(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-02
(45)【発行日】2024-09-10
(54)【発明の名称】過電流保護回路及びスイッチング回路
(51)【国際特許分類】
H03K 17/08 20060101AFI20240903BHJP
H02M 1/08 20060101ALI20240903BHJP
H03K 17/082 20060101ALI20240903BHJP
H02M 1/00 20070101ALI20240903BHJP
【FI】
H03K17/08 C
H02M1/08 A
H03K17/082
H02M1/00 H
(21)【出願番号】P 2020147017
(22)【出願日】2020-09-01
【審査請求日】2023-07-07
(73)【特許権者】
【識別番号】000002945
【氏名又は名称】オムロン株式会社
(74)【代理人】
【識別番号】100101454
【氏名又は名称】山田 卓二
(74)【代理人】
【識別番号】100189555
【氏名又は名称】徳山 英浩
(74)【代理人】
【識別番号】100091524
【氏名又は名称】和田 充夫
(72)【発明者】
【氏名】岩井 聡
(72)【発明者】
【氏名】末木 葵
【審査官】及川 尚人
(56)【参考文献】
【文献】特開2020-127267(JP,A)
【文献】特表2004-533713(JP,A)
【文献】米国特許第05675469(US,A)
【文献】特開平10-126962(JP,A)
【文献】特開昭61-150617(JP,A)
【文献】米国特許出願公開第2013/0279053(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H03K 17/00-17/70
H02M 1/08
H02M 1/00
(57)【特許請求の範囲】
【請求項1】
制御電圧に基づいてオンオフ制御されるスイッチング素子のための過電流保護回路において、
PNP型バイポーラトランジスタであって、前記制御電圧に接続されたエミッタを有する第1のトランジスタと、
NPN型バイポーラトランジスタであって、前記第1のトランジスタのコレクタに接続されたベースと、前記第1のトランジスタのベースに接続されかつ所定のプルアップ電圧にプルアップされたコレクタと、接地されたエミッタとを有する第2のトランジスタとを備え、
前記過電流保護回路は、前記制御電圧が所定の第1のしきい値電圧を超えるとき、前記第1及び第2のトランジスタがオンされ、前記プルアップ電圧の低下により前記制御電圧が低下されて、前記スイッチング素子をオフする保護動作を開始し、
前記過電流保護回路は、
前記制御電圧に接続されるアノードと、前記第1のトランジスタのエミッタに接続されるカソードとを有する第1のダイオードと、
前記第1のトランジスタのエミッタと前記第1のトランジスタのベースとの間に接続される素子回路とを備え、
前記素子回路は、
前記第1のトランジスタのエミッタに接続されたカソードと、前記第1のトランジスタのベースに接続されたアノードとを有する第2のダイオードと、前記第2のダイオードと並列に接続された第1の抵抗との並列回路であり、
前記過電流保護回路は、
前記制御電圧を発生する制御部と、
前記プルアップ電圧を検出して、当該検出した検出電圧を、前記スイッチング素子をオフするための第1の制御信号として前記制御部に出力する電圧検出部とをさらに備える、
過電流保護回路。
【請求項2】
前記第2のトランジスタのコレクタ及びエミッタに接続されたキャパシタであって、前記制御電圧の立ち上がるときの前記プルアップ電圧の変化を軽減させる第1のキャパシタをさらに備える、
請求項1に記載の過電流保護回路。
【請求項3】
前記第2のトランジスタのコレクタ及びエミッタに並列に接続された時定数回路であって、第2の抵抗と、第2のキャパシタを含み、時定数を変化することで、前記保護動作の開始から終了までの時間を調整する時定数回路をさらに備える、
請求項1又は2に記載の過電流保護回路。
【請求項4】
前記第2の抵抗に並列に接続された第3のダイオードをさらに備える、
請求項3に記載の過電流保護回路。
【請求項5】
前記過電流保護回路が前記保護動作から復帰するときに、前記制御部からの第2の制御信号に基づいて前記プルアップ電圧をオフからオンする別のスイッチング素子をさらに備える、
請求項
1に記載の過電流保護回路。
【請求項6】
請求項1~
5のうちのいずれか1つに記載の過電流保護回路と、
前記スイッチング素子とを備える、
スイッチング回路。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、過電流保護回路と、それを備えたスイッチング回路に関する。ここで、スイッチング回路とは、例えば昇圧チョッパ回路、ハーフブリッジインバータ回路、フルブリッジインバータ回路等のスイッチング回路である。
【背景技術】
【0002】
半導体デバイスは一般に短絡耐量を持ち、短絡耐量を超える電流が流れると破壊に至るおそれがある。短絡により半導体デバイスに過電流が流れるのを高速に検知し、半導体デバイスに流れる電流を停止させることで、半導体デバイスの過電流保護を行うことができる。
【0003】
例えば特許文献1は、直流電圧が高い場合、低い場合、一定の場合においても任意のタイミングでコレクタ短絡検出の検知電圧の設定レベルを変えることができ、電圧駆動素子を過電流から確実に保護することができる電力変換装置の過電流保護装置を提供する。
【0004】
特許文献1に係る過電流保護装置は、電圧駆動形の電力用スイッチング素子を有する電力変換装置と、上記電力用スイッチング素子の入力側主端子の電圧を検出し、上記電圧が所定値を超えた時、上記電力用スイッチング素子にオフ信号を与える過電流検知部と、上記過電流検知部に任意のタイミングで並列関係に接続し得るようにされ、上記所定値を変更し得るようにした過電流設定部とを備える。
【0005】
GaNデバイスは、窒化ガリウムGaNを用いた半導体デバイスであり、絶縁ゲートバイポーラトランジスタ(IGBT)及びSiCデバイス等の従来の半導体デバイスに比較して高周波で駆動され得るという特徴を持つ。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、GaNデバイスは従来の半導体デバイスに比較して過電流に弱く、例えば100ナノ秒程度の過電流で破壊に至ることもある。従って、IGBT素子のコレクタ・エミッタ間の不飽和(過電流)状態を検出して自動的にゲートを遮断する保護機能であるDESAT(Desaturation Protection)機能、CT(Current Transformer)検出又は特許文献1の技術などの従来の過電流保護技術は、GaNデバイスを十分に保護することができない。
【0008】
本発明の目的は以上の問題点を解決し、半導体スイッチを過電流から、従来技術に比較して高速に保護することができる過電流保護回路と、それを備えるスイッチング回路を提供することにある。
【課題を解決するための手段】
【0009】
本発明に係る過電流保護回路は、
制御電圧に基づいてオンオフ制御されるスイッチング素子のための過電流保護回路において、
PNP型バイポーラトランジスタであって、前記制御電圧に接続されたエミッタを有する第1のトランジスタと、
NPN型バイポーラトランジスタであって、前記第1のトランジスタのコレクタに接続されたベースと、前記第1のトランジスタのベースに接続されかつ所定のプルアップ電圧にプルアップされたコレクタと、接地されたエミッタとを有する第2のトランジスタとを備え、
前記過電流保護回路は、前記制御電圧が所定の第1のしきい値電圧を超えるとき、前記第1及び第2のトランジスタがオンされ、前記プルアップ電圧の低下により前記制御電圧が低下されて、前記スイッチング素子をオフする保護動作を開始し、
前記過電流保護回路は、
前記制御電圧に接続されるアノードと、前記第1のトランジスタのエミッタに接続されるカソードとを有する第1のダイオードと、
前記第1のトランジスタのエミッタと前記第1のトランジスタのベースとの間に接続される素子回路とを備え、
前記素子回路は、
(1)前記第1のトランジスタのエミッタに接続されたカソードと、前記第1のトランジスタのベースに接続されたアノードとを有する第2のダイオードと、
(2)第1の抵抗と、
(3)前記第2のダイオードと前記第1の抵抗の並列回路と、
のうちのいずれか1つである。
【発明の効果】
【0010】
従って、本発明に係る過電流保護回路等によれば、半導体デバイスを過電流から、従来技術に比較して高速に保護することができる。
【図面の簡単な説明】
【0011】
【
図1】比較例に係る昇圧チョッパ回路101の構成例を示すブロック図である。
【
図2】
図1の電流駆動型スイッチング回路110の詳細構成例を示すブロック図である。
【
図3A】
図2の電流駆動型スイッチング回路110における信号等の動作波形を示すタイミングチャートである。
【
図3B】
図3AのトランジスタQ1のベース・エミッタ間電圧Vbeの拡大図である。
【
図4】実施形態1に係る昇圧チョッパ回路1の構成例を示すブロック図である。
【
図5】
図4の電流駆動型スイッチング回路10の詳細構成例を示すブロック図である。
【
図6】
図5の電流駆動型スイッチング回路10における信号等の動作波形を示すタイミングチャートである。
【
図7A】
図5の電流駆動型スイッチング回路10において、ダイオードD11,D12を追加することで過電圧を防止することを説明するための
図6のベース・エミッタ間電圧Vbeの拡大図である。
【
図7B】
図5の電流駆動型スイッチング回路10において、保護防止機能が作動したときの
図6のトランジスタQ1のベース・エミッタ間電圧Vbeの拡大図である。
【
図7C】
図5の電流駆動型スイッチング回路10において、保護動作保持状態に移行したときの
図6のトランジスタQ1のベース・エミッタ間電圧Vbe及び検出電圧Vocpの拡大図である。
【
図7D】
図5の電流駆動型スイッチング回路10において、保護動作保持状態から自動復帰するまでの時間を調整することを説明するための
図6のトランジスタQ1のベース・エミッタ間電圧Vbe及び検出電圧Vocpの拡大図である。
【
図8】実施形態2に係る電流駆動型スイッチング回路10Aの詳細構成例を示すブロック図である。
【
図9A】
図8の電流駆動型スイッチング回路10Aにおいて、ダイオードD11及び抵抗R11を追加することで過電圧を防止することを説明するためのトランジスタQ1のベース・エミッタ間電圧Vbeの波形図である。
【
図9B】
図8の電流駆動型スイッチング回路10Aにおいて、保護機能が動作したときにトランジスタQ1のベース・エミッタ間電圧Vbeの波形図である。
【
図9C】
図8の電流駆動型スイッチング回路10Aにおいて、保護機能保持状態から自動復帰するまでの時間を調整することを説明するためのトランジスタQ1のベース・エミッタ間電圧Vbe及び検出電圧Vocpの波形図である。
【
図10】実施形態3に係る電流駆動型スイッチング回路10Bの詳細構成例を示すブロック図
【
図11A】
図10の電流駆動型スイッチング回路10Bにおいて、ダイオードD11,D12及び抵抗R11を追加することで過電圧を防止することを説明するためのトランジスタQ1のベース・エミッタ間電圧Vbeの波形図である。
【
図11B】
図10の電流駆動型スイッチング回路10Bにおいて、過電流発生時の時間を調整することを説明するためのトランジスタQ1のベース・エミッタ間電圧Vbeの波形図である。
【
図12A】実施形態4に係る電流駆動型スイッチング回路10Cの詳細構成例を示すブロック図である。
【
図12B】
図12Aの電流駆動型スイッチング回路10Cにおける信号等の動作波形を示すタイミングチャートである。
【
図13】実施形態5に係る電流駆動型スイッチング回路10Dの詳細構成例を示すブロック図である。
【
図14】実施形態6に係る電流駆動型スイッチング回路10Eの詳細構成例を示すブロック図である。
【
図15】実施形態7に係る電流駆動型スイッチング回路10Fの詳細構成例を示すブロック図である。
【
図16】実施形態8に係る電流駆動型スイッチング回路10Gの詳細構成例を示すブロック図である。
【
図17】変形例1に係るハーフブリッジインバータ回路1Aの構成例を示すブロック図である。
【
図18】変形例2に係るフルブリッジインバータ回路1Bの構成例を示すブロック図である。
【発明を実施するための形態】
【0012】
以下、本発明に係る実施形態を、図面を参照して説明する。ただし、以下で説明する各実施形態は、あらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。つまり、本発明の実施にあたって、実施形態に応じた具体的構成が適宜採用されてもよい。
【0013】
以下、比較例の回路構成及び動作、並びにそれに係る課題を説明した後、当該課題を解決するための実施形態及び変形例について説明する。
【0014】
(比較例)
図1は比較例に係る昇圧チョッパ回路101の構成例を示すブロック図である。
図1において、昇圧チョッパ回路101は、スイッチング素子である半導体スイッチ14を有する電流駆動型スイッチング回路110と、インダクタL1と、ダイオードD1と、キャパシタC1とを備える。
【0015】
図1において、入力電圧ViはインダクタL1を介してダイオードD1のアノード及び半導体スイッチ14のドレインの接続点に印加される。半導体スイッチ14のソースは接地される。ダイオードD1のカソードは出力電圧Voを出力するキャパシタC1の一端に接続され、その他端は接地される。
【0016】
以上のように構成された昇圧チョッパ回路101において、インダクタL1は電流の変化を妨げる向きに起電力を生じる。従って、半導体スイッチ14がその制御端子であるゲートに印加される制御電圧に基づいてオンからオフに切り替わるとき、インダクタL1はダイオードD1の抵抗により電流が低下するのを妨げるように、入力電圧Viと同じ向きの起電力を生じる。これにより入力電圧Viよりも高い電圧が生じ、当該電圧はキャパシタC1により平滑化され、出力電圧Voに変換される。従って、半導体スイッチ14のオンオフを周期的に選択的に切り替えることで、昇圧チョッパ回路101は、入力電圧Viを、入力電圧Viよりも高い直流出力電圧Voに変換して出力する。
【0017】
図2は、
図1の電流駆動型スイッチング回路110の詳細構成例を示すブロック図である。
図2において、電流駆動型スイッチング回路110は、過電流保護回路111と、制御部12と、駆動部13と、半導体スイッチ14と、抵抗R1とを備える。過電流保護回路111は、トランジスタQ1,Q2と、プルアップ抵抗R2と、電圧検出回路15とを備える。
【0018】
図2において、制御部12は、パルス信号である駆動信号Sdrvで駆動部13を制御する。また、制御部12は、過電流保護回路111の電圧検出回路15からトランジスタQ1のベースに印加された検出電圧Vocpを示す信号を監視し、検出電圧Vocpが所定のしきい値未満となったとき、異常検出フラグFhをハイレベルにし、駆動信号Sdrvをローレベルに固定して、駆動部13を停止させる。
【0019】
駆動部13は、制御部12からの駆動信号Sdrvに基づいて、抵抗R1を介して半導体スイッチ14のゲートにゲート・ソース間電圧Vgsを印加し、半導体スイッチ14をオンオフ制御する。半導体スイッチ14は例えばGaNデバイス等のスイッチング素子であり、駆動部13によりオンオフ制御されてドレイン電流Idを導通するか否かを選択的に切り替える。なお、ゲート・ソース間電圧Vgsは本発明の「制御電圧」の一例である。
【0020】
過電流保護回路111において、トランジスタQ1は例えばPNP型バイポーラトランジスタである。また、トランジスタQ2は例えばNPN型バイポーラトランジスタであり、トランジスタQ1のコレクタに接続されたベースと、トランジスタQ1のベースに接続されたコレクタと、接地されたエミッタを有する。また、トランジスタQ2のコレクタは、プルアップ抵抗R2を介してしきい値電圧VTHにプルアップされる。しきい値電圧VTHは、本発明の「プルアップ電圧」の一例である。
【0021】
ここで、トランジスタQ1がオフ(絶縁)の間、トランジスタQ2のベースに電流は流れない。トランジスタQ1がオンになると、エミッタ・コレクタ間が導通するため、トランジスタQ2のベース・エミッタ間を電流が流れる。従って、トランジスタQ1がオンになると、トランジスタQ2もオンになる。電圧検出回路15は、トランジスタQ2のコレクタ・エミッタ間電圧である検出電圧Vocpを検出して、検出電圧Vocpを示す信号を制御部12に出力する。なお、電圧検出回路15は本発明の「電圧検出部」の一例であり、検出電圧Vocpを示す信号は本発明の「第1の制御信号」の一例である。
【0022】
図3Aは、
図2の電流駆動型スイッチング回路110における信号等の動作波形を示すタイミングチャートであり、
図3Bは
図3AのトランジスタQ1のベース・エミッタ間電圧Vbeの拡大図である。
【0023】
図3Aにおいて、時刻t1において電流駆動型スイッチング回路110が動作を開始し、時刻t2において半導体スイッチ14に短絡が発生して保護動作が開始し、時刻t3において制御部12が短絡を検出する。さらに、時刻t4で異常状態が解消して、時刻t5で定常動作に復帰する。ここで、時刻t1~t2の期間を定常動作期間201といい、時刻t2~t3の期間を保護動作期間202といい、時刻t3~t5の期間をVgs信号オフ期間(又は停止期間)204という。
【0024】
定常動作期間201において、検出電圧Vocpがオーバーシュートする期間を除いて、プルアップ抵抗R2に電流は流れないため、検出電圧Vocpはしきい値電圧VTHである。このしきい値電圧VTHは、駆動信号Sdrvがハイレベルの時に駆動部13が供給するゲート・ソース間電圧Vgsよりも高く設定されているため、トランジスタQ1及びQ2の両方は定常動作期間201において常にオフである。
【0025】
一般に半導体デバイスを過電流が流れる場合、半導体デバイスに含まれる半導体スイッチのゲート・ソース間電圧がオーバーシュート(瞬間的に上昇)する。この比較例においても、
図3の時刻t2等において、半導体スイッチ14に流れるドレイン電流Idが過剰に上昇するとともに、半導体スイッチ14のゲート・ソース間電圧Vgsは急激に上昇し、しきい値電圧VTHよりも高い値になる。これにより、トランジスタQ1がオンになり、従ってトランジスタQ2もオンになる。
【0026】
ここで、トランジスタQ1及びQ2の両方がオンになると、半導体スイッチ14のゲートはトランジスタQ1及びQ2を通じて接地される。従って、ゲート・ソース間電圧Vgsは急速に低下して0Vとなる。これにより半導体スイッチ14はオフになるため、半導体スイッチ14に流れる過電流を停止させ、過電流保護回路111は保護動作を開始することができる。時刻t2で短絡が発生してから、過電流保護回路111が保護動作を開始するまでの時間は、トランジスタQ1,Q2のスイッチングにおける遅延を含み、例えば20~100ナノ秒程度に短い。
【0027】
また、トランジスタQ2がオンされているとき、検出電圧Vocpは急速に低下して0Vとなる。ここで、抵抗R1がプルアップ抵抗R2よりも小さい場合、ゲート・ソース間電圧Vgsは検出電圧Vocpよりも速く低下する。従って、ゲート・ソース間電圧Vgsが低下しても、トランジスタQ1をオンのままに保つことができる。その後、制御部の駆動信号Sdrvがローレベルとなると、駆動部13は停止され、ゲート・ソース間電圧Vgsが0Vに低下する。従ってトランジスタQ1,Q2は順次オフになるため、検出電圧Vocpは再度しきい値電圧VTHまで上昇し、保護動作が終了する。
【0028】
電圧検出回路15は、検出電圧Vocpを示す信号を制御部12に出力している。制御部12は検出電圧Vocpの値を監視し、検出電圧Vocpが所定のしきい値未満になると、保護動作が行われたと判断して異常検出フラグFhをハイレベルにし、駆動信号Sdrvの出力を停止させる(時刻t3)。時刻t3以降のVgs信号オフ期間(停止期間)203では、駆動信号Sdrvは常にローレベルであり、半導体スイッチ14は常にオフのままである。
【0029】
ここで、制御部12の応答が遅い場合、時刻t3において駆動信号Sdrvの出力が停止する前に、再度駆動信号Sdrvがハイレベルになり得る。その場合には、
図3Aに示すように、半導体スイッチ14に再度過電流が流れ、過電流保護回路111は再度保護動作を開始する。
【0030】
以上説明したように、比較例に係る過電流保護回路111は、プルアップ抵抗R2と、PNP型であるトランジスタQ1と、NPN型であるトランジスタQ2と、電圧検出回路15とを備える。半導体スイッチ14のゲート・ソース間電圧Vgsがしきい値電圧VTHを上回ると、トランジスタQ1,Q2は順次オンになる。これにより過電流保護回路111は、ゲート・ソース間電圧Vgsを0まで低下させて、半導体スイッチをオフする保護動作を開始する。また、制御部12は電圧検出回路15により検出された検出電圧Vocpを監視して、検出電圧Vocpが所定のしきい値電圧未満になると、駆動部13を停止させて半導体スイッチ14をオフする。従って本実施形態によれば、半導体スイッチ14に流れる過電流を、従来技術に比較して高速に停止させ、半導体スイッチ14を保護することができる。
【0031】
(比較例の課題)
以上説明したように、比較例に係る過電流保護回路111では、トランジスタQ1,Q2と検出電圧Vocpを用い、電流駆動型半導体スイッチ14のゲート電圧Vgsを監視することで過電流保護機能を実現している。
【0032】
しかし、この構成では、
図3Bに示す半導体スイッチ14のオフ時のゲート・ソース間アンダーシュート120や、半導体スイッチ14にゲート負バイアス電圧を印加する際、トランジスタQ1のベース・エミッタ間
に電圧Vbeとして過電圧120が印加される可能性があるという課題があった。
【0033】
(実施形態1)
図4は実施形態1に係る昇圧チョッパ回路1の構成例を示すブロック図であり、
図5は
図4の電流駆動型スイッチング回路10の詳細構成例を示すブロック図である。
図4において、昇圧チョッパ回路1は、
図1の昇圧チョッパ回路101と同様の回路構成を有するが、
図5の電流駆動型スイッチング回路10は、
図2のスイッチ駆動回路110と比較して、比較例における課題を解決するために、以下の相違点を有する。
【0034】
(1)過電流保護回路111に代えて、過電流保護回路11を備える。具体的には、以下の通りである。
(2)半導体スイッチ14のゲートとトランジスタQ1のエミッタとの間にダイオードD11を挿入したこと。ここで、ダイオードD11のアノードは半導体スイッチ14のゲートに接続され、ダイオードD11のカソードはトランジスタQ1のエミッタに接続される。
(3)トランジスタQ1のエミッタとベースの間にダイオードD12を挿入したこと。ここで、ダイオードD12のアノードはトランジスタQ1のベースに接続され、ダイオードD12のカソードはトランジスタQ1のエミッタに接続される。ここで、ダイオードD12は、本発明における素子回路の一例である。
【0035】
図6は
図5の電流駆動型スイッチング回路10における信号等の動作波形を示すタイミングチャートであり、
図7A~
図7Dは
図5の電流駆動型スイッチング回路10において、ダイオードD11,D12を追加することで過電圧を防止することを説明するための
図6のベース・エミッタ間電圧Vbe及び検出電圧Vocpの拡大図である。
【0036】
実施形態1では、
図5に図示するようにダイオードD12を追加挿入することで、
図7Aに示すように、トランジスタQ1のベース・エミッタ間Vbeの電荷を、ダイオードD12を介して、トランジスタQ1のエミッタ側に放電する。また、ダイオードD11に、検出電圧Vocp+Vds(半導体スイッチ14のドレイン・ソース間電圧)なる電圧を負担させる。これにより、トランジスタQ1のベース・エミッタ間電圧Vbeにおける過電圧を防止することを特徴とする。
【0037】
半導体スイッチ14において過電流が発生したときは、
図7Bのように、ゲート・ソース間電圧Vgsのオーバーシュート(Vocp-Vgs)がトランジスタQ1のベース・エミッタ間に印加され、トランジスタQ1が導通すれば保護機能が作動する。
【0038】
また、保護動作後は、
図7Cに示すように、トランジスタQ1及びQ2により、しきい値電圧となる検出電圧Vocpが放電されて低下して、保護動作保持状態に移行する。
【0039】
さらに、保護動作保持状態は、半導体スイッチ14へのゲート信号を停止することで自動復帰する。復帰までの時間は、
図7Dに示すように、抵抗R2(又はインピーダンス)により検出電圧Vocpの立ち上がり時間を調整することで設定が可能である。
【0040】
以上説明したように、実施形態1によれば、比較例に比較してダイオードD11,D12を追加して挿入することで、トランジスタQ1のベース・エミッタ間電圧Vbeにおける過電圧を防止できる。
【0041】
(実施形態2)
図8は実施形態2に係る電流駆動型スイッチング回路10Aの詳細構成例を示すブロック図である。
図8の電流駆動型スイッチング回路10Aは、
図5の電流駆動型スイッチング回路10に比較して以下の相違点を有する。
(1)過電流保護回路11に代えて、過電流保護回路11Aを備える。具体的には、以下の通りである。
(2)ダイオードD12に代えて、抵抗R11を挿入した。ここで、抵抗
R11は、本発明における素子回路の一例である。
以下、当該相違点について説明する。
【0042】
図8において、
図5のダイオードD12に代えて、抵抗R11を追加挿入することで、トランジスタQ1のベース・エミッタ間の電荷を、抵抗R11を介してトランジスタQ1のエミッタ側に放電する。また、ダイオードD11に、実施形態1と同様に、検出電圧Vocp+Vdsを負担させることで、トランジスタQ1のベース・エミッタ間の過電圧を防止することができる(
図9A参照)。
【0043】
例えば半導体スイッチ14において過電流が発生したときは、
図9Bのように、ゲート・ソース間電圧Vgsのオーバーシュートによる電流Iocpが、半導体スイッチ14のゲートからダイオードD11及び抵抗R11を介して流れる。その電位差(=Iocp×R11)がトランジスタQ1のベース・エミッタ間のしきい値電圧を超えると、トランジスタQ1が導通して保護機能が作動する。なお、実施形態2における保護状態の保持、定常状態への自動復帰については、実施形態1と同様に動作する(
図9C参照)。
【0044】
以上説明したように、実施形態2によれば、比較例に比較してダイオードD11及び抵抗R11を追加して挿入することで、トランジスタQ1のベース・エミッタ間電圧Vbeにおける過電圧を防止できる。
【0045】
(実施形態3)
図10は実施形態3に係る電流駆動型スイッチング回路10Bの詳細構成例を示すブロック図である。
図10の電流駆動型スイッチング回路10Bは、
図5の電流駆動型スイッチング回路10に比較して以下の相違点を有する。
(1)過電流保護回路11に代えて、過電流保護回路11Bを備える。具体的には、以下の通りである。
(2)
図8のダイオードD12と並列に、抵抗R11を接続した。ここで、ダイオードD12と抵抗R11の並列回路は、本発明における素子回路の一例である。
以下、当該相違点について説明する。
【0046】
以上のように構成された電流駆動型スイッチング回路10Bでは、
図11Aに示すように、基本的な動作は実施形態2の動作を同様である。
【0047】
また、
図11Bに示すように、例えば半導体スイッチ14において過電流が発生したときは、検出電圧Vocpによる電位差を抵抗11の抵抗値で調整することができる。これにより、しきい値電圧となる検出電圧Vocpと抵抗R11の抵抗値の組み合わせの各値を変えることで、半導体スイッチ14の駆動条件に合わせて、半導体スイッチ14の動作を最適化することが可能となる。
【0048】
以上説明したように、実施形態3によれば、比較例に比較してダイオードD11及び、ダイオードD12と抵抗R11の並列回路を追加して挿入することで、トランジスタQ1のベース・エミッタ間電圧Vbeにおける過電圧を防止できる。
【0049】
(実施形態4)
図1の比較例では、半導体スイッチ14のゲート・ソース間電圧Vgsが立ち上がるときに、
図3Aに示したように検出電圧Vocpがオーバーシュートする。これは検出電圧Vocpの低下を遅らせ、保護動作の開始を遅延させる原因となる。また、上述の通り、短絡期間Psにおける過電流保護の後、制御部12の応答速度が遅い場合、半導体スイッチ14に繰り返し過電流が流れるため、これは望ましくない。この課題を解決するために、以下の実施形態4に係る構成を提案する。
【0050】
図12Aは実施形態4に係る電流駆動型スイッチング回路10Cの詳細構成例を示すブロック図である。また、
図12Bは
図12Aの電流駆動型スイッチング回路10Cにおける信号等の動作波形を示すタイミングチャートである。
図12Aにおいて、実施形態4に係る電流駆動型スイッチング回路10Cは、
図10の電流駆動型スイッチング回路10Bに比較して、以下の点で異なる。
(1)過電流保護回路11Bに代えて、過電流保護回路11BAを備える。具体的には、以下の通りである。
(2)トランジスタQ2のコレクタ及びエミッタに接続されたキャパシタCaをさらに備える。
(3)しきい値電圧VTHの電源はプルアップ抵抗R2を介して、キャパシタCaをしきい値電圧VTHまで充電する。
【0051】
以上のように構成された実施形態4では、半導体スイッチ14に短絡が発生し、ゲート・ソース間電圧Vgsが急激に立ち上がるときに、ゲート・ソース間電圧Vgsの立ち上がりにより検出電圧Vocpがオーバーシュートするが、この変化はキャパシタCaにより軽減される(
図12Bの保護動作期間202参照)。従って、保護動作の開始の遅延を抑えることができる。
【0052】
また、短絡発生後の保護動作期間202(
図12B)においてトランジスタQ1,Q2がオンになると、キャパシタCaはトランジスタQ2を介して接地され、キャパシタCaはゼロ電位まで放電する。その後、駆動信号Sdrvがローレベルとなり、トランジスタQ1,Q2がオフになって検出電圧Vocpが上昇し始める。ここで、しきい値電圧VTHはキャパシタCaを充電する。従って、検出電圧Vocpがしきい値電圧VTHまで上昇するのにかかる時間は、比較例及び実施形態3における当該時間よりも長くなる。キャパシタCaを適切に選択することで、検出電圧Vocpがしきい値電圧VTHまで上昇するのにかかる時間を、再度駆動信号Sdrvがハイレベルになるまでの時間よりも長くすることができる。これにより、再度制御信号がハイレベルになっても、ゲート・ソース間電圧Vgsがしきい値電圧VTHに達する前にトランジスタQ1,Q2はオンになり、半導体スイッチ14は保護される。
【0053】
以上説明したように、実施形態4に係る過電流保護回路11BAは、過電流保護回路11Bに加えてさらにキャパシタCaを備える。これにより、過電流保護回路11BAが保護動作を行った後、当該保護動作から復帰するまでの時間を、比較例に係る過電流保護回路111よりも長くし、半導体スイッチ14に過電流が繰り返し流れる現象を防ぐことができる。また、ゲート・ソース間電圧Vgsの立ち上がりによる検出電圧Vocpのオーバーシュートを過電流保護回路111よりも小さくし、保護動作の開始における遅延を過電流保護回路111よりも低減することができる。
【0054】
なお、実施形態4に係る過電流保護回路11BAでは、ダイオードD12及び抵抗R11の並列回路を備えているが、本発明はこれに限らず、当該並列回路に代えて、ダイオードD12のみ、もしくは抵抗R11のみを備えてもよい。
【0055】
(実施形態5)
図13は、実施形態5に係る電流駆動型スイッチング回路10Dの構成例を示すブロック図である。
図13において、実施形態5に係る電流駆動型スイッチング回路10Dは、
図12Aの電流駆動型スイッチング回路10BAに比較して、以下の点で異なる。
(1)過電流保護回路11BAに代えて、過電流保護回路11BBを備える。具体的には、以下の通りである。
(2)さらに、抵抗R3及びキャパシタCbを含む時定数回路18を備える。
(3)時定数回路18は、トランジスタQ2のコレクタ及びエミッタに並列に接続される。
【0056】
以上のように構成された過電流保護回路11BBでは、ゼロ電位まで放電したキャパシタCaがしきい値電圧VTHまで充電される時定数は調整され、過電流保護回路11BBが保護動作から復帰するまでの時間は、過電流保護回路11BAよりも長くなる。なお、実施形態1~3の電流駆動型スイッチング回路10,10A,10Bにも、時定数回路18を挿入して同様の効果を得られる。
【0057】
以上説明したように、実施形態5に係る電流駆動型スイッチング回路10BBはさらに、抵抗R3とキャパシタCbとを含む時定数回路18を備える。過電流保護回路11BBが保護動作から復帰するまでの時間は、抵抗R3及びキャパシタCbを適切に選択することで調整される。
【0058】
なお、実施形態5に係る過電流保護回路11BBでは、ダイオードD12及び抵抗R11の並列回路を備えているが、本発明はこれに限らず、当該並列回路に代えて、ダイオードD12のみ、もしくは抵抗R11のみを備えてもよい。
【0059】
(実施形態6)
図14は、実施形態6に係る電流駆動型スイッチング回路10Eの構成例を示すブロック図である。
図14において、電流駆動型スイッチング回路10Eは
図13の電流駆動型スイッチング回路10Dと比較して以下の点で異なる。
(1)過電流保護回路11BBに代えて、過電流保護回路11BCを備える。具体的には、以下の通りである。
(2)過電流保護回路11BCはさらに、アノードが抵抗R3の低電位側の一端に接続され、カソードが抵抗R3の他端に接続されたダイオードD2を備える。
【0060】
以上のように構成された実施形態6に係る電流駆動型スイッチング回路10Eはさらに、ダイオードD2を備える。従って、ゲート・ソース間電圧Vgs等におけるノイズが過電流保護回路11BCに与える影響は、過電流保護回路11Bよりも抑えられる。
【0061】
なお、実施形態6に係る過電流保護回路11BCでは、ダイオードD12及び抵抗R11の並列回路を備えているが、本発明はこれに限らず、当該並列回路に代えて、ダイオードD12のみ、もしくは抵抗R11のみを備えてもよい。
【0062】
(実施形態7)
図15は、実施形態7に係る電流駆動型スイッチング回路10Fの構成例を示すブロック図である。
図15において、電流駆動型スイッチング回路10Fは
図14の電流駆動型スイッチング回路10Eと比較して以下の点で異なる。
(1)過電流保護回路11BCに代えて、過電流保護回路11BDを備える。具体的には、以下の通りである。
(2)電流駆動型スイッチング回路10Fはさらに、MOS駆動部16を備える。
(3)抵抗R3をMOSFET17で置き換える。
【0063】
図15において、MOS駆動部16は、制御部12により制御されて、MOS駆動信号Smを出力してMOSFET17をオンオフ制御する。MOSFET17はMOS駆動信号Smにより制御され、MOS駆動信号Smがローレベルを有する期間ではしきい値電圧VTHを遮断(オフ)する。
【0064】
すなわち、電流駆動型スイッチング回路10Fは動作の開始(
図6の時刻t1)よりも前に準備期間を有し、制御部12はMOS駆動部16を介してMOSFET17をオンにし、キャパシタCaがしきい値電圧VTHまで充電された後、制御部12はMOS駆動部16を介してMOSFET17をオフする。その後、
図6の時刻t1~t2の定常動作期間201における通常の動作の後、短絡発生後の保護動作期間202において保護が開始され、キャパシタCaはゼロ電位まで放電する。実施形態1~6ではこの後、時刻t2~t3の保護動作期間202において、駆動信号SdrvがローレベルになってトランジスタQ1,Q2がオフになり、キャパシタCaが再度充電された。しかしながら本実施形態では、MOSFET17がオフされているため、キャパシタCaは充電されず、過電流保護回路11BDは保護動作を保持する。その後、制御部12は検出電圧Vocpが所定のしきい値電圧未満になると、異常検出フラグFhをハイレベルにして駆動信号Sdrvの出力を停止する(時刻t3)。
【0065】
次いで、時刻t3~t5のVgs信号オフ期間203において、昇圧チョッパ回路1の使用者は、短絡箇所を修理して、短絡を解消することができる。その後、例えば上位の制御回路が短絡の解消を検出して制御部12を制御するか、又は使用者が直接制御部12を操作することで、制御部12の異常検出フラグFhはローレベルになる。制御部12は異常検出フラグFhがローレベルになったのを検出して、再度キャパシタCaを充電するためにMOSFET17をオンする。次いで、先の準備期間と同様、2回目の準備期間においてMOS駆動信号Smはハイレベルを有し、キャパシタCaはしきい値電圧VTHまで充電される。
【0066】
2回目の準備期間におけるキャパシタCaの十分な充電により、過電流保護回路11BDは保護動作から復帰する。その後、電流駆動型スイッチング回路10Fは、元の定常動作期間201に戻り、正常な定常動作を再開する。
【0067】
以上説明したように、実施形態7に係る電流駆動型スイッチング回路10Fは、MOS駆動部16と、MOSFET17とを備える。従って、MOSFET17はMOS駆動部16を介して制御部12により制御され、しきい値電圧VTHをオンオフ制御する。検出電圧Vocpは、MOSFET17がオフの期間では上昇しないため、制御部12の応答の遅延等にかかわらず、保護動作からの復帰を任意のタイミングで行うことができる。なお、MOSFET17が寄生ダイオードを含む場合、実施形態6に係る電流駆動型スイッチング回路10Eと同様、ノイズを抑える効果が得られる。
【0068】
なお、本実施形態に係るMOSFET17は、実施形態1~6の電流駆動型スイッチング回路10,10A~10Eのいずれにも同様に挿入可能であり、同様の効果が得られる。また、本実施形態に係るMOSFET17は、本発明の「別のスイッチング素子」の一例である。
【0069】
(実施形態8)
図16は、実施形態8に係る電流駆動型スイッチング回路10Gの構成例を示すブロック図である。
図16において、電流駆動型スイッチング回路10Gは
図15の電流駆動型スイッチング回路10Fと比較して、以下の点が異なる。
(1)過電流保護回路11BDに代えて、過電流保護回路11BEを備える。具体的には、以下の通りである。
(2)MOSFET17に代えてトランジスタ17aを備える。
(3)MOS駆動部16に代えてトランジスタ駆動部16aを備える。
【0070】
制御部12は、トランジスタ駆動部16aを介してトランジスタ17aのベース電流Itrを制御することで、トランジスタ17aをオンオフ制御する。これにより、実施形態7と同様の効果が得られる。
【0071】
なお、本実施形態に係るトランジスタ17aは、実施形態1~6の電流駆動型スイッチング回路10,10A~10Eのいずれにも同様に挿入可能であり、同様の効果が得られる。また、本実施形態に係るトランジスタ17aは、本発明の「別のスイッチング素子」の一例である。
【0072】
(変形例)
以上、本発明の実施形態を詳細に説明してきたが、前述までの説明はあらゆる点において本発明の例示に過ぎない。本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。以下の変形例は適宜組み合わせ可能である。
【0073】
実施形態1~8では、本発明に係る電流駆動型スイッチング回路10,10A~10Gを備える半導体デバイスとして、昇圧チョッパ回路1を説明した。しかしながら、本発明はこれに限らず、半導体スイッチで電流をスイッチング制御する回路及び装置等に利用可能である。
【0074】
例えば、
図17は、変形例1に係るハーフブリッジインバータ回路1Aの構成例を示すブロック図である。
図17において、ハーフブリッジインバータ回路1Aは、インダクタL2と、2個の電流駆動型スイッチング回路10と、キャパシタC2とを備える。
【0075】
図17において、2個の電流駆動型スイッチング回路10の半導体スイッチ14は、周期的に交互にオンするよう制御される。これにより入力電圧Viはスイッチングされ、キャパシタC2により平滑化されて、交流出力電圧Voに変換される。これによりハーフブリッジインバータ回路1Aは、直流の入力電圧Viをスイッチングし、交流の出力電圧Voに変換して出力する。2個の電流駆動型スイッチング回路10は、それぞれ電流駆動型スイッチング回路10A~10Gのいずれか1つで置き換えられてもよい。
【0076】
また、
図18は、変形例2に係るフルブリッジインバータ回路1Bの構成例を示すブロック図である。
図18において、フルブリッジインバータ回路1Bは、キャパシタC3と、4個の電流駆動型スイッチング回路10と、インダクタL3,L4とを備える。
【0077】
図18において、4個の電流駆動型スイッチング回路10は、第1及び第4の電流駆動型スイッチング回路10(図左上及び右下)がオンであり、かつ第2及び第3の電流駆動型スイッチング回路10(図左下及び右上)がオフである期間と、これらのオンオフを逆転させた期間とが、周期的に交互に現れるよう制御される。これにより入力電圧Viはスイッチングされ、スイッチングされた入力電圧Viは、キャパシタC3及びインダクタL3,L4により平滑化される。これによりフルブリッジインバータ回路1Bは、直流の入力電圧Viをスイッチングし、交流の出力電圧Voに変換して出力する。4個の電流駆動型スイッチング回路10は、それぞれ電流駆動型スイッチング回路10A~10Gのいずれか1つで置き換えられてもよい。
【0078】
このように、本発明に係る電流駆動型スイッチング回路及び過電流保護回路は、半導体デバイスで電流をスイッチング制御する回路及び装置に利用可能である。
【0079】
また、実施形態1~8では、しきい値電圧VTHの電源からの電流を制限する手段としてプルアップ抵抗R2を用いた。しかしながら、本発明はこれに限らず、プルアップ抵抗R2に代えてダイオード等を用いてもよい。
【0080】
さらに、実施形態1~8では、スイッチング回路として電流駆動型スイッチング回路10,10A~10Gを用いた。しかしながら、本発明はこれに限らず、電流駆動型スイッチング回路に代えて電圧駆動型スイッチング回路を用いてもよい。
【符号の説明】
【0081】
1,101 昇圧チョッパ回路
1A ハーフブリッジインバータ回路
1B フルブリッジインバータ回路
10,10A~10G,110 電流駆動型スイッチング回路
11,11A~11B,11BA,11BB,11BC,11BD,11BE,111 過電流保護回路
12 制御部
13 駆動部
14 半導体スイッチ
15 電圧検出回路
16 MOS駆動部
16a トランジスタ駆動部
17 MOSFET
17a トランジスタ
18 時定数回路
D1,D11,D12 ダイオード
Q1,Q2 トランジスタ
R1,R2,R11 抵抗