(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-08-30
(45)【発行日】2024-09-09
(54)【発明の名称】半導体レーザおよび光デバイス
(51)【国際特許分類】
H01S 5/183 20060101AFI20240902BHJP
H01S 5/14 20060101ALI20240902BHJP
【FI】
H01S5/183
H01S5/14
(21)【出願番号】P 2020148861
(22)【出願日】2020-09-04
【審査請求日】2023-08-04
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成28年度、国立研究開発法人新エネルギー・産業技術総合開発機構、「高輝度・高効率次世代レーザー技術開発/次々世代加工に向けた新規光源・要素技術開発/高出力・高ビーム品質動作を可能とする新型面発光レーザの研究開発」、 平成28年度、国立研究開発法人科学技術振興機構、戦略的創造研究推進事業(ACCEL)、「スローライト構造体を利用した非機械式ハイレゾ光レーダーの開発」、「短・中距離用TOF方式光レーダー要素開発」、産業技術力強化法第17条の適用を受ける特許出願
(73)【特許権者】
【識別番号】304021417
【氏名又は名称】国立大学法人東京工業大学
(74)【代理人】
【識別番号】100105924
【氏名又は名称】森下 賢樹
(74)【代理人】
【識別番号】100109047
【氏名又は名称】村田 雄祐
(74)【代理人】
【識別番号】100109081
【氏名又は名称】三木 友由
(74)【代理人】
【識別番号】100133215
【氏名又は名称】真家 大樹
(72)【発明者】
【氏名】小山 二三夫
(72)【発明者】
【氏名】中濱 正統
(72)【発明者】
【氏名】顧 暁冬
(72)【発明者】
【氏名】アーメッド ハッサン
【審査官】右田 昌士
(56)【参考文献】
【文献】特表2005-538532(JP,A)
【文献】特開2009-064837(JP,A)
【文献】国際公開第2019/146321(WO,A1)
【文献】特開2018-037495(JP,A)
【文献】特表2020-506527(JP,A)
【文献】特開2002-111127(JP,A)
【文献】特開2019-074361(JP,A)
【文献】中国特許出願公開第111478180(CN,A)
【文献】特開2012-049180(JP,A)
【文献】国際公開第2017/150382(WO,A1)
【文献】特開2020-141095(JP,A)
【文献】米国特許出願公開第2007/0290191(US,A1)
【文献】小山二三夫,新時代を切り拓くナノレーザー 微小共振器面発光レーザーと集積化技術,OPTRONICS,日本,株式会社オプトロニクス社,2016年,Vol.35 No.411,p.68-75
(58)【調査した分野】(Int.Cl.,DB名)
H01S 5/00 - 5/50
JSTPlus(JDreamIII)
JST7580(JDreamIII)
JSTChina(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
VCSEL(垂直共振器面発光レーザ)構造を備え、レーザ光が前記VCSEL構造内で垂直方向に多重反射してスローライトモード波が形成され、前記スローライトモード波が前記VCSEL構造の水平
第1方向に往復可能であり、
前記VCSEL構造の表面からビームを出射し、
前記VCSEL構造の前記スローライトモード波に対する有効屈折率が、
前記第1方向に関して周期的に変化することを特徴とする半導体レーザ。
【請求項2】
前記VCSEL構造の前記
第1方向における実質的に中央に、位相シフト領域が形成されることを特徴とする請求項1に記載の半導体レーザ。
【請求項3】
前記
第1方向に対して、複数の前記位相シフト領域が形成されることを特徴とする請求項2に記載の半導体レーザ。
【請求項4】
前記VCSEL構造の表面側に形成される回折格子をさらに備えることを特徴とする請求項1から3のいずれかに記載の半導体レーザ。
【請求項5】
前記回折格子の格子パターンの断面形状および平面形状の少なくとも一方は、各格子パターンを平面視したときの中央での前記回折格子による反射率が高くなるように設計されることを特徴とする請求項4に記載の半導体レーザ。
【請求項6】
前記回折格子の格子パターンの厚みは、前記VCSEL構造の
前記第1方向と垂直な水平第2方向に変化することを特徴とする請求項4に記載の半導体レーザ。
【請求項7】
前記回折格子の格子パターンの幅は、前記VCSEL構造のアパーチャの中央において広く、アパーチャの両端において狭いことを特徴とする請求項4に記載の半導体レーザ。
【請求項8】
前記回折格子を挟み込むように、前記VCSEL構造のアパーチャの境界に沿って追加のパターンが形成されることを特徴とする請求項4に記載の半導体レーザ。
【請求項9】
前記回折格子は、回折次数が異なる複数の領域を含むことを特徴とする請求項4から8のいずれかに記載の半導体レーザ。
【請求項10】
前記VCSEL構造のアパーチャ幅が周期的に変化することを特徴とする請求項1から3のいずれかに記載の半導体レーザ。
【請求項11】
前記VCSEL構造の一端と隣接して、上面が高反射ミラーで覆われ、かつ電流注入されない終端領域が形成されることを特徴とする請求項1から10のいずれかに記載の半導体レーザ。
【請求項12】
請求項1から11のいずれかに記載の半導体レーザと、
前記半導体レーザの上面を覆う高反射ミラーと、
前記半導体レーザ
に対し前記第1方向に結合された光増幅器と、
を備え、
前記光増幅器は、前記半導体レーザの前記VCSEL構造と連続するVCSEL構造を含み、前記半導体レーザと電気的に絶縁さ
れ、前記光増幅器の前記VCSEL構造の表面からビームを出射することを特徴とする光デバイス。
【請求項13】
請求項1から11のいずれかに記載の半導体レーザと、
前記半導体レーザの上面を覆う高反射ミラーと、
前記半導体レーザ
に対し前記第1方向に結合されたビーム掃引デバイスと、
を備え、
前記ビーム掃引デバイスは、前記半導体レーザの前記VCSEL構造と連続するVCSEL構造を含
み、前記ビーム掃引デバイスの前記VCSEL構造の表面からビームを出射することを特徴とする光デバイス。
【請求項14】
請求項1から11のいずれかに記載の半導体レーザと、
前記半導体レーザの上面を覆う第1高反射ミラーと、
前記半導体レーザ
に対し前記第1方向に結合された変調器と、
を備え、
前記変調器は、前記半導体レーザの前記VCSEL構造と連続するVCSEL構造を含み、前記半導体レーザと電気的に絶縁され
、前記変調器の前記VCSEL構造の表面からビームを出射することを特徴とする光デバイス。
【請求項15】
請求項1から11のいずれかに記載の半導体レーザと、
前記半導体レーザの上面を覆う第1高反射ミラーと、
前記半導体レーザに対し前記第1方向に結合され、前記半導体レーザの前記VCSEL構造と連続するVCSEL構造を含み、前記半導体レーザと電気的に絶縁される変調器と、
前記変調器の上面を覆う第2高反射ミラーと、
前記変調器
に対し前記第1方向に結合された出射領域と、
を備え、
前記出射領域は、前記変調器の前記VCSEL構造と連続するVCSEL構造を含み、前記変調器と電気的に絶縁さ
れ、
前記出射領域の前記VCSEL構造の表面からビームを出射することを特徴とす
る光デバイス。
【請求項16】
請求項1から11のいずれかに記載の半導体レーザと、
前記半導体レーザに対し
前記第1方向に結合された外部共振器と、
を備え、
前記外部共振器は、
前記半導体レーザの前記VCSEL構造と連続し、電気的に絶縁されたVCSEL構造と、
前記VCSEL構造の上面を覆う高反射率ミラーと、
含むことを特徴とする光デバイス。
【請求項17】
請求項1から11のいずれかに記載の半導体レーザと、
前記半導体レーザの上面とエアギャップを隔てて形成され、前記エアギャップの長さが制御可能であるMEMS(Micro Electro Mechanical Systems)ミラーと、
を備えることを特徴とする光デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、面発光型半導体レーザに関し、特にその高速化あるいは高出力化に関する。
【背景技術】
【0002】
従来、面発光レーザの単一波長出力は、mWレベルに制限されてきた。ワット級高出力動作が可能になれば、光断層像(OCT:Optical Coherence Tomography)用の波長掃引用光源、中長距離光通信用光源、自動車、ドローン、ロボットなどに搭載されるレーザレーダー(LIDAR)用光源、監視システム、製造現場での自動検査装置、プリンタのレーザ乾燥器など様々な応用展開が可能になる。
【0003】
端面発光型レーザは、端面破壊によって出力が制限される。高出力化のために、複数の端面発光型レーザをアレイ状に集積化する技術が提案されている(非特許文献1,2)。アレイ化による高出力化では、個々の端面発光型レーザの波長、位相は揃っていない(インコヒーレント)ため、ビーム品質が劣化するという問題がある。
【0004】
VCSELレーザを大口径化することにより高出力化を図る技術も提案されている(非特許文献3)。しかしながらこの場合も、アレイ化によるインコヒーレンスの問題は解決できず、ビーム品質の劣化は避けられない。
【0005】
別のアプローチとして、フォトニック結晶レーザによる高出力化も提案されている(特許文献1)。この技術は、サブミクロンの微細加工技術が必要であり、また、再成長などの特殊なプロセスが必要であるため、従来の半導体レーザの製造プロセスによる製造が困難である。また、大面積化した場合に、熱分布の不均一性により、ビーム品質が劣化する。
【0006】
特許文献2は、スローライト面発光レーザ増幅器を開示する。この増幅器を用いると、高出力かつ高ビーム品質のレーザ光を生成できるが、数mW以上の単一波長の種光源が必要となる。
【先行技術文献】
【特許文献】
【0007】
【文献】特許第6080941号公報
【文献】国際公開WO2017/150382A1号
【非特許文献】
【0008】
【文献】菅 博文,「LD光源の高出力化の現状と将来動向」、268~272頁,レーザ研究、2008年5月、
【文献】ジェフ・ヘクト,「高出力レーザダイオードの高輝度化」、22~24頁,Laser Focus World Japan 2012.1,
【文献】ホルジャー・メンヒ,「VCSELアレイは3Dセンシング向け最先端の光」、40~41頁,Laser Focus World Japan 2018.3,
【文献】中野 義昭,「GaAs系分布帰還型半導体レーザとその縦モード制御」,1554~1573頁、応用物理 第58巻 第11号(1989)
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明はかかる状況においてなされたものであり、そのある態様の例示的な目的のひとつは、高ビーム品質で高出力なレーザ装置の提供にある。
【課題を解決するための手段】
【0010】
一実施形態に係る半導体レーザは、VCSEL(垂直共振器面発光レーザ)構造を備え、レーザ光がVCSEL構造内で垂直方向に多重反射してスローライトモード波が形成され、スローライトモード波がVCSEL構造の水平方向に往復可能であり、VCSEL構造のスローライトモード波に対する有効屈折率が、スローライトモード波の伝搬方向に関して周期的に変化する。
【0011】
なお、以上の構成要素を任意に組み合わせたもの、あるいは本発明の表現を、方法、装置などの間で変換したものもまた、本発明の態様として有効である。
【発明の効果】
【0012】
一実施形態によれば、高ビーム品質かつ高出力な半導体レーザを提供できる。
【図面の簡単な説明】
【0013】
【
図2】スローライトモード波に対する有効屈折率n
effを説明する図である。
【
図3】
図3(a)、(b)は、半導体レーザにおける単一縦モード化を説明する図である。
【
図5】
図5(a)~(c)は、半導体レーザの遠視野像を示す図である。
【
図6】実施形態に係る半導体レーザを示す図である。
【
図7】回折格子のピッチdと縦モード間隔の関係を示す図である。
【
図8】ネットゲイン差のデバイス長依存性を示す図である。
【
図9】
図6の半導体レーザのビームの出射方向を説明する図である。
【
図11】実際に作成した半導体レーザのサンプルの放射角θ
mの測定結果を示す図である。
【
図12】
図12(a)~(d)は、回折格子の構成例を示す図である。
【
図13】
図13(a)、(b)は、回折格子の構成例を示す断面図である。
【
図14】格子の深さと回折効率の関係(計算結果)を示す図である。
【
図16】回折効率のデューティサイクルの依存性を示す図である。
【
図18】
図18(a)、(b)は、格子パターンの断面形状を示す図である。
【
図21】変形例に係る半導体レーザの平面図である。
【
図22】一実施例に係る光デバイスを示す図である。
【
図23】一実施例に係る光デバイスを示す図である。
【
図24】一実施例に係る光デバイスを示す図である。
【
図25】一実施例に係る光デバイスを示す図である。
【
図26】一実施例に係る光デバイスを示す図である。
【
図27】一実施例に係る光デバイスを示す図である。
【
図28】一実施例に係る光デバイスを示す図である。
【発明を実施するための形態】
【0014】
(実施形態の概要)
本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。またこの概要は、考えられるすべての実施形態の包括的な概要ではなく、実施形態の欠くべからざる構成要素を限定するものではない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
【0015】
一実施形態に係る半導体レーザは、VCSEL(垂直共振器面発光レーザ)構造を備え、レーザ光がVCSEL構造内で垂直方向に多重反射してスローライトモード波が形成され、スローライトモード波がVCSEL構造の水平方向に往復可能である。VCSEL構造のスローライトモード波に対する有効屈折率は、スローライトモード波の伝搬方向に関して周期的に変化する。
【0016】
一般に、VCSEL構造を長尺化すると、高出力化と引き換えに、縦モードの数が増えてしまう。これに対して、一実施形態によると、スローライトモード波が、その伝搬方向にDFB(Distributed Feedback)効果を受け、波長選択が実現できる。これにより、VCSEL構造を長尺化しても、単一モード(単波長)あるいはそれに準ずる少ない縦モードでの発振を実現できる。
【0017】
一般的なDFBレーザでは、屈折率の分布方向と、レーザ光の伝搬方向が一致している。これに対して、上記構造では、屈折率の分布方向が、スローライトモード波の伝搬方向と一致する。水平方向に伝搬するスローライトモード波に対する有効屈折率は、レーザ光に対する有効屈折率よりも小さいため、上記構造では、DFBレーザに比べて、有効屈折率の周期(ピッチ)を大きくすることができる。これにより、DFBレーザに比べて、製造が容易となる。
【0018】
VCSEL構造の伝搬方向における実質的に中央に、位相シフト領域が形成されてもよい。位相シフト領域を設けることで、ストップバンドの両端の隣接縦モードでの発振を抑制し、ストップバンドの中央の波長での発振を促すことができ、単一モード性を高めることができる。
【0019】
伝搬方向に対して、複数の位相シフト領域が形成されてもよい。これにより、光強度の分布を平均化できる。
【0020】
一実施形態において、半導体レーザは、VCSEL構造の表面側に形成される回折格子をさらに備えてもよい。この構成では、回折格子によって、有効屈折率の周期的変化を導入できる。
【0021】
回折格子の格子パターンの断面形状および平面形状の少なくとも一方は、各格子パターンを平面視したときの中央での回折格子による反射率が高くなるように設計されてもよい。これにより基本横モードを選択することができ、ビーム品質を改善できる。
【0022】
一実施形態において、回折格子の格子パターンの厚みは、VCSEL構造の幅方向に変化してもよい。
【0023】
一実施形態において、回折格子の格子パターンの幅は、VCSEL構造のアパーチャの中央において広く、アパーチャの両端において狭くてもよい。
【0024】
一実施形態において、回折格子を挟み込むように、VCSEL構造のアパーチャの境界に沿って追加のパターンが形成されてもよい。
【0025】
一実施形態において、回折格子は、回折次数が異なる複数の領域を含んでもよい。これにより、加工・製造が容易な高次の回折格子を組み合わせて、バーニア効果によって所望の波長を選択的に発振させることができる。
【0026】
一実施形態において、VCSEL構造のアパーチャ幅が周期的に変化してもよい。この構成では、アパーチャ幅の周期的な変化によって、有効屈折率の周期的変化を導入できる。
【0027】
一実施形態において、VCSEL構造の一端と隣接して、上面が高反射ミラーで覆われ、かつ電流注入されない終端領域が形成されてもよい。これにより、VCSEL構造の表面から、一方向にビームを出射させることができる。
【0028】
一実施形態において、光デバイスは、上述のいずれかの半導体レーザと、半導体レーザの上面を覆う高反射ミラーと、半導体レーザと横方向に結合された光増幅器と、を備えてもよい。光増幅器は、半導体レーザのVCSEL構造と連続するVCSEL構造を含み、半導体レーザと電気的に絶縁される。この構成では、半導体レーザにおいて、高品質、高出力なシード光を発生し、光増幅器においてシード光を増幅することで、高品質化、高出力化を図ることができる。
【0029】
一実施形態において、光デバイスは、上述のいずれかの半導体レーザと、半導体レーザの上面を覆う高反射ミラーと、半導体レーザと横方向に結合されたビーム掃引デバイスと、を備えてもよい。ビーム掃引デバイスは、半導体レーザのVCSEL構造と連続するVCSEL構造を含む。この構成では、ビーム掃引デバイスから出射されるビームの方向をスキャンすることができる。
【0030】
一実施形態において、光デバイスは、上述のいずれかの半導体レーザと、半導体レーザの上面を覆う第1高反射ミラーと、半導体レーザと横方向に結合された変調器と、を備えてもよい。変調器は、半導体レーザのVCSEL構造と連続するVCSEL構造を含み、半導体レーザと電気的に絶縁される。この構成によれば、高出力なレーザ光を、時間的に高速に変調することができる。
【0031】
一実施形態において、光デバイスは、変調器の上面を覆う第2高反射ミラーと、変調器と横方向に結合された出射領域と、をさらに備えてもよい。出射領域は、変調器のVCSEL構造と連続するVCSEL構造を含み、変調器と電気的に絶縁される。変調器からではなく、それと隣接する出射領域からビームを取り出すことで、より高い消光比を実現できる。
【0032】
一実施形態において、光デバイスは、半導体レーザと、半導体レーザと横方向に結合された外部共振器と、を備える結合共振器スローライトレーザであってもよい。外部共振器は、半導体レーザのVCSEL構造と連続し、電気的に絶縁されたVCSEL構造と、VCSEL構造の上面を覆う高反射率ミラーと、含んでもよい。これにより、高出力、高い単一モード安定性、高い変調速度などを実現できる。
【0033】
一実施形態において光デバイスは、半導体レーザと、半導体レーザの上面とエアギャップを隔てて形成され、エアギャップの長さが制御可能であるMEMS(Micro Electro Mechanical Systems)ミラーと、を備えてもよい。
【0034】
(実施形態)
以下、本発明を好適な実施形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施形態は、発明を限定するものではなく例示であって、実施形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
【0035】
(基本構成)
図1は、実施形態に係る基本構成を示す図である。半導体レーザ100は、基板102およびVCSEL(垂直共振器面発光レーザ)構造110を備える面発光レーザである。VCSEL構造110は、コア(ゲイン領域)112を、下部DBR(Distributed Bragg Reflector)層116および上部DBR層118により挟み込んだ積層構造を有する。コア112は、活性層113および酸化狭窄層114を含む。酸化狭窄層114によって、アパーチャ120の幅W
apが規定される。
【0036】
半導体レーザ100は、VCSEL構造110の上面と接続される電極122と、VCSEL構造110の底面と接続される電極124と、を含む。電極122と124の間に図示しない駆動回路を接続し、VCSEL構造110のコア112に電流を注入すると、上部DBR層118および上部DBR層116の間で、レーザ光2がVCSEL構造110内で垂直方向(z方向)に多重反射し、水平方向(VCSEL構造110の長尺方向、すなわちx方向)にゆっくりと伝搬するスローライトモード波4が形成される。このスローライトモード波4は、VCSEL構造110の端部において折り返され、水平方向(x方向)に往復し、増幅される。そしてレーザ光2の一部は、出射光6として、VCSEL構造110の上面のアパーチャ120から出射される。
【0037】
図2は、スローライトモード波4に対する有効屈折率n
effを説明する図である。
【0038】
右向きのスローライトモード波4を考える。波長λのレーザ光2の波数ベクトルkは、式(1)で表される。
k=2πnm/λ …(1)
【0039】
また、VCSEL構造110の垂直方向(z方向)に安定である共振波長(カットオフ波長ともいう)をλcとするとき、共振波長λcに関する波数ベクトルkcは、式(2)で表される。
kc=2πnm/λc …(2)
【0040】
スローライトモード波についても、波数ベクトルに相当するスローライト伝搬定数βSLを観念することができ、有効屈折率neffを用いて、式(3)で表される。
βSL=2πneff/λ …(3)
【0041】
また3つの波数ベクトルに関して、式(4)が成り立つ。
k2=kc2+βSL
2 …(4)
【0042】
式(1)~(3)を式(4)に代入して整理すると、式(5)を得る。
neff=nm×√(1-(λ/λc)2) …(5)
これがスローライトモード波に対する有効屈折率である。
【0043】
レーザ光2の入射角をθi、出射角をθrとすると、式(6)が成り立つ。
sinθr=nmsinθi …(6)
【0044】
また、式(7)が成り立つ。
sinθi=βSL/k …(7)
【0045】
式(5)~(7)より、出射角θrは式(8)を満たす。
sinθr=nm√(1-(λ/λc)2) …(8)
【0046】
図1に戻る。本実施形態において、VCSEL構造110のスローライトモード波4に対する有効屈折率n
effは、スローライトモード波4の伝搬方向(x方向)に関して周期的に変化する。たとえば、有効屈折率n
effは、第1の値n
eff1と第2の値n
eff2を交互に繰り返し、屈折率変化の周期(ピッチ)をΛとする。
【0047】
有効屈折率neffの周期構造は、積層構造によって設計することができ、主なパラメータは、コア112、下部DBR層116、上部DBR層118、共振波長調整層(不図示)の材料、厚さ、アパーチャ幅Wapなどが例示される。
【0048】
VCSEL構造110の伝搬方向における中央に、位相シフト領域130が形成されてもよい。位相シフト領域130では、屈折率変化のピッチΛに、λ/4の奇数倍の長さ(λ/4×(2n-1)、nは自然数)の位相シフトが与えられてもよい。
【0049】
以上が半導体レーザ100の構成である。続いてその動作を説明する。
【0050】
半導体レーザ100の基本構成は、DBRで量子井戸を挟んだ通常のVCSELの類似構造である。通常の導波路と異なり、この半導体レーザ100においては波数ベクトル(伝搬定数β
SL)が、レーザ光2の波数ベクトルkに垂直に近い低群速度の漏れ導波モード(スローライトモード)を保持することができ、スローライトモード波4が図中、右方向および左方向に往復しながら導波する。
図2から分かるように、半導体レーザ100の出射光は、右向きのスローライトモード波4と、左向きのスローライトモード波4で、対称な方向に射出される。
【0051】
図3(a)、(b)は、半導体レーザ100における単一縦モード化を説明する図である。
【0052】
有効屈折率n
effの周期構造を導入しない場合、
図3(a)に示すように、ネットゲインが最大となる波長の近傍において、複数の縦モードが同時に発振する。特にVCSEL構造110を長尺化すると、高出力化と引き換えに、縦モードの数(発振波長の数)が増えてしまう。
【0053】
これに対して、
図1の半導体レーザ100では、導波路方向(x方向)について、スローライトモード波4に対する有効屈折率n
effを周期的に変化させることで、スローライトモード波4が、その伝搬方向にDFB(Distributed Feedback)効果を受ける。これにより、
図3(b)に示すように、ストップバンド外の縦モードは充分なネットゲインが得られず、一方でストップバンド内の唯一の縦モードは充分なネットゲインを得られるので、単一モード発振が可能となる。これにより、VCSEL構造を長尺化しても、単一モードあるいはそれに準ずる少ない縦モードでの発振を実現でき、高出力化と単一モード化を両立できる。なお、ストップバンドは、周期構造に応じて設計することができ、共振波長(カットオフ波長)λ
cから離れた波長を選択することができる。
【0054】
図4は、位相シフト領域130の効果を説明する図である。
図4の左側は広い波長範囲を示し、
図4の右側には、ストップバンド内を波長方向に拡大したスペクトルを示す。ストップバンド内には、複数の隣接縦モードが含まれる。位相シフト領域130を設けない場合、中央の発振モードが得られず、ストップバンドの両端の隣接縦モードで発振する。これに対して、位相シフト領域130を設けることにより、
図4の右側に示すように、ストップバンドの両端の隣接縦モードでの発振を抑制し、ストップバンドの中央の発振モードでの発振を促すことができ、より単一モード性を高めることができる。
【0055】
続いて半導体レーザ100の遠視野像について説明する。
図5(a)~(c)は、半導体レーザの遠視野像を示す図である。横軸は出射角θ
rを、縦軸は放射強度を示す。
図5(a)は、周期構造を有しないVCSELの遠視野像を示す。周期構造を形成しない場合、出射されるビームは垂直近辺(θ=0)およびゲインスペクトルピーク近傍に相当する角度に分布する。
【0056】
これに対して周期構造を形成して単一モード化すると、
図5(b)に示すように、複数次の回折光が出射される。
【0057】
なお、周期構造や半導体レーザ100の周辺構造を最適することにより、
図5(c)に示すように、一方向性の放射パターンも実現可能である。
【0058】
図1の半導体レーザ100は、一般的なDFBレーザに比べて、製造が容易であるという利点を有する。この点を説明する。
【0059】
一般的なDFBレーザは、屈折率の分布方向と、レーザ光の伝搬方向が一致しているため、ストップバンドの中心波長λmと、周期構造のピッチΛの間には、式(9)が成り立つ。
λm=2・Λ・n/m …(9)
m=1、λm=850nm、n=2.35とした場合、Λ=0.1μm程度となり、微細構造を形成する必要がある。
【0060】
これに対して、スローライトモード波を利用した半導体レーザ100では、ストップバンドの中心波長λmと、周期構造のピッチΛの間には、式(10)が成り立つ。
λm=2・Λ・neff/m …(10)
mは回折次数を表す。
【0061】
スローライトモード波に対する有効屈折率n
effは、レーザ光に対する屈折率nよりも小さいため、同じストップバンドの中心波長λ
mを得るために必要なピッチΛは、
図1の半導体レーザ100では、通常のDFBレーザに比べて有効屈折率のピッチΛを大きくすることができる。具体的には、
図1の半導体レーザ100では、周期構造のピッチΛを、通常のDFBレーザの2倍以上に、より好適な例では5倍(0.5ミクロン)程度まで拡大することができる。半導体レーザ100は、通常のDFBレーザのような微細構造が必要とされないため、通常のスパッタ・リソグラフィでの製造が可能である。
【0062】
本開示は、
図1の基本構成から把握され、あるいは上述の説明から導かれるさまざまな装置、方法に及ぶものであり、特定の構成に限定されるものではない。以下、本発明の範囲を狭めるためではなく、発明の本質や動作の理解を助け、またそれらを明確化するために、より具体的な構成例や実施例を説明する。
【0063】
図6は、実施形態に係る半導体レーザ100Aを示す図である。VCSEL構造110の上面には、複数の格子パターン142を含む回折格子140が形成されており、この回折格子140によって、上述の有効屈折率n
effの周期構造が導入される。格子パターン142のピッチはdである。中央付近の格子パターン144は、他の格子パターン142とサイズが異なっており、
図1の位相シフト領域130として機能する。
【0064】
以上が半導体レーザ100Aの構成である。
図7は、回折格子140のピッチdと縦モード間隔の関係を示す図である。ストップバンドの中心波長は、式(10)で与えられ、回折格子140のピッチd(=Λ)を小さくするほど、縦モード間隔(ストップバンドの間隔)は広くなる。ピッチdは、利得帯域中に、1本の縦モードが含まれるように設計すればよい。
【0065】
図8は、ネットゲイン差のデバイス長依存性を示す図である。ネットゲイン差は、ストップバンドの中央の縦モード(
図4の発振モード)と、隣接縦モードのゲインの差である。横軸はデバイス長Lであり、アパーチャ120のx方向の長さに相当する。
【0066】
次数をm=2,4,8,16,20とし、kL=2となるように、デバイス長Lを選択して計算した。この結果から、L>3mmの長尺化されたデバイスであっても、10cm-1の利得差が得られており、長尺かつ単一モードの発振が可能であることが分かる。
【0067】
図9は、
図6の半導体レーザ100Aのビームの出射方向を説明する図である。m次の回折光の出射方向をθ
mと表記する。スローライトモード波の波長をλ
SL、共振波長をλ
cとする。回折格子140より下側の導波路側(VCSEL構造110の内部)の屈折率はn
wgであり、回折格子140より上側の屈折率はn’とすると、以下の関係式が成り立つ。
n’sinθ
m-n
wgsinθ
i=λ
SL・m/d
m=0,±1,±2,・・・
cosθ
i=λ
SL/λ
c
【0068】
図10は、放射角θ
mの計算結果を示す図である。計算では、λ
c=871nm、n
wg=3.5、n’=1、d=5μmとした。
【0069】
図11は、実際に作成した半導体レーザ100Aのサンプルの放射角θ
mの測定結果を示す図である。回折格子140を設けることで、
図5(b)のような遠視野像を得ることができている。
【0070】
続いて、回折格子140の構成について説明する。回折格子140の格子パターンは、高屈折率材料をエッチングにより形成してもよいし、低屈折率材料をその反転パターンで形成してもよいし、または表面にグルーブを形成してもよい。
【0071】
図12(a)~(d)は、回折格子140の構成例を示す図である。
図12(a)、(b)では、回折格子140を形成する格子パターン142は凸に形成される。
図12(a)では、格子パターン144の幅を太くすることで、位相シフト領域130が形成される。
図12(b)では、格子パターン142と格子パターン142の間隔を、一部だけ拡大することにより、位相シフト領域130が形成される。
【0072】
図12(c)、(d)では、回折格子140を形成する格子パターン142は凹に形成される。
図12(c)では、格子パターン144の幅を太くすることで、位相シフト領域130が形成され、
図12(d)では、格子パターン142と格子パターン142の間隔を一部だけ拡大することにより、位相シフト領域130が形成される。
【0073】
図13(a)、(b)は、回折格子140の構成例を示す断面図である。
図13(a)の例では、上部DBR層118の最上層の膜118a(たとえばGaAs層)に格子パターン142(144)を形成することにより、回折格子140が形成される。膜118aの上側には、SiO
xあるいはSiN
x膜などの誘電体膜119を保護膜として形成してもよい。あるいは誘電体膜119を省略して空気としてもよい。
【0074】
図13(b)の例では、上部DBR層118の上側に、SiN
xあるいはSiO
xなどの誘電体膜117aが追加され、誘電体膜117aに格子パターン142が形成される。回折格子140が、保護膜に形成される。誘電体膜117aと上部DBR層118の間には、SiN
xあるいはSiO
xなどの誘電体膜(バッファ層)117bを挿入してもよい。
【0075】
回折格子140の形成には、ドライエッチング、ウェットエッチング、ナノインプリント、FIB(Focused Ion Beam)などを用いることができる。また格子パターン142,144の形状としては、矩形の他、半円、正弦波、三角、ブレーズドグレーティングなどを採用することも可能である。
【0076】
図14は、格子の深さと回折効率の関係(計算結果)を示す図である。計算は、
図13(a)に示すように、GaAs層をエッチングして回折格子140を形成する場合について行った。回折格子のデューティサイクル(凹部と凸部の長さの比)は50%である。横軸はエッチング深さであり、0次、1次、2次の回折効率が示される。
【0077】
この計算結果から、エッチング深さをパラメータとして、任意の回折次数mを選択することが可能であることがわかる。一例として20nm程度のエッチング深さでは、0次の回折光が支配的であるが、より深くエッチングするとその割合は低下し、1次の回折光の割合が増加する。
【0078】
図15は、回折格子の設計例を示す図である。深さDは60nm、デューティサイクルは50%としている。周期dは、1次の回折格子では500nm、2次の回折格子では1000nm、3次の回折格子では1500nm、4次の回折格子では2000nmである。なお、位相シフト領域130に対応する格子パターン144の長さL
shiftは、1次、3次、4次ではλ/4となるが、2次のように、λ/4とは異なる値を取る場合もありうる。
【0079】
図16は、回折効率のデューティサイクルの依存性を示す図である。D=20nmの浅い格子深さであれば、いずれの次数であっても0次回折光効率のデューティサイクル依存性は低く、かついずれのデューティサイクルにおいても高次の回折光は抑圧されていることが分かる。
【0080】
続いて、回折格子140に関連する実施例、変形例を説明する。
【0081】
図17は、格子パターンを示す平面図である。
図17には、格子パターンのいくつかのバリエーションが示される。PTN1は一般的な矩形である。PTN2やPTN3は菱形あるいは楕円形であり、アパーチャ中央ほど幅が広い形状としてもよい。PTN4では矩形の格子パターンを挟むようにして、アパーチャの境界に、スローライトモード波の伝搬法方向に伸びる追加のパターンが形成される。
【0082】
形状PTN2~PTN4によれば、各格子パターンを平面視したときの中央での回折格子による反射率が高くなる。これにより、中心の電界強度が大きい基本横モードの反射率が大きくなるため,基本横モードを選択することができ、単一横モード性を高めることができる。
【0083】
また形状PTN2~PTN4を採用すると、矩形のパターンPTN1を用いた場合に比べてアパーチャ幅を広くすることができる。アパーチャ幅の拡大は、高出力化に貢献する。
【0084】
図18(a)、(b)は、格子パターンの断面形状を示す図である。
図18(a)に示すように、凹に形成される格子パターン142(144)において、その厚み(深さ)は、VCSEL構造110の幅方向(y方向)に関して変化してもよい。具体的には、幅方向の中央において厚みが最も大きく、両端ほど厚みが薄くなっている。
【0085】
図18(b)に示すように、凸に形成される格子パターン142(144)においても、その厚み(高さ)は、VCSEL構造110の幅方向(y方向)に関して変化してもよい。具体的には、幅方向の中央において厚みが最も大きく、両端ほど厚みが薄くなっている。
【0086】
図18(a)、(b)のように回折格子を形成すると、中心の電界強度分布が大きい基本横モードの回折格子による反射率が大きくなるため,基本横モードを選択することができ、単一横モード性を高めることができる。
【0087】
図19は、変形例に係る回折格子140を示す図である。回折格子140は、回折次数が異なる、言い換えると屈折率変化のピッチΛが異なる複数の領域140A,1402Bを含む。複数の領域140A,140Bの境界には、位相シフト領域130に相当する格子パターン144が形成される。
【0088】
図20(a)~(c)は、
図19の回折格子のスペクトルを説明する図である。
図20(a)は、回折格子140全体のスペクトル強度を示す。
図20(b)、(c)は、第1領域140A、第2領域140Bそれぞれのスペクトル強度R
1,R
2を示す。第1領域140Aでは、
図20(b)に示すように、利得スペクトルの帯域内において、格子周期Λ
1に反比例する波長間隔で、導波可能な複数の縦モードが存在する。一方、第2領域140Bでは、
図20(c)に示すように、利得スペクトルの帯域内において、格子周期Λ
2に反比例する波長間隔で、導波可能な複数の縦モードが存在する。
【0089】
第1領域140Aと第2領域140Bを含む回折格子140全体のスペクトル強度は、第1領域140Aのスペクトル強度R1と、第2領域140Bのスペクトル強度R2の積である。したがっていわゆるバーニア効果によって、第1領域140Aと第2領域140Bに共通する縦モードが選択される。
【0090】
一般に、回折格子は、格子次数が低いほど、言い換えると格子周期Λが短いほど、製造が困難である。
図19の構成によれば、高い格子次数を有する、つまり格子周期Λが長い複数の領域を組み合わせることで、製造が容易となり、かつ、単一縦モード特性を改善できる。
【0091】
これまでの例では、伝搬方向に対してひとつの位相シフト領域130が形成されたが、複数の位相シフト領域を形成してもよい。単一の位相シフト領域を有する構造では、伝搬方向(長手方向)の光の強度が、位相シフト領域近傍で最大となり外側に向かって減衰する分布となる。このため、位相シフト領域近傍で、誘導放出によるキャリア密度が低化する(空間ホールバーニング)が生じ、レーザの効率やビーム品質が悪化する場合がある。それに対して位相シフト領域を複数に分割することで、長手方向の光強度分布を、より平坦化し、これらの問題を緩和できる。
【0092】
続いて、有効屈折率neffの周期構造の変形例を説明する。これまでの例では、VCSEL構造110の上側に、有効屈折率neffの周期構造として回折格子140を形成したがその限りでない。
【0093】
図21は、変形例に係る半導体レーザ100Bの平面図である。この半導体レーザ100Bでは、アパーチャ120の幅W
apが、スローライトモード波の導波方向に関して、周期的に変化している。これにより、有効屈折率n
effが周期的に変化することとなる。
【0094】
アパーチャ120の幅Wapを制御するために、メサ幅Wmesaが周期的に変化するメサ構造を形成し、その後に酸化狭窄によりアパーチャ120を形成してもよい。これにより、アパーチャ120の幅に周期構造を持たせることができる。
【0095】
(複合デバイス・機能デバイス)
半導体レーザ100は、単体で高出力レーザとして利用することが可能であるが、他のデバイスと集積化することにより、さらに高出力化することが可能であり、あるいは別の機能を追加することができる。以下、こうした複合デバイス、機能デバイスについて説明する。
【0096】
図22は、一実施例に係る光デバイス200Aを示す図である。光デバイス200Aは、半導体レーザ100および終端領域210を備える。終端領域210は、半導体レーザ100とVCSEL構造110が連続しており、横方向(スローライトモード波の導波方向)に光学的に結合されており、電気的に絶縁されている。半導体レーザ100と終端領域210の境界近傍には、絶縁領域212が形成される。終端領域210の上面は、高反射ミラー(遮蔽構造)214で覆わている。高反射ミラー214は、誘電体多層膜ミラーであってもよいし、金属ミラーであってもよい。光デバイス200Aの動作中、終端領域210には、電流は注入されない。
【0097】
上述したように、
図6のように表面に回折格子を装荷した半導体レーザ100は、伝搬方向に対称構造であるため、出射ビームが対称な角度の2つに分かれる。
図22の光デバイス200Aのように、半導体レーザ100の終端に、電流注入を行わず表面を高反射率ミラー214で覆った構造を導入することで、終端での反射を抑圧でき、一方向性のビーム出射が可能になる。
【0098】
図23は、一実施例に係る光デバイス200Bを示す図である。光デバイス200Bは、半導体レーザ100および光増幅器220を備える。半導体レーザ100と光増幅器220は、VCSEL構造110が横方向(スローライトモード波の導波方向)に連続して形成される。光増幅器220には、絶縁領域222および駆動電極224が形成される。半導体レーザ100の上面は、高反射ミラー150で覆われている。高反射ミラー150は、誘電体多層膜ミラーであってもよいし、金属ミラーであってもよい。半導体レーザ100の内部で生成されるスローライトモード波4は、光増幅器220に結合される。
【0099】
光増幅器220には、半導体レーザ100において生成された高出力かつ単一縦モードのスローライトモード波4が結合する。光増幅器220は、スローライトモード波4を増幅し、さらに高出力な出射光8として出力する。
【0100】
図24は、一実施例に係る光デバイス200Cを示す図である。この光デバイス200Cは、半導体レーザ100およびビーム掃引デバイス230を備える。ビーム掃引デバイス230の構成は、
図23の光増幅器220と同様である。半導体レーザ100は、スローライトモード波4の波長λが制御可能に構成される。波長λを制御するために、VCSEL構造110は、縦方向の共振器長が可変に構成されてもよい。
【0101】
ビーム掃引デバイス230の出射ビーム8の出射角θrは、上述したように式(8)で表される。
sinθr=nm√(1-(λ/λc)2) …(再掲8)
λcは、ビーム掃引デバイス230の共振波長である。したがって、スローライトモード波4の波長λを制御することで、出射角θrを掃引することができる。
【0102】
図25は、一実施例に係る光デバイス200Dを示す図である。この光デバイス200Dは、半導体レーザ100および光変調器240を備える。半導体レーザ100と光変調器240は、VCSEL構造110が連続しており、横方向に結合されている。光変調器240は、絶縁領域242および変調用電極244を有する。変調用電極244を逆バイアスし、駆動電流をスイッチングすることにより、出射ビーム8の強度(オン、オフ)をスイッチングすることができる。
【0103】
図26は、一実施例に係る光デバイス200Eを示す図である。この光デバイス200Eは、半導体レーザ100、光変調器240、出射領域250を備える。半導体レーザ100、光変調器240、出射領域250はVCSEL構造110が連続しており、横方向に結合される。
【0104】
光変調器240の上面は、高反射ミラー246により覆われている。光変調器240中を導波するスローライトモード波4Eの強度は、変調用電極244に与える変調信号に応じて変化する。このスローライトモード波4Eは、出射領域250に結合し、その上面から出射される。出射領域250の出射ビーム8の強度は、変調信号に応じてスイッチングする。
【0105】
図27は、一実施例に係る光デバイス200Fを示す図である。光デバイス200Fは、半導体レーザ100と、少なくともひとつの外部共振器260を備える。この例では、2個の外部共振器260が、半導体レーザ100に対して横方向に光学的に結合され、電気的に絶縁されている。
【0106】
より具体的には、半導体レーザ100と外部共振器260は、それぞれのVCSEL構造110が連続して形成される。外部共振器260には、絶縁領域262が形成され、その上面は、高反射ミラー266で覆われている。外部共振器260には、フィードバック調整用電極264を形成してもよい。
【0107】
半導体レーザ100に対して、外部共振器260を横方向接続することで、結合共振器スローライトレーザーが実現でき、高出力化、高い単一モード安定性、高い変調速度などを実現できる。
【0108】
図28は、一実施例に係る光デバイス200Gを示す図である。光デバイス200Gは、半導体レーザ100と、MEMS(Micro Electro Mechanical Systems)ミラー270を備える。MEMSミラー270は、たとえば誘電体多層膜ミラーであり、半導体レーザ100の上面側に、エアギャップ274を隔てて形成される。MEMSミラー270の反射率は、100%より低く設計され、MEMSミラー270を透過した光6が外部に取り出し可能となっている。
【0109】
たとえば半導体レーザ100と同一基板上に、犠牲層276を形成しておき、犠牲層276を部分的に除去することで、エアギャップ274を形成してもよい。
【0110】
MEMSミラー270は、ミラーとアクチュエータの複合デバイスである。MEMSミラー270には駆動用電極272が形成され、駆動信号に応じてエアギャップ274の長さ、言い換えると半導体レーザ100の垂直方向の共振器長が制御可能となっている。
【0111】
通常の波長可変MEMS VCSELの出力は数mW以下であるが、上述のスローライトレーザ構造を有する半導体レーザ100を導入することで,高出力、高い単一モード安定性、大きな連続波長掃引幅などが期待できる。数十mWの出力を実現することで,OCT(Optical Coherence Tomography:光コヒーレンストモグラフィー)などの生体の高空間分解能な断層イメージ測定に適用できる.
【0112】
実施形態にもとづき、具体的な語句を用いて本発明を説明したが、実施形態は、本発明の原理、応用を示しているにすぎず、実施形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
【符号の説明】
【0113】
100…半導体レーザ、102…基板、110…VCSEL構造、112…コア、113…活性層、114…酸化狭窄層、116…下部DBR層、118…上部DBR層、120…アパーチャ、122,124…電極、130…位相シフト領域、140…回折格子、142,144…格子パターン、150…高反射ミラー、2…レーザ光、4…スローライトモード波、200…光デバイス、210…終端領域、212…絶縁領域、214…高反射ミラー、220…光増幅器、230…ビーム掃引デバイス、240…光変調器、244…変調用電極、250…出射部、260…外部共振器、270…MEMSミラー。