(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-26
(45)【発行日】2024-09-03
(54)【発明の名称】タイヤ用ゴム組成物及びタイヤ
(51)【国際特許分類】
C08L 9/00 20060101AFI20240827BHJP
C08L 101/00 20060101ALI20240827BHJP
C08K 3/36 20060101ALI20240827BHJP
C08K 3/38 20060101ALI20240827BHJP
C08K 5/548 20060101ALI20240827BHJP
B60C 1/00 20060101ALI20240827BHJP
【FI】
C08L9/00
C08L101/00
C08K3/36
C08K3/38
C08K5/548
B60C1/00 A
(21)【出願番号】P 2020130024
(22)【出願日】2020-07-31
【審査請求日】2023-05-25
(73)【特許権者】
【識別番号】000183233
【氏名又は名称】住友ゴム工業株式会社
(74)【代理人】
【識別番号】110000914
【氏名又は名称】弁理士法人WisePlus
(72)【発明者】
【氏名】渡邊 顕哉
(72)【発明者】
【氏名】中島 郭葵
(72)【発明者】
【氏名】遠矢 昴
【審査官】西山 義之
(56)【参考文献】
【文献】特開2019-189672(JP,A)
【文献】特開2019-206652(JP,A)
【文献】特開2020-023640(JP,A)
【文献】特開2020-015815(JP,A)
【文献】特開2006-178041(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 1/00-101/14
C08K 3/00- 13/08
B60C 1/00
(57)【特許請求の範囲】
【請求項1】
ゴム成分、シリカ及び樹脂成分を含有し、
前記ゴム成分中、スチレン骨格量が25質量%以下、ブタジエン骨格量が70質量%以上であり、
前記ゴム成分の含有量<前記シリカの含有量<前記ゴム成分の含有量+前記樹脂成分の含有量であるタイヤ用ゴム組成物
であって、
ホウ酸塩化合物を含有するタイヤ用ゴム組成物。
【請求項2】
ゴム成分、シリカ及び樹脂成分を含有し、
前記ゴム成分中、スチレン骨格量が25質量%以下、ブタジエン骨格量が70質量%以上であり、
前記ゴム成分の含有量<前記シリカの含有量<前記ゴム成分の含有量+前記樹脂成分の含有量であるタイヤ用ゴム組成物であって、
前記樹脂成分が芳香族系樹脂を含み、
前記芳香族系樹脂がエチレン単位を有するタイヤ用ゴム組成物。
【請求項3】
前記樹脂成分がC5系樹脂を含む請求項1
又は2記載のタイヤ用ゴム組成物。
【請求項4】
前記シリカの平均粒子径が18nm以下である請求項1
~3のいずれかに記載のタイヤ用ゴム組成物。
【請求項5】
前記樹脂成分が芳香族系樹脂を含む請求項
1記載のタイヤ用ゴム組成物。
【請求項6】
ホウ酸塩化合物を含有する請求項
2記載のタイヤ用ゴム組成物。
【請求項7】
前記シリカの平均粒子径が16nm以下である請求項1~
6のいずれかに記載のタイヤ用ゴム組成物。
【請求項8】
メルカプト系シランカップリング剤を含有する請求項1~
7のいずれかに記載のタイヤ用ゴム組成物。
【請求項9】
前記樹脂成分が芳香族系樹脂を含み、
前記芳香族系樹脂がエチレン単位を有する請求項
1記載のタイヤ用ゴム組成物。
【請求項10】
24時間アセトン浸漬時にアセトン中に可溶なスチレンブタジエンゴム及び/又はブタジエンゴムを含有する請求項1~
9のいずれかに記載のタイヤ用ゴム組成物。
【請求項11】
請求項1~
10のいずれかに記載のゴム組成物を用いたタイヤ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、タイヤ用ゴム組成物及びタイヤに関する。
【背景技術】
【0002】
従来より、乾燥路面での操縦安定性(ドライ操縦安定性)及びウェット路面での操縦安定性(ウェット操縦安定性)を改善する手法が種々検討されている(例えば、特許文献1参照)。しかしながら、近年では、これらの性能の更なる改善が求められている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は、前記課題を解決し、ドライ操縦安定性及びウェット操縦安定性の総合性能を改善できるタイヤ用ゴム組成物及びタイヤを提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明は、ゴム成分、シリカ及び樹脂成分を含有し、前記ゴム成分中、スチレン骨格量が25質量%以下、ブタジエン骨格量が70質量%以上であり、前記ゴム成分の含有量<前記シリカの含有量<前記ゴム成分の含有量+前記樹脂成分の含有量であるタイヤ用ゴム組成物に関する。
【0006】
前記樹脂成分がC5系樹脂を含むことが好ましい。
【0007】
前記シリカの平均粒子径が18nm以下であることが好ましい。
【0008】
前記樹脂成分が芳香族系樹脂を含むことが好ましい。
【0009】
前記ゴム組成物がホウ酸塩化合物を含有することが好ましい。
【0010】
前記シリカの平均粒子径が16nm以下であることが好ましい。
【0011】
前記ゴム組成物がメルカプト系シランカップリング剤を含有することが好ましい。
【0012】
前記樹脂成分が芳香族系樹脂を含み、前記芳香族系樹脂がエチレン単位を有することが好ましい。
【0013】
前記ゴム組成物が24時間アセトン浸漬時にアセトン中に可溶なスチレンブタジエンゴム及び/又はブタジエンゴムを含有することが好ましい。
【0014】
本発明はまた、前記ゴム組成物を用いたタイヤに関する。
【発明の効果】
【0015】
本発明は、ゴム成分、シリカ及び樹脂成分を含有し、ゴム成分中、スチレン骨格量が25質量%以下、ブタジエン骨格量が70質量%以上であり、ゴム成分の含有量<シリカの含有量<ゴム成分の含有量+樹脂成分の含有量であるタイヤ用ゴム組成物であるので、ドライ操縦安定性及びウェット操縦安定性の総合性能が良好となる。
【発明を実施するための形態】
【0016】
本発明のタイヤ用ゴム組成物は、ゴム成分、シリカ及び樹脂成分を含有し、ゴム成分中、スチレン骨格量が25質量%以下、ブタジエン骨格量が70質量%以上であり、ゴム成分の含有量<シリカの含有量<ゴム成分の含有量+樹脂成分の含有量である。
【0017】
上記ゴム組成物で前述の効果が得られる理由は、以下のように推察される。
上記ゴム組成物では、ゴム成分、シリカ及び樹脂成分を配合し、ゴム成分中のスチレン骨格量及びブタジエン骨格量を所定の範囲に調整しながら、シリカ量を、ゴム成分よりも多くすることで、ゴム成分中のシリカの分散が促進され、また、ゴム成分及び樹脂成分、すなわち、ゴム組成物の骨格を構成する固形の有機物成分の合計よりも少なくすることで、シリカの局在化が抑制される。そして、これらの作用により、ゴム成分とシリカの結合が形成されやすくなることで、シリカの補強効果が向上し、ドライ操縦安定性及びウェット操縦安定性の総合性能が顕著に改善されると考えられる。
【0018】
本明細書において、スチレン骨格とは、スチレンを重合した際に形成される繰り返し単位の構造を意味し、ブタジエン骨格とは、1,3-ブタジエンを重合した際に形成される繰り返し単位の構造を意味する。ブタジエン骨格は、1,4結合、1,2結合のいずれであってもよいし、水素添加されていてもよい。また、スチレン骨格、ブタジエン骨格は、置換基を有していてもよい。
【0019】
上記ゴム組成物は、ゴム成分を含有する。
ここで、ゴム成分は、架橋に寄与する成分であり、一般的に、重量平均分子量(Mw)が1万以上のものである。
【0020】
ゴム成分の重量平均分子量は、好ましくは5万以上、より好ましくは15万以上、更に好ましくは20万以上であり、また、好ましくは200万以下、より好ましくは150万以下、更に好ましくは100万以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0021】
なお、本明細書において、重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMULTIPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
【0022】
ゴム成分中のスチレン骨格量は、25質量%以下であればよいが、好ましくは20質量%以下、より好ましくは16質量%以下であり、また、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは12質量%以上である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0023】
ここで、ゴム成分中のスチレン骨格量は、ゴム成分全量中に含まれるスチレン骨格の合計含有量(単位:質量%)であり、Σ(各ゴム成分の含有量×各ゴム成分中のスチレン骨格量/100)で算出できる。例えば、ゴム成分100質量%中、スチレン骨格量:40質量%のSBRが85質量%、スチレン骨格量:25質量%のSBRが5質量%、スチレン骨格量:0質量%のBRが10質量%である場合、ゴム成分中のスチレン骨格量は、35.25質量%(=85×40/100+5×25/100+10×0/100)である。
【0024】
ゴム成分中のブタジエン骨格量は、70質量%以上であればよいが、好ましくは75質量%以上、より好ましくは80質量%以上であり、また、好ましくは95質量%以下、より好ましくは90質量%以下、更に好ましくは85質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0025】
ここで、ゴム成分中のブタジエン骨格量は、ゴム成分全量中に含まれるブタジエン部の合計含有量(単位:質量%)であり、Σ(各ゴム成分の含有量×各ゴム成分中のブタジエン骨格量/100)で算出できる。例えば、ゴム成分100質量%中、ブタジエン骨格量:60質量%のSBRが85質量%、ブタジエン骨格量:75質量%のSBRが5質量%、ブタジエン骨格量:100質量%のBRが10質量%である場合、ゴム成分中のブタジエン骨格量は、64.75質量%(=85×60/100+5×75/100+10×100/100)である。
【0026】
ゴム成分中のブタジエン骨格量/ゴム成分中のスチレン骨格量は、好ましくは4.5以上、より好ましくは5.0以上、更に好ましくは5.4以上であり、また、好ましくは9.0以下、より好ましくは8.0以下、更に好ましくは7.0以下、特に好ましくは6.0以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0027】
なお、各ゴム成分中のスチレン骨格量、ブタジエン骨格量は、核磁気共鳴(NMR)法によって測定できる。
また、ゴム成分中のスチレン骨格量、ブタジエン骨格量について、本明細書の実施例では、上述の計算式に沿って算出しているが、例えば、熱分解ガスクロマトグラフ質量分析装置(Py-GC/MS)等により、タイヤから分析してもよい。
【0028】
上記ゴム組成物は、ゴム成分として、スチレン骨格及びブタジエン骨格を有する共重合体を含有することが好ましい。
上記共重合体としては、スチレン-ブタジエン共重合体ゴム(SBR)、スチレン-イソプレン共重合体ゴム(SIR)、スチレン-イソプレン-ブタジエン共重合体ゴム等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、SBRが好ましい。
【0029】
SBRとしては特に限定されず、例えば、乳化重合スチレンブタジエンゴム(E-SBR)、溶液重合スチレンブタジエンゴム(S-SBR)等を使用できる。市販品としては、住友化学(株)、JSR(株)、旭化成(株)、日本ゼオン(株)等の製品が挙げられる。
【0030】
SBRのスチレン量は、好ましくは5質量%以上、より好ましくは10質量%以上、更に好ましくは12質量%以上であり、また、好ましくは25質量%以下、より好ましくは20質量%以下、更に好ましくは16質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、SBRのスチレン量は、NMR法によって測定できる。
【0031】
なお、上述のSBRのスチレン量は、SBRが1種である場合、当該SBRのスチレン量を意味し、複数種である場合、平均スチレン量を意味する。
SBRの平均スチレン量は、{Σ(各SBRの含有量×各SBRのスチレン量)}/全SBRの合計含有量で算出でき、例えば、ゴム成分100質量%中、スチレン量:40質量%のSBRが85質量%、スチレン量:25質量%のSBRが5質量%である場合、SBRの平均スチレン量は、39.2質量%(=(85×40+5×25)/(85+5))である。
【0032】
ゴム成分100質量%中、スチレン骨格及びブタジエン骨格を有する共重合体の含有量は、好ましくは40質量%以上、より好ましくは50質量%以上、更に好ましくは60質量%以上であり、また、好ましくは80質量%以下、より好ましくは70質量%以下、更に好ましくは65質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0033】
スチレン骨格及びブタジエン骨格を有する共重合体以外に使用できるゴム成分としては、ブタジエンゴム(BR)イソプレン系ゴム、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、スチレン-イソプレン-ブタジエン共重合ゴム(SIBR)等のジエン系ゴムが挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、BRが好ましい。
【0034】
BRとしては特に限定されず、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR150B等の高シス含有量のBR、宇部興産(株)製のVCR412、VCR617等の1,2-シンジオタクチックポリブタジエン結晶(SPB)を含むBR、希土類元素系触媒を用いて合成されたブタジエンゴム(希土類系BR)等、タイヤ工業において一般的なものを使用できる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、希土類系BRが好ましい。
【0035】
希土類系BRの合成に使用される希土類元素系触媒としては、公知のものを使用できるが、ランタン系列希土類元素化合物が好ましく、ネオジム含有化合物(Nd系触媒)がより好ましい。
【0036】
BRのシス量(シス含量)は、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上であり、また、好ましくは99質量%以下、より好ましくは98質量%以下、更に好ましくは97質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、BRのシス量は、赤外吸収スペクトル分析法によって測定できる。
【0037】
なお、上述のBRのシス量は、BRが1種である場合、当該BRのシス量を意味し、複数種である場合、平均シス量を意味する。
BRの平均シス量は、{Σ(各BRの含有量×各BRのシス量)}/全BRの合計含有量で算出でき、例えば、ゴム成分100質量%中、シス量:90質量%のBRが20質量%、シス量:40質量%のBRが10質量%である場合、BRの平均シス量は、73.3質量%(=((20×90+10×40)/(20+10))である。
【0038】
ゴム成分100質量%中、BRの含有量は、好ましくは20質量%以上、より好ましくは30質量%以上、更に好ましくは35質量%以上であり、また、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0039】
ドライ操縦安定性及びウェット操縦安定性の総合性能等の観点から、上記ゴム組成物では、ゴム成分中のスチレン骨格量<BRの含有量であることが好ましい。
【0040】
BRの含有量/ゴム成分中のスチレン骨格量は、好ましくは1.5以上、より好ましくは2.0以上、更に好ましくは2.5以上であり、また、好ましくは5.5以下、より好ましくは4.0以下、更に好ましくは3.0以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0041】
なお、これらの関係において、ゴム成分中のスチレン骨格量は、ゴム成分全量中に含まれるスチレン骨格の合計含有量(単位:質量%)であり、BRの含有量は、ゴム成分100質量中の含有量(単位:質量%)である。
【0042】
ゴム成分は、変性により、シリカ等の充填剤と相互作用する官能基が導入されていてもよい。
上記官能基としては、例えば、アミノ基、アミド基、シリル基、アルコキシシリル基、イソシアネート基、イミノ基、イミダゾール基、ウレア基、エーテル基、カルボニル基、オキシカルボニル基、メルカプト基、スルフィド基、ジスルフィド基、スルホニル基、スルフィニル基、チオカルボニル基、アンモニウム基、イミド基、ヒドラゾ基、アゾ基、ジアゾ基、カルボキシル基、ニトリル基、ピリジル基、アルコキシ基、水酸基、オキシ基、エポキシ基等が挙げられる。なお、これらの官能基は、置換基を有していてもよい。なかでも、アミノ基(好ましくはアミノ基が有する水素原子が炭素数1~6のアルキル基に置換されたアミノ基)、アルコキシ基(好ましくは炭素数1~6のアルコキシ基)、アルコキシシリル基(好ましくは炭素数1~6のアルコキシシリル基)が好ましい。
【0043】
上記官能基を有する化合物(変性剤)の具体例としては、2-ジメチルアミノエチルトリメトキシシラン、3-ジメチルアミノプロピルトリメトキシシラン、2-ジメチルアミノエチルトリエトキシシラン、3-ジメチルアミノプロピルトリエトキシシラン、2-ジエチルアミノエチルトリメトキシシラン、3-ジエチルアミノプロピルトリメトキシシラン、2-ジエチルアミノエチルトリエトキシシラン、3-ジエチルアミノプロピルトリエトキシシラン等が挙げられる。
【0044】
上記ゴム組成物は、シリカを含有する。
シリカとしては、例えば、乾式法シリカ(無水ケイ酸)、湿式法シリカ(含水ケイ酸)等が挙げられるが、シラノール基が多いという理由から、湿式法シリカが好ましい。市販品としては、EVONIK社、東ソー・シリカ(株)、ソルベイジャパン(株)、(株)トクヤマ等の製品を使用できる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0045】
シリカの平均粒子径は、好ましくは24nm以下、より好ましくは17nm以下、更に好ましくは15nm以下であり、また、好ましくは6nm以上、より好ましくは9nm以上、更に好ましくは12nm以上である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0046】
なお、本明細書において、シリカの平均粒子径の測定方法は、透過型電子顕微鏡(TEM)観察が用いられる。具体的には、シリカ粒子を透過型電子顕微鏡で写真撮影し、粒子の形状が球形の場合には球の直径を粒子径とし、針状又は棒状の場合には短径を粒子径とし、不定型の場合には中心部からの平均粒径を粒子径とし、微粒子100個の粒径の平均値を平均粒子径とする。
【0047】
シリカの含有量は、ゴム成分100質量部に対して、好ましくは60質量部以上、より好ましくは80質量部以上、更に好ましくは100質量部以上、特に好ましくは110質量部以上であり、また、好ましくは160質量部以下、より好ましくは140質量部以下、更に好ましくは130質量部以下、特に好ましくは120質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0048】
ドライ操縦安定性及びウェット操縦安定性の総合性能等の観点から、上記ゴム組成物では、BRのシス量<シリカの含有量であることが好ましい。
【0049】
シリカの含有量/BRのシス量は、好ましくは1.5以上、より好ましくは2.0以上、更に好ましくは2.5以上であり、また、好ましくは5.5以下、より好ましくは4.0以下、更に好ましくは3.0以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0050】
上記ゴム組成物は、シランカップリング剤を含有することが好ましい。
シランカップリング剤としては、特に限定されず、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(4-トリエトキシシリルブチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(4-トリメトキシシリルブチル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(4-トリエトキシシリルブチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(4-トリメトキシシリルブチル)ジスルフィド、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド等のスルフィド系、3-メルカプトプロピルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン等のメルカプト系、ビニルトリエトキシシラン、ビニルトリメトキシシラン等のビニル系、3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン等のアミノ系、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のグリシドキシ系、3-ニトロプロピルトリメトキシシラン、3-ニトロプロピルトリエトキシシラン等のニトロ系、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン等のクロロ系等があげられる。市販されているものとしては、例えば、デグッサ社、Momentive社、信越シリコーン(株)、東京化成工業(株)、アヅマックス(株)、東レ・ダウコーニング(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、メルカプト系が好ましい。
【0051】
なお、メルカプト系シランカップリング剤としては、メルカプト基を有する化合物の他、保護基によってメルカプト基が保護された構造の化合物(例えば、下記式(S1)で表される化合物)も使用可能である。
【0052】
特に好適なメルカプト系シランカップリング剤として、下記式(S1)で表わされるシランカップリング剤や、下記式(I)で示される結合単位Aと下記式(II)で示される結合単位Bとを含むシランカップリング剤が挙げられる。
【化1】
(式中、R
1001は-Cl、-Br、-OR
1006、-O(O=)CR
1006、-ON=CR
1006R
1007、-NR
1006R
1007及び-(OSiR
1006R
1007)
h(OSiR
1006R
1007R
1008)から選択される一価の基(R
1006、R
1007及びR
1008は同一でも異なっていても良く、各々水素原子又は炭素数1~18の一価の炭化水素基であり、hは平均値が1~4である。)であり、R
1002はR
1001、水素原子又は炭素数1~18の一価の炭化水素基、R
1003は-[O(R
1009O)
j]-基(R
1009は炭素数1~18のアルキレン基、jは1~4の整数である。)、R
1004は炭素数1~18の二価の炭化水素基、R
1005は炭素数1~18の一価の炭化水素基を示し、x、y及びzは、x+y+2z=3、0≦x≦3、0≦y≦2、0≦z≦1の関係を満たす数である。)
【化2】
【化3】
(式中、vは0以上の整数、wは1以上の整数である。R
11は水素、ハロゲン、分岐若しくは非分岐の炭素数1~30のアルキル基、分岐若しくは非分岐の炭素数2~30のアルケニル基、分岐若しくは非分岐の炭素数2~30のアルキニル基、又は該アルキル基の末端の水素が水酸基若しくはカルボキシル基で置換されたものを示す。R
12は分岐若しくは非分岐の炭素数1~30のアルキレン基、分岐若しくは非分岐の炭素数2~30のアルケニレン基、又は分岐若しくは非分岐の炭素数2~30のアルキニレン基を示す。R
11とR
12とで環構造を形成してもよい。)
【0053】
式(S1)において、R1005、R1006、R1007及びR1008はそれぞれ独立に、炭素数1~18の直鎖状、環状もしくは分枝状のアルキル基、アルケニル基、アリール基及びアラルキル基からなる群から選択される基であることが好ましい。また、R1002が炭素数1~18の一価の炭化水素基である場合は、直鎖状、環状もしくは分枝状のアルキル基、アルケニル基、アリール基及びアラルキル基からなる群から選択される基であることが好ましい。R1009は直鎖状、環状又は分枝状のアルキレン基であることが好ましく、特に直鎖状のものが好ましい。R1004は例えば炭素数1~18のアルキレン基、炭素数2~18のアルケニレン基、炭素数5~18のシクロアルキレン基、炭素数6~18のシクロアルキルアルキレン基、炭素数6~18のアリーレン基、炭素数7~18のアラルキレン基を挙げることができる。アルキレン基及びアルケニレン基は、直鎖状及び分枝状のいずれであってもよく、シクロアルキレン基、シクロアルキルアルキレン基、アリーレン基及びアラルキレン基は、環上に低級アルキル基等の官能基を有していてもよい。このR1004としては、炭素数1~6のアルキレン基が好ましく、特に直鎖状アルキレン基、例えばメチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基が好ましい。
【0054】
式(S1)におけるR1002、R1005、R1006、R1007及びR1008の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、シクロペンチル基、シクロヘキシル基、ビニル基、プロぺニル基、アリル基、ヘキセニル基、オクテニル基、シクロペンテニル基、シクロヘキセニル基、フェニル基、トリル基、キシリル基、ナフチル基、ベンジル基、フェネチル基、ナフチルメチル基等が挙げられる。
式(S1)におけるR1009の例として、直鎖状アルキレン基としては、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、ヘキシレン基等が挙げられ、分枝状アルキレン基としては、イソプロピレン基、イソブチレン基、2-メチルプロピレン基等が挙げられる。
【0055】
式(S1)で表されるシランカップリング剤の具体例としては、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリエトキシシラン、3-ラウロイルチオプロピルトリエトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリエトキシシラン、2-ラウロイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-ラウロイルチオプロピルトリメトキシシラン、2-ヘキサノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-ラウロイルチオエチルトリメトキシシラン等を挙げることができる。これらは、単独で用いても、2種以上を併用してもよい。なかでも、3-オクタノイルチオプロピルトリエトキシシランが特に好ましい。
【0056】
式(I)で示される結合単位Aと式(II)で示される結合単位Bとを含むシランカップリング剤において、結合単位Aの含有量は、好ましくは30モル%以上、より好ましくは50モル%以上であり、好ましくは99モル%以下、より好ましくは90モル%以下である。また、結合単位Bの含有量は、好ましくは1モル%以上、より好ましくは5モル%以上、更に好ましくは10モル%以上であり、好ましくは70モル%以下、より好ましくは65モル%以下、更に好ましくは55モル%以下である。また、結合単位A及びBの合計含有量は、好ましくは95モル%以上、より好ましくは98モル%以上、特に好ましくは100モル%である。
なお、結合単位A、Bの含有量は、結合単位A、Bがシランカップリング剤の末端に位置する場合も含む量である。結合単位A、Bがシランカップリング剤の末端に位置する場合の形態は特に限定されず、結合単位A、Bを示す式(I)、(II)と対応するユニットを形成していればよい。
【0057】
式(I)、(II)におけるR11について、ハロゲンとしては、塩素、臭素、フッ素等があげられる。分岐若しくは非分岐の炭素数1~30のアルキル基としては、メチル基、エチル基等があげられる。分岐若しくは非分岐の炭素数2~30のアルケニル基としては、ビニル基、1-プロペニル基等があげられる。分岐若しくは非分岐の炭素数2~30のアルキニル基としては、エチニル基、プロピニル基等があげられる。
【0058】
式(I)、(II)におけるR12について、分岐若しくは非分岐の炭素数1~30のアルキレン基としては、エチレン基、プロピレン基等があげられる。分岐若しくは非分岐の炭素数2~30のアルケニレン基としては、ビニレン基、1-プロペニレン基等があげられる。分岐若しくは非分岐の炭素数2~30のアルキニレン基としては、エチニレン基、プロピニレン基等があげられる。
【0059】
式(I)で示される結合単位Aと式(II)で示される結合単位Bとを含むシランカップリング剤において、結合単位Aの繰り返し数(v)と結合単位Bの繰り返し数(w)の合計の繰り返し数(v+w)は、3~300の範囲が好ましい。
【0060】
シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは3質量部以上、より好ましくは6質量部以上、更に好ましくは8質量部以上であり、また、好ましくは15質量部以下、より好ましくは12質量部以下、更に好ましくは10質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0061】
上記ゴム組成物は、樹脂成分を含有する。
樹脂成分としては、例えば、C5系樹脂、芳香族系樹脂、テルペン系樹脂等を使用できる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、C5系樹脂、芳香族系樹脂が好ましい。
【0062】
C5系樹脂は、C5留分を構成モノマーとして含むポリマーであり、例えば、C5留分1種を単独で重合した単独重合体、2種以上のC5留分を共重合した共重合体の他、C5留分及びこれと共重合し得る他の単量体との共重合体も挙げられる。
【0063】
C5留分としては、例えば、1-ペンテン、2-ペンテン、2-メチル-1-ブテン等のオレフィン系炭化水素、2-メチル-1,3-ブタジエン、1,2-ペンタジエン、1,3-ペンタジエン等のジオレフィン系炭化水素等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0064】
他の単量体としては、例えば、ビニルトルエン、インデン、メチルインデン等のC9留分等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0065】
ドライ操縦安定性及びウェット操縦安定性の総合性能等の観点から、C5系樹脂は、C5留分とC9留分との共重合体(C5/C9樹脂)が好ましい。
なお、本明細書において、C5/C9樹脂のように、C5留分及び芳香族系単量体(C9留分)を構成モノマーとして含むポリマーは、芳香族系樹脂ではなく、C5系樹脂として取り扱う。
【0066】
C5系樹脂の含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上であり、また、好ましくは30質量部以下、より好ましくは25質量部以下、更に好ましくは20質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0067】
芳香族系樹脂は、芳香族系単量体を構成モノマーとして含むポリマーであり、例えば、芳香族系単量体1種を単独で重合した単独重合体、2種以上の芳香族系単量体を共重合した共重合体の他、芳香族系単量体及びこれと共重合し得る他の単量体との共重合体も挙げられる。
【0068】
芳香族系単量体としては、例えば、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等のスチレン系単量体;フェノール、アルキルフェノール、アルコキシフェノール等のフェノール系単量体;ナフトール、アルキルナフトール、アルコキシナフトール等のナフトール系単量体;クマロン、インデン等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、スチレン系単量体が好ましく、スチレン、α-メチルスチレンがより好ましい。
【0069】
他の単量体としては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の非共役オレフィンが挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、エチレンが好ましい。すなわち、芳香族系樹脂は、エチレン単位(エチレン由来の構成単位)を有することが好ましい。
【0070】
ドライ操縦安定性及びウェット操縦安定性の総合性能等の観点から、芳香族系樹脂は、α-メチルスチレン系樹脂(α-メチルスチレン単独重合体、α-メチルスチレンとスチレンとの共重合体等)、芳香族系単量体と非共役オレフィンとの共重合体が好ましく、芳香族系単量体と非共役オレフィンとの共重合体(特に、スチレンとエチレンとの共重合体)がより好ましい。
【0071】
芳香族系樹脂の含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上、特に好ましくは17質量部以上であり、また、好ましくは30質量部以下、より好ましくは25質量部以下、更に好ましくは20質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0072】
テルペン系樹脂は、テルペン化合物(テルペン系単量体)を構成モノマーとして含むポリマーであり、例えば、テルペン化合物1種を単独で重合した単独重合体、2種以上のテルペン化合物を共重合した共重合体の他、テルペン化合物及びこれと共重合し得る他の単量体との共重合体も挙げられる。
【0073】
テルペン化合物は、(C5H8)nの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C10H16)、セスキテルペン(C15H24)、ジテルペン(C20H32)等に分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオール等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0074】
ドライ操縦安定性及びウェット操縦安定性の総合性能等の観点から、テルペン系樹脂は、テルペン化合物と芳香族系単量体との共重合体(芳香族変性テルペン樹脂)が好ましく、テルペン化合物とスチレンとの共重合体(テルペンスチレン樹脂)がより好ましい。
なお、本明細書において、テルペンスチレン樹脂のように、テルペン化合物及び芳香族系単量体を構成モノマーとして含むポリマーは、芳香族系樹脂ではなく、テルペン系樹脂として取り扱う。
【0075】
テルペン系樹脂の含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上、特に好ましくは17質量部以上であり、また、好ましくは30質量部以下、より好ましくは25質量部以下、更に好ましくは20質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0076】
上述の樹脂の市販品としては、例えば、丸善石油化学(株)、住友ベークライト(株)、ヤスハラケミカル(株)、東ソー(株)、Rutgers Chemicals社、BASF社、アリゾナケミカル社、日塗化学(株)、(株)日本触媒、JXTGエネルギー(株)、荒川化学工業(株)、田岡化学工業(株)等の製品を使用できる。
【0077】
樹脂成分の含有量(複数種の樹脂を併用する場合、その合計含有量)は、ゴム成分100質量部に対して、好ましくは10質量部以上、より好ましくは15質量部以上、更に好ましくは25質量部以上、特に好ましくは30質量部以上であり、また、好ましくは50質量部以下、より好ましくは45質量部以下、更に好ましくは40質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0078】
上記ゴム組成物では、ゴム成分の含有量<シリカの含有量<ゴム成分の含有量+樹脂成分の含有量である。
【0079】
シリカの含有量/ゴム成分の含有量は、好ましくは1.02以上、より好ましくは1.08以上、更に好ましくは1.10以上であり、また、好ましくは1.80以下、より好ましくは1.60以下、更に好ましくは1.40以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0080】
(ゴム成分の含有量+樹脂成分の含有量)/シリカの含有量は、好ましくは1.02以上、より好ましくは1.08以上、更に好ましくは1.10以上であり、また、好ましくは1.80以下、より好ましくは1.60以下、更に好ましくは1.40以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0081】
なお、これらの関係において、シリカの含有量は、ゴム成分100質量部に対する含有量(単位:質量部)であり、ゴム成分の含有量は、各ゴムの合計含有量(単位:質量部)で、通常100である。
【0082】
上記ゴム組成物において、樹脂の含有量/シリカの含有量は、好ましくは0.05以上、より好ましくは0.15以上、更に好ましくは0.25以上であり、また、好ましくは0.50以下、より好ましくは0.40以下、更に好ましくは0.35以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、この関係において、樹脂の含有量、シリカの含有量は、ゴム成分100質量部に対する含有量(単位:質量部)である。
【0083】
上記ゴム組成物は、加工助剤として、ホウ酸塩化合物を含有することが好ましい。
ホウ酸塩化合物としては、例えば、ホウ酸ナトリウム、ホウ酸カリウム等のアルカリ金属塩、ホウ酸マグネシウム等のアルカリ土類金属塩や、これらの水和物等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、アルカリ金属塩及びその水和物が好ましく、ホウ酸ナトリウム及びその水和物がより好ましく、四ホウ酸ナトリウムの十水和物(ホウ砂)が更に好ましい。
【0084】
ホウ酸塩化合物の市販品としては、キシダ化学(株)、健栄製薬(株)等の製品を使用できる。
【0085】
ホウ酸塩化合物の含有量は、好ましくは0.8質量部以上、より好ましくは1.2質量部以上、更に好ましくは1.5質量部以上であり、また、好ましくは4.5質量部以下、より好ましくは3.5質量部以下、更に好ましくは2.5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0086】
上記ゴム組成物は、加工助剤として、カルシウム化合物を含有することが好ましい。
カルシウム化合物は、カルシウムを有する化合物であり、例えば、酸化カルシウム、水酸化カルシウム、炭化カルシウム等の無機塩;炭酸カルシウム、硝酸カルシウム、硫酸カルシウム等のオキソ酸塩等が挙げられる。オキソ酸塩には、酢酸カルシウム、ステアリン酸カルシウム等の脂肪酸塩も含まれる。また、カルシウム化合物を含有するものとして、卵殻(主成分:炭酸カルシウム)や、ストラクトール社製のWB16(脂肪酸カルシウム、脂肪酸アミド及び脂肪酸アミドエステルの混合物)等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、オキソ酸塩が好ましく、脂肪酸塩(脂肪酸カルシウム)がより好ましい。
【0087】
上記ゴム組成物において、カルシウム化合物の含有量は、ゴム成分100質量部に対して、カルシウム元素に換算して、好ましくは0.1質量部以上であり、また、好ましくは1.2質量部以下、より好ましくは0.8質量部以下、更に好ましくは0.5質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0088】
上記ゴム組成物は、24時間アセトン浸漬時にアセトン中に可溶なSBR及び/又はBRを含有することが好ましい。
なお、本明細書において、24時間アセトン浸漬時にアセトン中に可溶なSBR、BRとは、加硫後の上記ゴム組成物について、JIS K 6229:2015に準拠した方法で、24時間アセトン抽出した際に、少なくとも一部がアセトン中に溶出するSBR、BRである。当該SBR、BRは、ゴム成分には含まれない。
【0089】
24時間アセトン浸漬時にアセトン中に可溶なSBR、BRとしては、常温(25℃)で液状のSBR、BR(以下、液状SBR、液状BRともいう)を使用することができ、市販品としては、Cray valley社、(株)クラレ等の製品を使用できる。
【0090】
24時間アセトン浸漬時にアセトン中に可溶なSBR、BR(液状SBR、液状BR)の重量平均分子量(Mw)は、好ましくは9000以下、より好ましくは6000以下、更に好ましくは4500以下であり、また、好ましくは100以上、より好ましくは1000以上、更に好ましくは2000以上である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0091】
24時間アセトン浸漬時にアセトン中に可溶なSBR、BR(液状SBR、液状BR)の含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは8質量部以上、更に好ましくは10質量部以上であり、また、好ましくは30質量部以下、より好ましくは20質量部以下、更に好ましくは15質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0092】
上記ゴム組成物は、カーボンブラックを含有することが好ましい。
カーボンブラックとしては、特に限定されず、N134、N110、N220、N234、N219、N339、N330、N326、N351、N550、N762等が挙げられる。市販品としては、旭カーボン(株)、キャボットジャパン(株)、東海カーボン(株)、三菱ケミカル(株)、ライオン(株)、新日化カーボン(株)、コロンビアカーボン社等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
【0093】
カーボンブラックのセチルトリメチルアンモニウムブロミド(CTAB)比表面積は、好ましくは110m2/g以上、より好ましくは120m2/g以上、更に好ましくは130m2/g以上であり、また、好ましくは200m2/g以下、より好ましくは160m2/g以下、更に好ましくは140m2/g以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
なお、カーボンブラックのCTAB比表面積は、JIS K6217-3:2001に準拠して測定される値である。
【0094】
カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上であり、また、好ましくは30質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0095】
上記ゴム組成物は、オイルを含有してもよい。
オイルとしては、例えば、プロセスオイル、植物油脂、又はその混合物が挙げられる。プロセスオイルとしては、例えば、パラフィン系プロセスオイル、アロマ系プロセスオイル、ナフテン系プロセスオイル等を用いることができる。植物油脂としては、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落花生油、ロジン、パインオイル、パインタール、トール油、コーン油、こめ油、べに花油、ごま油、オリーブ油、ひまわり油、パーム核油、椿油、ホホバ油、マカデミアナッツ油、桐油等が挙げられる。市販品としては、出光興産(株)、三共油化工業(株)、JXTGエネルギー(株)、オリソイ社、H&R社、豊国製油(株)、昭和シェル石油(株)、富士興産(株)等の製品を使用できる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0096】
オイルの含有量は、ゴム成分100質量部に対して、好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは12質量部以上であり、また、好ましくは60質量部以下、より好ましくは40質量部以下、更に好ましくは30質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0097】
上記ゴム組成物は、老化防止剤を含有してもよい。
老化防止剤としては、例えば、フェニル-α-ナフチルアミン等のナフチルアミン系老化防止剤;オクチル化ジフェニルアミン、4,4′-ビス(α,α′-ジメチルベンジル)ジフェニルアミン等のジフェニルアミン系老化防止剤;N-イソプロピル-N′-フェニル-p-フェニレンジアミン、N-(1,3-ジメチルブチル)-N′-フェニル-p-フェニレンジアミン、N,N′-ジ-2-ナフチル-p-フェニレンジアミン等のp-フェニレンジアミン系老化防止剤;2,2,4-トリメチル-1,2-ジヒドロキノリンの重合物等のキノリン系老化防止剤;2,6-ジ-t-ブチル-4-メチルフェノール、スチレン化フェノール等のモノフェノール系老化防止剤;テトラキス-[メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート]メタン等のビス、トリス、ポリフェノール系老化防止剤等が挙げられる。市販品としては、精工化学(株)、住友化学(株)、大内新興化学工業(株)、フレクシス社等の製品を使用できる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0098】
老化防止剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは4.5質量部以上であり、また、好ましくは10質量部以下、より好ましくは8質量部以下、更に好ましくは6質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0099】
上記ゴム組成物は、ワックスを含有してもよい。
ワックスとしては、特に限定されず、パラフィンワックス、マイクロクリスタリンワックス等の石油系ワックス;植物系ワックス、動物系ワックス等の天然系ワックス;エチレン、プロピレン等の重合物等の合成ワックス等が挙げられる。市販品としては、大内新興化学工業(株)、日本精蝋(株)、精工化学(株)等の製品を使用できる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0100】
ワックスの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2.5質量部以上であり、また、好ましくは10質量部以下、より好ましくは6質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0101】
上記ゴム組成物は、ステアリン酸を含有してもよい。
ステアリン酸としては、従来公知のものを使用でき、市販品としては、日油(株)、花王(株)、富士フイルム和光純薬(株)、千葉脂肪酸(株)等の製品を使用できる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0102】
ステアリン酸の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは2質量部以上であり、また、好ましくは10質量部以下、より好ましくは6質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0103】
上記ゴム組成物は、酸化亜鉛を含有してもよい。
酸化亜鉛としては、従来公知のものを使用でき、市販品としては、三井金属鉱業(株)、東邦亜鉛(株)、ハクスイテック(株)、正同化学工業(株)、堺化学工業(株)等の製品を使用できる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。
【0104】
酸化亜鉛の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上であり、また、好ましくは10質量部以下、より好ましくは6質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0105】
上記ゴム組成物は、硫黄を含有してもよい。
硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄等が挙げられる。市販品としては、鶴見化学工業(株)、軽井沢硫黄(株)、四国化成工業(株)、フレクシス社、日本乾溜工業(株)、細井化学工業(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
【0106】
硫黄の含有量は、ゴム成分100質量部に対して、好ましくは0.8質量部以上、より好ましくは1.2質量部以上、更に好ましくは1.5質量部以上であり、また、好ましくは6質量部以下、より好ましくは4質量部以下、更に好ましくは3質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0107】
上記ゴム組成物は、加硫促進剤を含有してもよい。
加硫促進剤としては、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド等のチアゾール系加硫促進剤;テトラメチルチウラムジスルフィド(TMTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)等のチウラム系加硫促進剤;N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS)、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(TBBS)、N-オキシエチレン-2-ベンゾチアゾールスルフェンアミド、N,N′-ジイソプロピル-2-ベンゾチアゾールスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン、ジオルトトリルグアニジン、オルトトリルビグアニジン等のグアニジン系加硫促進剤を挙げることができる。市販品としては、住友化学(株)、大内新興化学工業(株)等の製品を使用できる。これらは、単独で用いてもよく、2種以上を併用してもよい。
【0108】
加硫促進剤の含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上であり、また、好ましくは10質量部以下、より好ましくは8質量部以下、更に好ましくは6質量部以下である。上記範囲内であると、効果がより良好に得られる傾向がある。
【0109】
上記ゴム組成物には、上記成分の他、タイヤ工業において一般的に用いられている添加剤、例えば、有機過酸化物;タルク、アルミナ、クレー、水酸化アルミニウム、マイカ等の充填剤;等を更に配合してもよい。これらの添加剤の含有量は、ゴム成分100質量部に対して、0.1~200質量部が好ましい。
【0110】
上記ゴム組成物は、例えば、上述の各成分をオープンロール、バンバリーミキサー等のゴム混練装置を用いて混練し、その後加硫する方法等により製造できる。
【0111】
混練条件としては、加硫剤及び加硫促進剤以外の添加剤を混練するベース練り工程では、混練温度は、通常100~180℃、好ましくは120~170℃である。加硫剤、加硫促進剤を混練する仕上げ練り工程では、混練温度は、通常120℃以下、好ましくは85~110℃である。また、加硫剤、加硫促進剤を混練した組成物は、通常、プレス加硫等の加硫処理が施される。加硫温度としては、通常140~190℃、好ましくは150~185℃である。加硫時間は、通常5~15分である。
【0112】
上記ゴム組成物は、例えば、トレッド(キャップトレッド)、サイドウォール、ベーストレッド、アンダートレッド、ショルダー、クリンチ、ビードエイペックス、ブレーカークッションゴム、カーカスコード被覆用ゴム、インスレーション、チェーファー、インナーライナー等や、ランフラットタイヤのサイド補強層などのタイヤ部材に(タイヤ用ゴム組成物として)用いることができる。なかでも、トレッドに好適である。
【0113】
本発明のタイヤは、上記ゴム組成物を用いて通常の方法で製造される。
すなわち、上記ゴム組成物を、未加硫の段階でトレッド等の形状にあわせて押出し加工し、他のタイヤ部材とともに、タイヤ成型機上にて通常の方法で成形することにより、未加硫タイヤを形成する。この未加硫タイヤを加硫機中で加熱加圧することにより、タイヤを得る。
【0114】
上記タイヤ(空気入りタイヤ等)は、乗用車用タイヤ;トラック・バス用タイヤ;二輪車用タイヤ;高性能タイヤ;スタッドレスタイヤ等の冬用タイヤ;サイド補強層を備えるランフラットタイヤ;スポンジ等の吸音部材をタイヤ内腔に備える吸音部材付タイヤ;パンク時に封止可能なシーラントをタイヤ内部又はタイヤ内腔に備える封止部材付タイヤ;センサや無線タグ等の電子部品をタイヤ内部又はタイヤ内腔に備える電子部品付タイヤ等に使用可能であり、乗用車用タイヤに好適である。
【0115】
上記タイヤのサイズは特に限定されず、例えば、タイヤ幅は100~400mmの範囲内で、扁平率は25~85%の範囲内で、リム径は10~25インチの範囲内で、適宜選択可能である。具体例としては、105/50R16、115/50R17、125/55R20、135/45R21、145/45R21、155/45R18、165/45R22、175/45R23、185/60R20、195/55R14、205/40R16、215/40R16、225/40R17、235/40R17、245/40R16、255/40R17、265/40R17、275/35R18、285/30R19、295/45R20等が挙げられる。
【0116】
上記タイヤは、タイヤ外径Dt及びタイヤ断面幅Wtが下記式の関係式を満たすことが好ましい。
【数1】
なお、タイヤ外径(Dt)とは、タイヤを適用リムに装着して内圧250kPa・無負荷とした状態のタイヤの外径である。タイヤ断面幅(Wt)とは、タイヤを適用リムに装着して内圧250kPa・無負荷とした状態のタイヤ側面の模様又は文字など全てを含むサイドウォール間の直線距離、つまり総幅からタイヤの側面の模様、文字などを除いた幅である。
【0117】
上記式を満たしうるタイヤとしては、具体的には、145/60R18、145/60R19、155/55R18、155/55R19、155/70R17、155/70R19、165/55R20、165/55R21、165/60R19、165/65R19、165/70R18、175/55R19、175/55R20、175/55R22、175/60R18、185/55R19、185/60R20、195/50R20、195/55R20等が挙げられる。
【0118】
上記式を満たすタイヤは、乗用車用空気入りタイヤに適用することが好ましい。上記式を満たす乗用車用空気入りタイヤは、本件の課題解決により好適となる傾向があるためである。
【実施例】
【0119】
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
【0120】
以下に、実施例及び比較例で用いた各種薬品について説明する。
【0121】
(ゴム成分)
SBR1:JSR(株)製のJSR1723(スチレン量(スチレン骨格量):24質量%、ブタジエン量(ブタジエン骨格量):76質量%、ゴム固形分100質量部に対してオイル分37.5質量部含有)
SBR2:JSR(株)製のJSR1502(スチレン量(スチレン骨格量):25質量%、ブタジエン量(ブタジエン骨格量):75質量%)
SBR3:LANXESS社製のBuna VSL 4526-0 HM(スチレン量(スチレン骨格量):26質量%、ブタジエン量(ブタジエン骨格量):74質量%、ゴム固形分100質量部に対してオイル分37.5質量部含有)
SBR4:旭化成(株)製のタフデン3830(スチレン量(スチレン骨格量):36質量%、ブタジエン量(ブタジエン骨格量):64質量%、ゴム固形分100質量部に対してオイル分37.5質量部含有)
変性SBR1:下記製造例1で合成(スチレン量:10質量%、ブタジエン量(ブタジエン骨格量):90質量%、Mw:20万)
変性SBR2:下記製造例2で合成(スチレン量:30質量%、ブタジエン量(ブタジエン骨格量):70質量%、Mw:30万)
BR:LANXESS社製のBuna CB24(Nd系触媒を用いて合成されたBR、ブタジエン量(ブタジエン骨格量):100質量%、シス量:96質量%)
【0122】
(ゴム成分以外の薬品)
カーボンブラック:N134(CTAB:135m2/g)
シリカ1:ローディア社製のZEOSIL 1115MP(平均粒子径:24nm)
シリカ2:エボニックデグッサ社製のウルトラシルVN3(平均粒子径:17nm)
シリカ3:エボニックデグッサ社製のウルトラシル9100GR(平均粒子径:15nm)
シランカップリング剤1:エボニックデグッサ社製のSi266(ビス(3-トリエトキシシリルプロピル)ジスルフィド)
シランカップリング剤2:Momentive社製のNXT(3-オクタノイルチオプロピルトリエトキシシラン)
樹脂1:Cray Valley社製のRicon340(C5/C9樹脂)
樹脂2:アリゾナケミカル社製のSylvatraxx4401(α-メチルスチレン系樹脂(α-メチルスチレンとスチレンとの共重合体))
樹脂3:ヤスハラケミカル(株)製のYSレジンTO125(テルペンスチレン樹脂(テルペン化合物とスチレンとの共重合体))
樹脂4:ストラクトール社製のストラクトール40MS(スチレンとエチレンとの共重合体)
オイル:H&R社製のVIVATEC500(TDAEオイル)
液状SBR:Cray valley社製のRicon100(Mw:4500)
ワックス:日本精蝋(株)製のオゾエース0355
老化防止剤1:大内新興化学工業(株)製のノクラック6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
老化防止剤2:大内新興化学工業(株)製のノクラックRD(ポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン))
加工助剤1:ストラクトール社製のWB16(脂肪酸カルシウム、脂肪酸アミド及び脂肪酸アミドエステルの混合物、カルシウム元素量:約5質量%)
加工助剤2:キシダ化学(株)製の四ホウ酸ナトリウムの十水和物
ステアリン酸:日油(株)製のステアリン酸「椿」
酸化亜鉛:三井金属鉱業(株)製の亜鉛華1号
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤1:大内新興化学工業(株)製のノクセラーCZ(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)
加硫促進剤2:大内新興化学工業(株)製のノクセラーD(ジフェニルグアニジン)
【0123】
(製造例1)
窒素置換されたオートクレーブ反応器に、シクロヘキサン、テトラヒドロフラン、スチレン、及び1,3-ブタジエンを仕込んだ。反応器の内容物の温度を20℃に調整した後、n-ブチルリチウムを添加して重合を開始した。断熱条件で重合し、最高温度は85℃に達した。重合転化率が99%に達した時点でブタジエンを追加し、更に5分重合させた後、3-ジメチルアミノプロピルトリエトキシシランを変性剤として加えて15分間反応を行った。重合反応終了後、2,6-ジ-tert-ブチル-p-クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥して変性SBR1を得た。
【0124】
(製造例2)
窒素置換されたオートクレーブ反応器に、シクロヘキサン、テトラヒドロフラン、スチレン、及び1,3-ブタジエンを仕込んだ。反応器の内容物の温度を20℃に調整した後、n-ブチルリチウムを添加して重合を開始した。断熱条件で重合し、最高温度は85℃に達した。重合転化率が99%に達した時点で1,3-ブタジエンを追加し、更に5分重合させた後、N-(3-ジメチルアミノプロピル)アクリルアミドを変性剤として加えて反応を行った。重合反応終了後、2,6-ジ-tert-ブチル-p-クレゾールを添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールにより乾燥して変性SBR2を得た。
【0125】
(実施例及び比較例)
表1に示す配合内容に従い、(株)神戸製鋼所製の1.7Lバンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を150℃の条件下で5分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、80℃の条件下で5分間練り込み、未加硫ゴム組成物を得た。得られた未加硫ゴム組成物をトレッドの形状に成形し、他のタイヤ部材とともに貼り合わせて未加硫タイヤを形成し、150℃の条件下で12分間プレス加硫し、試験用タイヤ(サイズ:175/60R18)を製造した。得られた試験用タイヤを用いて下記評価を行い、結果を表1に示した。
なお、表1において、油展ゴム中のゴム分はゴムの欄に記載し、油展ゴム中のオイル分はオイルの欄に加算している。
【0126】
(ドライ操縦安定性)
上記試験用タイヤを全輪に装着した車両でドライ路面のテストコースを10周走行した際の周回時間を測定した。また、いずれの実施例及び比較例よりも周回時間が長い基準タイヤを用いて同様の条件で走行した。そして、各実施例及び比較例と基準タイヤとの周回時間の差を、比較例5を100として指数表示した。指数が大きいほど、基準タイヤの周回時間との差(周回時間の短縮量)が大きく、ドライ操縦安定性(ドライ路面での操縦安定性)に優れることを示す。
【0127】
(ウェット操縦安定性)
上記試験用タイヤを全輪に装着した車両でウェット路面のテストコースを10周走行した際の周回時間を測定した。また、いずれの実施例及び比較例よりも周回時間が長い基準タイヤを用いて同様の条件で走行した。そして、各実施例及び比較例と基準タイヤとの周回時間の差を、比較例1を100として指数表示した。指数が大きいほど、基準タイヤの周回時間との差(周回時間の短縮量)が大きく、ウェット操縦安定性(ウェット路面での操縦安定性)に優れることを示す。
【0128】
【0129】
表1より、実施例は、目的とするドライ操縦安定性及びウェット操縦安定性の総合性能(各指数の合計)が比較例より優れていた。