IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ・ボーイング・カンパニーの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-28
(45)【発行日】2024-09-05
(54)【発明の名称】非破壊検査装置及び方法
(51)【国際特許分類】
   B25J 13/00 20060101AFI20240829BHJP
   B64F 5/60 20170101ALI20240829BHJP
   B25J 19/02 20060101ALI20240829BHJP
【FI】
B25J13/00 Z
B64F5/60
B25J19/02
【請求項の数】 14
【外国語出願】
(21)【出願番号】P 2019230047
(22)【出願日】2019-12-20
(65)【公開番号】P2020128000
(43)【公開日】2020-08-27
【審査請求日】2022-12-14
(31)【優先権主張番号】16/252,842
(32)【優先日】2019-01-21
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500520743
【氏名又は名称】ザ・ボーイング・カンパニー
【氏名又は名称原語表記】The Boeing Company
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】フェッツァー, バリー エー.
(72)【発明者】
【氏名】ジョージソン, ゲアリー イー.
【審査官】神山 貴行
(56)【参考文献】
【文献】特開2015-131368(JP,A)
【文献】特表2011-523048(JP,A)
【文献】米国特許出願公開第2014/0305217(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B25J 1/00-21/02
B64F 5/00- 5/60
(57)【特許請求の範囲】
【請求項1】
スキャニングセンサ(111)を有するエンドエフェクタ(101)と、
前記エンドエフェクタ(101)に連結されたロボット装置と、
前記ロボット装置と前記エンドエフェクタ(101)とに連結されたコントローラ(140)と、
を備える非破壊検査装置(100)であって、
前記ロボット装置は、
前記エンドエフェクタ(101)に連結される装着表面(400)を画定するマウント(134)
を有しており、
前記エンドエフェクタ(101)は、
前記装着表面(400)に連結されるエンドエフェクタ表面(102)を画定するベース(410)と、
前記エンドエフェクタ表面(102)に垂直に伸長するように構成されたリニアアクチュエータ(104)と、
前記エンドエフェクタ表面(102)にほぼ平行な第1の回転軸(122)を画定する一対の回転連結(121)を有し、前記リニアアクチュエータ(104)によって伸長されるように前記リニアアクチュエータ(104)の端部に回転可能に連結される第1のジンバル(119)と、
前記一対の回転連結(121)の間において前記第1の回転軸(122)にほぼ垂直な第2の回転軸(124)の周りを動可能であるよう前記第1のジンバル(119)に連結されることにより、前記リニアアクチュエータ(104)の前記端部において、前記第1のジンバル(119)と共に前記第1の回転軸(122)の周りを回転するように構成された第2のジンバル(123)と、
を有しており、
前記スキャニングセンサ(111)は、前記第2のジンバル(123)に連結されており、
前記ロボット装置は、前記エンドエフェクタ(101)の動作を制御し、かつ、前記エンドエフェクタ(101)の動作中に前記エンドエフェクタ表面(102)の中心点(103)に関する位置情報を決定するように構成されており、
前記コントローラ(140)は、前記リニアアクチュエータ(104)の伸長量(1001)と前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記スキャニングセンサ(111)の回転量とに基づいて、前記スキャニングセンサ(111)の位置情報(152)を決定するために前記エンドエフェクタ表面(102)の前記中心点(103)に対する前記スキャニングセンサ(111)の変位(142)を決定するように構成されており、
検査品目(170)の検査表面(171)上の位置に対するセンサデータ(146)が検知され、前記スキャニングセンサ(111)の決定された位置情報(144)に関連付けられる、非破壊検査装置(100)。
【請求項2】
前記エンドエフェクタ(101)は、前記リニアアクチュエータ(104)、前記第1のジンバル(119)、及び前記第2のジンバル(123)の上の変位センサを含み、前記変位センサは、前記エンドエフェクタ(101)の動作とほぼ同時に、前記リニアアクチュエータの伸長量(1001)、前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記スキャニングセンサ(111)の回転量の決定を有効にするよう、前記コントローラ(140)に連結されている、請求項1に記載の非破壊検査装置(100)。
【請求項3】
前記コントローラ(140)は、前記リニアアクチュエータ(104)の伸長量(1001)、前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記スキャニングセンサ(111)の回転量、並びに、前記リニアアクチュエータの伸長(1001)にほぼ平行な軸の周りでの前記スキャニングセンサ(111)の回転量に基づいて、前記エンドエフェクタ表面(102)の前記中心点(103)に対する前記スキャニングセンサ(111)の変位(142)を決定するように構成されている、請求項1に記載の非破壊検査装置(100)。
【請求項4】
前記コントローラ(140)は、前記エンドエフェクタ表面(102)の前記中心点(103)に対する前記スキャニングセンサ(111)の変位(142)を含む位置情報(152)と共に、前記検査品目(170)の前記検査表面(171)上での前記位置に関する前記センサデータ(146)を受信するように構成されている、請求項3に記載の非破壊検査装置(100)。
【請求項5】
前記コントローラ(140)は、前記リニアアクチュエータの伸長量(1001)、前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記スキャニングセンサ(111)の回転量に基づいて、直線的な変位(153)と回転変換(143)との組み合わせによって、前記エンドエフェクタ(101)の前記中心点(103)に対する多関節構成での前記スキャニングセンサ(111)の変位(142)を決定するように構成されている、請求項1に記載の非破壊検査装置(100)。
【請求項6】
前記コントローラ(140)は、
前記検査表面(171)上に投影される際、前記スキャニングセンサ(111)によって照射されるセンサビーム(117)の焦点(117F)と、前記エンドエフェクタ(101)の前記中心点(103)との間の変位距離(DX、DY)を決定し、
前記変位距離(DX、DY)に基づいて前記回転変換(143)を修正する、ように構成されている、請求項5に記載の非破壊検査装置(100)。
【請求項7】
前記コントローラ(140)は、前記スキャニングセンサ(111)によって照射されたセンサビーム(117)の、前記検査品目(170)の前記検査表面(171)に対するビーム入射角(118)に基づいて前記回転変換(143)を修正するように構成されている、請求項6に記載の非破壊検査装置(100)。
【請求項8】
前記ロボット装置(130)は、検査品目の3次元ソリッドモデル(148)の座標系(150)及び前記検査品目(170)の既知の位置(173)に従って、前記検査品目(170)に対して前記エンドエフェクタ(101)をピクセル対ピクセル動作で動かすように構成されており、
前記コントローラ(140)は、前記検査品目の3次元ソリッドモデル(148)の対応する位置(149)に前記センサデータ(146)を関連付けるように構成されている、請求項1に記載の非破壊検査装置(100)。
【請求項9】
前記センサデータ(146)は、前記検査品目(170)の前記検査表面(171)上の少なくとも前記位置(149)に対する前記検査品目(170)の断層撮影データ(147)を含み、前記コントローラは、センサデータ(146)の回転変換(143)の修正、及び前記スキャニングセンサ(111)によって照射されたセンサビーム(117)のビーム入射角(α)に基づいて、前記断層撮影データ(147)を決定するように構成されている、請求項7に記載の非破壊検査装置(100)。
【請求項10】
請求項1に記載の非破壊検査装置(100)によって、前記検査品目(170)を検査するための方法であって、前記方法は、
前記ロボット装置によって、前記検査品目(170)に対してエンドエフェクタ(101)を位置決めすることと、
前記エンドエフェクタ(101)の動作中に、前記エンドエフェクタ表面(102)の中心点(103)に関する位置情報を、前記ロボット装置によって決定することと、
前記リニアアクチュエータ(104)の伸長量(1001)と、前記エンドエフェクタ(101)と前記検査品目(170)との物理的な相互作用の結果として、前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記スキャニングセンサ(111)の回転量とに基づいて、前記スキャニングセンサ(111)の位置情報(152)を決定するために前記エンドエフェクタ表面(102)の前記中心点(103)に対する前記スキャニングセンサ(111)の変位(142)を、前記コントローラ(140)によって決定することと、
を含む、方法。
【請求項11】
前記コントローラ(140)が、前記エンドエフェクタ表面(102)の前記中心点(103)に対する前記スキャニングセンサ(111)の変位(142)を含む位置情報(152)と共に、前記検査品目(170)の前記検査表面(171)上での前記位置(149)に関する前記センサデータ(146)を受信することをさらに含む、請求項10に記載の方法。
【請求項12】
前記リニアアクチュエータ(104)の伸長量(1001)、前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記スキャニングセンサ(111)の回転量に基づいて、直線的な変位(153)と回転変換(143)との組み合わせを実行する前記コントローラ(140)によって、前記エンドエフェクタ(101)の前記中心点(103)に対する多関節構成での前記スキャニングセンサ(111)の変位(142)を決定することをさらに含む、請求項10又は11に記載の方法。
【請求項13】
前記ロボット装置(131)によって、検査品目の3次元ソリッドモデル(148)の座標系(150)及び前記検査品目(170)の既知の位置(173)に従って、前記検査品目(170)に対して前記エンドエフェクタ(101)をピクセル対ピクセル動作で動かすことと、
前記コントローラ(140)によって、前記検査品目の3次元ソリッドモデル(148)の対応する位置(149)に前記センサデータ(146)を関連付けることと、
をさらに含む、請求項10から12のいずれか一項に記載の方法。
【請求項14】
前記コントローラ(140)によって、各検査品目(170)に関して、各検査品目の3次元ソリッドモデル(148)及び関連付けられた前記センサデータ(146)を、前記コントローラ(140)のメモリ(141)に保存することと、
前記コントローラ(140)によって、前記検査品目(170)のそれぞれの位置での測定傾向(151)を画定するセンサデータの時系列(145)を、前記センサデータ(146)から生成することと、
をさらに含む、請求項13に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
例示的な実施形態は、概して検査装置に関し、より具体的には、非破壊検査装置に関する。
【背景技術】
【0002】
一般的に、構成要素(例えば、航空機の構成要素)の非破壊検査は、構成要素の表面に対して2次元座標系で、構成要素の測定データを捕捉する検査装置を使用する。2次元測定データは次に、構成要素の3次元コンピュータ支援製図(CAD)モデルの上に重ねられる。例えば、2次元測定データを構成要素の3次元座標系に関連付ける1つの方法は、構成要素の3次元座標情報を、2次元測定データのMicrosoft PowerPoint(商標)オーバーレイに打ち込むことである。2次元測定データを構成要素の3次元座標系に関連付ける別の方法は、トレンド分析及びデータ保存のために、2次元Cスキャン(すなわち、検査対象物の上面図又は平面図として示されたデータの2次元表示)を構成要素の3次元CAD表面に重ね合わせることである。2次元測定データを構成要素の3次元座標系に関連付けるこれらの方法は、重ね合わせる際に間隙が生ずることがあり、オペレータ依存性が非常に高い。2次元測定データを構成要素の3次元コンピュータ支援製図(CAD)モデルの上に重ね合わせることは、高コストで労働集約的で、複数のソフトウェアパッケージを必要とする。
【0003】
別の非破壊検査方法には、測定データの捕捉とは別に、レーザーベースの3次元スキャナを用いて表面点群を生成し、次に表面点群を2次元測定データに適合させ、結びつけることが含まれる。この方法は、付加的な器具の使用、付加的なスキャニングステップ、付加的な資本コスト、表面点群上への測定データの展開及び位置合わせを必要とする。この方法では、各Aスキャン波形(すなわち、一方の軸が振幅を表わし、他方の軸が時間を表わす単純な2次元グリッドの上に、エコー振幅及びトランジットタイムがプロットされる波形表示)の1対1相関ではないことがありうる。
【発明の概要】
【0004】
そのため、少なくとも上述の懸念に対処することを目的とした装置及び方法は有用となろう。
【0005】
下記は本開示を許容する主題の例であり、それらは、特許請求されることも、されないこともあってよく、完全に網羅的というわけではない。
【0006】
本開示による主題の一実施例は、非破壊検査装置に関し、当該非破壊検査装置は、エンドエフェクタ表面に垂直に伸長するように構成されたリニアアクチュエータを備えるエンドエフェクタと、リニアアクチュエータによって伸長されるようにリニアアクチュエータの端部に配置された第1のジンバルであって、エンドエフェクタ表面にほぼ平行な第1の回転軸を画定する回転連結を備える第1のジンバルと、第1のジンバルの回転連結に枢動可能に接続された第2のジンバルであって、第1の回転軸にほぼ垂直な第2の回転軸を画定する第2のジンバルと、第2の回転軸の周りで第2のジンバルと共に回転し、第1の回転軸の周りで第1のジンバルに対して回転するように第2のジンバルに連結されたセンサと、ロボット装置であって、ロボット装置がエンドエフェクタの動作を制御するようにエンドエフェクタはロボット装置に連結され、エンドエフェクタの動作中にエンドエフェクタ表面の中心点に関する位置情報を決定するように構成されたロボット装置と、ロボット装置に連結されたエンドエフェクタと、ロボット装置とエンドエフェクタに連結されたコントローラであって、リニアアクチュエータの伸長量と第1の回転軸及び第2の回転軸の周りでのセンサの回転量に基づいて、センサの位置情報を決定するようにエンドエフェクタ表面の中心点に対するセンサの変位を決定するように構成されたコントローラとを備え、検査品目の表面上の位置に関するセンサデータは検知され、センサの決定された位置情報に関連付けられる。
【0007】
本開示による主題の別の実施例は、非破壊検査装置に関し、当該非破壊検査装置は、エンドエフェクタ表面に垂直に伸長するように構成されたリニアアクチュエータを備えるエンドエフェクタと、リニアアクチュエータによって伸長されるようにリニアアクチュエータの端部に配置された第1のジンバルであって、エンドエフェクタ表面にほぼ平行な第1の回転軸を画定する回転連結を備える第1のジンバルと、第1のジンバルの回転連結に枢動可能に接続された第2のジンバルであって、第1の回転軸にほぼ垂直な第2の回転軸を画定する第2のジンバルと、第2の回転軸の周りで第2のジンバルと共に回転し、第1の回転軸の周りで第1のジンバルに対して回転するように第2のジンバルに連結されたセンサと、モバイル装置であって、モバイル装置がエンドエフェクタの動作を制御するようにエンドエフェクタはモバイル装置に連結され、エンドエフェクタの動作中にエンドエフェクタ表面の中心点に関する位置情報を決定するように構成されたモバイル装置と、モバイル装置とエンドエフェクタに連結されたエンドエフェクタと、モバイル装置とエンドエフェクタに連結されたコントローラであって、リニアアクチュエータの伸長量と第1の回転軸及び第2の回転軸の周りでのセンサの回転量に基づいて、センサの位置情報を決定するようにエンドエフェクタ表面の中心点に対するセンサの変位を決定するように構成されたコントローラとを備え、検査品目の表面上の位置に関するセンサデータは検知され、センサの決定された位置情報に関連付けられる。
【0008】
本開示による主題のさらに別の実施例は、非破壊検査装置による、検査品目を検査するための方法に関し、当該方法は、エンドエフェクタ表面に対して垂直に伸長するように構成されたリニアアクチュエータと、リニアアクチュエータによって伸長されるようにリニアアクチュエータの端部に配置された第1のジンバルであって、エンドエフェクタ表面にほぼ平行な第1の回転軸を画定する回転連結を備える第1のジンバルと、第1のジンバルの回転連結に枢動可能に接続された第2のジンバルであって、第1の回転軸にほぼ垂直な第2の回転軸を画定する第2のジンバルと、第2の回転軸の周りで第2のジンバルと共に回転し、第1の回転軸の周りで第1のジンバルに対して回転するように第2のジンバルに連結されたセンサと、を備えるエンドエフェクタの動作をロボット装置が制御するように、エンドエフェクタがロボット装置に連結されている検査品目に対して、エンドエフェクタをロボット装置によって位置決めすることと、エンドエフェクタの動作中に、エンドエフェクタ表面の中心点に関する位置情報を、ロボット装置によって決定することと、リニアアクチュエータの伸長量と、エンドエフェクタと検査品目との物理的な相互作用の結果として、第1の回転軸及び第2の回転軸の周りでのセンサの回転量とに基づいて、センサの位置情報を決定するようにエンドエフェクタ表面の中心点に対するセンサの変位を、ロボット装置及びエンドエフェクタに連結されたコントローラによって決定することとを含み、検査品目の表面上の位置に関するセンサデータは検知され、センサの決定された位置情報に関連付けられる。
【0009】
本開示の前述の実施例は概括的に説明されており、以下で添付図面を参照するが、それらは必ずしも正寸で描かれておらず、複数の図において類似の参照記号は同一部分又は類似部分を示している。
【図面の簡単な説明】
【0010】
図1A】本開示の態様による、非破壊検査装置の概略的なブロック図である。
図1B】本開示の態様による、非破壊検査装置のモバイル装置の概略的なブロック図である。
図1C】本開示の態様による、非破壊検査装置のモバイル装置の概略的なブロック図である。
図1D】本開示の態様による、非破壊検査装置のモバイル装置の概略的なブロック図である。
図2A】本開示の態様による、図1Aの非破壊検査装置の正面図である。
図2B】本開示の態様による、図1Aの非破壊検査装置の側面図である。
図3A】本開示の態様による、図1Aの非破壊検査装置の側面図である。
図3B】本開示の態様による、図1Aの非破壊検査装置の側面図である。
図4】本開示の態様による、図1Aの非破壊検査装置のエンドエフェクタ及びモバイル装置の一部の概略図である。
図5A】本開示の態様による、図1Aの非破壊検査装置のエンドエフェクタの一部の斜視図である。
図5B】本開示の態様による、図1Aの非破壊検査装置のエンドエフェクタの一部の概略分解図である。
図6】本開示の態様による、スキャンパターンの概略図である。
図7】本開示の態様による、検査品目の表面に対するいくつかの位置でのエンドエフェクタの一部の概略断面図である。
図8】本開示の態様による、3次元ボクセルタイプディスプレイで表示された図7のエンドエフェクタ位置に対応する、2次元Cスキャンデータの概略断面図である。
図9】本開示の態様による、図1Aの非破壊検査装置のエンドエフェクタの一部の概略図である。
図10A】本開示の態様による、検査品目の表面に対するエンドエフェクタの一部の概略正面図である。
図10B】本開示の態様による、検査品目の表面に対するエンドエフェクタの一部の概略側面図である。
図11】本開示の態様による、検査品目へのエンドエフェクタのビーム入射角の概略図である。
図12】本開示の態様による、例示的な方法のフロー図である。
図13】本開示の態様による、例示的な方法のフロー図である。
図14】本開示の態様による、例示的な方法のフロー図である。
図15】本開示の態様による、例示的な方法のフロー図である。
図16】本開示の態様による、例示的な方法のフロー図である。
【発明を実施するための形態】
【0011】
図1を参照すると、本開示は、検査品目170のセンサデータ146を取得、又はそうでなければ収集する非破壊検査装置100を提供する。一態様では、センサデータ146は2次元センサデータであってよく、一方、他の態様では、センサデータは断層撮影データ147であってもよい。センサデータ146は、限定するものではないが、表面の不規則性、変形、ひび割れなど、検査品目170の任意の好適な測定情報を含みうる。センサデータ146はセンサ111を含むエンドエフェクタ101によって取得され、エンドエフェクタ101は、エンドエフェクタ表面102の中心点103で、モバイル装置130に連結されている。検査品目170の少なくとも検査表面171がセンサ111によってスキャンされるように、モバイル装置130は、エンドエフェクタを検査品目170に対してピクセル単位の動作(例えば、漸増動作)で移動させる。モバイル装置130が、中心点103に関連付けられた“N”次元位置情報を生成するように、自由度Nの運動(その一部又は全部は本書に記載のように電動化されうる)によって、モバイル装置130はエンドエフェクタ101の運動に影響を及ぼしうる。モバイル装置が6つの自由度を有し、6次元位置情報(例えば、X、Y、Z、A、B、C軸―図2A及び図3を参照)を生成するように、ここで“N”は6などの任意の整数になりうる。他の態様では、“N”は6を上回るか下回ってもよい。“N”次元位置情報は、検査品目170に関して、3次元測定データマッピング、評価、及びデータ保存を提供するセンサデータ146に添付される。
【0012】
本開示の態様によれば、関連付けられたデータ(correlated data)を検査品目170の3次元座標系150に変換/変形するため、非破壊検査装置100は、モバイル装置130からの“N”次元位置情報をセンサデータ146(例えば、2次元センサデータ及び/又は断層撮影データ147など)に関連付ける。非破壊検査装置100は、中心点103に対するセンサ111の(例えば、遠位方向への)直線運動及び回転(例えば、ジンバル)運動を考慮して、モバイル装置130からの“n”次元位置データを修正する。これは、センサ111に対する“N”次元位置データの精度を高める。非破壊検査装置100は、製造環境で使用できるよう、関連付けられたデータを3次元座標系150に保存し、欠陥追跡、欠陥マーキング、再審委員会(material review board)シーケンシング、部品保持(データの検査/記録による部品製造の遅延)、及び再審委員会処理に関連する物流を実質的になくす、或いは低減する。本開示の態様では、関連付けられたデータが(例えば、損傷評価、修理追跡、及び検査品目の完成時の状態と比較した検査品目の状態の傾向把握のため)、各検査品目の寿命全体に渡って各検査品目170と関連付けられるように、各3次元座標系150でのそれぞれの関連付けられたデータは複数の検査品目170のために保存されうる。図1Aを参照すると、非破壊検査装置100は、モバイル装置130、モバイル装置に連結されたエンドエフェクタ101、及びモバイル装置130とエンドエフェクタ101に連結されたコントローラ140を含む。図4図5A、及び図5Bを参照すると、モバイル装置は、エンドエフェクタ101が任意の好適な方法で(任意の好適なファスナ、クリップ、ストラップなどによって)連結されるマウント134を含む。マウント134は、ツールの中心点401(例えば、モバイル装置130の位置データが確立されるマウントの参照データ)を画定する装着表面400(図4)を含む。エンドエフェクタ101は、モバイル装置130の装着表面400と連結するエンドエフェクタ表面102を画定するベース410(図4)を含む。エンドエフェクタ表面102は、マウント134に連結されると、ツールの中心点401と関連付けられる中心点103を有する。エンドエフェクタ101は、ベース410に連結され、エンドエフェクタ表面102に対して垂直な方向(例えば、Z方向)に延伸及び/又は後退するように構成されたリニアアクチュエータ104を含む。センサユニット500(図5)は、リニアアクチュエータ104に連結され、当該リニアアクチュエータ104は、センサユニット500のZ方向での延伸及び/又は後退を有効にする任意の好適なモーター及びベアリングを含む。センサユニット500は、リニアアクチュエータ104によって、検査品目170の検査表面171に対して延伸及び/又は後退されるように、リニアアクチュエータ104の端部に配置された第1のジンバル119を含む。第1のジンバル119は、エンドエフェクタ表面102とほぼ平行な第1の回転軸122を画定する回転連結502を含む。センサユニット500は、第1のジンバル119の回転連結502に枢動可能に接続された第2のジンバル123を含む。例えば、第2のジンバル123は、ショルダボルト503によって(又は、第2のジンバル123が旋回するライディング面504をもたらす他の任意の好適な方法で)、第1のジンバル119に枢動可能に連結される。第2のジンバル123は、第1の回転軸122にほぼ垂直な第2の回転軸124を画定する。センサユニット500は第2のジンバル123に連結されたセンサ111を含み、その結果、センサ111は第2の回転軸124の周りで第2のジンバル123と共に回転し、第1の回転軸122の周りで第1のジンバル119に対して回転する。第1のジンバル119と第2のジンバル123は、センサ111が、検査品目170の検査表面171の輪郭172に応じて、第1の回転軸122及び第2の回転軸124のうちの一又は複数の周りで回転するように構成されている。センサ111は、検査品目170の測定データを取得するための任意の好適なセンサであってよい。例えば、センサ111は、ビーム照射センサ112、渦電流センサ114、又は超音波センサ113であってよい。本開示の態様は、超音波センサ113に関して説明されているが、これは単に例示を目的としたものにすぎない。一態様では、第1のジンバル119は、第2のジンバルのガイドレール550を含む。第2のジンバル123は、第2の回転軸124の周りでの第2のジンバル123の回転運動を任意の好適な回転範囲内に、例えば、エンドエフェクタ表面102に対して約±5°の範囲内に制限するように、第2のジンバルガイドレール550に結合する係合ガイドレール555を含む。他の態様では、好適な回転範囲は、エンドエフェクタ表面102に対して約±5°を下回る又は上回ることもありうる。さらに他の態様では、第2のジンバルの回転範囲は制限されないこともある。一例として、係合ガイドレール555は、第2の回転軸124の周りでの第2のジンバル123の回転を制限するように、第2のジンバルガイドレール550の対応する停止面558、559に連結する停止面556、557を含む。
【0013】
第2のジンバル123は、センサ111が配置される空洞524を有するハウジング523を形成する。エンドエフェクタ101のセンサユニット500はまた、センサ111と検査品目170の検査表面171との間に配置されるように、第2のジンバル123に連結される交換間可能なウェア表面プレート又はスタンドオフ108を含みうる。スタンドオフ108はセンサ111を囲み、検査品目170につながるライディング面110を有し、検査品目170の検査表面171から所定の距離1000(図10A)にセンサ111を保持する。スタンドオフ108は、ファスナ526などの任意の好適な方法で、第2のジンバル123に連結されうる。リニアアクチュエータ104は、検査品目170の検査表面171に対して、スタンドオフ108を任意の好適な方法で付勢するように構成されている。例えば、リニアアクチュエータ104は、空気圧が検査表面171に対してスタンドオフ108を付勢する空気圧アクチュエータであってよい。他の態様では、リニアアクチュエータ104は、検査表面171に対してスタンドオフ108を付勢する任意の好適なバネを含みうる。
【0014】
ハウジング523はまた、超音波結合流体109をスタンドオフ108のチャネル532に誘導する結合部530及び経路531を含みうる。結合部は、超音波結合流体がチャネル532を通って循環するように注入口と排出口を含み、一方、他の態様では、結合流体の一部又は全部は、ライディング面110と検査表面171との間のチャネルから漏れ出る。チャネル532の壁533はセンサ111を取り囲み、超音波結合流体109をチャネル532内に実質的に保持し、例えば、センサ111から検査品目170までの超音波の伝送を促進する。他の態様では、チャネル532は、センサ111から放出された任意の好適な波/ビームに伝送媒体を提供する、任意の好適な結合流体を保持しうる。さらに別の態様では、結合流体が提供されなくてもよい(例えば、ビーム照射センサ112がX線センサである場合)。
【0015】
図1A及び図6を参照すると、モバイル装置130は、検査品目170に対するエンドエフェクタ101の動きを制御する。例えば、モバイル装置130は、コントローラ140(又は、コントローラ140と通信しうる他の任意の好適なコントローラ)の制御下で、検査品目3次元ソリッドモデル148の座標系150及び検査品目170の既知の位置173に従って、検査品目170に対してエンドエフェクタ101をピクセル対ピクセル動作で動かすように構成されている。ピクセル対ピクセル動作は、エンドエフェクタ101を所定の方向(ピクセル601のグリッド600を形成するような、X方向及び/又はY方向)に、所定の量XM、YMだけの漸増的に動かすことであって、エンドエフェクタ101が停止すると、検査品目170はエンドエフェクタ101の次の漸増的な動作の前にスキャンされる。いくつかのピクセル601は、漸増的な動作量XM、YMに応じて、X方向とY方向のうちの一方又は両方で、任意の好適な距離XP、YPだけ重なりうる。ピクセル601サイズは、センサ111のサイズによって(例えば、センサ111のスキャニングアレイのサイズによって)画定されうる。
【0016】
図1A図1B図2A及び図2Bを参照すると、一態様では、モバイル装置130はフレーム132を含むロボット装置131である。フレーム132は、上述のように、エンドエフェクタ表面102に連結するように構成されたマウント134を有する直交駆動システム(Cartesian drive system)133を含む。直交駆動システム133は、一又は複数のX軸レール200を含む。Y軸レール210は、X軸レール200に沿って、任意の好適な方法で駆動されるように、X軸レール200に動作可能に連結される。マウント134は、Y軸レール210に沿って、任意の好適な方法で駆動されるように、Y軸レール210に動作可能に連結される。コントローラ140(又は、コントローラ140と通信を行っている他の任意の好適なコントローラ)は、直交駆動システム133を介してエンドエフェクタ101の動きを有効にするように構成されている。例えば、直交駆動システム133は、検査品目170に対して、直交駆動システム133のX軸及びY軸に沿ってマウントを配置するため、X軸レール200に沿ってY軸レール210を動かし、Y軸レール210に沿ってマウント134(及び、そこに連結されたエンドエフェクタ101)を動かすように、例えば、コントローラ140の制御下で駆動される任意の好適なモーターを含む。直交駆動システム133は、コントローラ140にセンサ信号を送信するため、X軸レール200及びY軸レール210の上に配置された任意の好適な変位センサ250を含み、コントローラ140は、エンドエフェクタ101の動作中にセンサ信号に基づいて、直交駆動システム133の少なくともX軸及びY軸に沿った中心点103の位置情報を決定する。
【0017】
図1A図1D、及び図3Aを参照すると、一態様では、モバイル装置130は、ロボットアーム136を含むロボット装置131である。ロボットアーム136は、上述のように、エンドエフェクタ表面102に連結するように構成されたマウント134を有する。コントローラ140(又は、コントローラ140と通信を行っている他の任意の好適なコントローラ)は、ロボットアーム136を介してエンドエフェクタ101の動きを有効にするように構成されている。例えば、ロボットアーム136は、少なくともX方向及びY方向に沿って、ロボットアーム136のアームリンク301、302、及びマウント134を駆動する任意の好適なモーターを含む。いくつかの態様では、少なくともマウント134はまた、エンドエフェクタ表面102がスキャンされる検査表面171の一部に対して実質的に接したままであるように、アームリンク301、302に対して回転駆動されてよく、一方、他の態様では、マウント134は、アームリンク301、302に対して回転駆動されなくてもよいことに留意されたい。ロボットアーム136は、コントローラ140にセンサ信号を送信するため、ロボットアーム136の上に(例えば、ロボットアーム136のジョイント310、311に)配置された任意の好適な変位センサ350を含み、コントローラ140は、エンドエフェクタ101の動作中にセンサ信号に基づいて、ロボットアーム136のX軸、Y軸及びZ軸に沿った中心点103の位置情報を決定する。本書ではX、Y、Z基準フレームは例示を目的としてのみ使用されていることに留意されたい。また、基準フレームは、(本開示の態様が採用される特定の応用に依存しうる)任意の好適な基準フレームになりうることを理解されたい。
【0018】
図1A及び図1Cを参照すると、一態様では、モバイル装置130は、受動的な(すなわち、電動でない)多関節アーム135を含む。受動的な多関節アーム135は、エンドエフェクタ表面に連結するように構成されたマウント134を含む。受動的な多関節アーム135は、ロボットアーム136とほぼ同様になりうるが、この態様では、受動的な多関節アーム135は、オペレータが受動的な多関節アーム135と共に、エンドエフェクタ101を手動で少なくともX、Y、及びZ方向に動かしうるように構成された、一又は複数のハンドル370を含む。オペレータが一又は複数のハンドル370は放したときに、受動的な多関節アーム135が位置を保持するように、また、オペレータが最小限の操作動作で受動的な多関節アームを操作しうるように、受動的な多関節アームは、均衡が保たれたアームリンク333、334を含みうる。いくつかの態様では、少なくともマウント134はまた、エンドエフェクタ表面102がスキャンされる検査表面171の一部に対して実質的に接したままであるように、アームリンク333、334に対して回転駆動されてよく、一方、他の態様では、マウント134は、アームリンク333、334に対して回転駆動されなくてもよいことに留意されたい。受動的な多関節アーム135は、コントローラ140にセンサ信号を送信するため、受動的な多関節アーム135の上に(例えば、受動的な多関節アーム135のジョイント310、311に)配置された任意の好適な変位センサ350を含み、コントローラ140は、エンドエフェクタ101の動作中にセンサ信号に基づいて、受動的な多関節アーム135のX軸、Y軸及びZ軸に沿った中心点103の位置情報を決定する。
【0019】
図1A図4図9図10A、及び図10Bを参照すると、第1のジンバル119、第2のジンバル123、及びリニアアクチュエータ104は、中心点103の位置及びエンドエフェクタ表面102が変化しうる(例えば、エンドエフェクタ表面102は常に検査表面171に接している必要はない)ように、エンドエフェクタ101に関節動作を提供する。エンドエフェクタの関節動作の大きさは、検査品目170と別の検査品目とで異なりうるが、関節動作はスタンドオフ108が検査表面171に接するように実質的に維持し、センサビーム117がセンサ111によって、検査表面171にほぼ垂直に照射されるように実質的に維持する。例示を目的として、センサ111が超音波(フェーズドアレイ)センサ113を備える場合には、センサ111は超音波センサアレイ115を含む。超音波センサアレイ115は、センサビーム117を照射するように構成された複数の超音波エレメント116を含む。超音波センサ113は、単一の基板に沿って個別の結晶エレメント(例えば、超音波エレメント116)を作るように機械加工される1個のセラミック結晶から構築されうる。超音波センサ113は、例示を目的としたものに過ぎないが、(例えば、コントローラ140の制御下で)一度に複数の超音波エレメント116から超音波ビームパターンを生成するように駆動されうる24個の超音波エレメント116を有しうる。例えば、24個の超音波エレメント116を有するセラミック結晶は、1つの超音波ビーム117に対して4つの超音波エレメント116からなる23の超音波ビーム(例えば、センサビーム117)を生成するように、採用されうる。第1の超音波ビーム117(又は、チャネル)は、第1の4つの超音波エレメントで生成されるか/第1の4つの超音波エレメントを備え、例示を目的として、図9図10A図10Bに示されている。(超音波センサアレイ115の各チャネルに対する)センサビーム117の空間配置は、中心点103に対するZ、A、B、C軸のうちの一又は複数に沿ったセンサ111の変位に依存することを理解されたい。
【0020】
上述のように、コントローラ140は、エンドエフェクタ表面102の中心点103に対するセンサ111の変位を含む位置情報152とともに、検査品目170の検査表面171上での位置に関するセンサデータ146を受信するように構成されている。例えば、コントローラ140は、中心点103の空間配置を決定するため、モバイル装置130の変位センサ250、350(図2A図3A図3B)から、X、Y、Z、A、B、C軸のうちの一又は複数での、中心点103の位置情報を受信するように構成されている。しかしながら、モバイル装置130の変位センサ250、350からの位置情報は、超音波センサアレイ115が起伏のある検査表面171、例えば航空機190の任意の好適な表面(航空機の胴体191、翼192など)からデータを捕捉しているときなどには、超音波センサアレイ115の位置を表わしていないことがありうる。超音波センサアレイ115の位置を正確に決定するため、エンドエフェクタ101は、リニアアクチュエータ104、第1のジンバル119、及び第2のジンバル123の上の変位センサ106、120、125を含む。変位センサ106、120、125は、モバイル装置130によるエンドエフェクタ101の動きとほぼ同時に、リニアアクチュエータの伸長量1001(Zオフセットとも称される)(図10A)、第1の回転軸122の周りでのセンサ111の回転量θ(図10A)、及び第2の回転軸124の周りでのセンサ111の回転量Φ(図10B)の決定を有効にする、コントローラ140に連結されている。
【0021】
変位センサ106は、例えば、エンドエフェクタ表面102に対するリニアアクチュエータの伸長1001を決定するため、任意の好適な方法で(可動支持体104Mの直線的な変位を検知するようにセンサユニット500が連結された可動支持体104Mと固定レール104Rとの間で、或いはこれらに隣接して(図4参照))、リニアアクチュエータ104上に配置される線形可変差動トランスフォーマ(又は、他の好適なセンサ)であってよい。変位センサ120は、例えば、可動支持体104Mと第1のジンバル119との間の相対的な回転変位を検知するため、第1の回転軸122に隣接して(又は、他の好適な位置に)配置される回転式可変差動トランスフォーマ(又は、他の好適なセンサ)であってよい。一態様では、第1の回転軸122の周りでの相対的な回転変位は、第1の回転軸122の周りでのセンサ111の原点の配向(例えば、相対的な回転変位は実質的にゼロである)から測定されうる。ここで、センサ111はエンドエフェクタ表面102とほぼ平行になっている。変位センサ125は、例えば、第1のジンバル119と第2のジンバル123との間の相対的な回転変位を検知するため、第2の回転軸124に隣接して(又は、他の好適な位置に)配置される回転式可変差動トランスフォーマ(又は、他の好適なセンサ)であってよい。一態様では、第2の回転軸124の周りでの相対的な回転変位は、第2の回転軸124の周りでのセンサ111の原点の配向(例えば、相対的な回転変位は実質的にゼロである)から測定されうる。ここで、センサ111は第1の回転軸122とほぼ平行になっている。
【0022】
別の態様では、センサ111の超音波センサアレイ115の変位は、コントローラ140に連結される光学式空間追跡システム160によって決定されうる。この態様では、リニアアクチュエータの伸長量1001、並びに、第1の回転軸122、第2の回転軸124、及び/又はZ軸の周りでのセンサ111の回転量θ、Φ、βの決定を有効にするため、エンドエフェクタ101は、エンドエフェクタ101の上に(第1のジンバル119及び第2のジンバル123の上などに)配置される複数の光学式追跡ターゲット107を含む。Z軸の周りでのセンサ111の回転量βはまた、モバイル装置130の変位センサ250、250(図2A図3A図3B)から決定されうる。
【0023】
コントローラ140は、センサ111の位置情報152を決定するため、リニアアクチュエータの伸長量1001、第1の回転軸122の周りでのセンサ111の回転量θ及び第2の回転軸124の周りでのセンサ111の回転量Φに基づいて、エンドエフェクタ表面102の中心点103に対するセンサ142の変位を決定するように構成されている。検査品目170の検査表面171上の位置149に関するセンサデータ146は、検知され、センサ111の決定された位置情報144に関連付けられる。一態様では、コントローラ140は、リニアアクチュエータの伸長量1001、第1の回転軸122及び第2の回転軸124の周りでのセンサ111の回転量θ、Φ、並びに、リニアアクチュエータ104の伸長にほぼ平行な軸(例えば、Z軸)の周りでのセンサ111の回転量β(図4)に基づいて、エンドエフェクタ表面102の中心点103に対するセンサ142の変位を決定するように構成されている。
【0024】
コントローラ140は、エンドエフェクタ101の中心点103に対する多関節構成でのセンサ111の変位オフセット値RAX、RAY、RAZを決定するため、(メモリ141に保存され、プロセッサ154によって実行されるなど)任意の好適な回転変換143によって、プログラムされうる。一態様では、コントローラ140は、リニアアクチュエータの伸長量1001、少なくとも第1の回転軸122及び第2の回転軸124の周りでのセンサ111の回転量θ、Φ、エンドエフェクタ101の中心点103に対する多関節構成でのセンサ142の変位に基づいて、直線的な変位153と回転変換143との組み合わせで決定するように構成されている。一態様では、センサデータ146は、検査品目170の表面上の少なくとも位置149に対する検査品目170の断層撮影データ147を含む。図11を参照すると、断層撮影データ147はまた、検査品目170の内部の位置149(検査品目170の2つの外表面1100、1101の間など)に対するセンサデータを含みうる。
【0025】
変位オフセット値RAX、RAY、RAZ及び/又はセンサ111の直線的な変位153は、センサ111の空間位置を正確に決定するため、モバイル装置130の変位センサ250、350(図2A図3A図3B)によって決定されるように、中心点103の空間配置に追加されうる。変位オフセット値RAX、RAY、RAZを決定するための1つの好適な回転変換143は以下のとおりである。
ここで、
及び
ここで、Xはセンサビーム117と中心点103との間のXオフセット1050(図10B)で、Yはセンサビーム117と中心点103との間のYオフセット1051(図10B)で(Yオフセットは検査表面171のセンサビーム117のオフセットを含むことに留意されたい)、Zはセンサビーム117と中心点103との間のZオフセット1001(図10A)で(これはリニアアクチュエータ104の変位を含むことに留意されたい)、θは第1のジンバル119の角度(図10A)で、Φは第2のジンバルの角度(図10B)で、また、βはZ軸の周りでの(約90°のフェーズドアレイスキュー角に対して約ゼロの)回転角(図4)である。図に示した実施例では、Xオフセット1050は、β程度のセンサ111の回転に関しては、ほぼゼロに等しいが、超音波ビーム117がセンサ111から検査表面171へ投影される場合(図10A及び図10Bの投影117Pを参照)、超音波ビーム117のセンサ焦点117F(図10A及び図10B参照)は、センサがθ及び/又はΦ程度回転されるときには、中心点103に対して、検査表面171上で距離DY及び/又は距離DXだけ変位される。変位の距離DY及び/又は距離DXは、θ及び/又はΦ程度の回転に対するセンサ111のデータの3次元ボクセルタイプディスプレイ(図8のボクセルタイプディスプレイなど)に対して使用されうる。例えば、入射角αが(以下で説明するように)含まれるときには、距離DY及び/又はDXは断層画像に含まれうる(例えば、回転変換は距離DY及び/又はDXに基づいて修正或いは直線的に平行移動されうる)。
【0026】
図1及び図11を参照すると、センサデータ146が断層撮影データ147を含む場合には、コントローラ140は、センサ111によって照射されたセンサビーム117の、検査品目170の検査表面171に対するビーム入射角αを考慮するため、方程式[1]の回転変換を修正するように構成されている。例えば、検査品目170内でセンサビーム117の焦点1110を投影するため、追加修正が採用されうる。この修正は、ビーム入射角αに基づく投影と考えることが可能で、少なくとも変位センサ120、125によって得られた第1のジンバル119及び第2のジンバル123の方程式[1]で、回転変換に対する追加のオフセットになっている。(ステアリングありのセンサビーム117の軸を示す)Y1及びZ1が(ステアリングなしのセンサビームを示す)Y0及びZ0の上に映し出される投影が図11に示されている。この実施例では、Z0が焦点深度で、X0が超音波センサアレイ115でのセンサビーム117の中心である。この場合、Z0の上へのZ1の投影はcos(α)にほぼ等しく、Y0の上へのZ1の投影は-sin(α)にほぼ等しく、Y0の上へのY1の投影はcos(α)にほぼ等しく、Z0の上へのY1の投影はsin(α)にほぼ等しい。ここで、
及び
である。
【0027】
焦点1110から中心点103までの完全に均一な変換を考慮するため、検査表面171に乗ったリニアアレイ(例えば、超音波センサアレイ115など)に沿ったいずれかの点を取得するように、(当該技術分野において知られており、本書で説明する必要のない)任意の好適な幾何学的計算がコントローラによって採用されうる。
【0028】
図1を参照すると、コントローラ140は、任意の好適な方法で、検査品目の3次元ソリッドモデル148の対応する位置149にセンサデータ146を関連付けるように構成されている。例えば、検査品目148の3次元ソリッドモデル148は座標系150を有する。モバイル装置130は、センサ111と既知の位置関係を有するデータ特徴137を含む。データ特徴137は、検査品目170の対応するデータ特徴175(例えば、ファスナ、コーナー、ウィンドウフレームなど)と連結、或いは整列する任意の好適な止め具、ピン、クリップなどであってよく、対応するデータ特徴175は、検査品目170の既知の位置173を画定する。モバイル装置130のデータ特徴137は、検査品目170の既知の位置173に対する、検査品目170の検査表面171上でのモバイル装置130の位置決めが有効になるように構成されており、その結果、検査品目の3次元ソリッドモデル148の座標系150(例えば、検査品目170と実質的に同じ次元の座標を有する)と、モバイル装置130のXYZABC座標系(例えば、図4を参照)との間には既知の相関関係がある。コントローラ140は、(例えば、上記の方程式を用いて、中心点103にオフセット補正値を適用して得られた)検査品目の3次元ソリッドモデル148上のセンサデータ146を、任意の好適な方法で自動的に重ね合わせるように構成されている。例えば、図6図8を参照すると、検査品目170の検査中、エンドエフェクタ101(及びセンサ111)は、モバイル装置130によって、ピクセル単位の方法で(図6参照)、任意の好適な空間増分で移動される。ピクセル単位で移動するセンサ111の一列の側面図を、検査表面171の輪郭172について、図7に示した。この実施例では、センサ111は各ピクセル位置に対してCスキャン800を生成し、Cスキャンデータは、検査品目170のスキャンされたピクセル単位の位置に対応する座標系150位置で、(図8に示したように)ボクセル形式フォーマットで、検査品目の3次元ソリッドモデル148の上に重ねられる。一態様では、各検査品目の3次元ソリッドモデル148及び関連付けられたセンサ146のデータは、各検査品目170に対して、コントローラ140のメモリ141に保存される(ここで、複数の検査品目が検査され、対応する3次元ソリッドモデルがメモリ141に保存される)。それぞれの検査品目170のそれぞれの位置149に対して、測定傾向151を画定するセンサデータ145のそれぞれの時系列を形成するため、コントローラ140は、一又は複数の検査品目170に対して、センサデータ146を保存するように構成されている。
【0029】
図1及び図12を参照すると、非破壊検査装置100で検査品目を検査するための例示的な方法1200は、モバイル装置130がエンドエフェクタ101の動きを制御するように、モバイル装置130(例えば、図1B図1Dのロボット装置131、及び図1Cの受動的な多関節アーム135など)により、エンドエフェクタ101がモバイル装置130に連結される検査品目170に対して、エンドエフェクタ101を位置決めすること(図12のブロック1201)を含む。検査品目170に対するエンドエフェクタ101の位置決めは、エンドエフェクタ101を検査品目170に連結することと、センサ111を囲むエンドエフェクタ101のスタンドオフ108によって、センサ111を検査品目170の検査表面171から(例えば、スタンドオフ108によって設定される)所定の距離に保持することとを含む。リニアアクチュエータ104は、検査品目170の検査表面171に対してスタンドオフ108を付勢する。一態様では、超音波結合流体109は、スタンドオフ108によって、センサ111と検査表面171との間に実質的に保持される。エンドエフェクタ101は、モバイル装置130によって、検査品目170に対して、検査品目の3次元ソリッドモデル148の座標系150と検査品目170上の既知の位置173に従った、ピクセル単位の運動で動かされる。
【0030】
方法1200は、エンドエフェクタ101の動作中に、モバイル装置130によって、エンドエフェクタ表面102の中心点103に対する位置情報を決定すること(図12のブロック1210)を含む。モバイル装置130とエンドエフェクタ101に連結されたコントローラ140は、リニアアクチュエータの伸長量1001(図10A)と、エンドエフェクタと検査品目170との物理的な相互作用の結果として、第1の回転軸122及び第2の回転軸124の周りでのセンサ111の回転量とに基づいて、センサ111の位置情報152を決定するため、エンドエフェクタ表面102の中心点103に対するセンサ142の変位を決定する。検査品目170の検査表面171上の位置に関するセンサデータ146は検知され、センサ111の決定された位置情報144と関連付けられる(図12、ブロック1220)。一態様では、コントローラ140は、エンドエフェクタの動きとほぼ同時に、リニアアクチュエータの伸長量1001と、第1の回転軸122及び第2の回転軸124の周りでのセンサ111の回転量とを決定する。エンドエフェクタ101は、リニアアクチュエータ104、第1のジンバル119、及び第2のジンバル123の上に変位センサ106、120、125を含み、変位センサ106、120、125はコントローラ140に連結されている。エンドエフェクタ表面102の中心点103に対するセンサ111の変位は、リニアアクチュエータの伸長量1001、第1の回転軸122及び第2の回転軸124の周りでのセンサ111の回転量、並びに、リニアアクチュエータ104の伸長にほぼ平行な軸(例えば、Z軸)の周りでのセンサの回転量に基づいている。一態様では、リニアアクチュエータの伸長量1001と、第1の回転軸122及び第2の回転軸124の周りでのセンサ111の回転量は、(一又は複数の変位センサ106、120、125と共に、或いはこれらの代わりに使用される)コントローラ140に連結された光学式追跡システム160によって決定され、エンドエフェクタ101は、エンドエフェクタ101の上に配置された複数の光学式追跡ターゲット107を含む。
【0031】
一態様では、センサデータ146は、複数の超音波エレメント116を有する超音波センサアレイ115によって検知される。本開示の態様では、コントローラ140は、エンドエフェクタ表面102の中心点103に対するセンサ111の変位を含む位置情報152と共に、検査品目170の検査表面171上での位置に関するセンサデータ146を受信する。
【0032】
一態様では、位置情報152を決定することは、リニアアクチュエータの伸長量1001、第1の回転軸122及び第2の回転軸124の周りでのセンサ111の回転量に基づいて、直線的な変位と回転変換との組み合わせを実行するコントローラ140によって、エンドエフェクタ101の中心点103に対する多関節構成でのセンサ142の変位を決定することを含む。一態様では、コントローラ140は、センサ111によって照射されたセンサビーム117の、検査品目170の検査表面171に対するビーム入射角118を考慮するため、回転変換を修正する。コントローラ140は、センサデータ146を検査品目の3次元ソリッドモデル148の対応する位置149に関連付け、コントローラ140は、それぞれの検査品目の3次元ソリッドモデル148と関連付けられたセンサデータ146を、各検査品目170について、コントローラ140のメモリ141に保存する。コントローラ140は、検査品目170の(例えば、検査品目の3次元ソリッドモデル148上の)それぞれの位置149について、測定傾向151を画定するセンサデータ146からセンサデータ145の時系列を生成する。一態様では、センサデータ146は、上述のように、断層撮影データ147を含み、断層撮影データ147は検査品目のそれぞれの位置149に関連付けられており、また、一態様では、断層撮影データ147は、検査品目170のそれぞれの位置149に対して、測定傾向151を少なくとも部分的に画定する。
【0033】
図1及び図13を参照すると、検査品目170を検査するための別の例示的な同期的な方法1300(センサ111は、センサのピクセル単位の動作の間に起動される)は、コントローラ140によって、例えば、モバイル装置130の変位センサ250、350などによって、エンドエフェクタ101の中心点103の位置を取得すること(図13、ブロック1301)を含む。コントローラ140は、変位センサ120、125などから、第1のジンバル119及び第2のジンバル123の各々の回転位置を取得する(図13、ブロック1305)。コントローラ140はまた、変位センサ106などから、リニアアクチュエータ104の位置/伸長を取得する(図13、ブロック1310)。センサ142の変位は、本書に記載の方法で、コントローラ140によって決定される(図13、ブロック1315)。コントローラ140は、エンドエフェクタ101上のセンサ111の関節でつながれた位置を反映するため、中心点103をオフセットするように(本書に記載のように)直線的変換及び回転変換を適用する(図13、ブロック1320)。コントローラ140はセンサ111を作動させ、センサ111が配置されているピクセル位置に対するセンサデータ146を取得する(図13、ブロック1325)。コントローラ140は、(中心点103のオフセットを採用する)センサデータ146を検査品目の3次元ソリッドモデル148に関連付ける(図13、ブロック1330)。コントローラ140は、関連付けられたセンサデータを(任意の好適なユーザーインターフェース180(図1)上に)ボクセル形式フォーマットで、図8に示した実施例として表示する(図13、ブロック1335)。モバイル装置130は、センサ111を(X方向及びY方向の一方又は両方に)1ピクセル動かし(図13、ブロック1340)、新しいピクセル位置に対して、ブロック1301~1335が反復されうる。
【0034】
図1及び図14を参照すると、検査品目170を検査するための例示的な非同期的な方法1400(ここで、センサ111は、センサ111のピクセル単位での動きには関わらず、内部クロックによって起動される)は、内部クロック信号、例えば、コントローラ140又は他の好適なソースからの内部クロック信号に従ってセンサが起動するように構成することを含む(図14、ブロック1401)。コントローラ140は、センサ111からセンサデータ146を非同期的に取得する(図14、ブロック1405)。コントローラ140は、モバイル装置130の変位センサ250、350などによって、エンドエフェクタ101の中心点103位置を取得する(図14、ブロック1410)。コントローラ140は、変位センサ120、125などから、第1のジンバル119及び第2のジンバル123の各々の回転位置を取得する(図14、ブロック1415)。コントローラ140はまた、変位センサ106などから、リニアアクチュエータ104の位置/伸長を取得する(図14、ブロック1420)。センサ142の変位は、本書に記載の方法で、コントローラ140によって決定される(図14、ブロック1425)。コントローラ140は、エンドエフェクタ101上のセンサ111の関節でつながれた位置を反映するため、中心点103をオフセットするように(本書に記載のように)直線的変換及び回転変換を適用する(図14、ブロック1430)。コントローラ140は、最新値(例えば、センサ111を現在のピクセル位置に移動した後で、センサを次のピクセル位置に移動する前に、クロックによるセンサの起動に従った、最終のセンサ111起動によるセンサデータ)を取得する(図14、ブロック1435)。コントローラ140は、(中心点103のオフセットを採用する)センサデータ146を検査品目の3次元ソリッドモデル148に関連付ける(図14、ブロック1440)。コントローラ140は、関連付けられたセンサデータを(任意の好適なユーザーインターフェース180(図1)上に)ボクセル形式フォーマットで、図8に示した実施例として表示する(図14、ブロック1445)。モバイル装置130は、センサ111を(X方向及びY方向の一方又は両方に)1ピクセル動かし(図14、ブロック1450)、新しいピクセル位置に対して、ブロック1410~1445が反復されうる。
【0035】
図1及び図15を参照すると、検査品目170を検査するための例示的な参照テーブルの方法1500(ここで、中心点103のオフセットは所定の参照テーブル181から取得される)は、(第1のジンバル119の回転を物理的に制限するため)リニアアクチュエータ104の上に配置された任意の好適な制限止め具182、及び、(第2のジンバル123の回転を物理的に制限するため)第1のジンバル119の上に配置された任意の好適な制限止め具183などにより、第1のジンバル119と第2のジンバル123の動きを制限することを含む(図15、ブロック1501)。一態様では、第1のジンバル119の回転及び第2のジンバル123の回転は、検査表面171の輪郭172の上の最小の曲線に制限されている。一態様では、第1のジンバル119及び第2のジンバル123の回転は、約±5°に制限されており、他の態様では、回転の制限は約±5°を上回ること、或いは下回ることがありうる。参照テーブル181は、メモリ141に作られて保存される(図15、ブロック1505)が、当該参照テーブルは、第1のジンバル119と第2のジンバル123との所定の角度間隔に対応する中心点103のオフセット値184を含む。一態様では、所定の間隔は、第1のジンバル119及び第2のジンバル123の各々の回転の約1°毎になりうるが、他の態様では、約1°毎を上回ること、或いは下回ることがありうる。コントローラ140は、モバイル装置130の変位センサ250、350などによって、エンドエフェクタ101の中心点103位置を取得する(図15、ブロック1510)。コントローラ140は、変位センサ120、125などから、第1のジンバル119及び第2のジンバル123の各々の回転位置を取得する(図15、ブロック1515)。コントローラ140はまた、変位センサ106などから、リニアアクチュエータ104の位置/伸長を取得する(図15、ブロック1520)。センサ142の変位は、本書に記載の方法で、コントローラ140によって決定される(図15、ブロック1525)。コントローラ140は、エンドエフェクタ101上のセンサ111の関節でつながれた位置を反映するため、参照テーブル181から、所定の中心点103のオフセット値184を中心点103に適用する(図15、ブロック1530)。コントローラ140は、センサデータ146を(上述のように同期的に又は非同期的に)取得する(図15、ブロック1535)。コントローラ140は、(中心点103にオフセット値184を使用する)センサデータ146を検査品目の3次元ソリッドモデル148に関連付ける(図15、ブロック1540)。コントローラ140は、関連付けられたセンサデータを(任意の好適なユーザーインターフェース180(図1)上に)ボクセル形式フォーマットで、図8に示した実施例として表示する(図15、ブロック1545)。モバイル装置130は、センサ111を(X方向及びY方向の一方又は両方に)1ピクセル動かし(図15、ブロック1550)、新しいピクセル位置に対して、ブロック1510~1545が反復されうる。
【0036】
図1及び図16を参照すると、検査品目170を検査するための例示的な光データ捕捉方法1600(ここで、中心点103のオフセットは光学式空間追跡システム160を用いて決定される)は、コントローラ140によって、本書に記載のように光学式空間追跡システム160を用いて、センサ111の位置(例えば、アクチュエータ104の直線的な伸長、並びに、第1のジンバル119及び第2のジンバル123の回転角)を取得することを含む(図16、ブロック1601)。この実施例では、センサの位置は光学式空間追跡システム160によって直接決定されるため、直線的変換及び回転変換は必要とされないことがある。センサデータ146は、本書に記載のように、コントローラ140によって、非同期的に又は同期的に取得される(図16、ブロック1605)。コントローラ140は、(直接決定された中心点103の位置を採用する)センサデータ146を、検査品目の3次元ソリッドモデル148に関連付ける(図16、ブロック1610)。コントローラ140は、関連付けられたセンサデータを(任意の好適なユーザーインターフェース180(図1)上に)ボクセル形式フォーマットで、図8に示した実施例として表示する(図16、ブロック1615)。モバイル装置130は、センサ111を(X方向及びY方向の一方又は両方に)1ピクセル動かし(図16、ブロック1620)、新しいピクセル位置に対して、ブロック1601~1615が反復されうる。
【0037】
本開示の態様に従って、以下が提示される。
【0038】
A1. エンドエフェクタであって、
前記エンドエフェクタ表面に垂直に伸長するように構成されたリニアアクチュエータと、
前記リニアアクチュエータによって伸長されるように前記リニアアクチュエータの端部に配置された第1のジンバルであって、前記エンドエフェクタ表面にほぼ平行な第1の回転軸を画定する回転連結を備える第1のジンバルと、
前記第1のジンバルの前記回転連結に枢動可能に接続された第2のジンバルであって、前記第1の回転軸にほぼ垂直な第2の回転軸を画定する第2のジンバルと、
前記第2の回転軸の周りで前記第2のジンバルと共に回転し、前記第1の回転軸の周りで前記第1のジンバルに対して回転するように前記第2のジンバルに連結されたセンサと、
を備えるエンドエフェクタと、
ロボット装置であって、前記ロボット装置が前記エンドエフェクタの動作を制御するように前記エンドエフェクタは前記ロボット装置に連結され、前記エンドエフェクタの動作中に前記エンドエフェクタ表面の中心点に関する位置情報を決定するように構成されたロボット装置と、
前記ロボット装置と前記エンドエフェクタに連結されたコントローラであって、リニアアクチュエータの伸長量と前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量に基づいて、前記センサの位置情報を決定するため前記エンドエフェクタ表面の前記中心点に対する前記センサの変位を決定するように構成されたコントローラと、
を備える非破壊検査装置であって、検査品目の検査表面上の位置に関するセンサデータは検知され、前記センサの前記決定された位置情報に関連付けられる、非破壊検査装置。
【0039】
A2. 前記センサは、複数の超音波エレメントを有する超音波センサアレイを備える、段落A1に記載の非破壊検査装置。
【0040】
A3. 前記コントローラは、前記エンドエフェクタ表面の前記中心点に対する前記センサの前記変位を含む位置情報と共に、前記検査品目の前記検査表面上での位置に関する前記センサデータを受信するように構成されている、段落A1に記載の非破壊検査装置。
【0041】
A4. 前記コントローラは、前記リニアアクチュエータの伸長量、前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量に基づいて、直線的な変位と回転変換との組み合わせによって、前記エンドエフェクタの前記中心点に対する多関節構成での前記センサの変位を決定するように構成されている、段落A1に記載の非破壊検査装置。
【0042】
A5. 前記コントローラは、
前記検査表面上に投影される際、前記センサによって照射されるセンサビームの焦点と、前記エンドエフェクタの前記中心点との間の変位距離を決定し、
前記変位距離を考慮するため、前記回転変換を修正する、ように構成されている、段落A4に記載の非破壊検査装置。
【0043】
A6. 前記コントローラは、前記センサによって照射されたセンサビームの、前記検査品目の前記検査表面に対するビーム入射角を考慮するため、前記回転変換を修正するように構成されている、段落A4に記載の非破壊検査装置。
【0044】
A7. 前記エンドエフェクタはさらに、前記センサを囲むスタンドオフであって、検査品目に連結するライディング面を有するスタンドオフを備え、前記センサを前記検査品目の前記検査表面から所定の距離に保持する、段落A1に記載の非破壊検査装置。
【0045】
A8. 前記スタンドオフは、超音波結合流体を実質的に保持するように構成されている、段落A7に記載の非破壊検査装置。
【0046】
A9. 前記リニアアクチュエータは、前記検査品目の前記検査表面に対して前記スタンドオフを付勢するように構成されている、段落A7に記載の非破壊検査装置。
【0047】
A10. 前記第1のジンバル及び前記第2のジンバルは、前記検査品目の前記検査表面の輪郭に応じて、前記センサが一又は複数の前記第1の回転軸及び前記第2の回転軸の周りで回転するように構成されている、段落A7に記載の非破壊検査装置。
【0048】
A11. 前記ロボット装置は、検査品目の3次元ソリッドモデルの座標系及び前記検査品目の既知の位置に従って、前記検査品目に対して前記エンドエフェクタをピクセル対ピクセル動作で動かすように構成されており、
前記コントローラは、前記検査品目の3次元ソリッドモデルの対応する位置に前記センサデータを関連付けるように構成されている、段落A1に記載の非破壊検査装置。
【0049】
A12. 各検査品目に関して、各検査品目の3次元ソリッドモデル及び前記関連付けられたセンサデータはコントローラのメモリに保存され、前記コントローラは、前記検査品目のそれぞれの位置での測定傾向を画定する前記センサデータから、センサデータの時系列を生成するように構成されている、段落A11に記載の非破壊検査装置。
【0050】
A13. 前記エンドエフェクタは、リニアアクチュエータ、前記第1のジンバル、及び第2のジンバルの上の変位センサを含み、前記変位センサは、前記エンドエフェクタの動きとほぼ同時に、前記リニアアクチュエータの伸長量、前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量の決定を有効にするよう、前記コントローラに連結されている、段落A1に記載の非破壊検査装置。
【0051】
A14. 前記コントローラに連結された光学式空間追跡システムをさらに備え、前記エンドエフェクタは、前記リニアアクチュエータの伸長量、並びに前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量の決定を有効にするため、前記エンドエフェクタの上に配置された複数の光学式追跡ターゲットを含む、段落A1に記載の非破壊検査装置。
【0052】
A15. 前記センサはビーム照射センサである、段落A1に記載の非破壊検査装置。
【0053】
A16. 前記ビーム照射センサは超音波センサである、段落A15に記載の非破壊検査装置。
【0054】
A17. 前記センサは渦電流センサである、段落A1に記載の非破壊検査装置。
【0055】
A18. 前記コントローラは、前記リニアアクチュエータの伸長量、前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量、並びに、前記リニアアクチュエータの伸長にほぼ平行な軸の周りでの前記センサの回転量に基づいて、前記エンドエフェクタ表面の前記中心点に対する前記センサの前記変位を決定するように構成されている、段落A1に記載の非破壊検査装置。
【0056】
A19. 前記センサデータは、前記検査品目の前記検査表面上の少なくとも前記位置に対する前記検査品目の断層撮影データを含み、前記コントローラは、前記センサ(111)によって照射されたセンサビーム(117)のセンサデータ(146)の回転変換(143)の修正及びビーム入射角(α)に基づいて、前記断層撮影データ(147)を決定するように構成されている、段落A18に記載の非破壊検査装置。
【0057】
B1. エンドエフェクタであって、
前記エンドエフェクタ表面に垂直に伸長するように構成されたリニアアクチュエータと、
前記リニアアクチュエータによって伸長されるように前記リニアアクチュエータの端部に配置された第1のジンバルであって、前記エンドエフェクタ表面にほぼ平行な第1の回転軸を画定する回転連結を備える第1のジンバルと、
前記第1のジンバルの前記回転連結に枢動可能に接続された第2のジンバルであって、前記第1の回転軸にほぼ垂直な第2の回転軸を画定する第2のジンバルと、
前記第2の回転軸の周りで前記第2のジンバルと共に回転し、前記第1の回転軸の周りで前記第1のジンバルに対して回転するように前記第2のジンバルに連結されたセンサと、
を備えるエンドエフェクタと、
ロボット装置であって、前記ロボット装置が前記エンドエフェクタの動作を制御するように前記エンドエフェクタは前記ロボット装置に連結され、前記エンドエフェクタの動作中に前記エンドエフェクタ表面の中心点に関する位置情報を決定するように構成されたロボット装置と、
前記ロボット装置と前記エンドエフェクタに連結されたコントローラであって、リニアアクチュエータの伸長量と前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量に基づいて、前記センサの位置情報を決定するため前記エンドエフェクタ表面の前記中心点に対する前記センサの変位を決定するように構成されたコントローラと、
を備える非破壊検査装置であって、検査品目の検査表面上の位置に関するセンサデータは検知され、前記センサの前記決定された位置情報に関連付けられる、非破壊検査装置。
【0058】
B2. 前記モバイル装置は、前記エンドエフェクタ表面に連結するように構成されたマウントを有する直交駆動システムを含むフレームを備える、段落B1に記載の非破壊検査装置。
【0059】
B3. 前記コントローラは、前記直交駆動システムを介して前記エンドエフェクタの動作を有効にするように構成されている、段落B2に記載の非破壊検査装置。
【0060】
B4. 前記モバイル装置は、前記エンドエフェクタ表面に連結するように構成されたマウントを有する受動的な(すなわち、電動でない)多関節アームを備える、段落B1に記載の非破壊検査装置。
【0061】
B5. 前記モバイル装置は、前記エンドエフェクタ表面に連結するように構成されたマウントを有するロボットアームを備える、段落B1に記載の非破壊検査装置。
【0062】
B6. 前記モバイル装置は、前記センサと既知の位置関係を有するデータ特徴を含み、前記データ特徴は、前記検査品目の既知の位置に対する、前記検査品目の前記検査表面上での前記モバイル装置の位置決めが有効になるように構成されている、段落B1に記載の非破壊検査装置。
【0063】
B7. 前記センサは、複数の超音波エレメントを有する超音波センサアレイを備える、段落B1に記載の非破壊検査装置。
【0064】
B8. 前記コントローラは、前記エンドエフェクタ表面の前記中心点に対する前記センサの前記変位を含む位置情報と共に、前記検査品目の前記検査表面上での位置に関する前記センサデータを受信するように構成されている、段落B1に記載の非破壊検査装置。
【0065】
B9. 前記コントローラは、前記リニアアクチュエータの伸長量、前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量に基づいて、直線的な変位と回転変換との組み合わせによって、前記エンドエフェクタの前記中心点に対する多関節構成での前記センサの変位を決定するように構成されている、段落B1に記載の非破壊検査装置。
【0066】
B10. 前記コントローラは、
前記検査表面上に投影される際、前記センサによって照射されるセンサビームの焦点と、前記エンドエフェクタの前記中心点との間の変位距離を決定し、
前記変位距離を考慮するため、前記回転変換を修正する、ように構成されている、段落B9に記載の非破壊検査装置。
【0067】
B11. 前記コントローラは、前記センサによって照射されたセンサビームの、前記検査品目の前記検査表面に対するビーム入射角を考慮するため、前記回転変換を修正するように構成されている、段落B9に記載の非破壊検査装置。
【0068】
B12. 前記エンドエフェクタはさらに、前記センサを囲むスタンドオフであって、検査品目に連結するライディング面を有するスタンドオフを備え、前記センサを前記検査品目の前記検査表面から所定の距離に保持する、段落B1に記載の非破壊検査装置。
【0069】
B13. 前記スタンドオフは、超音波結合流体を実質的に保持するように構成されている、段落B12に記載の非破壊検査装置。
【0070】
B14. 前記リニアアクチュエータは、前記検査品目の前記検査表面に対して前記スタンドオフを付勢するように構成されている、段落B12に記載の非破壊検査装置。
【0071】
B15. 前記第1のジンバル及び前記第2のジンバルは、前記検査品目の前記検査表面の輪郭に応じて、前記センサが前記第1の回転軸及び前記第2の回転軸の周りで回転するように構成されている、段落B12に記載の非破壊検査装置。
【0072】
B16. 前記モバイル装置は、検査品目の3次元ソリッドモデルの座標系及び前記検査品目の既知の位置に従って、前記検査品目に対して前記エンドエフェクタをピクセル対ピクセル動作で動かすように構成されており、
前記コントローラは、前記検査品目の3次元ソリッドモデルの対応する位置に前記センサデータを関連付けるように構成されている、段落B1に記載の非破壊検査装置。
【0073】
B17. 各検査品目に関して、各検査品目の3次元ソリッドモデル及び前記関連付けられたセンサデータは前記コントローラのメモリに保存され、前記コントローラは、前記検査品目のそれぞれの位置での測定傾向を画定する、センサデータの時系列を生成するように構成されている、段落B16に記載の非破壊検査装置。
【0074】
B18. 前記エンドエフェクタは、前記リニアアクチュエータ、前記第1のジンバル、及び前記第2のジンバルの上の変位センサを含み、前記変位センサは、前記エンドエフェクタの動作とほぼ同時に、前記リニアアクチュエータの伸長量、前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量の決定を有効にするよう、前記コントローラに連結されている、段落B1に記載の非破壊検査装置。
【0075】
B19. 前記コントローラに連結された光学式空間追跡システムをさらに備え、前記エンドエフェクタは、前記リニアアクチュエータの伸長量、並びに前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量の決定を有効にするため、前記エンドエフェクタの上に配置された複数の光学式追跡ターゲットを含む、段落B1に記載の非破壊検査装置。
【0076】
B20. 前記センサはビーム照射センサである、段落B1に記載の非破壊検査装置。
【0077】
B21. 前記ビーム照射センサは超音波センサである、段落B20に記載の非破壊検査装置。
【0078】
B22. 前記センサは渦電流センサである、段落B1に記載の非破壊検査装置。
【0079】
B23. 前記コントローラは、前記リニアアクチュエータの伸長量、前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量、並びに、前記リニアアクチュエータの伸長にほぼ平行な軸の周りでの前記センサの回転量に基づいて、前記エンドエフェクタ表面の前記中心点に対する前記センサの前記変位を決定するように構成されている、段落B1に記載の非破壊検査装置。
【0080】
B24. 前記センサデータは、前記検査品目の前記検査表面上の少なくとも前記位置に対する前記検査品目の断層撮影データを含み、前記コントローラは、前記センサ(111)によって照射されたセンサビーム(117)のセンサデータ(146)の回転変換(143)の修正及びビーム入射角(α)に基づいて、前記断層撮影データ(147)を決定するように構成されている、段落B23に記載の非破壊検査装置。
【0081】
C1. 非破壊検査装置によって、検査品目を検査するための方法であって、前記方法は、
ロボット装置がエンドエフェクタの動作を制御するように、前記エンドエフェクタが前記ロボット装置に連結されている前記検査品目に対して、前記エンドエフェクタを前記ロボット装置によって位置決めすることを含み、前記エンドエフェクタは、
エンドエフェクタ表面に対して垂直に伸長するように構成されたリニアアクチュエータと、
前記リニアアクチュエータによって伸長されるように前記リニアアクチュエータの端部に配置された第1のジンバルであって、前記エンドエフェクタ表面にほぼ平行な第1の回転軸を画定する回転連結を備える第1のジンバルと、
前記第1のジンバルの前記回転連結に枢動可能に接続された第2のジンバルであって、前記第1の回転軸にほぼ垂直な第2の回転軸を画定する第2のジンバルと、
前記第2の回転軸の周りで前記第2のジンバルと共に回転し、前記第1の回転軸の周りで前記第1のジンバルに対して回転するように前記第2のジンバルに連結されたセンサとを備えており、
前記方法はさらに、
前記エンドエフェクタの動作中に、前記エンドエフェクタ表面の中心点に関する位置情報を、前記ロボット装置によって決定することと、
リニアアクチュエータの伸長量と、エンドエフェクタと前記検査品目との物理的な相互作用の結果として、前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量とに基づいて、前記センサの位置情報を決定するため前記エンドエフェクタ表面の前記中心点に対する前記センサの変位を、前記ロボット装置及び前記エンドエフェクタに連結されたコントローラによって決定することとを含み、検査品目の検査表面上の位置に関するセンサデータは検知され、前記センサの前記決定された位置情報に関連付けられる、検査品目を検査するための方法。
【0082】
C2. 複数の超音波エレメントを有する超音波センサアレイによって、前記センサデータを検知することをさらに含む、段落C1に記載の方法。
【0083】
C3. 前記エンドエフェクタ表面の前記中心点に対する前記センサの前記変位を含む位置情報と共に、前記検査品目の前記検査表面上での位置に関する前記センサデータを、前記コントローラによって受信することをさらに含む、段落C1に記載の方法。
【0084】
C4. 前記リニアアクチュエータの伸長量、前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量に基づいて、直線的な変位と回転変換との組み合わせを実行し、前記エンドエフェクタの前記中心点に対する多関節構成での前記センサの変位を、前記コントローラによって決定することをさらに含む、段落C1に記載の方法。
【0085】
C5. 前記センサによって照射されたセンサビームの、前記検査品目の前記検査表面に対するビーム入射角を考慮するため、前記回転変換を前記コントローラによって修正することをさらに含む、段落C4に記載の方法。
【0086】
C6. 前記エンドエフェクタを検査品目に連結することと、前記センサを囲む前記エンドエフェクタのスタンドオフによって、前記センサを前記検査品目の前記検査表面から所定の距離に保持することとをさらに含む、段落C4に記載の方法。
【0087】
C7. スタンドオフによって、前記センサと前記検査表面との間に超音波結合流体を実質的に保持することをさらに含む、段落C6に記載の方法。
【0088】
C8. 前記リニアアクチュエータによって、前記検査品目の前記検査表面に対して前記スタンドオフを付勢することをさらに含む、段落C6に記載の方法。
【0089】
C9. 前記第1のジンバル及び前記第2のジンバルは、前記検査品目の前記検査表面の輪郭に応じて、前記センサが一又は複数の前記第1の回転軸及び前記第2の回転軸の周りで回転するように構成されている、段落C6に記載の方法。
【0090】
C10. 前記ロボット装置によって、検査品目の3次元ソリッドモデルの座標系及び前記検査品目の既知の位置に従って、前記検査品目に対して前記エンドエフェクタをピクセル対ピクセル動作で動かすことと、
前記コントローラによって、前記検査品目の3次元ソリッドモデルの対応する位置に前記センサデータを関連付けることと、
をさらに含む、段落C1に記載の方法。
【0091】
C11. 前記コントローラによって、各検査品目に関して、各検査品目の3次元ソリッドモデル及び前記関連付けられたセンサデータを、前記コントローラのメモリに保存することと、
前記コントローラによって、前記検査品目のそれぞれの位置での測定傾向を画定する前記センサデータから、センサデータの時系列を生成することと、
をさらに含む、段落C10に記載の方法。
【0092】
C12. 前記エンドエフェクタの動きとほぼ同時に、前記コントローラによって、リニアアクチュエータの伸長量と、前記第1の回転軸122及び前記第2の回転軸の周りでの前記センサの回転量とを決定することをさらに含み、前記エンドエフェクタは、前記リニアアクチュエータ、前記第1のジンバル119、及び前記第2のジンバルの上に変位センサであって、前記コントローラに連結された変位センサを含む、段落C1に記載の方法。
【0093】
C13. 前記リニアアクチュエータの伸長量と、前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量とを、前記コントローラに連結された光学式空間追跡システムによって決定することをさらに含み、前記エンドエフェクタは、前記エンドエフェクタの上に配置された複数の光学式追跡ターゲットを含む、段落C1に記載の方法。
【0094】
C14. 前記コントローラによって、前記リニアアクチュエータの伸長量、前記第1の回転軸及び前記第2の回転軸の周りでの前記センサの回転量、並びに、前記リニアアクチュエータの伸長にほぼ平行な軸の周りでの前記センサの回転量に基づいて、前記エンドエフェクタ表面の前記中心点に対する前記センサの前記変位を決定することをさらに含む、段落C1に記載の方法。
【0095】
C15. 前記センサデータは、前記検査品目の前記検査表面上の少なくとも前記位置に対する前記検査品目の断層撮影データをさらに含む、段落C14に記載の方法。
【0096】
上述の図において、様々な要素及び/又は構成要素を連結する実線が存在する場合、これらの実線は、機械的、電気的、流体的、光学的、電磁的、及びその他の連結、並びに/又はこれらの組み合わせを表しうる。本書における「連結され(coupled)」とは、直接的に並びに間接的に関連付けられていることを意味する。例えば、部材Aは部材Bに直接的に関連付けられるか、又は、例えば、別の部材Cを介して間接的に関連付けられうる。様々な開示された要素間のすべての関係が必ずしも表わされているわけではないことを理解されたい。したがって、図面に示されているもの以外の連結も存在しうる。様々な要素及び/又は構成要素を指し示すブロック同士を接続する破線が存在する場合、これらの破線は、機能及び目的の点で実線によって表わされているものに類似した連結を表わす。しかし、破線によって表わされた連結は、選択的に提供されるか、又は、本開示の代替例に関連するかの、いずれかでありうる。同様に、破線で表わされた要素及び/又は構成要素が存在する場合、それらは本開示の代替例を示す。実線及び/又は破線で示されている一又は複数の要素は、本開示の範囲から逸脱しなければ、特定の例から省略されうる。環境要素が存在する場合、それらは点線で表わされる。仮想的な(架空)要素も、明確性のために示されうる。図に示す特徴の一部は、図や他の図面、及び/又はそれらに伴う開示において説明されている他の特徴を含むことを必要とせずに、様々な方法で組み合わせることができるが、このような一又は複数の組み合わせは、本書では明示的に示されていないことを、当業者は理解するであろう。同様に、提示されている実施例に限定されない追加的な特徴が、本書で示され且つ記載されている特徴のうちのいくつか又はすべてと組み合わされてもよい。
【0097】
上記の図12図16では、ブロックは操作及び/又はその一部を表わすことがあり、様々なブロックを接続する線は、操作又はその一部の、いかなる特定の順番又は依存性も示唆していない。破線で示されるブロックは、代替的な操作群及び/又はその一部を表わす。様々なブロックを接続する破線がある場合、その破線は、操作群又はその一部の代替的な従属関係を表わす。様々な開示された操作間のすべての従属関係が必ずしも表わされるわけではないことを理解されよう。本書に明記された一又は複数の方法の操作を説明する、図12図16及び付随する開示は、必ずしも、操作が実行される順序を決定すると解釈すべきではない。むしろ、ある例示的な順番が示されているが、操作の順序は、適宜、修正することができることを理解されたい。したがって、ある種の複数の操作は、異なる順序で、又は同時に実施されうる。さらに、当業者であれば、記載されているすべての操作を実行する必要はないことを理解されよう。
【0098】
以下の説明において、開示された概念の完全な理解をもたらすために、多数の特定の詳細が明記されるが、その概念はこれらの特定事項の一部又はすべてがなくとも実施されうる。他の事例においては、開示を不必要に分かりにくくすることを避けるために、既知の装置及び/又は処理の詳細が省略されている。一部の概念は特定の例と併せて説明されるが、これらの例は、限定を目的とするものではないと理解されたい。
【0099】
別途指示されない限り、「第1の(first)」、「第2の(second)」などの表現は、本書では単にラベルとして使用されており、これらの表現が指し示すアイテムに対して、順序的、位置的、又は序列的な要件を課すことを意図するものではない。さらに、例えば「第2」のアイテムへの言及は、例えば「第1」のアイテム又はより小さい数が振られたアイテム、及び/又は、例えば「第3」のアイテム又はより大きな数が振られたアイテムの存在を、必要とすることも、排除することもない。
【0100】
本書における「一実施例」への言及は、その実施例に関連して説明される一又は複数の特徴、構造、又は特性が、少なくとも1つの実装形態に含まれることを意味する。明細書内で頻出する「一実施例」という表現は、同一の実施例を表わすこともあり、又は同一の実施例を表わさないこともある。
【0101】
本書において、特定の機能を実施するように「構成された(configured to)」システム、装置、構造、物品、要素、構成要素、又はハードウェアは、実際には、いかなる変更も伴わずにその特定の機能を実施することが可能であり、さらなる改変の後にその特定の機能を実施する可能性があるにすぎないというものではない。言い換えると、特定の機能を実施するように「構成された」システム、装置、構造、物品、要素、構成要素、又はハードウェアは、その特定の機能を実施するという目的のために、特に選択、創出、実装、利用、プログラミング、及び/又は設計される。本書において、「構成された」という表現は、システム、装置、構造物、物品、要素、構成要素、又はハードウェアが更なる改変を伴わずに特定の機能を実施することを可能にする、システム、装置、構造物、物品、要素、構成要素、又はハードウェアの特性が、存在することを意味する。この開示において、特定の機能を実施するように「構成され」ていると説明されているシステム、装置、構造物、物品、要素、構成要素、又はハードウェアは、追加的又は代替的には、その機能を実施するように「適合している(adapted to)」、及び/又は、実施するように「動作可能である(operative to)」とも説明されうる。
【0102】
本書で開示された装置及び方法の種々の実施例は、多種多様な構成要素、特徴、及び機能を含む。本書で開示された装置及び方法の様々な実施例は、本書で開示された装置及び方法のその他の任意の実施例の任意の構成要素、特徴、及び機能を任意の組み合わせで含んでもよく、かかる可能性はすべて本開示の範囲内に含まれることが意図されていることを理解すべきである。
【0103】
上記の説明及び添付図面に提示された教示を利用して、本開示が関係する当業者には、本明細書に明記された実施例の多数の修正例が、想起されるであろう。
【0104】
さらに、本開示は、以下の条項による実施形態を含む。
【0105】
条項1. エンドエフェクタ(101)であって、
エンドエフェクタ表面(102)に垂直に伸長するように構成されたリニアアクチュエータ(104)と、
前記リニアアクチュエータ(104)によって伸長されるように前記リニアアクチュエータ(104)の端部に配置された第1のジンバル(119)であって、前記エンドエフェクタ表面(102)にほぼ平行な第1の回転軸(122)を画定する回転連結(121)を備える第1のジンバル(119)と、
前記第1のジンバル(119)の前記回転連結(121)に枢動可能に接続された第2のジンバル(123)であって、前記第1の回転軸(122)にほぼ垂直な第2の回転軸(124)を画定する第2のジンバル(123)と、
前記第2の回転軸(124)の周りで前記第2のジンバル(123)と共に回転し、前記第1の回転軸(122)の周りで前記第1のジンバル(119)に対して回転するように前記第2のジンバル(123)に連結されたセンサ(111)と、
を備えるエンドエフェクタ(101)と、
モバイル装置(130)であって、前記モバイル装置(130)が前記エンドエフェクタ(101)の動作を制御するように前記エンドエフェクタ(101)は前記モバイル装置(130)に連結され、前記エンドエフェクタ(101)の動作中に前記エンドエフェクタ表面(102)の中心点(103)に関する位置情報を決定するように構成されたモバイル装置(130)と、
前記モバイル装置(130)と前記エンドエフェクタ(101)に連結されたコントローラ(140)であって、リニアアクチュエータの伸長量(1001)と前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記センサ(111)の回転量に基づいて、前記センサ(111)の位置情報(152)を決定するため前記エンドエフェクタ表面(102)の前記中心点(103)に対する前記センサ(142)の変位を決定するように構成されたコントローラ(140)と、
を備える非破壊検査装置(100)であって、検査品目(170)の検査表面(171)上の位置に関するセンサデータ(146)は検知され、前記センサ(111)の決定された位置情報(144)に関連付けられる、非破壊検査装置(100)。
【0106】
条項2. 前記モバイル装置(130)は、前記エンドエフェクタ表面(102)に連結するように構成されたマウント(134)を有する直交駆動システム(133)を含むフレーム(132)を備える、条項1に記載の非破壊検査装置(100)。
【0107】
条項3. 前記コントローラ(140)は、前記直交駆動システム(133)を介して前記エンドエフェクタ(101)の動作を有効にするように構成されている、条項2に記載の非破壊検査装置(100)。
【0108】
条項4. 前記モバイル装置(130)は、前記エンドエフェクタ表面(102)に連結するように構成されたマウント(134)を有する受動的な多関節アーム(135)を備える、条項1に記載の非破壊検査装置(100)。
【0109】
条項5. 前記コントローラ(140)は、前記エンドエフェクタ表面(102)の前記中心点(103)に対する前記センサ(142)の前記変位を含む位置情報(152)と共に、前記検査品目(170)の前記検査表面(171)上での前記位置に関する前記センサデータ(146)を受信するように構成されている、条項1に記載の非破壊検査装置(100)。
【0110】
条項6. 前記コントローラ(140)は、前記リニアアクチュエータの伸長量(1001)、前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記センサ(111)の回転量に基づいて、直線的な変位(153)と回転変換(143)との組み合わせによって、前記エンドエフェクタ(101)の前記中心点(103)に対する多関節構成での前記センサ(142)の変位を決定するように構成されている、条項1に記載の非破壊検査装置(100)。
【0111】
条項7. 前記コントローラ(140)は、
前記検査表面(171)上に投影される際、前記センサ(111)によって照射されるセンサビーム(117)の焦点(117F)と、前記エンドエフェクタ(101)の前記中心点(103)との間の変位距離(DX、DY)を決定し、
前記変位距離(DX、DY)を考慮するため、前記回転変換(143)を修正する、ように構成されている、条項6に記載の非破壊検査装置(100)。
【0112】
条項8. 前記コントローラ(140)は、前記センサ(111)によって照射されたセンサビーム(117)の、前記検査品目(170)の前記検査表面(171)に対するビーム入射角(118)を考慮するため、前記回転変換(143)を修正するように構成されている、条項6に記載の非破壊検査装置(100)。
【0113】
条項9. 前記モバイル装置(130)は、検査品目の3次元ソリッドモデル(148)の座標系(150)及び前記検査品目(170)の既知の位置(173)に従って、前記検査品目(170)に対して前記エンドエフェクタ(101)をピクセル対ピクセル動作で動かすように構成されており、
前記コントローラ(140)は、前記検査品目の3次元ソリッドモデル(148)の対応する位置(149)に前記センサデータ(146)を関連付けるように構成されている、条項1に記載の非破壊検査装置(100)。
【0114】
条項10. 各検査品目(170)に関して、各検査品目の3次元ソリッドモデル(148)及び前記関連付けられたセンサデータ(146)は前記コントローラ(140)のメモリ(141)に保存され、前記コントローラ(140)は、前記検査品目(170)のそれぞれの位置での測定傾向(151)を画定する、センサデータ(145)の時系列を生成するように、前記センサデータ(146)を保存するように構成されている、条項9に記載の非破壊検査装置(100)。
【0115】
条項11. 前記エンドエフェクタ(101)は、前記リニアアクチュエータ(104)、前記第1のジンバル(119)、及び前記第2のジンバル(123)の上の変位センサ(106、120、125)を含み、前記変位センサ(106、120、125)は、前記エンドエフェクタ(101)の動作とほぼ同時に、前記リニアアクチュエータの伸長量(1001)、前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記センサ(111)の回転量の決定を有効にするよう、前記コントローラ(140)に連結されている、条項1に記載の非破壊検査装置(100)。
【0116】
条項12. エンドエフェクタ(101)であって、
前記エンドエフェクタ表面(102)に垂直に伸長するように構成されたリニアアクチュエータ(104)と、
前記リニアアクチュエータ(104)によって伸長されるように前記リニアアクチュエータ(104)の端部に配置された第1のジンバル(119)であって、前記エンドエフェクタ表面(102)にほぼ平行な第1の回転軸(122)を画定する回転連結(121)を備える第1のジンバル(119)と、
前記第1のジンバル(119)の前記回転連結(121)に枢動可能に接続された第2のジンバル(123)であって、前記第1の回転軸(122)にほぼ垂直な第2の回転軸(124)を画定する第2のジンバル(123)と、
前記第2の回転軸(124)の周りで前記第2のジンバル(123)と共に回転し、前記第1の回転軸(122)の周りで前記第1のジンバル(119)に対して回転するように前記第2のジンバル(123)に連結されたセンサ(111)と、
を備えるエンドエフェクタ(101)と、
ロボット装置であって、前記ロボット装置が前記エンドエフェクタ(101)の動作を制御するように前記エンドエフェクタ(101)は前記ロボット装置に連結され、前記エンドエフェクタ(101)の動作中に前記エンドエフェクタ表面(102)の中心点(103)に関する位置情報を決定するように構成されたロボット装置と、
前記ロボット装置と前記エンドエフェクタ(101)に連結されたコントローラ(140)であって、リニアアクチュエータの伸長量(1001)と前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記センサ(111)の回転量に基づいて、前記センサ(111)の位置情報(152)を決定するため前記エンドエフェクタ表面(102)の前記中心点(103)に対する前記センサ(142)の変位を決定するように構成されたコントローラ(140)と、
を備える非破壊検査装置(100)であって、検査品目(170)の検査表面(171)上の位置に関するセンサデータ(146)は検知され、前記センサ(111)の決定された位置情報(144)に関連付けられる、非破壊検査装置(100)。
【0117】
条項13. 前記エンドエフェクタ(101)は、前記リニアアクチュエータ(104)、前記第1のジンバル(119)、及び前記第2のジンバル(123)の上の変位センサを含み、前記変位センサは、前記エンドエフェクタ(101)の動作とほぼ同時に、前記リニアアクチュエータの伸長量(1001)、前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記センサ(111)の回転量の決定を有効にするよう、前記コントローラ(140)に連結されている、条項12に記載の非破壊検査装置(100)。
【0118】
条項14. 前記コントローラ(140)は、前記リニアアクチュエータの伸長量(1001)、前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記センサ(111)の回転量、並びに、前記リニアアクチュエータの伸長(1001)にほぼ平行な軸の周りでの前記センサ(111)の回転量に基づいて、前記エンドエフェクタ表面(102)の前記中心点(103)に対する前記センサ(142)の前記変位を決定するように構成されている、条項11に記載の非破壊検査装置(100)。
【0119】
条項15. 前記センサデータ(146)は、前記検査品目(170)の前記検査表面(171)上の少なくとも前記位置(149)に対する前記検査品目(170)の断層撮影データ(147)を含み、前記コントローラは、前記センサ(111)によって照射されたセンサビーム(117)のセンサデータ(146)の回転変換(143)の修正及びビーム入射角(α)に基づいて、前記断層撮影データ(147)を決定するように構成されている、条項14に記載の非破壊検査装置(100)。
【0120】
条項16. 非破壊検査装置(100)によって、検査品目(170)を検査するための方法であって、前記方法は、
ロボット装置がエンドエフェクタ(101)の動作を制御するように、前記エンドエフェクタ(101)が前記ロボット装置に連結されている前記検査品目(170)に対して、前記エンドエフェクタ(101)を前記ロボット装置によって位置決めすることを含み、前記エンドエフェクタ(101)は、
エンドエフェクタ表面(102)に対して垂直に伸長するように構成されたリニアアクチュエータ(104)と、
前記リニアアクチュエータ(104)によって伸長されるように前記リニアアクチュエータ(104)の端部に配置された第1のジンバル(119)であって、前記エンドエフェクタ表面(102)にほぼ平行な第1の回転軸(122)を画定する回転連結(121)を備える第1のジンバル(119)と、
前記第1のジンバル(119)の前記回転連結(121)に枢動可能に接続された第2のジンバル(123)であって、前記第1の回転軸(122)にほぼ垂直な第2の回転軸(124)を画定する第2のジンバル(123)と、
前記第2の回転軸(124)の周りで前記第2のジンバル(123)と共に回転し、前記第1の回転軸(122)の周りで前記第1のジンバル(119)に対して回転するように前記第2のジンバル(123)に連結されたセンサ(111)とを備えており、
前記方法はさらに、
前記エンドエフェクタ(101)の動作中に、前記エンドエフェクタ表面(102)の中心点(103)に関する位置情報を、前記ロボット装置によって決定することと、
リニアアクチュエータの伸長量(1001)と、エンドエフェクタ(101)と前記検査品目(170)との物理的な相互作用の結果として、前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記センサ(111)の回転量とに基づいて、前記センサ(111)の位置情報(152)を決定するため前記エンドエフェクタ表面(102)の前記中心点(103)に対する前記センサ(142)の変位を、前記ロボット装置及び前記エンドエフェクタ(101)に連結されたコントローラ(140)によって決定することとを含み、検査品目(170)の検査表面(171)上の位置に関するセンサデータ(146)は検知され、前記センサ(111)の前記決定された位置情報(144)に関連付けられる、検査品 目(170)を検査するための方法。
【0121】
条項17. 前記エンドエフェクタ表面(102)の前記中心点(103)に対する前記センサ(142)の前記変位を含む位置情報(152)と共に、前記検査品目(170)の前記検査表面(171)上での前記位置(149)に関する前記センサデータ(146)を、前記コントローラ(140)によって受信することをさらに含む、条項16に記載の方法。
【0122】
条項18. 前記リニアアクチュエータの伸長量(1001)、前記第1の回転軸(122)及び前記第2の回転軸(124)の周りでの前記センサ(111)の回転量に基づいて、直線的な変位(153)と回転変換(143)との組み合わせを実行する前記コントローラ(140)によって、前記エンドエフェクタ(101)の前記中心点(103)に対する多関節構成での前記センサ(142)の変位を決定することをさらに含む、条項16に記載の方法。
【0123】
条項19. 前記ロボット装置(131)によって、検査品目の3次元ソリッドモデル(148)の座標系(150)及び前記検査品目(170)の既知の位置(173)に従って、前記検査品目(170)に対して前記エンドエフェクタ(101)をピクセル対ピクセル動作で動かすことと、
前記コントローラ(140)によって、前記検査品目の3次元ソリッドモデル(148)の対応する位置(149)に前記センサデータ(146)を関連付けることと、
をさらに含む、条項16に記載の方法。
【0124】
条項20. 前記コントローラ(140)によって、各検査品目(170)に関して、各検査品目の3次元ソリッドモデル(148)及び前記関連付けられたセンサデータ(146)を、前記コントローラ(140)のメモリ(141)に保存することと、
前記コントローラ(140)によって、前記検査品目(170)のそれぞれの位置での測定傾向(151)を画定する前記センサデータ(146)から、センサデータ(145)の時系列を生成することと、
をさらに含む、条項19に記載の方法。
【0125】
したがって、本開示は例示された特定の実施例に限定されることがないことと、修正例及びその他の実施例は添付の特許請求の範囲内に含まれることが意図されていることとを理解されたい。さらに、上述の記載及びこれに関連する図面では、要素及び/または機能の特定の例示的な組み合わせに照らして本開示の実施例が記載されているが、添付の特許請求の範囲から逸脱することなく、代替的な実装形態によって、要素及び/又は機能の異なる組み合わせを提供することができることを理解するべきである。そのため、添付の特許請求の範囲で括弧でくくられた参照番号は、例示目的でのみ提示されており、特許請求される主題の範囲を本開示で提供される特定の実施例に限定することを意図しているわけではない。
図1A
図1B
図1C
図1D
図2A
図2B
図3A
図3B
図4
図5A
図5B
図6
図7
図8
図9
図10A
図10B
図11
図12
図13
図14
図15
図16