の長手方向軸に対して直角の方向における第1の軸方向の分極磁石312の動きを可能にするように構成されているが、望ましくない回転モーメントに対するピッチ軸及びヨー軸の周りでの弾性コンプライアンスも制限する。スラスト軸受316は、ころ軸受(例えば、
図3Aに示すような)、流体軸受、膜軸受、たわみ軸受、又は磁気軸受のうちの1つ以上を使用して、実装され得る。図示の例では、スラスト軸受316は、ハウジング308の部分317と第1の軸方向の分極磁石312への取付部319との間にある、ねじ部品311を含むハウジングの端部とは反対側のハウジング308の第1の端に配置されたころ軸受である。
【0025】
図3Aに示すように、ハウジング308とコネクター310が連結されると、光ファイバー304、306は、ファイバー間に小さな間隙がある状態で整列される。間隙は、スラスト軸受316、ねじ部品311、又はそれらの組み合わせによって画成され得る。すなわち、そのような構成要素のサイズは、2つのプラットフォームが連結されるときに光ファイバー304と306との間に間隙を残すことを決定し得る。プラットフォームのいずれかにおいてドリフトがある場合(熱膨張若しくは収縮、プラットフォームにおける構造変動若しくは動き、又は他の理由に起因し得る)、光ファイバー304、306は、ラジアル反発型磁気軸受302に起因して整列された状態が維持され得る。それゆえ、ラジアル反発型磁気軸受302は、光ファイバー304、306を自動調心すると言われ得る。
【0026】
例えば、ハウジング308、コネクター310、又はそれら双方がドリフトされた場合(例えば、熱的変動から膨張する)、磁石314は、ハウジング308及びコネクター310の双方に結合されているため、ドリフトと一緒に動いたであろう。従って、いずれかのプラットフォームでのドリフトは、光ファイバー306を、ドリフトの動きと一緒に動かす原因となる。しかしながら、スラスト軸受319によってもたらされたラジアル弾性コンプライアンスのために、磁石312は、ドリフトによって引き起こされた磁石312と314との間の磁力の変化によって引かれたドリフトと一緒に動き得る。これにより、いずれのドリフトが存在しても、光ファイバー304を光ファイバー306と自動調心できる。
【0027】
例示的なシステム300は、
図3A~3Bに示すものに追加的な、それよりも少数の、又はそれとは別の構成要素を含み得る。さらに、ラジアル反発型磁気軸受302は、
図3A~3Bに示すもの以外の他のタイプの素子を整列するために使用され得る。例えば、
図3A~3Bは、光ファイバー304、306を整列するラジアル反発型磁気軸受302を示すが、ラジアル反発型磁気軸受302は、他のタイプの素子も整列するために使用され得る。
【0028】
図4A~4Bは、ラジアル反発型磁気軸受(
図3A~3Bのラジアル反発型磁気軸受302など)を含むアセンブリの例示的な製造プロセスを示す図である。特に、
図4Aは、ラジアル反発型磁気軸受を含むアセンブリ400に関連するときの例示的な製造プロセス450の態様を示す一方で、
図4Bは、例示的な製造プロセス450を示すフロー図である。場合によっては、ラジアル反発型磁気軸受、例えば
図3A~3Bのラジアル反発型磁気軸受302の製造は、磁石の反発性に起因して困難とし得る。さらに、いくつかの永久磁石は破損しやすい場合がある。しかしながら、一部の例では、プロセス450は、非磁化状態にあるラジアル反発型磁気軸受を製造し、その後、軸受が組み立てられた後に軸受を磁化させることによって、アセンブリ400の製造を可能にし得る。
【0029】
ステップ452において、非磁化の焼結磁性材料の環状形状リング402、404が形成される。一部の例では、リング402、404は、非磁化の焼結磁性材料をケーシング内に配置することによって、形成され得る。いくつかの実施形態では、焼結材料は、磁場を加えると磁性となり得る、NdFeB粉末又は別のタイプの非磁化材料を含み得る。リング402、404は、磁場が加えられた後、
図3A~3Bの磁石312、314となり得る。リング402の外半径は、リング404の内半径よりも小さいため、
図4Aに示すように、リング402は、リング404の内半径内に配置され得る。
【0030】
ステップ454において、リング402はリング404内に位置決めされて、リング402、404が互いに同心になるようにする。材料はこのときは磁化されていないため、リング402、404を分離し、且つそれらの同心配置を維持するために、非磁性シム406が使用され得る。リング402、404は、リング402の構造的な対称軸と、リング402、404内の材料が磁化されると形成される磁石の磁気中立軸との間にオフセットがあるように、位置決めされ得る。シム406は、プラスチック又は他のタイプの非磁性材料とし得る。リングは、ステップ452及び454においては磁化されていないため、それらは破損の恐れなく取り扱われて位置決めされ得る。
【0031】
ステップ456において、スラスト軸受316及びリング402、404は、ハウジング308によって画成されたキャビティ309内に位置決めされる。スラスト軸受316は、ハウジング308によって画成された開口部(
図4Aに示すアセンブリ400の右側)とは反対側の、ハウジング308の第1の端(
図4Aに示すアセンブリ400の左側)に配置されるように、位置決めされ得る。場合によっては、これは、外側リング404をキャビティ309の壁に結合することを含み得る。外側リング404は、接着材料(例えば、グルー又はエポキシのタイプ)などによる任意の好適な手段を使用して結合され得る。スラスト軸受316及びリング402、404は、非磁性シム408、410を使用して位置決めされ得る。
図4Aに示すように、シム406は、取付部319とキャビティ309の壁との間に配置され得、及びシム408は、リング402とハウジング308の部分317との間に配置され得る。シム408、410は、プラスチック又は他のタイプの非磁性材料としてもよく、及びシム406に使用される材料と同じでも又はそれとは異なってもよい。
【0032】
ステップ458において、磁場412がアセンブリ400に加えられる。磁場は、比較的強くてもよく、及びリング402、404の軸に対して厳密に直角とし得る。磁場412は、ひとたびリング402、404に形成されたリングが十分な残留磁気を得ると、取り消され得る。ひとたび磁化されると、リング402、404は、ラジアル反発型磁気軸受を形成し得る。磁場412が取り消されると、内側リング402(スラスト軸受316を通る)が、リング402、404の構造的な軸と磁気中立軸との間のオフセットに起因して、ハウジング308の部分317に力を加え、及びスラスト軸受316はこの力を相殺し得る。
【0033】
ステップ460において、光ファイバー304は、リング402内に位置決めされ、且つそれに結合される。光ファイバー304は、任意の好適な手段、例えば接着材料(例えば、グルー又はエポキシ)を使用してリング402に結合され得る。
【0034】
ステップ462において、シム406、408、410が除去される。一部の例では、シム408、410は、シム406の前に除去され得る。そのため、アセンブリ400は、機械的及び磁気的に安定し、中間に「浮遊ファイバー」を保持するプラグ-コネクターを生じ得る。それゆえ、アセンブリは、適合寸法を有する好適な「固定ファイバー」プラグ(例えば、
図3Aのコネクター310)に嵌め合い、そのハウジングに対して同心的に整列している光ファイバーに番える準備が整っていてもよい。
【0035】
図4A~4Bの例示的なプロセスは、追加的な又は異なる動作を含んでもよく、及び動作は、図示の順序で又は別の順序で実行され得る。一部の例では、
図4A~4Bに示す動作の1つ以上は、複数の動作、サブプロセス、又は他のタイプのルーティンを含むプロセスとして実行される。一部の例では、動作は、組み合わせられ得、別の順序で実行され得、並行して実行され得、反復され得、又は別のやり方で繰り返され得、又は別の方法で実行され得る。同様に、磁石404が固定ファイバープラグの一部である設計(例えば、磁石402は、浮遊側面上に結合されている)では、磁化の場412は、固定及び浮遊プラグがねじ部品311を使用して一緒に締結された後に、加えられ得る。
【0036】
図5~7は、ラジアル反発型磁気軸受を使用する2つのプラットフォームの自動調心素子用の他の例示的なシステムを示す。
図3A及び
図3Bに示すシステム300と同様に、
図5~7に示すシステムは、2つのプラットフォームの素子(例えば、光学素子)を自動調心するためにラジアル反発型磁気軸受を使用する。しかしながら、システム300では、ラジアル反発型磁気軸受は、2つのプラットフォームのうちの一方に装着された、軸方向の、2個の分極磁石を含む。比較すると、
図5~7に示すシステムでは、磁気軸受は、プラットフォームの一方に装着された第1の軸方向の分極磁石、及び他方のプラットフォームに装着された第2の軸方向の分極磁石を含む。
【0037】
図5は、本発明の特定の実施形態によるラジアル反発型磁気軸受を使用する2つのプラットフォームの自動調心素子用の1つのそのようなシステム、具体的には例示的なシステム500の断面図を示す。概して、システム500は、光ファイバー504を有する浮遊ファイバーアセンブリ508(例えば、第1のプラットフォーム)、及び光ファイバー506を有する固定ファイバーアセンブリ510(例えば、第2のプラットフォーム)を含む。システム500はラジアル反発型磁気軸受502を使用して、浮遊ファイバーアセンブリ508と固定ファイバーアセンブリ510が連結されると、光ファイバー504及び506を整列させる。
【0038】
図5に示すように、浮遊ファイバーアセンブリ508は、光ファイバー508、第1の軸方向の分極磁石512、装着リング519、スラスト軸受516、及び整列ガイド532を含む一方、固定ファイバーアセンブリ510は、光ファイバー506、軸方向の分極磁石514、及びアセンブリ510の外部から延在し且つ光ファイバー506の端部と同心であるハウジング524を含む。ロックナット517が、2つのアセンブリが連結されるときに、浮遊ファイバーアセンブリ508を固定ファイバーアセンブリ510内に押し込む、保持する及び/又はロックする働きをする。特定の実施形態では、ロックナット517はまた、2つのアセンブリを切り離すために除去され得る。
【0039】
いくつかの実施形態では、光ファイバー504及び/又は光ファイバー506はそれぞれ、シングルコアファイバー、マルチコアファイバー、又は複数の光ファイバーを含み得る。さらに、ファイバー及び/又は複数のファイバーは、外側シースを含み得る。特定の実施形態では、外側シースは、ファイバーに付属しているクラッディング、又はフェルールとし得る。
図5に示すように、光ファイバー504は、ファイバーコア520及びファイバーシース522を含む。
【0040】
浮遊ファイバーアセンブリ508に注目すると、第1の軸方向の分極磁石512は、光ファイバー504の遠位端部に結合され、且つそれと同心である。
図5に示すように、磁石512のN極は、磁石の遠位端部に位置する一方、磁石512のS極は、近位端部に位置する。しかしながら、第2の軸方向の分極磁石514の向きに適合することを条件に(すなわち、N極が互いに整列され、及びS極が互いに整列される)、反対の向きも許容可能である。
【0041】
装着リング519は、磁石512の近位端部と同心であり、それに装着される。特定の実施形態では、装着リング519は、任意の好適な剛性の非磁性材料を含み得、及び任意の適切な幾何学的形状(リング状又は他のもの)を有し得るが、一般的に、第1の軸方向の分極磁石512を整列ガイド532に結合するスラスト軸受516を装着する構造を提供する。次に、整列ガイド532は、固定ファイバーアセンブリ510のハウジング524の内部とのインターフェースとなる。
【0042】
図5に示す実施形態では、整列ガイド532は、光ファイバー504と同心であり且つスラスト軸受516の近位側面に結合されるリング状ディスクである。整列ガイド532のラジアル面は、ハウジング524の内側表面とのインターフェースとなるように構成されている。このようにして、整列ガイド532は、浮遊ファイバーアセンブリ508が固定ファイバーアセンブリ510と結合されるか又は嵌め合わされるとき、第1の軸方向の分極磁石512を第2の軸方向の分極磁石514の中心に挿入するのを案内するのを助ける(下記でより詳細に説明する)。
【0043】
アセンブリが連結されるとき、整列ガイド532は、整列ガイド532のすぐ近位に位置するロックナット517によって適所に保持される。従って、ロックナット517の配置によって、2つの磁石の磁気中立軸515と構造的な対称軸513との間のオフセット、並びに光ファイバー504と506の終端間の動作間隙を間接的に制御する。
図5に示すように、ロックナット517はねじ部分511を含み、このねじ部分は、固定ファイバーアセンブリ510にある相補的なねじ部分526とのインターフェースとなるように構成されている。これらの相補的なねじ部分511及び526は、2つのプラットフォームが固く且つ取り外し可能に連結できるようにする。特定の実施形態では、ロックナット517は、任意の好適な非磁性材料及び/又は幾何学的形状を含み得る。さらに、システム500は、ねじ部品(例えば、ねじ部分511及び526を含む)含むとして示されるが、他の実施形態では、バヨネット・マウント又はスナップキャップ取付具を使用して、浮遊ファイバーアセンブリ508及び固定ファイバーアセンブリ510を固く結合し得る。本開示の利益によって、当業者は、ロックナット517に他の代替的な締結機構を選択できるはずである。
【0044】
装着リング519と整列ガイド532との間にスラスト軸受516を含むことによって、浮遊ファイバーアセンブリ508は、第1の軸方向の分極磁石512を、磁石512の長手方向軸に対して直角の方向に動かすことができる。それが、「固定」と呼ばれ得る光ファイバー506とは対照的に、光ファイバー504が「浮遊」と呼ばれ得る理由である。特定の実施形態では、スラスト軸受516は、ころ軸受、流体軸受、膜軸受、たわみ軸受又は磁気軸受のうちの1つ以上を使用して実装され得る。
図5に示す例では、スラスト軸受516は、ころ軸受として示される。本開示の利益によって、当業者は、スラスト軸受516に他の代替的な実装例を選択できるはずである。
【0045】
固定ファイバーアセンブリ510を検討すると、固定ファイバーアセンブリ510は、光ファイバー510、軸方向の分極磁石514、及びアセンブリ510の外部から延在し且つ第2の光ファイバー506の端部と同心であるハウジング524を含む。ハウジング524は、浮遊ファイバーアセンブリ508のねじ部分511を受け入れるように構成されているねじ部分526を含む。さらに、固定ファイバーアセンブリ510は、第2の軸方向の分極磁石514を含み、この磁石は、リング状であり、且つハウジング524の内部に、第2の光ファイバー506の終端と同心に且つそれから離間して、装着されている。第2の軸方向の分極磁石514は、浮遊ファイバーアセンブリ508が固定ファイバーアセンブリ510と嵌め合されるか又は結合されるとき、第1の軸方向の分極磁石512を受け入れ、且つそれと同心となるように構成されている。従って、浮遊ファイバーアセンブリ508は、システム500の雄型構成要素とみなされ、及び固定ファイバーアセンブリ510は、雌型構成要素とみなされ得る。
図5に示すように、第2の軸方向の分極磁石514のN極は、磁石の光ファイバー506の終端の方に位置する一方、磁石514のS極は、光ファイバー506の終端から離れるように位置する。しかしながら、第1の軸方向の分極磁石512の向きに適合するという条件で(すなわち、N極が互いに整列され、及びS極が互いに整列される)、反対の向きも許容可能である。
【0046】
浮遊ファイバーアセンブリ508がねじ部分511及び526によって固定ファイバーアセンブリ510に結合されると、ハウジング524の内部で、2つのプラットフォーム間にキャビティ509が形成される。キャビティ509内では、第1の軸方向の分極磁石512が、リング状の第2の軸方向の分極磁石514によって受け入れられて、2つの磁石間には半径方向間隙が残存するようにする。さらに、第1の軸方向の分極磁石512は、第2の軸方向の分極磁石514に対してラジアル反発するように構成されており、浮遊ファイバーアセンブリ508と固定ファイバーアセンブリ510が連結されると、2つの磁石512及び514は、ラジアル反発型磁石軸受502を形成する。特定の実施形態では、磁石512及び514は、永久磁石、例えばネオジム磁石(例えば、NdFeB磁石)、電磁石、他のタイプの磁石、又はそれらの組み合わせを使用して実装され得る。第1の軸方向の分極磁石512を第1の光ファイバー504と同心に位置決めし、且つ第2の軸方向の分極磁石514を第2の光ファイバー506と同心に位置決めすることによって、システム500は、軸受502内の磁石512と514との相互作用を使用して、リング状の第2の軸方向の分極磁石514内で第1の軸方向の分極磁石512を浮かし、且つ光ファイバー504及び506を整列させることができる。
【0047】
さらに、
図5に示すように、磁石512及び514の磁気中立軸515は、第1の軸方向の分極磁石512の構造的な対称軸513からオフセットされる。オフセットによって、第2の軸方向の分極磁石514から第1の軸方向の分極磁石512を押し出す傾向のある力を生じる。この力は、スラスト軸受516及びロックナット517によって相殺され、ラジアル反発型磁気軸受502に軸方向の安定性を生じる。
【0048】
特定の実施形態では、スラスト軸受516はまた、固定ファイバーアセンブリ510のY(ヨー)軸及びZ(ピッチ)軸に沿った、浮遊ファイバーアセンブリ508の運動の自由を制限できる。これにより、本発明の特定の実施形態が、光ファイバー504と506との間の整列に対する、接触変動(浮遊ファイバーアセンブリ508と固定ファイバーアセンブリ510との間)の影響を低減させる及び/又は最小限にすることができるようにする。例えば、浮遊ファイバーアセンブリ508と固定ファイバーアセンブリ510との間の結合及び切り離しの各動作は、整列ガイド532及び/又はねじ部分511及び526に、様々な非繰り返しロッキング条件(例えば、力、トルク、モーメント、接触点、境界特性を含む)を経験させ得る。しかしながら、スラスト軸受516は、第1の軸方向の分極磁石512の長手方向軸に対して直角の平行移動及び回転の調節を可能にし、そのようなロッキング条件の変動は、第1の軸方向の分極磁石512と第2の軸方向の分極磁石514との間の半径方向間隙に伝えられるのではなく、スラスト軸受516によって吸収され得る。それゆえ、光ファイバー504と506との間のラジアル整列は、2つのプラットフォームの繰り返しの結合及び切り離しによって受ける影響が最小限にされ得る。
【0049】
図6は、本発明の特定の実施形態による、ラジアル反発型磁気軸受を使用する2つのプラットフォームの自動調心素子用の別のシステム、システム600の断面図を示す。
図6に示すように、システム600は、光ファイバー604を有する浮遊ファイバーアセンブリ608と、光ファイバー606を有する固定ファイバーアセンブリ610とを含む。システム600は、浮遊ファイバーアセンブリ608と固定ファイバーアセンブリ610が連結されるとき、光ファイバー604及び606を整列させるために、軸方向の分極磁石612及び614によって形成されたラジアル反発型磁気軸受602を使用する。
【0050】
概して、浮遊ファイバーアセンブリ608は、
図5に示す浮遊ファイバーアセンブリ508と同様である。浮遊ファイバーアセンブリ608は、第1の光ファイバー604、第1の軸方向の分極磁石612、スラスト軸受616、及び整列ガイド632を含む。しかしながら、
図5とは異なり、スラスト軸受616は、第1の軸方向の分極磁石612に結合される装着リング(例えば、装着リング519)には装着されない。その代わり、スラスト軸受616は挿入ガイド628に装着され、この挿入ガイドは、光ファイバー604上に同心に、第1の軸方向の分極磁石612に隣接してその近位に装着される。特定の実施形態では、浮遊ファイバーアセンブリ610はまた、第2の挿入ガイド630を含み得、この挿入ガイドは、光ファイバー604上に同心に、第1の軸方向の分極磁石612に隣接してその遠位に装着される。このようにして、第1の軸方向の分極磁石612は、2つの挿入ガイド628と630との間に挟まれ得る。ガイド628及び630などの挿入ガイドは、第1の軸方向の分極磁石612の軸方向長さが固定ファイバーアセンブリ610上の対応するリング状の第2の軸方向の分極磁石614の軸方向長さよりも短い実施形態において、有用とし得る。しかしながら、上述の通り、特定の実施形態では、第1の軸方向の分極磁石の軸方向長さは、第2の軸方向の分極磁石の軸方向長さよりも長くても、短くても、又はそれと等しくてもよい。挿入ガイド628及び630の特定の寸法は、浮遊ファイバーアセンブリ608と固定ファイバーアセンブリ610が連結されるときに、第1の軸方向の分極磁石612が第2の軸方向の分極磁石614の長手方向軸に沿って適切な位置にされるのを保証するように選択され得る。特定の実施形態では、挿入ガイド630はまた、第2の軸方向の分極磁石614の中心に挿入されているときに、第1の軸方向の分極磁石612の遠位端部を摩耗及び引き裂きから保護する働きをし得る。概して、挿入ガイド628及び630は、任意の好適な非磁性材料、例えばエラストマーを含み得る。
【0051】
その他の点では、システム600の構成要素は、
図5に示すシステム500の構成要素と同様である。2つのプラットフォームが連結されている状態で、第1の軸方向の分極磁石612が、リング状の第2の軸方向の分極磁石614内に適切に位置決めされるのを保証するのを助けるのに加えて、挿入ガイド628はまた、スラスト軸受616が装着される構造の機能を果たす。次に、スラスト軸受616は、挿入ガイド628を整列ガイド632に結合し、整列ガイドは、浮遊ファイバーアセンブリ608と固定ファイバーアセンブリ610が連結されると、ロックナット617によって適所に固定される。特定の実施形態では、ロックナット617はねじ部分611を含み、このねじ部分は、固定ファイバーアセンブリ610上の相補的なねじ部分626とのインターフェースとなり、且つ2つのプラットフォームを取り外し可能に結合するように構成されている。ここでも、システム600は、ねじ部品(例えば、ねじ部分611及び626を含む)を含むとして示されているが、他の実施形態では、2つのプラットフォームを結合するために、バヨネット・マウント又はスナップキャップ取付具が、ねじ部品の代わりに使用され得る。同様に、スラスト軸受616はころ軸受であるとして示されるが、特定の実施形態では、スラスト軸受616は、ころ軸受、流体軸受、膜軸受、たわみ軸受、又は磁気軸受のうちの1つ以上を使用して実装され得る。
【0052】
固定ファイバーアセンブリ610はまた、
図5に示す固定ファイバーアセンブリ510と同様である。一般的に、固定ファイバーアセンブリ610は、第2の光ファイバー606、及びアセンブリ610の外部から延在し且つ第2の光ファイバー606の端部と同心であるリング状ハウジング624を含む。ハウジング624は、ロックナット617のねじ部分611を受け入れるように構成されているねじ部分626を含む。さらに、固定ファイバーアセンブリ610は、第2の軸方向の分極磁石614を含み、この磁石は、リング状であり、且つハウジング624の内部に、光ファイバー606の長手方向軸と同心で、それから離間して装着されている。第2の軸方向の分極磁石614は、浮遊ファイバーアセンブリ608が固定ファイバーアセンブリ610と結合されると、第1の軸方向の分極磁石612を受け入れ、且つそれと同心となるように構成されている。
【0053】
浮遊ファイバーアセンブリ608が、ロックナット617を使用して固定ファイバーアセンブリ610に結合されると、ハウジング624の内部で、2つのプラットフォーム間にキャビティ609が形成される。キャビティ609内では、第1の軸方向の分極磁石612が、リング状の第2の軸方向の分極磁石614内に、2つの磁石間に半径方向間隙が残存するように、受け入れられる。さらに、第1の軸方向の分極磁石612は、第2の軸方向の分極磁石614に対してラジアル反発するように構成されており、プラットフォーム608と610が連結されると、2つの磁石612及び614がラジアル反発型磁石軸受602を形成するようにする。第1の軸方向の分極磁石612を第1の光ファイバー604と同心に位置決めし、且つ第2の軸方向の分極磁石614を第2の光ファイバー606と同心に位置決めすると、システム600は、軸受602内の磁石612と614の相互作用を使用して、リング状の第2の軸方向の分極磁石614内で第1の軸方向の分極磁石612を浮かし、且つ光ファイバー604と606を整列することができる。さらに、第1の軸方向の分極磁石612を結合リング617に結合するためにスラスト軸受616を使用することによって、プラットフォーム608及び610を堅く連結できる(ねじ部分611及び626によって)が、依然として、熱膨張又は他の応力に起因してシステム構成要素間に発生し得るドリフトを可能にする。スラスト軸受616はまた、固定ファイバーアセンブリ610のY(ヨー)軸及びZ(ピッチ)軸に沿った、浮遊ファイバーアセンブリ608の運動の自由を制限することができる。これにより、本発明の特定の実施形態が、光ファイバー604と606との間の整列に対する、接触変動(浮遊ファイバーアセンブリ608と固定ファイバーアセンブリ610との間)の影響を減少させる及び/又は最小限にすることができるようにする。
【0054】
図7は、本発明の特定の実施形態によるラジアル反発型磁気軸受を使用する2つのプラットフォームの自動調心素子に関するさらに別のシステムの断面図を示す。特に、
図7は、
図5及び
図6に示すシステムと同様のシステム700を示す。しかしながら、システム700は、玉軸受ではなくエラストマー整列ガイドを使用して、システム内のドリフト並びに芯ずれの力を吸収する。
【0055】
図7に示すように、システム700は、光ファイバー704を含む浮遊ファイバーアセンブリ708、及び光ファイバー706を含む固定ファイバーアセンブリ710を含む。システム700は、アセンブリ708と710が連結されると、ラジアル反発型磁気軸受702を使用して、光ファイバー704及び706を整列させる。
【0056】
概して、浮遊ファイバーアセンブリ708は、光ファイバー708、第1の軸方向の分極磁石712、挿入ガイド728及び730、並びにエラストマー整列ガイド732を含む。いくつかの実施形態では、光ファイバー704及び/又は光ファイバー706はそれぞれ、シングルコアファイバー、マルチコアファイバー、又は複数の光ファイバーを含み得る。さらに、ファイバー及び/又は複数のファイバーは、外側シースを含み得る。特定の実施形態では、外側シースは、ファイバーに付属しているクラッディング、又はフェルールとし得る。
図7に示すように、光ファイバー704は、ファイバーコア720及びファイバーシース722を含む。
【0057】
第1の軸方向の分極磁石712は、光ファイバー704に結合され、且つそれと同心である。同様に光ファイバー704に同心に結合されるのは、第1の軸方向の分極磁石712に隣接し且つその近位にある挿入ガイド728、及び第1の軸方向の分極磁石712に隣接し且つ遠位にある挿入ガイド730である。このようにして、第1の軸方向の分極磁石712は、2つの挿入ガイド728と730との間に挟まれ得る。ガイド728及び730などの挿入ガイドは、第1の軸方向の分極磁石712の軸方向長さが固定ファイバーアセンブリ610上の対応するリング状の第2の軸方向の分極磁石714の軸方向長さよりも短い実施形態において、有用とし得る。挿入ガイド728及び730の特定の寸法は、特に、第1の軸方向の分極磁石712の軸方向長さが第2の軸方向の分極磁石714よりも短い実施形態において、浮遊ファイバーアセンブリ708と固定ファイバーアセンブリ710が連結されると、第2の軸方向の分極磁石714の長手方向軸に沿って第1の軸方向の分極磁石712が適切な位置にされることを保証するように、選択され得る。特定の実施形態では、挿入ガイド730はまた、第2の軸方向の分極磁石714の中心に挿入されているとき、第1の軸方向の分極磁石712の遠位端部を、摩耗及び引き裂きから保護する働きをし得る。概して、挿入ガイド728及び730は、エラストマーを含むがこれに限定されない、任意の好適な非磁性材料を含み得る。
【0058】
同様に、挿入ガイド728に隣接し且つその近位において、光ファイバー704に装着されているのは、エラストマー整列ガイド732である。整列ガイド532(
図5)及び632(
図6)におけるように、エラストマー整列ガイド732のラジアル面は、ハウジング724の内側表面とのインターフェースとなり、且つ第1の軸方向の分極磁石712を第2の軸方向の分極磁石714の中心に挿入するのを容易にするのを助ける。しかしながら、エラストマー整列ガイド732はまた、光ファイバー704の長手方向軸に対して直角の及び/又はそれに沿ったシステム構成要素間のドリフト(例えば、熱膨張、構造変化に起因する)を調節するように構成され、それにより、たわみ軸受としてふるまう。特定の実施形態では、エラストマー整列ガイド732は、選択したエラストマー材料及び幾何学的形状がシステムの構成要素によるドリフトを調節する適切な余裕をもたらす限り、任意の好適なエラストマー及び任意の好適な幾何学的形状を含み得る。例えば、
図7に示すように、エラストマー整列ガイド732は、ベル形状として示されているように、全体的にベル形状である;しかしながら、本発明の教示内で、他の幾何学的形状が可能である。
【0059】
第1の軸方向の分極磁石712が第2の軸方向の分極磁石714に挿入されると、エラストマー整列ガイド732は、ロックナット717によって適所に固定され、ロックナットは、固定ファイバーアセンブリ710上の相補的なねじ部分726とのインターフェースとなり且つ2つのプラットフォームを取り外し可能に連結するように構成されているねじ部分711を含む。ここでも、システム700は、ねじ部品(例えば、ねじ部分711及び726を含む)を含むとして示されているが、他の実施形態では、2つのプラットフォームを結合するために、バヨネット・マウント又はスナップキャップ取付具が、ねじ部品の代わりに使用され得る。
【0060】
システム700はまた、上述の固定ファイバーアセンブリ510(
図5)及び610(
図6)と同様の固定ファイバーアセンブリ710を含む。一般的に、固定ファイバーアセンブリ710は、第2の光ファイバー706、及びアセンブリ710の外部から延在し且つ第2の光ファイバー706の端部と同心であるリング状ハウジング724を含む。ハウジング724はねじ部分726を含み、このねじ部分は、ロックナット717のねじ部分711を受け入れるように構成されている。さらに、固定ファイバーアセンブリ710は、第2の軸方向の分極磁石714を含み、この磁石は、リング状であり、且つハウジング724の内部に、第2の光ファイバー706の長手方向軸と同心に装着されている。第2の軸方向の分極磁石714は、浮遊ファイバーアセンブリ708が固定ファイバーアセンブリ710と連結されるとき、第1の軸方向の分極磁石712を受け入れ、且つそれと同心となるように構成されており、半径方向間隙が2つの磁石間に残存するようにする。さらに、第1の軸方向の分極磁石712は、第2の軸方向の分極磁石714に対してラジアル反発するように構成されており、アセンブリ708と710が連結されると、2つの磁石712及び714がラジアル反発型磁石軸受702を形成するようにする。第1の軸方向の分極磁石712を第1の光ファイバー704と同心に位置決めし、及び第2の軸方向の分極磁石714を第2の光ファイバー706と同心に位置決めすることによって、システム700は、軸受702内の磁石712と714の相互作用を使用して、リング状の第2の軸方向の分極磁石714内で第1の軸方向の分極磁石712を浮かし、且つ光ファイバー704と706を整列させることができる。同時に、エラストマー整列ガイド723は、2つのプラットフォームを堅く結合できる(ロックナット717によって)が、システムの構成要素間に時々ドリフトが発生し得るようにする(例えば、熱膨張に起因する)。エラストマー整列ガイド732はまた、固定ファイバーアセンブリ710のY(ヨー)軸及びZ(ピッチ)軸に沿った、浮遊ファイバーアセンブリ708の運動の自由を制限できる。これにより、本発明の特定の実施形態が、光ファイバー704と706との間の整列に対する、接触変動(浮遊ファイバーアセンブリ708と固定ファイバーアセンブリ710との間)の影響を減少させる及び/又は最小限にすることができるようにする。
【0061】
本開示の実施形態は、従来のシステム及び方法の限界を克服し得る、2つの結合プラットフォームの自動調心素子用のシステム及び方法を提供する。上記で開示した及び他の特徴及び機能、又はその代替例は、望ましくは、本開示に従って多くの他の異なるシステム又は適用例に組み合わせられ得ることが理解される。本明細書の様々な現在予見できない又は予期しない代替、修正、変形、又は改良が、これに続いて当業者によってなされることがあり、それらの代替例、変形例及び改良例も、以下の特許請求の範囲に含まれるものとすることも理解される。