IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社レボーンの特許一覧

特許7544379情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム
<>
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図1
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図2
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図3
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図4
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図5
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図6
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図7
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図8
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図9
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図10
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図11
  • 特許-情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-26
(45)【発行日】2024-09-03
(54)【発明の名称】情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラム
(51)【国際特許分類】
   G06N 20/00 20190101AFI20240827BHJP
【FI】
G06N20/00
【請求項の数】 7
(21)【出願番号】P 2020559951
(86)(22)【出願日】2019-12-04
(86)【国際出願番号】 JP2019047343
(87)【国際公開番号】W WO2020116490
(87)【国際公開日】2020-06-11
【審査請求日】2022-11-08
(31)【優先権主張番号】62/775,561
(32)【優先日】2018-12-05
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】517372106
【氏名又は名称】株式会社レボーン
(74)【代理人】
【識別番号】110002789
【氏名又は名称】弁理士法人IPX
(72)【発明者】
【氏名】松岡 広明
(72)【発明者】
【氏名】小出 哲彰
(72)【発明者】
【氏名】小須田 祐介
【審査官】渡辺 順哉
(56)【参考文献】
【文献】特開2018-075255(JP,A)
【文献】特開2011-169830(JP,A)
【文献】特開2018-146803(JP,A)
【文献】特開平05-010904(JP,A)
【文献】特開平06-160317(JP,A)
【文献】特開2007-022169(JP,A)
【文献】特開2018-045517(JP,A)
【文献】国際公開第2016/145300(WO,A1)
【文献】コニカミノルタ BIC-Japan,男を上げる新技術。できる男のニオイマネジメントを実現する、Kunkun body,Makuake[online],2017年07月12日,[retrieved on 2024.02.29], Retrieved from the Internet: <URL: https://www.makuake.com/project/kunkunbody/>
【文献】ソン ヨンア ほか,日常生活の匂い記録に向けたセンシングシステムの設計及び評価,日本バーチャルリアリティ学会論文誌,日本,日本バーチャルリアリティ学会,2011年12月31日,Vol.16, No.4,pp. 677-686
【文献】株式会社レボーン,香りAIスタートアップのREVORN、正解No.1の香りデータベースとAIを活用した「iinioi Project」を開始,PR TIMES[online],株式会社PR TIMES,2018年11月20日,[retrieved on 2024.02.09],Retrieved from the Internet: <URL: https://prtimes.jp/main/html/rd/p/000000002.000038832.html>
(58)【調査した分野】(Int.Cl.,DB名)
G06N 3/00-99/00
(57)【特許請求の範囲】
【請求項1】
物体の匂いを計測した匂いデータを取得する第1取得部と、
前記匂いデータの取得条件を取得する第2取得部と、
物体の前記匂いデータ及び取得条件と、該匂いデータに対応する前記物体とを学習済みの学習済みモデルに基づき、前記第1及び第2取得部が取得した前記匂いデータ及び取得条件から前記物体を識別する識別部と
を備えることを特徴とする情報処理装置であって、
前記取得条件は、前記物体の匂いを計測した計測環境に関する環境情報を含
前記情報処理装置は、
異なる前記物体ごとに、前記匂いデータ及び取得条件と、前記物体とを夫々学習済みの複数の前記学習済みモデルのデータを記憶する記憶部と、
前記複数の学習済みモデルから一又は複数の前記学習済みモデルを選択する選択入力を受け付ける受付部と、をさらに備え、
前記学習済みモデルは、前記匂いデータ及び取得条件を入力として、該匂いデータに対応する前記物体が、学習対象とした一の前記物体に該当するか否かを示す識別結果を出力するモデルであり、
前記識別部は、選択された前記一又は複数の学習済みモデルに基づき、前記物体が、各前記学習済みモデルで学習対象とした各前記物体の何れに該当するかを識別する、情報処理装置。
【請求項2】
前記取得条件は、前記匂いのカテゴリを表すテキストデータであって、前記匂いの計測を行ったユーザが入力したテキストデータを含む
ことを特徴とする請求項1に記載の情報処理装置。
【請求項3】
前記第1取得部は、前記匂いを計測する匂いセンサから前記匂いデータを取得し、
前記取得条件は、前記匂いの計測時における前記匂いセンサの状態を表す状態情報を含む
ことを特徴とする請求項1又は2に記載の情報処理装置。
【請求項4】
前記第1取得部は、水晶振動子を用いた匂いセンサから前記匂いデータを取得する
ことを特徴とする請求項1~のいずれか1項に記載の情報処理装置。
【請求項5】
物体の匂いを計測した匂いデータを取得し、
前記匂いデータの取得条件を取得し、
物体の前記匂いデータ及び取得条件と、該匂いデータに対応する前記物体とを学習済みの学習済みモデルに基づき、取得した前記匂いデータ及び取得条件から前記物体を識別する
処理をコンピュータが実行することを特徴とする情報処理方法であって、
前記取得条件は、前記物体の匂いを計測した計測環境に関する環境情報を含
前記情報処理方法は、さらに、
異なる前記物体ごとに、前記匂いデータ及び取得条件と、前記物体とを夫々学習済みの複数の前記学習済みモデルのデータを記憶部に記憶させる処理と、
前記複数の学習済みモデルから一又は複数の前記学習済みモデルを選択する選択入力を受け付ける処理と、を前記コンピュータが実行するものであり、
前記学習済みモデルは、前記匂いデータ及び取得条件を入力として、該匂いデータに対応する前記物体が、学習対象とした一の前記物体に該当するか否かを示す識別結果を出力するモデルであり、
前記識別する処理では、選択された前記一又は複数の学習済みモデルに基づき、前記物体が、各前記学習済みモデルで学習対象とした各前記物体の何れに該当するかを識別する、情報処理方法。
【請求項6】
ユーザからの操作入力に応じて、物体の匂いを計測した匂いデータと、該匂いデータの取得条件とを、前記匂いデータを管理する解析管理装置に出力し、
前記解析管理装置が管理する前記匂いデータの一覧を前記解析管理装置から取得して表示部に表示し、
前記一覧から、学習対象とする前記匂いデータを選択する選択入力を受け付け、
選択された前記匂いデータに対応する正解の物体の入力を受け付け、
選択された前記匂いデータ、及び該匂いデータの前記取得条件と、前記正解の物体とに基づく機械学習を前記解析管理装置に要求し、前記匂いデータ及び取得条件から前記物体を識別する学習済みモデルを生成させ、
前記一覧から、識別対象とする前記匂いデータを選択する選択入力を受け付け、
前記ユーザからの操作入力に応じて、前記解析管理装置が生成済みの一又は複数の前記学習済みモデルから何れかを選択する選択入力を受け付け、
選択された前記学習済みモデルに基づき、選択された前記匂いデータ、及び該匂いデータの前記取得条件から前記物体を識別するよう前記解析管理装置に要求する
処理をコンピュータに実行させることを特徴とするプログラムであって、
前記取得条件は、前記物体の匂いを計測した計測環境に関する環境情報を含む、プログラム。
【請求項7】
コンピュータを、請求項1~4のいずれか1項に記載の情報処理装置として機能させるためのプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、情報処理装置、情報処理方法、学習済みモデルの生成方法及びプログラムに関する。
【背景技術】
【0002】
物体の匂いに基づき物体識別を行う技術がある。例えば特許文献1では、車両のシートに着座した乗員を、シートに設置した臭い検出装置で検出した信号に基づき、ニューラルネットワークを用いて識別する乗り物用臭い判別システムが開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2017-161300号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に係る発明は、匂いを計測した際の条件を考慮して識別するに至っていない。
【0005】
一つの側面では、物体の匂いから物体を好適に識別することができる情報処理装置等を提供することを目的とする。
【課題を解決するための手段】
【0006】
一つの側面に係る情報処理装置は、物体の匂いを計測した匂いデータを取得する第1取得部と、前記匂いデータの取得条件を取得する第2取得部と、物体の前記匂いデータ及び取得条件と、該匂いデータに対応する前記物体とを学習済みの学習済みモデルに基づき、前記第1及び第2取得部が取得した前記匂いデータ及び取得条件から前記物体を識別する識別部とを備えることを特徴とする。
【発明の効果】
【0007】
一つの側面では、物体の匂いから物体を好適に識別することができる。
【図面の簡単な説明】
【0008】
図1】匂い識別システムの構成例を示す模式図である。
図2】サーバの構成例を示すブロック図である。
図3】ユーザDB、匂いDB、ドメインDB、学習DBのレコードレイアウトの一例を示す説明図である。
図4】端末の構成例を示すブロック図である。
図5】識別モデルに関する説明図である。
図6】識別モデルの生成処理の手順を示すフローチャートである。
図7】物体識別処理の手順を示すフローチャートである。
図8】計測画面の一例を示す説明図である。
図9】匂いデータの一覧画面の一例を示す説明図である。
図10】学習画面の一例を示す説明図である。
図11】判定画面の一例を示す説明図である。
図12】実施の形態2に係るサーバが実行する処理手順の一例を示すフローチャートである。
【発明を実施するための形態】
【0009】
以下、本発明をその実施の形態を示す図面に基づいて詳述する。
(実施の形態1)
図1は、匂い識別システムの構成例を示す模式図である。本実施の形態では、物体の匂いを計測した匂いデータを機械学習で学習済みの識別モデル141(学習済みモデル、図5参照)を用いて、匂いデータから物体を識別する匂い識別システムについて説明する。匂い識別システムは、情報処理装置(解析管理装置)1、端末2、匂いセンサ3を含む。情報処理装置1及び端末2は、インターネット等のネットワークNに通信接続されている。
【0010】
情報処理装置1は、種々の情報処理、情報の送受信が可能な情報処理装置であり、例えばサーバコンピュータ、パーソナルコンピュータ等である。本実施の形態では情報処理装置1がサーバコンピュータであるものとし、以下では簡潔のためサーバ1と読み替える。サーバ1は、ユーザから任意にアップロードされる物体の匂いデータの解析及び管理を行うサーバコンピュータであり、当該匂いデータを学習する機械学習を行い、匂いデータから物体を識別する識別モデル141を生成する。そしてサーバ1は、生成済みの識別モデル141を用いて物体の識別を行う。例えば物体が人間である場合、当該人間の呼気の匂いを計測したデータに基づき、人物識別を行う。なお、人物識別は本システムの一利用例に過ぎず、その他の物体の識別に本システムを利用してもよい。
【0011】
端末2は、本システムを利用するユーザが使用する端末装置であり、例えばパーソナルコンピュータ、タブレット端末、スマートフォン等である。サーバ1は、端末2を介して匂いセンサ3から物体の匂いデータを取得し、識別モデル141による識別を行って識別結果を端末2に出力する。
【0012】
匂いセンサ3は、物体の匂いを計測するセンシングデバイスであり、匂い成分に相当する気体分子を、コンピュータが処理可能な数値に変換するデバイスである。例えば匂いセンサ3はQCM(Quartz Crystal Microbalance:水晶振動子マイクロバランス)法を用いた匂いセンサであり、水晶振動子の表面に気体分子が吸着した場合の水晶振動子の発振を利用して、匂い成分を周波数データに変換する。匂いセンサ3として水晶振動子を利用した匂いセンサを用いることで、半導体の抵抗値を計測する半導体式の匂いセンサや、FET(電界効果トランジスタ)を利用したバイオセンサ等と比較して、より人間の嗅覚に近い匂いデータを得ることができる。匂いセンサ3はユーザの端末2に接続されており、サーバ1は、匂いセンサ3で計測した匂いデータを取得する。
【0013】
なお、匂いセンサ3自体に通信モジュールを搭載し、サーバ1は匂いセンサ3から直接的に匂いデータを取得可能としてもよい。また、匂いセンサ3は水晶振動子を有する匂いセンサに限定されず、半導体式の匂いセンサ、FETバイオセンサ等であってもよい。
【0014】
図2は、サーバ1の構成例を示すブロック図である。サーバ1は、制御部11、主記憶部12、通信部13、及び補助記憶部14を備える。
制御部11は、一又は複数のCPU(Central Processing Unit)、MPU(Micro-Processing Unit)、GPU(Graphics Processing Unit)等の演算処理装置を有し、補助記憶部14に記憶されたプログラムPを読み出して実行することにより、種々の情報処理、制御処理等を行う。主記憶部12は、SRAM(Static Random Access Memory)、DRAM(Dynamic Random Access Memory)、フラッシュメモリ等の一時記憶領域であり、制御部11が演算処理を実行するために必要なデータを一時的に記憶する。通信部13は、通信に関する処理を行うための通信モジュールであり、外部と情報の送受信を行う。
【0015】
補助記憶部14は、大容量メモリ、ハードディスク等の不揮発性記憶領域であり、制御部11が処理を実行するために必要なプログラムP、その他のデータを記憶している。また、補助記憶部14は、識別モデル141、ユーザDB142、匂いDB143、ドメインDB144、学習DB145を記憶している。識別モデル141は、匂いデータに基づく物体識別を行うモデルであり、例えば後述するように、ニューラルネットワークに係るモデルである。識別モデル141は、人工知能ソフトウェアの一部であるプログラムモジュールとしての利用が想定される。ユーザDB142は、本システムを利用する各ユーザの情報を格納するデータベースである。匂いDB143は、匂いセンサ3から取得した匂いデータを格納するデータベースである。ドメインDB144は、後述するドメイン(匂いのカテゴリ)の情報を格納するデータベースである。学習DB145は、匂いデータを学習して得た学習済みパラメータであって、識別モデル141(ニューラルネットワーク)に設定される重み等のパラメータを格納するデータベースである。
【0016】
なお、補助記憶部14はサーバ1に接続された外部記憶装置であってもよい。また、サーバ1は複数のコンピュータからなるマルチコンピュータであっても良く、ソフトウェアによって仮想的に構築された仮想マシンであってもよい。
【0017】
また、本実施の形態においてサーバ1は上記の構成に限られず、例えば操作入力を受け付ける入力部、画像を表示する表示部等を含んでもよい。また、サーバ1は、CD(Compact Disk)-ROM、DVD(Digital Versatile Disc)-ROM等の可搬型記憶媒体1aを読み取る読取部を備え、可搬型記憶媒体1aからプログラムPを読み取って実行するようにしても良い。あるいはサーバ1は、半導体メモリ1bからプログラムPを読み込んでも良い。
【0018】
図3は、ユーザDB142、匂いDB143、ドメインDB144、学習DB145のレコードレイアウトの一例を示す説明図である。
ユーザDB142は、ユーザID列、ユーザ名列、デバイス列を含む。ユーザID列は、各ユーザの識別子であるユーザIDを記憶している。ユーザ名列、及びデバイス列はそれぞれ、ユーザIDと対応付けて、ユーザ名、及びユーザが使用する匂いセンサ3の名称を記憶している。
【0019】
匂いDB143は、取得データID列、匂い名列、取得日時列、取得ユーザ列、取得センサ列、データ列、取得条件列を含む。取得データID列は、匂いセンサ3から取得した匂いデータの識別子である取得データIDを記憶している。匂い名列、取得日時列、取得ユーザ列、取得センサ列、データ列、及び取得条件列はそれぞれ、取得データIDと対応付けて、匂い名(物体名)、取得日時、取得元のユーザ名、取得元の匂いセンサ3の名称、匂いデータ、及び匂いデータの取得条件を記憶している。取得条件列には、例えば後述するドメイン名及びサブドメイン名、計測前に匂いセンサ3を洗浄した洗浄時間、匂い(気体)の吸引時間、匂いセンサ3内のガス室での滞留時間、計測後の匂いセンサ3の洗浄時間、匂いを計測した場所の位置情報、並びに当該場所の天候情報などが記憶されている。匂いデータの取得条件を定義する各種情報について、詳しくは後述する。
【0020】
ドメインDB144は、ドメインID列、作成日時列、作成ユーザ列、ドメイン名列、サブドメイン名列、取得条件列を含む。ドメインID列は、匂いのカテゴリを表すドメインの識別子であるドメインIDを記憶している。作成日時列、作成ユーザ列、ドメイン名列、サブドメイン列、及び取得条件列はそれぞれ、ドメインIDと対応付けて、ユーザが本システムに当該ドメインの情報を登録(作成)した日時、登録したユーザ名、ドメイン名、サブドメイン名、及び匂いセンサ3での計測条件(取得条件)を記憶している。取得条件列には、例えば匂い計測前の事前洗浄時間、吸引時間、滞留時間、匂い計測後の事後洗浄時間などが記憶されている。
【0021】
学習DB145は、学習ID列、作成日時列、作成ユーザ列、匂い名列、ドメイン名列、サブドメイン名列、データ列を含む。学習ID列は、匂いデータを学習して得た学習済みパラメータ(ニューラルネットワークの重み等)の識別子である学習IDを記憶している。作成日時列、作成ユーザ列、匂い名列、ドメイン名列、サブドメイン列、及びデータ列はそれぞれ、学習IDと対応付けて、識別モデル141の学習(作成)を実行した作成日時、識別モデル141の学習を行わせたユーザ名、学習した匂い名、学習した匂いデータの取得条件を表すドメイン名、サブドメイン名、及び学習済みパラメータを記憶している。
【0022】
図4は、端末2の構成例を示すブロック図である。制御部21、主記憶部22、補助記憶部23、通信部24、表示部25、入力部26を備える。
制御部21は、CPU等の演算処理装置を有し、補助記憶部23に記憶されたプログラムを読み出して実行することにより、種々の情報処理、制御処理等を行う。主記憶部22はRAM等の一時記憶領域であり、制御部21が演算処理を実行するために必要なデータを一時的に記憶する。補助記憶部23は、ROM(Read-Only Memory)等の不揮発性記憶領域であり、制御部21が処理を実行するために必要なプログラム、その他のデータを記憶している。通信部24は、通信に関する処理を行うための通信モジュールであり、外部と情報の送受信を行う。表示部25は液晶ディスプレイ等の表示画面であり、制御部21から与えられた画像を表示する。入力部26は、メカニカルキー等の操作インターフェイスであり、ユーザから操作入力を受け付ける。
【0023】
図5は、識別モデル141に関する説明図である。図5に基づき、本実施の形態の概要を説明する。
本実施の形態でサーバ1は、識別モデル141として、ディープラーニングにより生成されるニューラルネットワークモデルを用いる。具体的には、識別モデル141はRNN(Recurrent Neural Network)の一種であるLSTM(Long-Short Term Memory)に係るモデルであり、複数時点のデータから成る時系列データを入力とするモデルである。
【0024】
識別モデル141は、時系列データの入力を受け付ける入力層と、入力層に入力されたデータから特徴量を抽出する中間層(隠れ層)と、特徴量に基づく識別結果を出力する出力層とを有する。入力層は、連続する複数時点それぞれのデータの入力を受け付けるニューロンを有し、入力層のニューロンは、入力されたデータを中間層のニューロンに受け渡す。中間層は、入力層のニューロンから入力データを受け取り、入力データに基づく演算を行う。LSTMでは、中間層のニューロンはLSTMブロックと呼ばれ、自らの演算結果を一時的に記憶し、次の時点の入力データに関する演算を行う場合に、前の時点の入力データに関する演算結果を参照して演算を行う。前の時点の演算結果を参照することで、直近時点までの時系列のデータから次の時点の演算を行う。出力層は、中間層での演算結果に基づき出力値を演算するニューロンを有し、物体を識別した識別結果を出力する。
【0025】
なお、本実施の形態で識別モデル141は、複数の入力に対し出力が一のモデル(Many-To-One)であるものとするが、出力は複数であってもよい。また、識別モデル141は過去の時点から未来の時点へと一方向(One-directional)のみ中間層の演算結果を伝播していくものとするが、双方向(Bi-directional)に演算結果を伝播していくモデルであってもよい。
【0026】
また、本実施の形態では識別モデル141がLSTMであるものとして説明するが、CNN(Convolution Neural Network)等の他のディープラーニング、又はSVM(Support Vector Machine)、決定木など、その他の学習アルゴリズムに基づくモデルであってもよい。
【0027】
本実施の形態でサーバ1は、物体の匂いを計測した匂いデータを入力として、入力された匂いデータに対応する物体の識別結果を出力とする識別モデル141を生成する。識別モデル141への入力とする匂いデータは、上述の匂いセンサ3で計測したデータであり、QCM法により計測した周波数の時系列データである。例えば匂いセンサ3では、数秒~数十秒の計測時間の間、匂いセンサ3内のガス室に吸入された気体(匂い)の計測を行い、当該計測時間に亘る周波数の時系列データを取得する。サーバ1は、当該データを匂いデータとして用いる。
【0028】
例えばサーバ1は、各ユーザの端末2から、匂いセンサ3で計測した匂いデータのアップロードを受け、匂いを計測した物体を表す匂い名、及び後述の匂いデータの取得条件と対応付けて、匂いDB143に匂いデータを記憶してある。サーバ1は、匂いDB143に記憶されている匂いデータを訓練データとして用い、識別モデル141を生成する。
【0029】
すなわち、サーバ1は、匂いセンサ3で計測された時系列の匂いデータを、その計測時点の時系列順序に従って識別モデル141の入力層の各ニューロンに順次入力し、中間層での演算を経て、物体の識別結果を表す出力値を出力層から取得する。本実施の形態でサーバ1は、入力層に入力された匂いデータに対応する物体が、学習対象である特定の物体に該当するか否かを判定する二クラス分類の問題と捉え、当該物体に該当するか否かを表す確率値を出力する。一の識別モデル141につき単一の物体の識別を行うようにすることで、一の識別モデル141で複数物体を識別する多クラス分類を行う場合と比較して、識別精度を向上させることができる。
【0030】
なお、識別モデル141からの出力値は確率値ではなく、その物体に該当するか否かを二値(0又は1)で表現した値であってもよい。また、本実施の形態では一の物体に該当するか否かを判定する二クラス分類を行うものとするが、複数の物体の匂いデータを訓練データとして同時に学習し、多クラス分類を行うモデルとしてもよい。
【0031】
ここでサーバ1は、匂いセンサ3で計測した匂いデータだけでなく、匂いデータの取得条件も識別モデル141への入力に用いて学習を行う。匂いデータの取得条件は、匂いデータを計測した際の条件を表す情報であり、例えば計測した匂いのカテゴリを表すテキストデータ、匂いデータの取得元である匂いセンサ3の状態を表す状態情報、匂いを計測した際の計測環境に関する環境情報などを含む。
【0032】
匂いのカテゴリとは、例えば匂いを計測した物体の種類、あるいは匂い計測時の物体の状態(例えば物体が食品であれば、その食品を購入してからの日数など)を表す情報である。なお、これらは例示であって、匂いのカテゴリは任意に定義されてよい。本実施の形態で匂いのカテゴリは、物体の匂いを計測したユーザが任意のテキストを入力することで設定される。本システムでは、ユーザが任意に設定する匂いのカテゴリを「ドメイン」と呼称する。
【0033】
例えばサーバ1は、端末2から匂いデータのアップロードを受ける際に、匂いのカテゴリを表すものとしてユーザが任意に入力したドメイン名を取得する。具体的には、サーバ1は、匂いのカテゴリを表すドメイン名と、ドメイン名よりも詳細なカテゴリを表すサブドメイン名とを取得する。一例としては、匂いを計測した物体の種類名(人物識別を例にすれば「人間」)をドメイン名として入力し、さらにドメイン名よりも詳細な種類名(例えば人物名)をサブドメイン名として入力する。このように、ドメインは、匂いデータをアップロードするユーザが任意のテキストを入力することで設定される。
【0034】
状態情報は、物体の匂いを計測した匂いセンサ3の状態を表す情報であり、例えば上述の事前洗浄時間、吸引時間、滞留時間、事後洗浄時間を含む。事前洗浄時間は、匂い計測前に匂いセンサ3を洗浄する時間である。吸引時間は、匂いセンサ3で気体(匂い)を吸入する時間である。滞留時間は、匂いセンサ3内のガス室に気体を滞留させて計測を行う時間である。事後洗浄時間は、匂い計測後に匂いセンサ3を洗浄する時間である。このように、状態情報として、匂いデータの取得状態、及び匂いセンサ3のメンテナンス状態を表す情報を用いる。
【0035】
環境情報は、匂いを計測した際の計測環境に関する情報であり、例えば位置情報、天候情報を含む。位置情報は、匂いを計測した場所の地域名やGPS(Global Positioning System)座標値などであり、計測場所の地理的な情報である。天候情報は、匂い計測時の計測場所の天候を示すデータであり、例えば「晴れ」、「雨」などの天気を表すデータである。
【0036】
なお、環境情報は位置、天候のほかに、計測日時に関する情報(例えば季節)などを含んでもよい。
【0037】
サーバ1は、匂いデータのほかに、ドメイン名や状態情報など、匂いデータの取得条件を識別モデル141に入力して学習させる。匂いデータの取得条件も併せて入力することで、より人間の感覚に近い学習を行わせることができる。例えば人間は、既知の物体(ドメイン)の匂いを嗅ぐ場合と未知の物体の匂いを嗅ぐ場合とでは、異なる判断(識別)をすると考えられる。また、その匂いを嗅ぐ環境(場所や天候など)によっては、異なる判断をすると考えられる。このように、匂いデータの取得条件を入力に用いることで、より人間の感覚に近い識別結果を再現させることができる。
【0038】
例えばサーバ1は、匂いデータの取得条件を規定する各種情報をカテゴリ変数として識別モデル141に入力する。例えばサーバ1は、識別モデル141の入力層に、匂いデータ入力用のレイヤとは異なる、カテゴリ変数入力用のレイヤ(不図示)を設ける。サーバ1は、カテゴリ変数入力用のレイヤに、ドメイン名、サブドメイン名、状態情報、環境情報等を表すカテゴリ変数を入力し、匂いデータと共に学習させる。
【0039】
サーバ1は、識別モデル141に訓練用の匂いデータ及び取得条件(カテゴリ変数)を入力し、物体の識別結果を出力層から取得する。サーバ1は、取得した識別結果を正解の物体(匂い名)と比較し、両者が近似するように、誤差逆伝播法でニューロン間の重み等のパラメータを最適化する。これによりサーバ1は、識別モデル141で物体を識別する上で最適なパラメータ、すなわち学習済みパラメータを取得する。
【0040】
サーバ1は、上記の学習で得た学習済みパラメータを、学習対象とした物体(匂い名)、及び匂いデータの取得条件(ドメイン名等)と対応付けて学習DB145に記憶する。これにより、サーバ1は、機械学習で生成した識別モデル141(学習済みモデル)のデータを学習DB145に記憶する。
【0041】
サーバ1は、各ユーザの端末2から種々の物体の匂いデータのアップロードを受け、ユーザからの要求に応じて上記の機械学習を行う。サーバ1は、各ユーザからの要求に応じて生成した識別モデル141の学習済みパラメータを、学習DB145に記憶しておく。このように、サーバ1は学習DB145において、異なる物体の匂いデータを学習した複数の識別モデル141のデータを管理する。
【0042】
サーバ1は、端末2からの要求に応じて、識別モデル141に基づく物体の識別を行う。具体的には、まずサーバ1は、学習DB145に記憶されている各学習済みパラメータから、識別モデル141に設定する学習済みパラメータの選択入力を端末2から受け付ける。サーバ1は、選択された学習済みパラメータを識別モデル141に設定する。このように、サーバ1は、物体の識別に用いる識別モデル141の選択入力を端末2から受け付ける。
【0043】
次にサーバ1は、匂いDB143に記憶されている各匂いデータの内、識別対象とする物体の匂いデータを選択する選択入力を端末2から受け付ける。なお、サーバ1は、匂いDB143に既に記憶されている匂いデータではなく、識別対象の物体の匂いデータをユーザの端末2から新規に取得するようにしてもよいことは勿論である。
【0044】
サーバ1は、選択された匂いデータと、当該匂いデータの取得条件とを匂いDB143から読み出し、学習済みパラメータを設定した識別モデル141に入力する。そしてサーバ1は、識別モデル141から、入力した匂いデータに対応する物体の識別結果を出力として取得する。具体的には上述の如く、サーバ1は、識別対象の物体が、識別モデル141において学習対象とした物体に該当するか否か、その確率値を取得する。サーバ1は、識別結果を端末2に出力し、表示させる。
【0045】
以上より、本実施の形態によれば、匂いデータだけでなく、匂いデータの取得条件を識別モデル141への入力に用いることで、匂いに基づく物体の識別を好適に行うことができる。
【0046】
図6は、識別モデル141の生成処理の手順を示すフローチャートである。図6に基づき、匂いデータを学習して識別モデル141を生成する処理について説明する。
サーバ1の制御部11は、匂いDB143から、識別モデル141を生成するための訓練データを取得する(ステップS11)。訓練データは、匂いセンサ3で計測した物体の匂いデータ、及び当該匂いデータの取得条件に対し、正解の物体(匂い名)が対応付けられたデータである。取得条件は、匂いのカテゴリを表すテキストとしてユーザが任意に入力したドメイン名、サブドメイン名のほか、事前洗浄時間、吸引時間等の匂いセンサ3の状態を表す状態情報、及び匂いの計測環境に関連する位置情報、天候情報等の環境情報を含む。
【0047】
制御部11は訓練データに基づき、匂いデータ、及び匂いデータの取得条件を入力として、物体の識別結果を出力する識別モデル141を生成する(ステップS12)。具体的には上述の如く、制御部11は識別モデル141としてニューラルネットワーク(LSTM)を生成する。制御部11は、匂いデータと、取得条件を表すカテゴリ変数とを識別モデル141に入力して、当該匂いデータに対応する物体を識別した識別結果を出力として取得する。制御部11は、取得した識別結果を正解の物体と比較して、両者が近似するように、ニューロン間の重み等のパラメータ、すなわち学習済みパラメータを最適化して識別モデル141を生成する。
【0048】
制御部11は、生成した識別モデル141に係る学習済みパラメータを、学習対象とした物体(匂い名)、及び匂いデータの取得条件(ドメイン名等)と対応付けて学習DB145に記憶し(ステップS13)、一連の処理を終了する。
【0049】
図7は、物体識別処理の手順を示すフローチャートである。図7では、識別モデル141に基づく物体の識別処理について説明する。
サーバ1の制御部11は、匂いDB143に記憶されている各物体の匂いデータの内、識別対象とする物体の匂いデータを選択する選択入力を受け付ける(ステップS31)。制御部11は、選択された匂いデータと、当該匂いデータの取得条件を匂いDB143から読み出す(ステップS32)。
【0050】
制御部11は、物体の識別に用いる識別モデル141を選択する選択入力を端末2から受け付ける(ステップS33)。具体的には上述の如く、制御部11は、識別モデル141に設定する学習済みパラメータの選択入力を受け付ける。制御部11は、選択された学習済みパラメータを識別モデル141に設定し、当該識別モデル141に物体の匂いデータ及び取得条件を入力して、物体を識別する(ステップS34)。制御部11は識別結果を端末2に出力し(ステップS35)、一連の処理を終了する。
【0051】
以上より、本実施の形態1によれば、匂いに基づく物体の識別を好適に行うことができる。
【0052】
また、本実施の形態1によれば、匂いセンサ3の状態を表す状態情報をデータ取得条件として識別モデル141への入力に用いることで、より好適に物体の識別を行うことができる。
【0053】
また、本実施の形態1によれば、水晶振動子を有する匂いセンサ3を用いることで、匂いによる識別をより好適に行うことができる。
【0054】
また、本実施の形態1によれば、匂い計測時の計測環境を表す環境情報をデータ取得条件として識別モデル141への入力に用いることで、より好適に物体の識別を行うことができる。
【0055】
また、本実施の形態1によれば、二クラス分類を行う識別モデル141を多数生成しておき、複数の識別モデル141から利用する識別モデル141を選択できるようにすることで、多様な選択肢(識別モデル141)をユーザに提供することができる。
【0056】
(実施の形態2)
本実施の形態では、上述の匂い識別システムをユーザが利用するためのUI(User Interface)画面に関する形態について述べる。なお、実施の形態1と重複する内容については同一の符号を付して説明を省略する。
【0057】
図8図11に、端末2が表示するUI画面例を図示する。端末2が表示するUI画面には、画面左側に「計測」、「データ一覧」等のメニューバーが表示され、各メニューへの操作入力に応じて図8図11の画面を切り換えて表示する。図8図11に基づき、本実施の形態の概要を説明する。
【0058】
図8は、計測画面の一例を示す説明図である。計測画面は、匂いセンサ3による匂いの計測を行う際の操作画面である。端末2は、計測画面での操作入力に応じて、自装置に接続されている匂いセンサ3と同期して匂いの計測を行う。
【0059】
具体的には、端末2はセンサ選択欄81で、匂いの計測に用いる匂いセンサ3の選択入力を受け付ける。匂いセンサ3が選択された場合、匂いデータの取得条件であるドメイン名、サブドメイン名などがデフォルトで表示される。例えばサーバ1は、ドメイン名やサブドメイン名、ユーザが使用する匂いセンサ3に対応する状態情報などの登録をユーザから事前に受け付け、ユーザIDと対応付けてドメインDB144に記憶している。センサ選択欄81でユーザの匂いセンサ3が選択された場合、ユーザが登録したドメイン名等が取得条件としてデフォルトで設定される。なお、図8の計測画面において、ユーザからドメイン名等の設定変更を受け付けてもよい。
【0060】
また、端末2は、「ロケーション」、「GPS情報」、「天気」などの各欄で、位置情報、天候情報などの環境情報について設定入力を受け付ける。最後に端末2は、匂い名入力欄82で、これから計測を行う物体を表す匂い名の入力を受け付け、実行ボタン83への操作入力に応じて匂いセンサ3による匂いの計測を開始する。
【0061】
サーバ1は、上記で計測した匂いデータを、計測画面で設定された取得条件、匂い名(正解の物体)等と共に取得する。サーバ1は、取得した各データを匂いDB143に記憶する。
【0062】
図9は、匂いデータの一覧画面の一例を示す説明図である。図9の一覧画面は、匂いDB143に記憶されている匂いデータを一覧で表示する表示画面である。ユーザは当該画面で、匂いDB143に記憶されている匂いデータを確認することができる。例えば端末2は、図9に示すように、各匂いデータに対応する匂い名、ドメイン名、サブドメイン名、匂いデータの取得日時等を一覧表示する。また、一覧画面の上部に表示される「キーワード」、「ドメイン」、「サブドメイン」などの各入力欄への入力に応じて、匂いデータを検索することもできる。ユーザは一覧画面で表示される匂いデータを学習及び識別に用いることができる。
【0063】
図10は、学習画面の一例を示す説明図である。学習画面は、識別モデル141の学習をサーバ1に実行させるための操作画面である。端末2は、学習画面での操作入力に応じて、訓練データとする匂いデータの選択入力を受け付け、サーバ1に識別モデル141の生成処理を実行させる。
【0064】
具体的には、端末2は、匂いデータ選択欄101への操作入力に基づき、匂いDB143に記憶されている匂いデータから、学習対象とする匂いデータを選択する選択入力を受け付ける。例えば匂いデータ選択欄101への操作入力を受け付けた場合、端末2は、図9の一覧画面と同様の匂いデータの一覧をポップアップ表示する(不図示)。端末2は、ポップアップ表示された匂いデータの一覧から、学習対象とする一又は複数の匂いデータを選択する選択入力を受け付ける。
【0065】
学習対象とする匂いデータが選択された場合、ドメイン選択欄102及びサブドメイン選択欄103に、選択された匂いデータに対応するドメイン名及びサブドメイン名がデフォルト表示される。端末2は、ドメイン選択欄102及びサブドメイン選択欄103への操作入力に応じて、デフォルトで表示されたドメイン名及びサブドメイン名を変更する設定変更を受け付ける。このように、端末2は、匂いデータと共に学習する匂いデータの取得条件(ドメイン名等)の選択入力を受け付ける。
【0066】
さらに端末2は、匂い名入力欄104で、学習対象とする物体を表す匂い名のテキスト入力を受け付ける。これにより、端末2は、匂いデータ選択欄101で選択された匂いデータに対応する物体の正しい名称(正解の物体)の入力を受け付ける。
【0067】
端末2は、実行ボタン105への操作入力に応じて、上記で入力された各種情報に基づく機械学習をサーバ1に要求する。端末2からの要求に応じて、サーバ1は、選択された匂いデータ及び取得条件と、当該匂いデータに対応する正解の物体とを学習する機械学習を行い、識別モデル141を生成する。サーバ1は、生成した識別モデル141の学習済みパラメータ(重み等)を、匂い名、ドメイン名等と対応付けて学習DB145に記憶する。
【0068】
なお、図10の学習画面において、画面上部の新規タブ106が選択されている場合、サーバ1は、新規の識別モデル141の学習(生成)を行う。一方で、再学習タブ107が選択されている場合、サーバ1は、既に学習済みの識別モデル141を更新する再学習を行う。この場合、端末2は、学習対象とする匂いデータや取得条件などのほかに、更新する学習済みパラメータ、すなわち再学習の対象とする識別モデル141を選択する選択入力を受け付ける。サーバ1は、選択された識別モデル141に係る再学習を行い、学習済みパラメータを更新する。このように、本システムでは識別モデル141の再学習も同様の画面操作で行うことができる。
【0069】
図11は、判定画面の一例を示す説明図である。判定画面は、上記で生成した識別モデル141に基づく物体の識別をサーバ1に実行させるための操作画面である。端末2は、判定画面での操作入力に応じて、識別モデル141を用いた物体の識別をサーバ1に実行させる。
【0070】
具体的には、端末2は、学習済みパラメータ選択欄111において、識別モデル141に設定する学習済みパラメータの選択入力を受け付ける。例えば端末2は、学習済みパラメータ選択欄111への操作入力を受け付けた場合、学習DB145に記憶されている各学習済みパラメータの情報(各識別モデル141のデータ)をポップアップで一覧表示する。具体的には、端末2は、各学習済みパラメータと対応付けて学習DB145に記憶されている匂い名、ドメイン名、サブドメイン名等を一覧表示する。端末2は、一覧で表示した各学習済みパラメータから何れかを選択する選択入力を受け付ける。これにより、端末2は、物体の識別に用いる識別モデル141の選択入力を受け付ける。
【0071】
次に端末2は、匂いデータ選択欄112で、識別対象とする一又は複数の匂いデータの選択入力を受け付ける。学習画面と同様に、匂いデータ選択欄112への操作入力を受け付けた場合、端末2は図9と同様の匂いデータの一覧をポップアップ表示して選択入力を受け付ける。
【0072】
なお、識別対象とする匂いデータが選択された場合に、サーバ1は、当該匂いデータの取得条件(ドメイン名等)と、上記で選択された識別モデル141において学習対象とした匂いデータの取得条件とが一致するか否かを判定し、一致しない場合はエラーを出力すると好適である。これにより、例えば識別対象の物体とはドメイン名が異なる識別モデル141を使用してしまうような、不適切な事態を回避することができる。
【0073】
端末2は、実行ボタン113への操作入力を受け付けて、サーバ1に物体の識別を要求する。サーバ1は、端末2からの要求に応じて、学習済みパラメータ選択欄111で選択された学習済みパラメータを識別モデル141に設定し、匂いデータ選択欄112で選択された匂いデータを識別モデル141に入力して物体の識別を行う。具体的には、サーバ1は、匂いデータ選択欄112で選択された一又は複数の匂いデータそれぞれについて識別を行い、各匂いデータの識別結果(確率値)を端末2に出力する。端末2は、サーバ1から出力された各匂いデータの識別結果を表示する。
【0074】
なお、判定画面には画面上部に、識別タブ114と、検索タブ115とが表示されている。識別タブ114が選択されている場合、端末2は上記の手順で物体の識別をサーバ1に実行させる。一方で、検索タブ115が選択されている場合、端末2は、一又は複数の識別モデル141を用いた物体の識別(検索)をサーバ1に実行させる。
【0075】
具体的には、端末2は、図11とほぼ同様の判定画面において、学習済みパラメータ選択欄111への選択入力に応じて、一又は複数の学習済みパラメータを選択する選択入力を受け付ける。これにより、端末2は、物体の識別に用いる一又は複数の識別モデル141の選択入力を受け付ける。複数の識別モデル141が選択された場合、サーバ1は、選択された各識別モデル141に対し、匂いデータ選択欄112で選択された匂いデータを入力して、各識別モデル141から識別結果を取得する。これにより、サーバ1は、各識別モデル141で学習対象とした各物体に識別対象の物体が該当するか、複数物体について同時に識別を行う。
【0076】
サーバ1は、各識別モデル141での識別結果に基づき、入力された匂いデータに対応する物体が、各識別モデル141に対応する各物体の何れに該当するか、識別結果(検索結果)を出力する。例えばサーバ1は、各識別モデル141から出力された確率値に応じて順位付けを行い、確率値が高い順に物体名を出力する。あるいはサーバ1は、確率値が最も高い物体名を検索結果として出力するようにしてもよい。
【0077】
実施の形態1でも述べたように、一の識別モデル141に複数の物体の匂いデータを学習させて、多クラス分類が可能な識別モデル141を用意するようにしてもよいが、識別モデル141を、二クラス分類を行うモデルとすることで識別精度を向上させることができる。この識別モデル141を複数組み合わせることで、複数物体の何れに該当するか、すなわち多クラス分類を好適に行うことができる。
【0078】
図12は、実施の形態2に係るサーバ1が実行する処理手順の一例を示すフローチャートである。
サーバ1の制御部11は、端末2での操作入力に応じて、匂いデータの計測を行うか否かを判定する(ステップS201)。匂いデータの計測を行うと判定した場合(S201:YES)、制御部11は、計測対象である物体を表す匂い名(正解の物体)のほか、匂いデータの取得条件の設定入力を端末2から受け付ける(ステップS202)。端末2は、ユーザからの操作入力に応じて匂いセンサ3による計測を行い、サーバ1の制御部11は、端末2を介して匂いセンサ3から匂いデータを取得して、ステップS202で設定された取得条件等と対応付けて匂いDB143に匂いデータを記憶する(ステップS203)。
【0079】
ステップS203の処理を実行後、又はステップS201でNOの場合、制御部11は端末2での操作入力に応じて、匂いデータの学習を行うか否かを判定する(ステップS204)。学習を行うと判定した場合(S204:YES)、制御部11は、学習対象とする匂いデータを選択する選択入力を端末2から受け付ける(ステップS205)。具体的には上述の如く、制御部11は、学習対象とする匂いデータのほか、当該匂いデータの取得条件、正解の物体などの設定入力を受け付ける。
【0080】
制御部11は、選択された匂いデータ、及び当該匂いデータの取得条件と、入力された正解の物体とに基づく機械学習を行い、識別モデル141を生成する(ステップS206)。制御部11は、生成した識別モデル141の学習済みパラメータを学習DB145に記憶する(ステップS207)。
【0081】
ステップS207の処理を実行後、又はステップS204でNOの場合、制御部11は、端末2での操作入力に応じて、匂いデータの識別を行うか否かを判定する(ステップS208)。匂いデータの識別を行うと判定した場合(S208:YES)、制御部11は、匂いデータの識別に用いる識別モデル141を選択する選択入力を受け付ける(ステップS209)。具体的には上述の如く、制御部11は、識別モデル141に設定する学習済みパラメータを選択する選択入力を受け付ける。
【0082】
制御部11は、識別対象とする匂いデータを選択する選択入力を受け付ける(ステップS210)。制御部11は、ステップS209で選択された学習済みパラメータを識別モデル141に設定し、ステップS210で選択された匂いデータを入力して物体を識別する(ステップS211)。制御部11は、識別結果を端末2に出力する(ステップS212)。ステップS212の処理を実行後、又はステップS208でNOの場合、制御部11は一連の処理を終了する。
【0083】
以上より、本実施の形態2によれば、簡便な操作で匂いデータの学習及び識別が可能なプラットフォームをユーザに提供することができる。
【0084】
今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0085】
1 サーバ(情報処理装置)
11 制御部
12 主記憶部
13 通信部
14 補助記憶部
P プログラム
141 識別モデル
142 ユーザDB
143 匂いDB
144 ドメインDB
145 学習DB
2 端末
21 制御部
22 主記憶部
23 補助記憶部
24 通信部
25 表示部
26 入力部
3 匂いセンサ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12