(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-22
(45)【発行日】2024-08-30
(54)【発明の名称】軌道区間を監視するための測定アセンブリ
(51)【国際特許分類】
G01L 5/00 20060101AFI20240823BHJP
G01L 1/24 20060101ALI20240823BHJP
G01M 17/08 20060101ALI20240823BHJP
【FI】
G01L5/00 Z
G01L1/24 A
G01M17/08
(21)【出願番号】P 2021529474
(86)(22)【出願日】2019-10-23
(86)【国際出願番号】 EP2019078791
(87)【国際公開番号】W WO2020108873
(87)【国際公開日】2020-06-04
【審査請求日】2022-10-21
(32)【優先日】2018-11-26
(33)【優先権主張国・地域又は機関】AT
【前置審査】
(73)【特許権者】
【識別番号】524161173
【氏名又は名称】プロデス ゲゼルシャフト ミット ベシュレンクテル ハフツング
(74)【代理人】
【識別番号】100114890
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100134315
【氏名又は名称】永島 秀郎
(74)【代理人】
【識別番号】100162880
【氏名又は名称】上島 類
(72)【発明者】
【氏名】クジシュトフ ヴィルチェク
【審査官】公文代 康祐
(56)【参考文献】
【文献】米国特許第05529267(US,A)
【文献】米国特許第05462244(US,A)
【文献】実開平04-116806(JP,U)
【文献】実開昭51-052407(JP,U)
【文献】特開平11-198813(JP,A)
【文献】特表2017-504030(JP,A)
【文献】独国特許出願公開第102010013312(DE,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01L 1/24
G01L 5/00
G01M 17/08
E01B 35/12
(57)【特許請求の範囲】
【請求項1】
レール固定装置(2)によってまくらぎ(3)に固定されたレール(1)を備えた軌道区間を監視するための測定アセンブリであって、レール(1)に作用する負荷を検出するために、光導波路(12)が測定装置(20)に接続されている、測定アセンブリにおいて、
前記光導波路(12)は、少なくとも1つの前記レール固定装置(2)内に分離可能にクランプされており、クランプされた状態では、前記光導波路(12)が、前記少なくとも1つのレール固定装置(2)の表面に押圧されて
おり、
前記少なくとも1つのレール固定装置(2)は、前記レール(1)を側方で支持するための側方のガイドを含んでおり、クランプされた前記光導波路(12)は、前記側方のガイドに接触しており、
前記少なくとも1つのレール固定装置(2)は、リブプレート(4)を含んでおり、側方のガイドとして、前記レール(1)に対して平行に延びているリブ(8)が配置されていることを特徴とする、
測定アセンブリ。
【請求項2】
前記光導波路(12)は、互いに連続している2つのまくらぎ(3)において同一のレール(1)の前記レール固定装置(2)内にクランプされている、請求項1記載の測定アセンブリ。
【請求項3】
前記光導波路(12)は、2つのクランプ箇所(17)の間に長手方向補償用のループ(18)を有している、請求項1または2記載の測定アセンブリ。
【請求項4】
前記レール(1)から前記少なくとも1つのレール固定装置(2)を介して前記まくらぎ(3)に伝達される負荷は、前記光導波路(12)に直接作用する、請求項1から3までのいずれか1項記載の測定アセンブリ。
【請求項5】
前記少なくとも1つのレール固定装置(2)は、中間層(7)を含んでおり、クランプされた前記光導波路(12)は、前記中間層(7)に接触している、請求項1から4までのいずれか1項記載の測定アセンブリ。
【請求項6】
前記少なくとも1つのレール固定装置(2)は、緊締クランプ(11)を含んでおり、クランプされた前記光導波路(12)は、前記緊締クランプ(11)に接触している、請求項1から5までのいずれか1項記載の測定アセンブリ。
【請求項7】
請求項1から
6までのいずれか1項記載の測定アセンブリを製造するための方法であって、
軌道新設時または軌道更新時に軌道工事機械によってレール(1)をまくらぎ(3)に載置し、載置前、載置後または載置中に光導波路(12)を、前記軌道工事機械に配置されたコイルから繰り出して、各クランプ箇所(17)に位置決めし、前記レール(1)を、レール固定装置(2)によって前記光導波路(12)のクランプと同時に前記まくらぎ(3)に固定することを特徴とする、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、まくらぎに固定されたレールを備えた軌道区間を監視するための測定アセンブリであって、レールに作用する負荷を検出するために、光導波路が測定装置に接続されている、測定アセンブリに関する。さらに、本発明は、相応の測定アセンブリを製造するための方法に関する。
【背景技術】
【0002】
鉄道インフラ、鉄道交通、および軌道におけるその他のアクティビティを監視するために、軌道区間には種々様々な測定システムが使用される。相応の測定アセンブリにおいては、光導波路がますます重要になっている。光導波路は、一方で信号伝送のために利用され、他方でセンサの要素として利用される。
【0003】
例えば国際公開第2016/027072号に基づき、軌道の側方に敷設された光導波路を備えた測定システムおよび相応の測定法が公知である。光導波路には測定装置が接続されており、この測定装置によって、いわゆる分散型音響センシング(Distributed Acoustic Sensing, DAS)が行われる。このとき、光導波路の少なくとも1つのファイバが、レーザパルスの反射を検出するために利用される。検出された光信号は、軌道区間に沿った振動の推測を可能にする。具体的には、これによって、列車の車輪が監視され、ひいては、車輪の損傷を早期に把握することができる。この解決手段は、既に他の目的のために敷設されている光導波路をセンサ要素として利用することを目的としている。
【0004】
国際公開第2015/110361号には、レールに作用する機械的な値を測定するための、光ファイバ式のセンサユニットを備えた測定装置が開示されている。この測定装置では、光ファイバ式のセンサユニットは、レールウェブに斜めに配置されていて、センサユニットには、信号光を生ぜしめるための一次光が反射または転送で照射される。この信号光は、レールにおける負荷変化を推量するために評価される。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の根底にある課題は、冒頭に記載した形態の測定アセンブリを改良して、簡単な製造およびメンテナンスならびに正確な測定結果を高い再現性でもって達成することができる測定アセンブリを提供することである。さらに、本発明の課題は、相応の測定アセンブリを製造するための方法を提供することである。
【課題を解決するための手段】
【0006】
本発明によれば、これらの課題は、請求項1および請求項10の特徴によって解決される。本発明の好適な改良形態は、従属請求項から明らかである。
【0007】
本発明によれば、光導波路は、少なくとも1つのレール固定装置内に分離可能にクランプされていることが提案されている。こうして、レールからレール固定装置を介してまくらぎに伝達される負荷が、光導波路に直接作用する。軌道周辺における発生源からの振動もまた、まくらぎおよびレール固定装置を介して光導波路に作用し、これによって、検出することができる。光導波路に発生する僅かな変形が、既知の方法によって評価可能である。光導波路に接続された測定装置は、光信号を光導波路内に送り、この光信号の反射が光導波路の変形と関連している。これにより、変形位置の正確な特定も可能となる。これによって、光導波路は、レールとまくらぎとの間の力伝達経路に配置されているので、振動または車輪負荷が直接検出される。レール固定装置の負荷伝達部材に光導波路を取り付けることによって、検出時に、負荷がかかっている状態と、負荷がかかっていない状態との間の大きな信号間隔(ノイズを示す測定信号)が発生する。これによって、本発明のように光導波路を検出要素として利用することは、公知の解決手段に比べて極めて僅かな外乱影響しか受けない。さらに、測定アセンブリは、負荷下でのレール固定装置の状態分析を可能にする。
【0008】
アセンブリの好適な改良形態では、光導波路は、少なくとも互いに連続している2つのまくらぎにおいて同一のレールのレール固定装置内にクランプされている。好ましくは、光導波路は、監視すべき軌道区間の広い領域にわたって延びており、同一のレールのすべてのレール固定装置内にクランプされている。こうして、光導波路は、多数のまくらぎにわたる長さ延長機能を備えたセンサ要素として働く。軌道の側方でケーブルトラフ内に案内されている光導波路と異なり、本発明のように配置された光導波路は、不連続の区分(まくらぎとの各接触箇所)において励起される。これによって、各まくらぎに固有のバーチャルセンサを割り当てることができる。測定結果を場所的に割り当てることによって、個々のまくらぎが監視される。例えば、中空位置または緩んだ固定手段が直ちに認識可能となる。こうして、車軸カウンタも実現可能であり、このとき、既存のシステムとの相互運用が提供されている。さらに、光導波路の不連続の励起による測定アセンブリの校正は、公知のシステムよりも簡単である。
【0009】
別の改良態様では、光導波路は、2つのクランプ箇所の間に長手方向補償用のループを有していることが提案されている。こうして、必要な場合に測定アセンブリにおける変更を行うことができる。さらに、光導波路を現場においてクランプ箇所から分離して、軌道の側方に置くことが可能である。例えば、光導波路は、レールの溶接作業の前に、長手方向補償を利用して溶接箇所に対して十分な間隔をおいて置かれる。
【0010】
測定アセンブリの組み付けられた状態では、好ましくは、光導波路は、互いに連続している2つのまくらぎの間でレールに固定手段によって分離可能に固定されている。例えば、レール底部にクリップ固定されたクランプは、光導波路がまくらぎの間で撓むことを阻止している。特に、レール削正、道床突固めまたは軌道安定化のようなメンテナンス作業を問題なく実施するためには、この付加的な保護手段が有効である。
【0011】
測定アセンブリの好適な改良形態では、少なくとも1つのレール固定装置は、レール底部用の支持体としての中間層を含んでおり、クランプされた光導波路は、中間層に接触していることが提案されている。この改良形態では、レールに対する鉛直な負荷が、光導波路に直接伝達される。さらに、この配置形態では、光導波路がレールによって外部からの影響に対して防護されている。
【0012】
別の改良形態では、少なくとも1つのレール固定装置は、緊締クランプを含んでおり、クランプされた光導波路は、緊締クランプに接触していることが提案されている。特に、レールの振動負荷が、弾性の緊締クランプを介して導出される。接触している光導波路によって、このような負荷は特に良好に検出可能である。この改良形態においても、光導波路のクランプを緊締クランプの弛緩によって分離することが簡単に可能であり、好適である。
【0013】
別の好適な変化形態は、水平な横方向負荷の極めて正確な検出を可能にする。この変化形態では、少なくとも1つのレール固定装置は、レール底部を側方で支持するための側方のガイドを含んでおり、クランプされた光導波路は、側方のガイドに接触している。
【0014】
この変化形態の好適な構成では、側方のガイドはアングルガイドプレートである。相応のレール固定装置では、レールの横方向位置を固定するために、レール底部の各側にアングルガイドプレートが配置されている。各アングルガイドプレートは、通常、1つの緊締クランプのための載置体としても働く。
【0015】
この構成に対して代替的に、少なくとも1つのレール固定装置は、リブプレートを含んでおり、側方のガイドとして、レールに対して平行に延びているリブが配置されていてよい。このようなリブプレートは、通常、木製まくらぎに相俟って使用され、これによって、軌道中心に対するレールの予め設定された傾斜をも保証することができる。ここでは、多くの場合、固定要素として螺合要素が働く。
【0016】
上述した測定アセンブリを製造するための本発明に係る方法では、軌道新設時または軌道更新時に軌道工事機械によってレールをまくらぎに載置し、載置前、載置後または載置中に光導波路を、軌道工事機械に配置されたコイルから繰り出して、各クランプ箇所に位置決めし、レールを、レール固定装置によって光導波路のクランプと同時にまくらぎに固定することが提案されている。こうして、測定アセンブリは軌道工事作業の途中で設置され、そのために必要な手間は無視できる程度でしかない。特にレールの敷設または交換のために構成されている慣用の軌道工事機械に、光導波路を繰り出すためのコイルを簡単に装備させることができる。
【0017】
以下に、本発明の実施例を添付の図面を参照しながら説明する。
【図面の簡単な説明】
【0018】
【
図1】レールとリブプレートを備えたレール固定装置とを示す横断面図である。
【
図2】
図1の一部Aを拡大して、解除された状態における光導波路を示す図である。
【
図3】
図1の一部Aを拡大して、クランプされた状態における光導波路を示す図である。
【
図4】レールとアングルガイドプレートを備えたレール固定装置とを示す横断面図である。
【
図5】1つのレールと2つのまくらぎとを示す平面図である。
【発明を実施するための形態】
【0019】
図1に示されたレール1は、幾分傾けられてレール固定装置2によってまくらぎ3に固定されている。正確な傾斜角度を規定するために、レール固定装置2はリブプレート4を含んでおり、このリブプレート4は、ねじ5によってまくらぎ3にねじ締結されている。レール底部6とリブプレート4との間には、多くの場合、プラスチックから製造された中間層7が配置されている。側方での支持のために、リブプレート4は、レール1の両側でレール長手方向に延びているリブ8を含んでいる。これらのリブ8は、下方に向かって開いている切欠きを有しており、これらの切欠きは、ねじ締結装置10のフックねじ9のための対応保持部として働く。これらのねじ締結装置10によって、レール1の各側で緊締クランプ11が上からレール底部6に押圧される。このような配置形態は、木製まくらぎの使用時に一般的である。
【0020】
本発明によれば、少なくとも1つの光導波路12が配置されており、この光導波路12は、レール固定装置2内に分離可能にクランプされている。光導波路12とレール固定装置2との機械的な特性は、互いに適合されている。例えば、光導波路12は耐摩耗性のプラスチックまたは複合材料から成る被覆体を有している。これによって、光導波路12の早期の機械的な摩耗が回避される。場合によっては、光導波路12はレール交換の途中に一緒に交換される。なお、これにより生じる付加的な手間は無視できる程度のものである。
【0021】
図1には、光導波路12の複数の有意義な位置が示されている。例えば、中間層7に、光導波路12を収容するための長手方向溝13が設けられている。これに対して代替的にまたは補足的に、リブプレート4が相応の長手方向溝13を有している。長手方向溝13はまくらぎ3に設けられていてもよく、これによって、従来のレール固定装置2を、さらなる適合なしに使用することが可能である。同じことは、レール底部6の下側に設けられた長手方向溝13に対しても言える。
【0022】
図2および
図3において分かるように、各長手方向溝13は、分離された状態で光導波路12の直径よりも小さな深さを有している。クランプされた状態では、光導波路12が、レール固定装置2の表面にかつ場合によってはレール1またはまくらぎ3の表面に押圧される。これによって、レール1またはまくらぎ3に作用する負荷および振動が、光導波路12に直接伝達される。
【0023】
水平なレール横方向における力および振動を正確に検出するために、光導波路12はリブ8の長手方向溝13内に配置されている。組み付けられた状態では、光導波路12はリブ8とレール底部6のサイドウェブとの間にクランプされている。好適な改良形態では、この光導波路12は、レール底部6の下方の光導波路12と組み合わせられている。こうして、水平な力および振動と鉛直な力および振動とを別個に検出しかつ評価することが可能となる。
【0024】
図4には、通常、コンクリート製まくらぎに使用される代替的なレール固定装置2が示されている。この場合、まくらぎ3は、レール固定装置2を収容するために、上側にレリーフ状の凹部を有している。具体的には、この凹部内に1つの中間層7と、レール固定装置2の2つのアングルガイドプレート14とが配置されている。中間層7は、この実施形態では、レール底部6とまくらぎ3との間の減衰要素を形成している。アングルガイドプレート14は、レール底部6を水平なレール横方向で固定する側方のガイドとして働く。さらに、各アングルガイドプレート14は溝15を有しており、この溝15内には、円形材料から曲げられた緊締クランプ11が係止されている。各緊締クランプ11は、レール固定ねじ16によって緊締されており、緊締クランプ11の端部は上方からレール底部6に押圧されている。
【0025】
この実施形態にも、光導波路12の複数の有意義な位置が示されている。例えば、長手方向溝13が、中間層7にまたは中間層7の下方のまくらぎ3に設けられている。各アングルガイドプレート14の下側または各緊締クランプ11の下側への光導波路12の配置が有利である。水平なレール横方向における力および振動は、アングルガイドプレート14と、レール底部6の、割り当てられたサイドウェブとの間の光導波路12によって好適に検出される。そのために、相応のアングルガイドプレート14は側方の長手方向溝13を有している。この変化形態でも、複数の光導波路12の配置が有意義であると言える。
【0026】
図5の平面図には、例として、各リブプレート4を備えた2つのレール固定装置2が示されている。光導波路12は、レール1の下側で各レール固定装置2内にクランプされている。例えば、各リブプレート4は、相応の長手方向溝13を有している。負荷がかかると、光導波路12がこれらのクランプ箇所17において不連続に励起され、これによって、測定過程に際して、相応に不連続な測定結果が生じる。
【0027】
まくらぎ同士の間の光導波路12は、ループ18を成して配置されている。このループ18は、光導波路12が修理されねばならないかまたは別の位置に配置されねばならない場合に、長手方向補償部として働く。複数のループ18の長手方向補償を利用するためには、相互間に位置しているレール固定装置2が分離され、これによって、光導波路12がレール固定装置2を通じて滑動することができる。例えば、光導波路12は、レール1における溶接作業時に長手方向補償を利用して溶接箇所から十分な間隔をおいて配置される。
【0028】
好ましくは、2つのまくらぎ3の間の各まくらぎ区画に固定手段19が設けられており、この固定手段19によって光導波路12はレール1に分離可能に固定されている。最も簡単な事例では、レール底部6にクリップ固定されかつ光導波路12を位置保持する留め金が使用されている。こうして、光導波路12は、レール削正または道床突固めのようなメンテナンス作業時に十分に保護されている。このような固定手段19は、複雑な軌道装置での光導波路12の検出器機能を省略するために利用することもできる。例えば、光導波路12は、レール固定装置2内でのクランプを行うことなしに、転轍機の領域で単にレール1にクリップ固定される。
【0029】
光導波路12の一端は、測定装置20に接続されている。この測定装置20は、光パルスを光導波路12の少なくとも1つのファイバ内に送り、発生する反射を評価する。この反射は、光導波路12の該当するファイバの機械的な応力に関連している。このような機械的な応力は、光導波路12に力が作用する場合または光導波路12が振動または音響作用によって振動する場合に発生する。評価可能な信号パターンを介して、特に測定信号の不連続の特徴によって、力作用位置または振動発生位置の特定も可能となる。
【0030】
測定アセンブリを製造するための本発明に係る方法を、
図5に示した変化形態を参照しながら説明する。一例として、旧レール1を一回の連続的な作業法にて新レール1と交換する軌道メンテナンスを用いる。このようなレール交換時には、軌道の側方に新レール1が予め置かれている。第1のステップにおいて、レール固定装置2が分離される。軌道工事機械として、いわゆる更新車が使用される。この更新車は、中央部分に更新装置を有しており、この更新装置は、前側のレール走行機構と後ろ側のレール走行機構とにブリッジ状に支持されている。このとき、前側のレール走行機構は旧レール1上を通過しており、後ろ側のレール走行機構は、既に新レール1上を通過している。
【0031】
機械前進走行中、更新装置は相応のガイド要素によって、旧レール1をまくらぎ3から持ち上げ、外側に向かって軌道の側方に導く。他のガイド要素によって、新レール1が外側から内側に向かって導かれ、まくらぎ3上に置かれる。この交換工程の最中、個々のまくらぎ3はそのレール固定装置2と共に露出している。この状態は、光導波路12を各クランプ箇所17に位置決めするために利用される。
【0032】
更新装置内にはコイル(ケーブルドラム)が配置されており、このコイルから光導波路12が機械前進走行中に繰り出される。位置決め装置が、光導波路12をリブプレート4の露出している長手方向溝13内に導く。このことは、単に1つのレールストランドに対して行われるか、または各レールストランドに対して、固有の光導波路12が、対応するコイルから繰り出される。次いで、中間層7が相応の載置装置によってリブプレート4に載置される。
【0033】
その後初めて、まくらぎ3上のリブプレート4のリブ8同士の間への新レール1の位置決めが行われる。最後の作業ステップにおいて、緊締クランプ11がねじ締結装置10によって締め付けられる。その際、光導波路12も相応のレール固定装置2内にクランプされる。