IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友電気工業株式会社の特許一覧

<>
  • 特許-切削工具 図1
  • 特許-切削工具 図2
  • 特許-切削工具 図3
  • 特許-切削工具 図4
  • 特許-切削工具 図5
  • 特許-切削工具 図6
  • 特許-切削工具 図7
  • 特許-切削工具 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-26
(45)【発行日】2024-09-03
(54)【発明の名称】切削工具
(51)【国際特許分類】
   B23B 27/14 20060101AFI20240827BHJP
   C23C 16/42 20060101ALI20240827BHJP
【FI】
B23B27/14 A
C23C16/42
【請求項の数】 5
(21)【出願番号】P 2021078025
(22)【出願日】2021-04-30
(65)【公開番号】P2022171408
(43)【公開日】2022-11-11
【審査請求日】2023-11-21
(73)【特許権者】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】小野 聡
(72)【発明者】
【氏名】パサート アノンサック
(72)【発明者】
【氏名】岡村 克己
【審査官】中川 康文
(56)【参考文献】
【文献】特開2016-107397(JP,A)
【文献】特開2016-064471(JP,A)
【文献】特開2009-269097(JP,A)
【文献】特開2009-233823(JP,A)
【文献】特開2009-095907(JP,A)
【文献】特開2006-035345(JP,A)
【文献】特開2005-028474(JP,A)
【文献】特表2018-522748(JP,A)
【文献】特表2015-505902(JP,A)
【文献】特表2010-524701(JP,A)
【文献】米国特許出願公開第2007/0087185(US,A1)
【文献】米国特許出願公開第2014/0370309(US,A1)
【文献】国際公開第2022/230362(WO,A1)
【文献】国際公開第2008/130316(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B23B 27/00-29/34
B23B 51/00-51/14
B23C 1/00-9/00
B23P 5/00-17/06
C23C 16/00-16/56
(57)【特許請求の範囲】
【請求項1】
基材と、前記基材上に配置された被膜と、を備える切削工具であって、
前記被膜は、硬質粒子層を含み、
前記硬質粒子層は、少なくともチタン、珪素、炭素及び窒素を含む複数の硬質粒子からなり、
前記硬質粒子において、前記硬質粒子内に設定される第1方向に沿って、前記珪素の濃度が周期的に変化し、
前記第1方向は、前記硬質粒子の断面を明視野透過電子顕微鏡で200万倍で観察して得られた明視野透過電子顕微鏡像において、黒色で示される層と灰色で示される層との積層方向に沿う方向であり、
前記硬質粒子層の配向は、(331)配向であり、
前記硬質粒子層の配向は、(331)配向であるとは、以下の式(1)で定義される配向性指数TC(hkl)のうち、前記硬質粒子層における(331)面の配向性指数TC(331)が、前記硬質粒子層における(111)面の配向性指数TC(111)、(200)面の配向性指数TC(200)、(311)面の配向性指数TC(311)、(220)面の配向性指数TC(220)、(420)面の配向性指数TC(420)、(422)面の配向性指数TC(422)及び(511)面の配向性数TC(511)よりも大きいことをいう、切削工具。
【数1】
【請求項2】
前記硬質粒子において、前記チタンの原子数ATiと、前記珪素の原子数ASiとの合計に対する、前記珪素の原子数ASiの百分率{ASi/(ASi+ATi)}×100の平均は、1%以上20%以下である、請求項1に記載の切削工具。
【請求項3】
前記珪素の濃度の平均周期幅は、3nm以上50nm以下である、請求項1又は請求項2に記載の切削工具。
【請求項4】
前記硬質粒子層の厚さは、1μm以上20μm以下である、請求項1から請求項3のいずれか1項に記載の切削工具。
【請求項5】
前記基材は、炭化タングステンとコバルトとを含む超硬合金からなり、
前記超硬合金中の前記コバルトの含有率は、6質量%以上11質量%以下である、請求項1から請求項4のいずれか1項に記載の切削工具。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、切削工具に関する。
【背景技術】
【0002】
従来、切削工具の耐摩耗性を向上させるために、基材上にTiSiCN膜が形成された切削工具が開発されている。
【0003】
特許文献1には、熱CVD法により製造されたTiC1-xのナノ結晶層及び非晶質SiCの第二の相を含むナノ複合被膜が開示されている。
【0004】
非特許文献1には、PVD法により形成されたナノコンポジット構造からなるTiSiCN被膜が開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特表2015-505902号公報
【非特許文献】
【0006】
【文献】Shinya Imamura et al.,“Properties and cutting performance of AlTiCrN/TiSiCN bilayer coatings deposited by cathodic-arc ion plating”,Surface and Coatings Technology,202,(2007),820-825
【発明の概要】
【発明が解決しようとする課題】
【0007】
近年、製造コスト低減の要求が益々高まり、長い工具寿命を有する切削工具が求められている。
【0008】
そこで、本開示は、長い工具寿命を有する切削工具を提供することを目的とする。
【課題を解決するための手段】
【0009】
本開示の切削工具は、基材と、前記基材上に配置された被膜と、を備える切削工具であって、
前記被膜は、硬質粒子層を含み、
前記硬質粒子層は、チタン、珪素、炭素及び窒素を含む複数の硬質粒子からなり、
前記硬質粒子において、前記硬質粒子内に設定される第1方向に沿って、前記珪素の濃度が周期的に変化し、
前記硬質粒子層の配向は、(331)配向である、切削工具である。
【発明の効果】
【0010】
本開示によれば、長い工具寿命を有する切削工具を提供することが可能となる。
【図面の簡単な説明】
【0011】
図1図1は、実施形態1に係る切削工具の断面の一例を示す模式図である。
図2図2は、実施形態1に係る切削工具の断面の他の一例を示す模式図である。
図3図3は、実施形態1に係る切削工具の断面の他の一例を示す模式図である。
図4図4は、実施形態1に係る切削工具の断面の他の一例を示す模式図である。
図5図5は、実施形態1に係る切削工具の硬質相粒子層の断面の明視野透過電子顕微鏡(BF-STEM)像(観察倍率:10万倍)の一例を模式的に示す図である。
図6図6は、実施形態1に係る切削工具の硬質相粒子層の断面の明視野透過電子顕微鏡(BF-STEM)像(観察倍率:200万倍)の一例を模式的に示す図である。
図7図7は、実施形態1に係る切削工具の硬質粒子についてライン分析を行った結果を示すグラフの一例である。
図8図8は、実施形態2に係る切削工具の製造に用いられるCVD装置の一例の模式的な断面図である。
【発明を実施するための形態】
【0012】
[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
(1)本開示の切削工具は、基材と、前記基材上に配置された被膜と、を備える切削工具であって、
前記被膜は、硬質粒子層を含み、
前記硬質粒子層は、チタン、珪素、炭素及び窒素を含む複数の硬質粒子からなり、
前記硬質粒子において、前記硬質粒子内に設定される第1方向に沿って、前記珪素の濃度が周期的に変化し、
前記硬質粒子層の配向は、(331)配向である、切削工具である。
【0013】
本開示によれば、切削工具は長い工具寿命を有することができる。
【0014】
(2)前記硬質粒子において、前記チタンの原子数ATiと、前記珪素の原子数ASiとの合計に対する、前記珪素の原子数ASiの百分率{ASi/(ASi+ATi)}×100の平均は、1%以上20%以下であることが好ましい。
【0015】
これによると、切削工具の工具寿命が更に向上する。
【0016】
(3)前記珪素の濃度の平均周期幅は、3nm以上50nm以下であることが好ましい。これによると、切削工具の工具寿命が更に向上する。
【0017】
(4)前記硬質粒子層の厚さは、1μm以上20μm以下であることが好ましい。これによると、切削工具の工具寿命が更に向上する。
【0018】
(5)前記基材は、炭化タングステンとコバルトとを含む超硬合金からなり、
前記超硬合金中の前記コバルトの含有率は、6質量%以上11質量%以下であることが好ましい。
【0019】
これによると、切削工具の工具寿命が更に向上する。
【0020】
[本開示の実施形態の詳細]
本開示の切削工具の具体例を、以下に図面を参照しつつ説明する。本開示の図面において、同一の参照符号は、同一部分または相当部分を表すものである。また、長さ、幅、厚さ、深さなどの寸法関係は図面の明瞭化と簡略化のために適宜変更されており、必ずしも実際の寸法関係を表すものではない。
【0021】
本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
【0022】
本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のもののみに限定されるべきではない。たとえば「TiSiCN」と記載されている場合、TiSiCNを構成する原子数の比は、従来公知のあらゆる原子比が含まれる。
【0023】
[実施形態1:切削工具]
本開示の一実施形態(以下、「本実施形態」とも記す。)の切削工具は、基材と、該基材上に配置された被膜と、を備える切削工具であって、
該被膜は、硬質粒子層を含み、
該硬質粒子層は、チタン、珪素、炭素及び窒素を含む複数の硬質粒子からなり、
該硬質粒子において、該硬質粒子内に設定される第1方向に沿って、該珪素の濃度が周期的に変化し、
該硬質粒子層の配向は、(331)配向である、切削工具である。
【0024】
本実施形態の切削工具は、長い工具寿命を有することができる。この理由は、以下(i)~(iii)の通りと推察される。
【0025】
(i)本実施形態の切削工具において、被膜は、チタン、珪素、炭素及び窒素を含む複数の硬質粒子からなる硬質粒子層を含む。チタン、珪素、炭素及び窒素を含む硬質粒子は硬度が高い。よって、該硬質粒子からなる硬質粒子層は硬度が高く、優れた耐摩耗性を有する。
【0026】
(ii)本実施形態の切削工具の硬質粒子において、該硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化する。これによると、硬質粒子内に歪みが生じ、硬質粒子及び硬質粒子層の硬度が高くなり、切削工具の耐摩耗性が向上する。また、硬質粒子内の組成変化により、クラックの伝播が抑制され、切削工具の耐欠損性が向上する。
【0027】
(iii)本実施形態の切削工具において、硬質粒子層の配向は、(331)配向である。硬質粒子層の配向が(331)配向であると、硬度をヤング率で割った比が低下し、該硬質粒子層の靱性が向上する。該硬質粒子層を含む切削工具は特に鋳鉄切削において、優れた耐欠損性を示す。これは、本発明者等が新たに見出した知見である。
【0028】
<切削工具の構成>
図1に示されるように、本実施形態の切削工具1は、基材10と、該基材10上に配置された被膜14とを備える。図1では、該被膜14は、硬質粒子層11のみから構成される。被膜14は、基材の切削に関与する部分の少なくとも一部を被覆することが好ましく、基材の全面を被覆することが更に好ましい。基材の切削に関与する部分とは、基材表面において、刃先稜線からの距離が500μm以内の領域を意味する。基材の一部がこの被膜で被覆されていなかったり被膜の構成が部分的に異なっていたりしていたとしても、本開示の範囲を逸脱するものではない。
【0029】
被膜は、硬質粒子層に加えて、他の層を含むことができる。例えば、図2の切削工具21に示されるように、被膜24は、硬質粒子層11に加えて、基材10と硬質粒子層11との間に配置される下地層12を更に含むことができる。
【0030】
図3の切削工具31に示されるように、被膜34は、硬質粒子層11及び下地層12に加えて、硬質粒子層11上に配置される最外層13を含むことができる。
【0031】
図4の切削工具41に示されるように、被膜45は、硬質粒子層11、第1下地層12A及び第2下地層12Bの2層構造からなる下地層12並びに最外層13を含むことができる。
【0032】
<切削工具の種類>
本開示の切削工具は、例えば、ドリル、エンドミル(例えば、ボールエンドミル)、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ等であり得る。
【0033】
<基材>
基材10は、すくい面と逃げ面とを含み、この種の基材として従来公知のものであればいずれも使用することができる。例えば、超硬合金(例えば、炭化タングステンとコバルトとを含むWC基超硬合金、該超硬合金はTi、Ta、Nbなどの炭窒化物を含むことができる)、サーメット(TiC、TiN、TiCNなどを主成分とするもの)、高速度鋼、セラミックス(炭化チタン、炭化ケイ素、窒化ケイ素、窒化アルミニウム、酸化アルミニウムなど)、立方晶型窒化ホウ素焼結体またはダイヤモンド焼結体のいずれかであることが好ましい。
【0034】
これらの各種基材の中でも、炭化タングステンとコバルトとを含む超硬合金からなり、該超硬合金中のコバルトの含有率は、6質量%以上11質量%以下である基材が好ましい。これによると、高温における硬度と強度のバランスに優れ、上記用途の切削工具の基材として優れた特性を有している。基材としてWC基超硬合金を用いる場合、その組織中に遊離炭素、ならびにη相またはε相と呼ばれる異常層などを含んでいてもよい。
【0035】
さらに基材は、その表面が改質されていてもよい。例えば超硬合金の場合、その表面に脱β層が形成されていたり、サーメットの場合に表面硬化層が形成されていてもよい。基材は、その表面が改質されていても所望の効果が示される。
【0036】
切削工具が刃先交換型切削チップなどである場合、基材は、チップブレーカーを有しても、有さなくてもよい。刃先稜線部の形状は、シャープエッジ(すくい面と逃げ面とが交差する稜)、ホーニング(シャープエッジに対してアールを付与したもの)、ネガランド(面取りをしたもの)、又は、ホーニングとネガランドを組み合わせたもの等、いずれも採用できる。
【0037】
<被膜の構成>
本実施形態の被膜は、硬質粒子層を含む。本実施形態の被膜は、硬質粒子層を含む限り、他の層を含んでいてもよい。他の層としては、例えば、下地層及び最外層が挙げられる。硬質粒子層、下地層及び最外層の詳細については後述する。
【0038】
本実施形態の被膜全体の厚さは、1μm以上30μm以下が好ましい。被膜全体の厚さが1μm以上であると、優れた耐摩耗性を有することができる。一方、被膜全体の厚さが30μm以下であると、断続加工において被膜と基材との間に大きな応力が加わった際の被膜の剥離または破壊の発生を抑制することができる。
【0039】
上記被膜の厚さは、例えば基材の表面の法線方向に平行な断面サンプルを得て、このサンプルを走査透過型電子顕微鏡(STEM:Scanning Transmission Electron Microscopy)で観察することにより測定される。走査透過型電子顕微鏡としては、例えば、日本電子株式会社製のJEM-2100F(商標)が挙げられる。測定条件は加速電圧200kV及び電流量0.3nAとする。
【0040】
本明細書において「厚さ」といった場合、その厚さは平均厚さを意味する。具体的には、断面サンプルの観察倍率を1000倍とし、電子顕微鏡像中に(基材表面に平行な方向100μm)×(被膜の厚さ全体を含む距離)の矩形の測定視野を設定し、該視野において10箇所の厚み幅を測定し、その平均値を「厚さ」とする。下記に記載される各層の厚さ(平均厚さ)についても、同様に測定し、算出される。
【0041】
同一の試料において測定する限りにおいては、測定視野の選択個所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定視野を設定しても恣意的にはならないことが確認されている。
【0042】
<硬質粒子層>
硬質粒子層は、チタン(Ti)、珪素(Si)、炭素(C)及び窒素(N)を含む複数の硬質粒子からなる。該硬質粒子としては、チタン、珪素、炭素及び窒素からなるTiSiCN粒子が挙げられる。TiSiCN粒子は、チタン、珪素、炭素及び窒素以外に、本開示の効果に影響を与えない限り、不可避不純物を含むことができる。不可避不純物として、たとえば、アモルファス相、金属間化合物(例えばTiSi、CoSi等)を含んでいたとしても、本開示の効果を発揮する限りにおいて本開示の範囲を逸脱するものではない。
【0043】
(硬質粒子)
上記硬質粒子において、該硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化する。本明細書において、第1方向は、以下(A1)~(A4)の方法で特定される方向と定義される。
【0044】
(A1)基材のすくい面の法線に沿って切削工具をダイヤモンドワイヤーで切り出し、硬質粒子層の断面を露出させる。このとき、測定サンプルはイオンスライサーなどを用いて加工した薄片サンプルを作成する。
【0045】
(A2)加工された薄片サンプルを、明視野透過電子顕微鏡(BF-STEM)を用いて10万倍で観察し、1つの硬質粒子を特定する。図5は、本実施形態の硬質粒子層のBF-STEM像(観察倍率:10万倍)の一例を模式的に示す図である。次に、特定された1つの硬質粒子を、200万倍で観察し、BF-STEM像を得る。図6は、図5中に特定された1つの硬質粒子のBF-STEM像(観察倍率:200万倍)の一例を模式的に示す図である。
【0046】
(A3)上記BF-STEM像(観察倍率:200万倍)の中で、黒色で示される層(以下、「第1単位層」とも記す。)と、灰色で示される層(以下、「第2単位層」とも記す。)とが交互に略平行に積層している領域(以下、「積層領域」とも記す。)を特定する。黒色で示される第1単位層は、珪素の含有量の多い領域であり、灰色で示される第2単位層は珪素の含有量の少ない領域である。
【0047】
(A4)上記で特定された積層領域において、第1単位層(黒色で示される層)と第2単位層(灰色で示される層)との積層方向を特定する。具体的には、制限視野領域の電子線回折パターンと、第1単位層と第2単位層の積層方位を重ね合わせ、回折スポットが示す方位を用いて積層方位を特定する。図6において、第1単位層と第2単位層の積層方向は、丸印Sから丸印Eへの矢印で示される。本明細書において、該積層方向が第1方向と定義される。
【0048】
上記より、本明細書において、第1方向とは、硬質粒子内の積層方向に沿う方向とも定義することができる。
【0049】
本実施形態の硬質粒子層において、上記の第1方向に沿う線は、基材と被膜との界面に対して45°以上90°以下の所定の角度で交差する。
【0050】
本明細書において、硬質粒子において、硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化することは、以下の方法で確認される。
(B1)上記のBF-STEM像(観察倍率:200万倍)において、第1方向に沿って、SEM付帯のEDX(エネルギー分散型X線分光法:Energy Dispersive X-ray Spectroscopy)によりライン分析を行い、チタンの原子数基準の含有率ATi及び珪素の原子数基準の含有率ATiを測定する。ライン分析のビーム径は0.5nm以下とし、スキャン間隔は0.5nmとし、ライン分析の長さは50nmとする。
【0051】
(B2)ライン分析結果を、X軸をライン分析の開始点から第1方向に沿う距離(nm)とし、Y軸を珪素の原子数ASiと、チタンの原子数ATiとの合計に対する、珪素の原子数ASiの百分率({ASi/(ASi+ATi)}×100)(%)とする座標系に示したグラフを得る。該グラフは、ライン分析の開始点から第1方向に沿う距離(X軸)の増加に伴う、珪素の原子数ASiとチタンの原子数ATiとの合計に対する珪素の原子数ASiの百分率(Y軸)の変化を示す。
【0052】
図6のBF-STEM像の丸印Sから丸印Eへの矢印に対してライン分析を行い、その結果をX軸をライン分析の開始点から第1方向に沿う距離(nm)とし、Y軸を珪素の原子数ASiと、チタンの原子数ATiとの合計に対する、珪素の原子数ASiの百分率({ASi/(ASi+ATi)}×100)(%)とする座標系に示して、グラフを得る。該グラフの一例を図7に示す。
【0053】
(B3)上記のグラフに{ASi/(ASi+ATi)}×100の平均値を示す線L1を引く。図7において、{ASi/(ASi+ATi)}×100の平均値e1を示す線は線L1で示される。
【0054】
(B4)上記のグラフにおいて、線L1よりも{ASi/(ASi+ATi)}×100の値が大きい領域(以下、「第1A領域」とも記す。)と、線L1よりも{ASi/(ASi+ATi)}×100の値が小さい領域(以下、「第1B領域」とも記す。)とが、第1方向に沿って、交互に連続的に存在する場合、硬質粒子において、硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化すると判定される。ここで、{ASi/(ASi+ATi)}×100がその平均値と同一である領域は、第1A領域とする。
【0055】
図7において、第1A領域は、例えば、ライン分析の開始点から第1方向に沿う距離がc1以上c2以下、c3以上c4以下、c5以上c6以下、c7以上c8以下、c9以上c10以下、c11以上c12以下の領域である(c13より大きい距離は記載を省略)。図7において、第2A領域は、例えば、ライン分析の開始点から第1方向に沿う距離がc2超c3未満、c4超c5未満、c6超c7未満、c8超c9未満、c10超c11未満、c12超c13未満の領域である。
【0056】
各第1A領域において、ライン分析の開始点に最も近い地点から、ライン分析の開始点からの距離の増加に伴い、{ASi/(ASi+ATi)}×100の値が平均値から該第1A領域内の最大値まで増加し、その後、平均値まで減少することが好ましい。
【0057】
第1A領域における上記の増加とは、単調増加に限られず、増加の途中で、{ASi/(ASi+ATi)}×100の値の平均値と該第1A領域内の最大値との差の50%以内の減少が存在していてもよい。また、第1A領域における上記の減少とは、単調減少に限られず、減少の途中で、{ASi/(ASi+ATi)}×100の値の平均値と該第1A領域内の最大値との差の50%以内の増加が存在していてもよい。
【0058】
各第1B領域において、ライン分析の開始点に最も近い地点から、ライン分析の開始点からの距離の増加に伴い、{ASi/(ASi+ATi)}×100の値が平均値から該第1B領域内の最小値まで減少し、その後、平均値まで増加することが好ましい。
【0059】
第1B領域における上記の減少とは、単調減少に限られず、減少の途中で、{ASi/(ASi+ATi)}×100の値の平均値と該第1B領域内の最小値との差の50%以内の増加が存在していてもよい。また、第1B領域における上記の増加とは、単調増加に限られず、増加の途中で、{ASi/(ASi+ATi)}×100の値の平均値と該第1B領域内の最小値との差の50%以内の減少が存在していてもよい。
【0060】
例えば、図7において、ライン分析の開始点から第1方向に沿う距離がc1以上c2以下の第1A領域では、P1における{ASi/(ASi+ATi)}×100の値a1が第1A領域内の最大値である。該第1A領域では、ライン分析の開始点から第1方向に沿う距離のc1からc2への増加に伴って、{ASi/(ASi+ATi)}×100の値が、平均値e1から最大値a1まで増加し、その後、最大値a1から平均値e1まで減少する。図7において、ライン分析の開始点から第1方向に沿う距離がc2超c3未満の第1B領域では、B1における{ASi/(ASi+ATi)}×100の値b1が第1B領域内の最小値である。該第1B領域では、ライン分析の開始点から第1方向に沿う距離のc2からc3への増加に伴って、{ASi/(ASi+ATi)}×100の値は、平均値e1から最小値b1まで減少し、その後、最小値b1から平均値e1まで増加する。
【0061】
上記の方法により、硬質粒子において、硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化することが確認される限り、本開示の効果が示されることが確認されている。
【0062】
({ASi/(ASi+ATi)}×100)
本実施形態の硬質粒子において、チタンの原子数ATiと、珪素の原子数ASiとの合計に対する、珪素の原子数ASiの百分率{ASi/(ASi+ATi)}×100の平均は、1%以上20%以下であることが好ましい。
これによると、切削工具の耐摩耗性と耐欠損性が更に向上し、工具寿命が更に向上する。
【0063】
上記{ASi/(ASi+ATi)}×100は、膜硬度及び靱性向上の観点から、1%以上10%以下がより好ましく、1%以上5%以下が更に好ましい。
【0064】
本明細書において、硬質粒子における上記{ASi/(ASi+ATi)}×100の平均とは、硬質粒子中のライン分析を行った領域における{ASi/(ASi+ATi)}×100の値の平均を意味する。
【0065】
硬質粒子における{ASi/(ASi+ATi)}×100の最大値は、膜硬度及び靱性向上の観点から、1.5%以上40%以下が好ましく、1.5%以上20%以下がより好ましく、1.5%以上10%以下がより好ましい。本明細書において、「硬質粒子における{ASi/(ASi+ATi)}×100の値の最大値」は、以下の方法で算出される値である。まず、硬質粒子中のライン分析を行った領域に存在する各第1A領域において、各第1A領域内における{ASi/(ASi+ATi)}×100の最大値を測定する。各第1A領域における該最大値の平均が「硬質粒子における{ASi/(ASi+ATi)}×100の値の最大値」に該当する。なお、硬質粒子における{ASi/(ASi+ATi)}×100の最小値は、前記の最大値の算出方法において、最大値を最小値に替えることにより算出することができる。
【0066】
{ASi/(ASi+ATi)}×100の最大値と最小値との差は、膜硬度及び靱性向上の観点から、1%以上38%以下が好ましく、1%以上20%以下がより好ましく、1%以上8%以下がより好ましい。
【0067】
同一の試料において測定する限りにおいては、硬質粒子中のライン分析の測定箇所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定箇所を設定しても恣意的にはならないことが確認されている。
【0068】
(珪素の濃度の平均周期幅)
本実施形態の硬質粒子内に設定される第1方向における珪素の濃度の平均周期幅は、3nm以上50nm以下が好ましい。これによると、耐摩耗性及び耐欠損性が向上し、工具寿命が向上する。珪素の濃度の周期幅の下限は、耐欠損性向上の観点から、3nm以上が好ましく、4nm以上がより好ましく、5nm以上が更に好ましい。珪素の濃度の周期幅の上限は、耐摩耗性向上の観点から50nm以下が好ましく、30nm以下がより好ましく、10nm以下が更に好ましい。珪素の濃度の周期幅は、4nm以上30nm以下がより好ましく、5nm以上10nm以下が更に好ましい。
【0069】
本明細書において、珪素の濃度の周期幅の測定方法は以下の通りである。上記(A1)~(A3)と同様の方法で積層領域を設定する。該積層領域に対してフーリエ変換を行い、フーリエ変換像を得る。該フーリエ変換像において、積層領域内の周期性はスポットとして現れる。周期幅は、上記スポットと、フーリエ変換像において最大強度を示す画像中央との間の距離の逆数を計算することにより算出される。
【0070】
同一の試料において測定する限りにおいては、硬質粒子中の測定箇所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定箇所を設定しても恣意的にはならないことが確認されている。
【0071】
上記のフーリエ変換で求められる周期幅は、隣り合う第1A領域内に存在する{ASi/(ASi+ATi)}×100が最大値である位置間の第1方向に沿う距離に相当する。隣り合う第1A領域内に存在する{ASi/(ASi+ATi)}×100が最大値である位置間の第1方向に沿う距離は、図7において、P1とP2との間の距離d1、P2とP3との間の距離d2、P3とP4との間の距離d3、P4とP5との間の距離d4、P5とP6との間の距離d5、P6とP7との間の距離d6に相当する。
【0072】
(硬質粒子の粒径)
本実施形態の硬質粒子の粒径は、例えば、10nm以上1000nm以下が好ましい。これによると、優れた耐欠損性を有することができる。硬質粒子の粒径は、10nm以上700nm以下がより好ましく、10nm以上500nm以下が更に好ましい。
【0073】
上記の粒径の測定方法は以下の通りである。基材と基材上に形成された被膜とをFIB加工材にて断面が見えるように加工し、その断面をFE-SEM(電界放出型走査型電子顕微鏡)によって観察する。その際、反射電子像として観察することによって、同じ結晶方位を有した部分は同じコントラストで観察され、この同一コントラスト部分を一つの硬質粒子とみなす。
【0074】
次いで、このようにして得られた画像に対して、硬質粒子層の任意の箇所において基材表面に対して平行な任意長さ(好ましくは400μm相当)の直線を引く。そして、その直線に含まれる硬質粒子の個数を測定し、その直線の長さを硬質粒子の個数で除したものを、硬質粒子の粒径とする。
【0075】
(硬質粒子層の配向)
本実施形態において、硬質粒子層の配向は、(331)配向である。本明細書において「硬質粒子層の配向は、(331)配向である」とは、以下の式(1)で定義される配向性指数TC(hkl)のうち、硬質粒子層における(331)面の配向性指数TC(331)が、他の結晶配向面の配向性数よりも大きいことを意味する。ここで、他の結晶配向面とは、(111)面、(200)面、(311)面、(220)面、(420)面、(422)面及び(511)面である。
【0076】
【数1】
【0077】
式(1)中、I(hkl)及びI(h)は、それぞれ測定された(hkl)面の回折強度、及び、測定された(h)面の回折強度を示し、I(hkl)及びI(h)は、それぞれJCPDS(Joint Committee on Powder Diffraction Standards)データベースによる(hkl)面のTiC(カード番号:32-1383)及びTiN(カード番号:38-1420)の粉末回折強度の平均値、並びに、JCPDSデータベースによる(h)面のTiC及びTiNの粉末回折強度の平均値を示し、(hkl)及び(h)は、それぞれ(111)面、(200)面、(220)面、(311)面、(331)面、(420)面、(422)面及び(511)面の8面のいずれかを示す。
【0078】
本実施形態の硬質粒子層の配向性指数TC(331)は、靭性向上及び特に鋳鉄切削における耐欠損性向上の観点から、3.5以上が好ましく、5以上がより好ましく、6以上が更に好ましい。配向性指数TC(331)の値の上限は制限されないが、計算に用いた反射面が8つであるから、8以下とすればよい。配向性指数TC(331)の値は、3.5以上8以下が好ましく、5以上8以下がより好ましく、6以上8以下が更に好ましい。
【0079】
配向性指数TC(331)は、以下の条件で行うXRD測定によって求められる。具体的には、硬質粒子層における任意の1箇所について、X線回折測定(装置:リガク株式会社製SmartLab(登録商標))を行い、上記式(1)に基づいて求められた(331)面の配向性指数を、該硬質粒子層における配向性指数TC(331)とする。上述の「任意の1箇所」を選択するにあたり、一見して異常値を示す点は除外する。
【0080】
(X線回折測定の条件)
X線出力:45kV,200mA
X線源、波長:CuKα、1.541862Å
検出器:D/teX Ultra 250
スキャン軸:2θ/θ
長手制限スリット幅:2.0mm
スキャンモード:CONTINUOUS
スキャンスピード:20°/min
【0081】
同一の試料において測定する限りにおいては、硬質粒子層中の測定箇所を変更して複数回行っても、測定結果のばらつきはほとんどなく、任意に測定箇所を設定しても恣意的にはならないことが確認されている。
【0082】
<他の層>
被膜は上述のとおり、硬質粒子層以外に他の層を含むことができる。図2図4に示されるように、他の層としては、下地層12及び最外層13等が挙げられる。
【0083】
(下地層)
下地層は、基材と硬質粒子層との間に配置される。下地層としては、例えば、TiN層を挙げることができる。下地層として基材の直上にTiN層、TiC層、TiCN層、TiBN層を配置することにより、基材と被膜との密着性を高めることができる。また、下地層としてAl層を用いることにより、被膜の耐酸化性を高めることができる。下地層の平均厚さは0.1μm以上20μm以下であることが好ましい。これによると、被膜は優れた耐摩耗性及び耐欠損性を有することができる。
【0084】
下地層は1層からなることができる。また、図4に示されるように、下地層12は第1下地層12Aと第2下地層12Bとからなる2層構造を有することができる。下地層が2層構造の場合、TiN層とTiCN層とを組み合わせることが好ましい。TiCN層は耐摩耗性に優れるため、被膜により好適な耐摩耗性を付与することができる。第1下地層の平均厚さは0.1μm以上20μm以下が好ましく、0.1μm以上19μm以下がより好ましい。第2下地層の平均厚さは1μm以上20μm以下が好ましく、1μm以上19.9μm以下が更に好ましい。
【0085】
(最外層)
最外層は、被膜において最も表面側に配置される層である。ただし、刃先稜線部においては形成されない場合もある。最外層は、硬質粒子層上に他の層が形成されていない場合、硬質粒子層の直上に配置される。最外層としては、Ti(チタン)の炭化物、窒化物または硼化物のいずれかを主成分とすることが好ましい。また、最外層としてAl層を用いることにより、被膜の耐酸化性を高めることができる。
【0086】
「Tiの炭化物、窒化物または硼化物のいずれかを主成分とする」とは、Tiの炭化物、窒化物および硼化物のいずれかを90質量%以上含むことを意味する。また、好ましくは不可避不純物を除きTiの炭化物、窒化物および硼化物のいずれかからなることを意味する。
【0087】
Tiの炭化物、窒化物および炭窒化物のいずれかのうち、特に好ましいのはTiの窒化物(すなわちTiNで表される化合物)を主成分として最外層を構成することである。TiNはこれらの化合物のうち色彩が最も明瞭(金色を呈する)であるため、切削使用後の切削チップのコーナー識別(使用済み部位の識別)が容易であるという利点がある。最外層はTiN層からなることが好ましい。
【0088】
最外層は、平均厚さが0.05μm以上1μm以下であることが好ましい。これによると、最外層と、隣接する層との密着性が向上する。
【0089】
<実施形態2:切削工具の製造方法>
本実施形態の切削工具の製造方法の一例について図8を用いて説明する。図8は、本実施形態の切削工具の製造に用いられるCVD装置の一例の概略的な断面図である。
【0090】
(基材の準備)
基材を準備する。基材の詳細は、上記に記載されているため、その説明は繰り返さない。
【0091】
(被膜の形成)
次に、上記基材上に、例えば図8に示されるCVD装置を用いて被膜を形成する。CVD装置50内には、基材10を保持した基材セット治具52を複数設置することができ、これらは耐熱合金鋼製の反応容器53でカバーされる。また、反応容器53の周囲には調温装置54が配置されており、この調温装置54により、反応容器53内の温度を制御することができる。
【0092】
CVD装置50には、2つの導入口55、57を有する導入管56が配置されている。導入管56は、基材セット治具52が配置される領域を貫通するように配置されており、基材セット治具52近傍の部分には複数の貫通孔が形成されている。導入管56において、導入口55、57から管内に導入された各ガスは、導入管56内においても混合されることなく、それぞれ異なる貫通孔を経て、反応容器53内に導入される。この導入管56は、その軸を中心軸として回転することができる。また、CVD装置50には排気管59が配置されており、排気ガスは排気管59の排気口60から外部へ排出することができる。なお、反応容器53内の治具類等は、通常黒鉛により構成される。
【0093】
被膜が下地層及び/又は最外層を含む場合は、これらの層は従来公知の方法で形成することができる。
【0094】
硬質粒子層は、上記CVD装置を用いて、以下の方法で形成することができる。具体的には、Ti及びSiを含む第1原料ガスを導入口55から導入管56内に導入し、C及びNを含む第2原料ガスを導入口57から導入管56内に導入する。第1原料ガスは、例えば、TiClガス及びSiClガスを含むことができる。第2原料ガスは、例えば、CHCNガスを含むことができる。なお、第1原料ガス及び第2原料ガスは、それぞれキャリアガス(Hガス、Nガス又はArガス等)を含むことができる。以下、反応容器内の第1原料ガス及び第2原料ガスの合計を、反応ガスと記す。
【0095】
導入管56の図中上側には複数の貫通孔が開いている。導入された第1原料ガス(または第1原料ガスとキャリアガスとからなる第1混合ガス)および第2原料ガス(または第2原料ガスとキャリアガスとからなる第2混合ガス)は、それぞれ異なる貫通孔から反応容器53内に噴出される。このとき、導入管56は、図中回転矢印で示すようにその軸を中心として回転する。このため、第1原料ガス(または第1混合ガス)と第2原料ガス(または第2混合ガス)とは均一に混合された混合ガスとして、基材セット治具52にセットされた基材10の表面に向かって噴出される。
【0096】
硬質粒子層の形成中、反応ガスの総ガス流量は、例えば、10~80L/分とすることができる。ここで「総ガス流量」とは、標準状態(0℃、1気圧)における気体を理想気体とし、単位時間当たりにCVD炉に導入された全容積流量を示す。
【0097】
硬質粒子層の形成中、反応ガス中のTiClガス及びCHCNガスの割合は、常に一定である。反応ガス中のTiClガスの割合は、例えば、0.35~1.30体積%とすることができる。反応ガス中のCHCNガスの割合は、例えば、0.5~0.7体積%とすることができる。
【0098】
反応ガス中のSiClガスの割合は、SiClガスの導入量を調節することにより周期的に変化させる。具体的には、SiClガスの導入量の変化の1周期の長さをt(秒)とし、反応ガス中のSiClガスの割合の変化の範囲をr1(体積%)~r2(体積%)とした場合、成膜開始時から1周期の中間時点(t/2(秒))までは、SiClガスの割合がr1(体積%)からr2(体積%)まで漸増し、続いて、中間時点(t/2(秒))から1周期の最終時点(t(秒))までは、SiClガスの割合をr2(体積%)からr1(体積%)まで漸減するように、SiClガスの導入量を調節する。これを1周期として、硬質粒子層が所望の厚さになるまで、該周期を繰り返す。反応ガス中のキャリアガス(例えば、Hガス)の割合は、SiClガスの割合の変化に応じて、総ガス流量が一定となるように変化させる。上記の1周期の長さt(秒)を調整することにより、硬質粒子における珪素の濃度の周期幅(nm)を制御することができる。上記の反応ガス中のSiClガスの割合の範囲の最小値r1と最大値r2とを調整することにより、硬質粒子におけるASi/(ASi+ATi)の値を制御することができる。
【0099】
本工程において、基材10の温度は750~900℃の範囲が好ましく、反応容器53内の圧力は0.1~20.0kPaであることが好ましい。反応容器53内の圧力は10.0~20.0kPaであることがより好ましい。成膜時の反応容器内の圧力を上記の範囲とすることにより、硬質粒子層の配向が(331)配向となる。上記成膜時の反応容器内の圧力は、従来のTiSiCN層の形成で採用されていた反応容器内の圧力(例えば、9kPa)よりも高い。硬質粒子層の厚さは、原料ガスの流量と、成膜時間とを調節することによって制御することができる。
【0100】
次に、被膜が形成された基材10を冷却する。冷却速度は、例えば、5℃/minを超えることはなく、また、その冷却速度は基材10の温度が低下するにつれて遅くなる。
【0101】
なお、上記の工程に加えて、アニーリングなどの熱処理工程、表面研削、ショットブラストなどの表面処理工程を行うことができる。
【0102】
上述の製造方法により、実施形態1の切削工具を得ることができる。
【実施例
【0103】
本実施の形態を実施例によりさらに具体的に説明する。ただし、これらの実施例により本実施の形態が限定されるものではない。
【0104】
<基材の準備>
以下の表1に記載の基材K、基材L及び基材Mを準備した。具体的には、まず、表1に記載の配合組成(質量%)からなる原料粉末を均一に混合して混合粉末を得た。表1中の「残り」とは、WCが配合組成(質量%)の残部を占めることを示している。次に、混合粉末をCNMG120408(住友電工ハードメタル社製の刃先交換型切削チップ)の形状に加圧成形した後、1300~1500℃で1~2時間焼結することにより、超硬合金製の基材K、基材L及び基材Mを得た。基材K、基材L及び基材Mは、全て基材形状はCNMG120408である。
【0105】
【表1】
【0106】
<被膜の形成>
上記で得られた基材K、基材L又は基材Mに対してその表面に被膜を形成した。具体的には、図8に示されるCVD装置を用い、基材を基材セット治具にセットし、熱CVD法を行うことにより、基材上に被膜を形成した。各試料の被膜の構成を表2に示す。
【0107】
【表2】
【0108】
表2において、下地層は基材の表面と直接接する層であり、硬質粒子層は下地層上に形成された層であり、最外層は硬質粒子層上に形成された層であって外部に露出する層である。また、表2の下地層欄および最外層欄の化合物の記載は、表2の下地層および最外層を構成する化合物であり、化合物の右の括弧内の数値は層の厚さを意味している。また、表2の1つの欄内に2つの化合物(たとえば、「TiN(0.5)-TiCN(3.0)」)が記載されている場合には、左側(「TiN(0.5)」)の化合物が基材に近い側に位置する層であることを意味し、右側(「TiCN(3.0)」)の化合物が基材から遠い側に位置する層であることを意味しており、括弧の中の数値はそれぞれの層の厚さを意味している。表2の硬質粒子層のa~p及びw~zの記載は、表4の形成条件a~形成条件p及び形成条件w~形成条件zで形成された層であることを示し、括弧内の数値は層の厚さを意味している。また、表2の「-」で示される欄は、層が存在しないことを意味する。
【0109】
たとえば、表2の試料1の切削工具は、基材Kの表面上に0.5μmの厚さのTiN層および3.0μmの厚さのTiCN層がこの順序に積層されて下地層が形成され、その上に後述する形成条件aで形成された5.4μmの厚さの硬質粒子層が形成され、硬質粒子層上には最外層が形成されていない被膜を有しているとともに、被膜全体の厚さが8.9μmである切削工具を意味している。
【0110】
表2に示される下地層および最外層は、従来公知のCVD法によって形成された層であり、その形成条件は表3に示す通りである。たとえば、表3の「TiN(下地層)」の行には、下地層としてのTiN層の形成条件が示されている。表3のTiN層(下地層)の記載は、CVD装置の反応容器内(反応容器内圧力6.7kPa)に基材を配置し、基材を基材温度915℃まで加熱し、反応容器内に2.0体積%のTiClガス、39.7体積%のNガスおよび残り(58.3体積%)のHガスからなる混合ガスを63.8L/分の流量で噴出することにより形成されることを意味している。なお、各層の厚さは、各反応ガスを噴出する時間によって制御した。
【0111】
【表3】
【0112】
表2に示される硬質粒子層は、表4に示される形成条件a~形成条件p及び形成条件w~形成条件zのいずれかの条件で形成される。
【0113】
(形成条件a~形成条件p、及び、形成条件z)
形成条件a~形成条件p、及び、形成条件zでは、初めに、CVD装置の反応内容器圧力を表4の「反応容器内圧力(kPa)」欄に記載の圧力、及び、基材温度を表4の「基材温度(℃)」欄に記載の温度に設定する。例えば、形成条件aでは、CVD装置の反応容器内圧力を18.0kPa、及び、基材温度を850℃に設定する。
【0114】
次に、反応容器内に表4の「反応ガス組成(体積%)」欄に記載の成分を含む反応ガスを導入して、基材上に硬質粒子層(TiSiCN層)を形成する。反応ガスの総ガス流量は、表4の「総ガス流量(L/分)」欄に記載の通りである。「総ガス流量」とは、標準状態(0℃、1気圧)における気体を理想気体とし、単位時間当たりにCVD炉に導入された全容積流量を示す。
【0115】
反応ガス中のTiClガス、CHCNガス及びNガスの割合は、硬質粒子層の形成中、常に一定である。反応ガス中のSiClガスの割合は、表4の「SiCl」の「周期」欄に示す時間(秒)を1周期として、「範囲」欄に示される割合(体積%)の範囲で変化させる。具体的には、成膜開始時のSiClガスの割合を「範囲」欄に示される最小値とし、成膜開始から表4の「周期」欄に示される時間(秒)の中間時点(1周期/2(秒))までは、SiClガスの割合が「範囲」欄に示される最大値まで漸増し、続いて、中間時点(1周期/2(秒))から1周期の最終時点(1周期(秒))までは、SiClガスの割合が「範囲」欄に示される最小値まで漸減するようにSiClガスの導入量を調節する。これを1周期として、硬質粒子層が所望の厚さになるまで、該周期を繰り返す。Hガスの割合は、SiClガスの割合の変化に応じて、総ガス流量が一定となるように変化させる。
【0116】
例えば、形成条件aでは、反応ガスの総ガス流量は60.0L/分である。反応ガス中のTiClガスの割合は0.70体積%、CHCNガスの割合は0.60体積%、Nガスの割合は8.90体積%であり、これらのガスの割合は硬質粒子層の形成中、一定である。反応ガス中のSiClガスの割合は、7秒を1周期として、0.1~1.7体積%の範囲で変化させる。より具体的には、成膜開始時のSiClガスの割合を0.1体積%とし、成膜開始から3.5秒までは、SiClガスの割合が0.1体積%から1.7体積%まで漸増し、続いて、成膜開始3.5秒後から7秒後までは、SiClガスの割合が1.7体積%から0.1体積%まで漸減するように、SiClガスの導入量を調節する。これを1周期として、硬質粒子層の厚さが表1の「硬質粒子層」欄に記載の厚さになるまで、該周期を繰り返す。Hガスの体積割合は、SiClガスの割合の変化に応じて、総ガス流量が一定となるように変化させる。形成条件aでは、反応ガス中のSiClガスの割合の平均は0.90体積%である。
【0117】
その後、基材を5℃/分の冷却速度で冷却する。
【0118】
(形成条件w)
形成条件wは、従来のTiCN層の形成条件である。具体的には、初めに、CVD装置の反応容器内圧力を18.0kPa、及び、基材温度を850℃に設定する。
【0119】
次に、反応容器内に表4の「反応ガス組成(体積%)」欄に記載の成分を含む反応ガス(TiCl:2.00体積%、CHCN:0.50体積%、Hガス:残り)を導入して、基材上にTiCN層(硬質粒子層)を形成する。反応ガスの組成は、成膜中一定である。反応ガスの総ガス流量は、総ガス流量60L/分である。その後、基材を5℃/分の冷却速度で冷却する。
【0120】
(形成条件x)
形成条件xは、特許文献1に開示されるPVD法を用いて硬質粒子層(TiSiCN層)を形成する条件である。
【0121】
(形成条件y)
形成条件yは、特許文献2に開示されるCVD法を用いて硬質粒子層(TiSiCN層)を形成する条件である。
【0122】
上記により、試料1~試料27(実施例に該当)及び試料1-1~試料1-5(比較例に該当)の切削工具を得た。
【0123】
【表4】
【0124】
<硬質粒子層の特徴>
(硬質粒子層の構成)
形成条件a~形成条件p、及び、形成条件zより得られた硬質粒子層は、TiSiCNからなる複数の硬質粒子からなり、硬質粒子内に設定される第1方向に沿って、珪素の濃度が周期的に変化することが確認された。具体的な確認方法は実施形態1に記載されているため、その説明は繰り返さない。
【0125】
形成条件wにより得られた硬質粒子(TiCN)層を明視野透過電子顕微鏡(BF-STEM)で観察したところ、均一な組織であり、周期的な変化は確認されなかった。
【0126】
形成条件x及び形成条件yにより得られた硬質粒子層を明視野透過電子顕微鏡(BF-STEM)で観察したところ、ナノコンポジット構造が確認された。該硬質粒子層は(200)配向であった。
【0127】
({ASi/(ASi+ATi)}×100)
各形成条件により得られた硬質粒子において、{ASi/(ASi+ATi)}×100の最大値、最小値及び平均を測定した。具体的な測定方法は実施形態1に記載の通りであるため、その説明は繰り返さない。結果を表5の「最大{ASi/(ASi+ATi)}×100(%)」、「最小{ASi/(ASi+ATi)}×100(%)」及び「平均{ASi/(ASi+ATi)(%)」欄に示す。なお、「-」の表記は、測定を行わなかったことを示す。
【0128】
(珪素の濃度の周期幅)
各形成条件により得られた硬質粒子において、硬質粒子内に設定される第1方向における珪素の濃度の平均周期幅を測定した。具体的な測定方法は実施形態1に記載の通りであるため、その説明は繰り返さない。結果を表5の「平均周期幅(nm)」欄に示す。なお、「-」の表記は、測定を行わなかったことを示す。
【0129】
(配向)
各形成条件により得られた硬質粒子層の配向を測定した。硬質粒子層の配向の具体的な測定方法は実施形態1に記載されているため、その説明は繰り返さない。各硬質粒子層において、配向性指数TC(hkl)のうち、最も大きい配向性指数の配向面を、表5の「配向面」欄に示し、該配向面の配向性指数TC(hkl)を「配向面の配向性指数TC(hkl)」欄に示す。
【0130】
形成条件a~形成条件p、及び、形成条件wにより得られた硬質粒子層では、(331)面の配向性指数TC(331)が最も大きかった。従って、形成条件a~形成条件p、及び、形成条件wにより得られた硬質粒子層の配向は、(331)配向であった。例えば、形成条件aにより得られた硬質粒子層の配向性指数TC(331)は、4.6であった。
【0131】
形成条件x~形成条件zにより得られた硬質粒子層では、(200)面の配向性指数TC(200)が最も大きかった。従って、形成条件x~形成条件zにより得られた硬質粒子層の配向は、(200)配向であった。
【0132】
【表5】
【0133】
<切削試験1>
試料1~試料27及び試料1-1~試料1-5の切削工具を用いて、以下の切削条件にて鋳鉄(FCD450)の連続切削を行い、逃げ面摩耗量(Vb)が0.3mmとなるまでの切削時間を測定した。切削時間が長いもの程、耐摩耗性に優れ、工具寿命が長いことを示す。また、刃先の最終損傷形態を観察した。最終損傷形態において、「正常摩耗」とはチッピング、欠けなどを生じず、摩耗のみで構成される損傷形態(平滑な摩耗面を有する)を意味し、耐欠損性に優れていることを示す。結果を表6に示す。
【0134】
<切削条件>
被削材:FCD450丸棒外周切削
周速:150m/min
送り速度:0.15mm/rev
切込み量:1.0mm
切削液:有り
【0135】
【表6】

(評価1)
試料1-試料27(実施例)は、試料1-1~試料1-5(比較例)に比べて、鋳鉄の連続切削において耐摩耗性に優れ、工具寿命が長いことが確認された。また、試料1-試料27は、最終損傷形態が正常摩耗であり、従来の硬質粒子層(試料1-1~試料1-5)と同等の優れた耐欠損性を維持していることが確認された。
【0136】
<切削試験2>
試料1~試料27及び試料1-1~試料1-5の切削工具を用いて、以下の切削条件により鋳鉄(FC250)の断続切削を行い、切削工具が欠損するまでの衝撃回数を測定し、当該切削工具の耐欠損性を評価した。ここで、欠損とは、300μm以上の欠損を意味する。欠損までの衝撃回数が多いほど耐欠損性に優れることを示す。結果を表7に示す。なお、表7において「欠損無し」とは、衝撃回数3000回まで切削を行ったが、欠損が生じなかったことを示す。
【0137】
<切削条件>
被削材:FC250板材外周切削
周速:300m/min
送り速度:0.2mm/rev
切込み量:1.5mm
切削液:有り
【0138】
【表7】
【0139】
(評価2)
試料1-試料27(実施例)は、試料1-1~試料1-5(比較例)に比べて、鋳鉄の断続切削において耐欠損性に優れ、工具寿命が長いことが確認された。
【0140】
以上のように本開示の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0141】
1,21,31,41 切削工具
10 基材
11 硬質粒子層
12,12A,12B 下地層
13 最外層
14,24,34,45 被膜
50 CVD装置
52 基材セット治具
53 反応容器
54 調温装置
55,57 導入口
56 導入管
59 排気管
60 排気口
図1
図2
図3
図4
図5
図6
図7
図8