IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友電気工業株式会社の特許一覧

<>
  • 特許-受光モジュールの製造方法 図1
  • 特許-受光モジュールの製造方法 図2
  • 特許-受光モジュールの製造方法 図3
  • 特許-受光モジュールの製造方法 図4
  • 特許-受光モジュールの製造方法 図5
  • 特許-受光モジュールの製造方法 図6
  • 特許-受光モジュールの製造方法 図7
  • 特許-受光モジュールの製造方法 図8
  • 特許-受光モジュールの製造方法 図9
  • 特許-受光モジュールの製造方法 図10
  • 特許-受光モジュールの製造方法 図11
  • 特許-受光モジュールの製造方法 図12
  • 特許-受光モジュールの製造方法 図13
  • 特許-受光モジュールの製造方法 図14
  • 特許-受光モジュールの製造方法 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-02
(45)【発行日】2024-09-10
(54)【発明の名称】受光モジュールの製造方法
(51)【国際特許分類】
   H01L 31/0232 20140101AFI20240903BHJP
【FI】
H01L31/02 C
【請求項の数】 6
(21)【出願番号】P 2021003503
(22)【出願日】2021-01-13
(65)【公開番号】P2022108483
(43)【公開日】2022-07-26
【審査請求日】2023-10-23
(73)【特許権者】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100136722
【弁理士】
【氏名又は名称】▲高▼木 邦夫
(74)【代理人】
【識別番号】100174399
【弁理士】
【氏名又は名称】寺澤 正太郎
(74)【代理人】
【識別番号】100182006
【弁理士】
【氏名又は名称】湯本 譲司
(72)【発明者】
【氏名】夏目 和俊
【審査官】吉岡 一也
(56)【参考文献】
【文献】特開2005-250117(JP,A)
【文献】特開平06-021485(JP,A)
【文献】特開平05-224101(JP,A)
【文献】特開2010-278285(JP,A)
【文献】中国特許出願公開第109633825(CN,A)
【文献】特開昭59-198414(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 31/0232
(57)【特許請求の範囲】
【請求項1】
受光素子を配置する工程と、
前記受光素子に光を集光するレンズを配置する工程と、
前記レンズから一定距離離間した位置に光ファイバの先端面が位置するように前記光ファイバを配置する工程と、
を備え、
前記一定距離は、前記レンズの焦点距離からオフセットした距離であり、
前記光ファイバを配置する工程よりも前に、前記一定距離を定める工程を備え、
前記一定距離を定める工程では、前記受光素子が受光する光の感度が、前記光ファイバが前記レンズから前記焦点距離離間した位置に配置された場合における最大感度の一定割合以上となる距離を前記一定距離として定め、
前記一定距離を定める工程は、前記受光素子に第1の光を入力する工程と、前記受光素子に前記第1の光よりも強度が小さい第2の光を入力する工程と、を含んでおり、
前記第1の光を入力する工程では、前記受光素子が受光する光の感度が低下する前記レンズから前記光ファイバまでの距離であるディップ距離を測定し、
前記第2の光を入力する工程では、前記ディップ距離から離れた距離であって、且つ、前記受光素子が受光する光の感度が前記最大感度の一定割合以上となる距離を前記一定距離として定める、
受光モジュールの製造方法。
【請求項2】
前記一定距離は、前記焦点距離よりも長い、
請求項1に記載の受光モジュールの製造方法。
【請求項3】
前記一定距離は、前記焦点距離よりも短い、
請求項1に記載の受光モジュールの製造方法。
【請求項4】
前記レンズは、非球面レンズである、
請求項1から請求項3のいずれか一項に記載の受光モジュールの製造方法。
【請求項5】
前記レンズは、レンズホルダによって保持されており、
前記光ファイバは、筒状のスリーブに保持されており、
前記レンズを配置する工程の後に、前記レンズホルダ及び前記スリーブに接合される接合スリーブを配置する工程を更に備える、
請求項1から請求項のいずれか一項に記載の受光モジュールの製造方法。
【請求項6】
前記受光素子における光の受光径が前記レンズの集光径よりも大きい、
請求項1から請求項のいずれか一項に記載の受光モジュールの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、受光モジュールの製造方法に関するものである。
【背景技術】
【0002】
特許文献1には、アナログPD(Photo Diode)モジュール及びその製造方法が記載されている。アナログPDモジュールは、パッケージと、パッケージにサブマウントを介して搭載されたPDと、サブマウントにキャップを介して搭載された球レンズと、球レンズと光学的に接続された光ファイバと、を備える。光ファイバはフェルールに保持されており、フェルールはフェルールホルダーに保持されている。
【0003】
アナログPDモジュールの製造方法では、上記のパッケージに固定されたPD、球レンズ、及び光ファイバの位置を定める調芯作業が行われる。調芯作業では、まず、金属キャップによって封止されたPD、フェルールホルダー、及び、光ファイバが取り付けられたフェルールをXYZの3軸調芯機構を有するYAG溶接機に取り付ける。3軸調芯機構では、PD、球レンズ、及び光ファイバの位置を調整可能とされている。
【0004】
光ファイバの球レンズとの反対側にはレーザが設置されている。レーザからの光は、光ファイバ及び球レンズを介してPDに出力される。PDは、レーザから光ファイバ及び球レンズを介して入力された光を検出する。この製造方法では、PDにおける光電流変換の非線形性による歪みを抑えるために、光の感度が最大となる箇所から先端面が球レンズ側に近づくように光ファイバの位置が定められる。
【先行技術文献】
【特許文献】
【0005】
【文献】特開平8-18077号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
例えばPDの受光面積に対して集光径が小さい場合、PDの受光部に電界が集中し、PDにおけるキャリアの引き抜き抑制が生じうる。キャリアの引き抜き抑制とは、PDが光を受光しなくなってもPDからキャリアが十分に除去されないことを示している。キャリアの引き抜き抑制が生じると、光の周波数の増大に伴って光のロスが大きくなる等、周波数特性が低下する懸念がある。
【0007】
本開示は、キャリアの引き抜き抑制を低減できると共に、周波数特性を改善させることができる受光モジュールの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本開示に係る受光モジュールの製造方法は、受光素子を配置する工程と、受光素子に光を集光するレンズを配置する工程と、レンズから一定距離離間した位置に光ファイバの先端面が位置するように光ファイバを配置する工程と、を備え、一定距離は、レンズの焦点距離からオフセットした距離である。
【発明の効果】
【0009】
本開示によれば、キャリアの引き抜き抑制を低減できると共に、周波数特性を改善させることができる。
【図面の簡単な説明】
【0010】
図1】実施形態に係る受光モジュールを示す断面図である。
図2】実施形態に係る受光モジュールの受光素子、レンズ、及び光ファイバの光学系を模式的に示す図である。
図3】実施形態に係る受光モジュールの受光素子を模式的に示す図である。
図4】実施形態に係る受光モジュールの製造方法の工程を示すフローチャートである。
図5】光ファイバの先端面の位置を測定する工程における第1の光及び第2の光の入力結果の例を示すグラフである。
図6】光ファイバの先端面からレンズまでの距離と受光素子における光の受光率との関係を示すグラフである。
図7】光ファイバの先端面からレンズまでの距離が焦点距離(280μm)であるときにおける受光素子が受光する光の状態を示すシミュレーション結果である。
図8】光ファイバの先端面からレンズまでの距離が300μmであるときにおける受光素子が受光する光の状態を示すシミュレーション結果である。
図9】光ファイバの先端面からレンズまでの距離が500μmであるときにおける受光素子が受光する光の状態を示すシミュレーション結果である。
図10】光ファイバの先端面からレンズまでの距離と受光素子が受光するビームの半径との関係を示すグラフである。
図11】光ファイバの先端面からレンズまでの距離と受光素子が受光するビームのピーク強度との関係を示すグラフである。
図12】光ファイバの先端面からレンズまでの距離が550μmである場合における光の周波数と光のロスとの関係を示すグラフである。
図13】光ファイバの先端面からレンズまでの距離が300μmである場合における光の周波数と光のロスとの関係を示すグラフである。
図14】光ファイバの先端面からレンズまでの距離が550μmである場合における入力光パワーと感度との関係を示すグラフである。
図15】光ファイバの先端面からレンズまでの距離が300μmである場合における入力光パワーと感度との関係を示すグラフである。
【発明を実施するための形態】
【0011】
[本願発明の実施形態の説明]
最初に、本開示の実施形態の内容を列記して説明する。本開示の一実施形態に係る受光モジュールの製造方法は、受光素子を配置する工程と、受光素子に光を集光するレンズを配置する工程と、レンズから一定距離離間した位置に光ファイバの先端面が位置するように光ファイバを配置する工程と、を備え、一定距離は、レンズの焦点距離からオフセットした距離である。
【0012】
この受光モジュールの製造方法では、受光素子を配置した後に、受光素子に光を集光するレンズを配置する。光ファイバは、その先端面がレンズから一定距離離間した箇所に位置するように配置される。光ファイバが配置される一定距離は、レンズの焦点の位置からオフセットした位置とレンズとの間の距離である。レンズの焦点からオフセットした位置に光ファイバが配置されることにより、受光素子に電界が集中することを抑制できるので、受光素子におけるキャリアの引き抜き抑制を発生しないようにすることが可能となる。従って、キャリアの引き抜き抑制を低減して周波数特性を改善することができる。
【0013】
前述した一定距離は、焦点距離よりも長くてもよい。この場合、光ファイバの先端面からレンズまでの距離がレンズの焦点距離よりも遠い箇所に光ファイバを配置することができる。
【0014】
前述した一定距離は、焦点距離よりも短くてもよい。この場合、光ファイバの先端面からレンズまでの距離がレンズの焦点距離よりも近い箇所に光ファイバを配置することができる。
【0015】
前述したレンズは、非球面レンズであってもよい。この場合、レンズが非球面レンズであっても、レンズの焦点位置からオフセットした位置に光ファイバが配置されることにより、キャリアの引き抜き抑制を低減して周波数特性を改善することができる。
【0016】
前述した受光モジュールの製造方法は、光ファイバを配置する工程よりも前に、一定距離を定める工程を備え、一定距離を定める工程では、受光素子が受光する光の感度が、光ファイバがレンズから焦点距離離間した位置に配置された場合における最大感度の一定割合以上となる距離を一定距離として定めてもよい。この場合、受光素子が受光する光の感度が最大感度の一定割合以上となる距離が一定距離として定められる。従って、感度が最大感度に近い値となるように一定距離を定めることができる。
【0017】
一定距離を定める工程は、受光素子に第1の光を入力する工程と、受光素子に第1の光よりも強度が小さい第2の光を入力する工程と、を含んでおり、第1の光を入力する工程では、受光素子が受光する光の感度が低下するレンズから光ファイバまでの距離であるディップ距離を測定し、第2の光を入力する工程では、ディップ距離から離れた距離であって、且つ、受光素子が受光する光の感度が最大感度の一定割合以上となる距離を一定距離として定めてもよい。この場合、第2の光よりも強度が大きい第1の光を入力して感度が低下するディップ距離を測定する。このように第1の光を入力することによって感度が低下する光ファイバからレンズまでのディップ距離を測定できる。また、第2の光を入力して、受光素子が受光する光の感度が最大感度の一定割合以上となる距離であって且つディップ距離から離れた距離が一定距離として定められる。従って、第1の光、及び第2の光を用いて感度が最大感度に近い値になると共にディップ距離を避けた距離として、一定距離を定めることができる。
【0018】
レンズは、レンズホルダによって保持されており、光ファイバは、筒状のスリーブに保持されており、レンズを配置する工程の後に、レンズホルダ及びスリーブに接合される接合スリーブを配置する工程を更に備えてもよい。この場合、レンズを保持するレンズホルダ、及び光ファイバを保持する筒状のスリーブを、接合スリーブを介して互いに接合することができる。
【0019】
受光素子における光の受光径がレンズの集光径よりも大きくてもよい。このように、受光素子の受光径がレンズの集光径より大きい場合であっても、レンズの焦点位置からオフセットした位置に光ファイバが配置されることにより、キャリアの引き抜き抑制を低減して周波数特性を改善することができる。
【0020】
[本開示の実施形態の詳細]
以下では、図面を参照しながら本開示に係る受光モジュールの製造方法の具体例について説明する。なお、本発明は後述する例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の範囲における全ての変更が含まれることが意図される。図面の説明において、同一又は相当する要素には同一の符号を付し、重複する説明を適宜省略する。図面は、理解の容易化のため、一部を簡略化又は誇張して描いている場合があり、寸法比率等は図面に記載のものに限定されない。
【0021】
図1を参照しながら、実施形態に係る受光モジュール1について説明する。図1は、実施形態に係る受光モジュール1を示す断面図である。例えば、受光モジュール1は、光ファイバと接続される光レセプタクル10と、光レセプタクル10に固定された受光部20とを備える。光レセプタクル10は、ファイバスタブ(スタブフェルール)12と、スリーブ14と、コネクタスリーブ16とを有する。ファイバスタブ12は、フェルール11と、光ファイバ13とを有する。
【0022】
フェルール11は、円筒形状(又は円柱形状)を呈する。フェルール11の中心軸線はZ方向に沿って延びており、フェルール11の中心軸線に垂直な断面は円形である。フェルール11は、Z方向に並ぶ第1端面11b及び第2端面11cを有する。第2端面11cは、光レセプタクル10に接続される光コネクタのフェルールとフィジカルコンタクトを行う面であって、例えば、研磨されている。光レセプタクル10に接続される光コネクタは、例えば、SCコネクタである。第1端面11bは、第2端面11cとは反対側の面である。第1端面11bは、フェルール11の中心軸線に垂直な面に対して僅かに(例えば4°又は8°程度)傾斜している。フェルール11は、円柱面である外周面11dを有する。
【0023】
フェルール11は、ファイバ保持孔11fを更に有する。ファイバ保持孔11fは、Z方向に沿って延びており、フェルール11の中心軸線上に形成されている。ファイバ保持孔11fの断面は円形状であり、ファイバ保持孔11fの内径は光ファイバ13の外径よりも僅かに大きい。ファイバ保持孔11fの一方の開口は第2端面11cに含まれ、ファイバ保持孔11fの他方の開口は第1端面11bに含まれる。ファイバ保持孔11fは、フェルール11の第1端面11bと第2端面11cとの間をZ方向に沿って貫通している。フェルール11は、例えば、ジルコニア(ZrO)製である。靱性及びヤング率が高いジルコニアによってフェルール11が構成されることにより、第2端面11cにおいてフィジカルコンタクトを好適に行うことができる。
【0024】
光ファイバ13は、例えば、シングルモードファイバであって、樹脂被覆が除去された裸ファイバである。光ファイバ13は、例えば、石英製である。光ファイバ13は、Z方向を長手方向(光軸方向)として延びており、先端面13b及び先端面13cを有する。光ファイバ13は、ファイバ保持孔11fに挿入される。第1端面11b側のファイバ保持孔11fの開口から先端面13bが露出し、第2端面11c側のファイバ保持孔11fの開口から先端面13cが露出する。先端面13cは、光レセプタクル10に接続される光コネクタの光ファイバの先端面と接触する。先端面13bは、受光部20の受光素子21と光学的に結合される。受光素子21は、フォトダイオードである。光ファイバ13の外径は、例えば、125μmである。
【0025】
スリーブ14は、Z方向に延びる貫通孔14bを有し、貫通孔14bの内部にファイバスタブ12を保持する。スリーブ14は、例えば、ステンレスといった金属材料からなる。スリーブ14は、Z方向に沿って延びる円筒形状を有する。スリーブ14は、基端面14c、先端面14d及び外周面14fを有する。基端面14c及び先端面14dは、Z方向に沿って並んでおり、貫通孔14bは基端面14cと先端面14dとの間を貫通している。Z方向に垂直な貫通孔14bの断面は円形である。基端面14cは、受光部20の接続スリーブ19と対向する。ファイバスタブ12は、Z方向に沿って、スリーブ14の貫通孔14bに圧入されている。フェルール11の外周面11dは、貫通孔14bの内面と接しており、これによりファイバスタブ12がスリーブ14に固定されている。
【0026】
コネクタスリーブ16は、Z方向に沿って延びる円筒状の部材であり、例えばセラミック製である。例えば、コネクタスリーブ16はフェルール11と同一の材料(一例としてジルコニア)からなる。コネクタスリーブ16の内径は、ファイバスタブ12の外径とほぼ等しい。コネクタスリーブ16は、Z方向に沿って並ぶ基端16b及び先端16cを有する。コネクタスリーブ16は、外周面16d及び内周面16fを有する。コネクタスリーブ16の基端16b側の開口からはファイバスタブ12が挿入されている。
【0027】
コネクタスリーブ16の基端16b側の一部は、フェルール11の外周面11dとスリーブ14との間に形成された隙間に挿入されている。従って、コネクタスリーブ16の内周面16fはフェルール11の外周面11dと接触している。コネクタスリーブ16の先端16c側の開口からは、光コネクタのフェルールが挿入される。フェルール11の第2端面11cと当該光コネクタのフェルールの端面とは、コネクタスリーブ16の内部において互いに接触する。これにより、フェルール11が保持する光ファイバ13と、光コネクタのフェルールが保持する光ファイバとが、高い結合効率でもって互いに光結合される。
【0028】
受光部20は、受光素子21、レンズホルダ22、レンズ23、ステム24、及び複数のリードピン27を有する。
【0029】
ステム24は、円形平板状の絶縁性部材であり、平坦な主面24bを有する。主面24bは、光レセプタクル10に接続される光ファイバの光軸(すなわち、光ファイバ13の光軸)と交差する。例えば、主面24bは、光レセプタクル10に接続される光ファイバの光軸(光ファイバ13の光軸)に対して垂直である。ステム24は、例えば、セラミック製である。
【0030】
レンズホルダ22は、略円筒状の金属部材である。レンズホルダ22の中心軸は光ファイバ13の光軸に沿っている。光ファイバ13の光軸方向におけるレンズホルダ22の基端側の一端22bは、円環状の金具29を介してステム24の主面24bに固定されている。円環状の金具29は、上記光軸方向における一端面29b及び他端面29cを有する。レンズホルダ22の基端側の一端22bは、金具29の一端面29bに固着されており、ステム24の主面24bは金具29の他端面29cに固着されている。金具29は、レンズ23からの光を透過する窓穴29dを有する。
【0031】
光ファイバ13の光軸方向におけるレンズホルダ22の先端側の他端22cは、接続スリーブ19にZ方向に沿って対向している。接続スリーブ19は、円筒状を呈する。接続スリーブ19は、例えば、スリーブ14及びレンズホルダ22のそれぞれにYAG溶接によって固定されている。レンズホルダ22は、例えば、鉄ニッケルによって構成されている。
【0032】
受光素子21は、光ファイバ13の先端面13bと光学的に結合されており、光レセプタクル10に接続される光コネクタの光ファイバからの光を受けて当該光の強度に応じた大きさの電流信号を出力する。受光素子21は、例えば、誘電体を主に含む(一例として誘電体のみからなる)キャリア25上に搭載され、キャリア25は集積回路チップ26上に配置されている。すなわち、受光素子21は、キャリア25を介して集積回路チップ26上に搭載されている。受光素子21としては、PINフォトダイオード、又はアバランジェフォトダイオード(APD)といった種々のフォトダイオードを適用できる。キャリア25は、例えば、セラミック製、又は石英製の平板状の部材である。集積回路チップ26は、受光素子21からの電流信号を受けて、当該電流信号を電圧信号に変換する半導体ICである。
【0033】
複数のリードピン27は、ステム24の主面24bと交差する方向に延びる棒状の金属部材である。複数のリードピン27は、ステム24を貫通した状態でステム24に固定されている。複数のリードピン27は、ステム24及び金具29によって画成される空間に配置される受光素子21及び集積回路チップ26に対し、電気信号及び電源電力の送受信を行う。レンズ23は、レンズホルダ22の内側に保持され、レンズホルダ22の内周面に対し樹脂23bを介して固定されている。レンズ23は、例えば、非球面レンズである。
【0034】
図2は、受光モジュール1の光学系Aを示す図である。レンズ23は、光透過部材からなる集光レンズであり、光ファイバ13の光軸上に配置されている。光ファイバ13の先端面13bのモードフィールド径(MFD:Mode Field Diameter)は、例えば、8.0μm以上且つ9.2μm以下である。レンズ23は、光ファイバ13の先端面13bから出射された光Lを受光素子21に向けて集光する。
【0035】
光Lの波長は、例えば、1310nmである。受光素子21からの戻り光を防ぐため、例えば、レンズ23の光軸は光ファイバ13の光軸に対して僅かにオフセットされている。また、レンズ23の中心に対し、受光素子21の受光面の中心はX方向に100μmオフセットして配置されている。受光素子21における光Lの受光径R1は、レンズ23の集光径R2よりも大きい。一例として、受光径R1は230μmであり、集光径R2は50μm以上且つ60μm以下である。受光径R1は、例えば、集光径R2の10倍以上、又は20倍以上であってもよい。
【0036】
図3は、受光素子21を模式的に示す平面図である。図3に示されるように、受光素子21は、平面視において(Z方向に沿って見た形状が)矩形状とされている。本実施形態において、受光素子21は、TEG(Test Element Group)チップである。すなわち、受光素子21は、評価用チップである。受光素子21は、例えば、受光部21bと、電極21cとを有する。電極21cは、一例として、2個のパッド電極21dと、受光部21bを囲むように配置された弧状部21fと、1個のパッド電極21d及び弧状部21fの間を接続する接続部21gとを含んでいる。
【0037】
次に、実施形態に係る受光モジュール1の製造方法について図4を参照しながら説明する。図4は、実施形態に係る受光モジュール1の製造方法の各工程を示すフローチャートである。前述したように、レンズ23は光ファイバ13の先端面13bから一定距離離間している。まず、部品の組み立て等を行う前に、レンズ23と光ファイバ13の先端面13bとの距離を示す一定距離を定める工程を実行する(ステップS1)。
【0038】
ステップS1では、例えば、光ファイバ13、レンズ23及び受光素子21を含む光学系Aにおいて一定距離を定める。一定距離は、レンズ23の焦点からオフセットした位置とレンズ23との間の距離であり、例えば、レンズ23の焦点距離よりも長い。ステップS1では、後述する第1の光を入力する工程と、第1の光よりも強度が小さい第2の光を入力する工程と、を実行する。一例として、第1の光の強度は10mWであり、第2の光の強度は1mWである。第1の光の波長、及び第2の光の波長は、例えば、1310nmである。第1の光を入力する工程、及び第2の光を入力する工程のそれぞれでは、光学系Aにおいて光ファイバ13からレンズ23を介して受光素子21に第1の光及び第2の光のそれぞれを入力する。
【0039】
第1の光を入力する工程、及び第2の光を入力する工程を実行した結果の例を図5のグラフに示している。図5のグラフの横軸はレンズホルダ22と光ファイバ13の先端面13bとの距離Zを示しており、図5のグラフの縦軸は受光素子21における光の感度を示している。なお、距離Zは、レンズ23の表面から光ファイバ13の先端面13bまでのZ方向の距離であってもよい。感度は、光電流の大きさ(A)を入力光のエネルギー(W)で除した絶対感度(単位はA/W)を示している。
【0040】
図5に示されるように、第1の光を入力すると、距離Zがある値であるときに光の感度が低下するディップDが生じる。ディップDは、受光素子21に強い光が集中して入力されることによって飽和状態となりキャリア及び電流が流れにくくなることによって生じうる。第1の光を入力する工程では、感度が低下するレンズホルダ22から光ファイバ13までの距離Zであるディップ距離を測定する。ディップ距離は、例えば、レンズ23の焦点距離と略一致する。図5の例の場合、ディップ距離が約300μmであることが分かる。
【0041】
第1の光よりも強度が小さい第2の光を入力すると、ディップDは生じないが、距離Zが一定値以上になると感度が徐々に低下する。図5の例では、距離Zが600μm以上となったときに感度が徐々に低下していることが分かる。第2の光を入力する工程では、ディップ距離から離れた距離であって、且つ、感度が最大感度の一定割合以上となる距離を一定距離として定める。図5の例では、例えば、一定割合は99%であり、第2の光の入力時における最大感度の99%以上となる距離Zである550μmを一定距離Z1として定める。また、500μm以上且つ600μm以下を一定距離Z1として定めてもよい。
【0042】
図1及び図4に示されるように、一定距離Z1を定めた後には、受光素子21を配置する(受光素子を配置する工程、ステップS2)。具体的には、ステム24の主面24bの上に集積回路チップ26及びキャリア25を搭載し、キャリア25上に受光素子21を搭載する。受光素子21を配置した後には、受光モジュール1の部品を配置する(レンズを配置する工程、ステップS3)。このとき、ステム24の主面24bに金具29を載せて、金具29にレンズ23を保持するレンズホルダ22及び接続スリーブ19を搭載する(接続スリーブを配置する工程)。
【0043】
接続スリーブ19を搭載した後には、レンズホルダ22からの距離が一定距離Z1となる位置に先端面13bが位置するように光ファイバ13を配置する(光ファイバを配置する工程、ステップS4)。前述した例の場合、レンズホルダ22と光ファイバ13の先端面13bとの一定距離Z1が550μmとなる位置にスリーブ14を配置する。そして、Z方向に直交するX方向及びY方向への光ファイバ13の調心(XY調心)を行う(ステップS5)。光ファイバ13の調心の後には、接続スリーブ19をレンズホルダ22にYAG溶接し、スリーブ14を接続スリーブ19にYAG溶接する(ステップS6)。その後、受光モジュール1の製造方法の一連の工程が完了する。
【0044】
次に、本実施形態に係る受光モジュール1の製造方法の作用効果について説明する。受光モジュール1の製造方法では、受光素子21を配置した後に、受光素子21に光を集光するレンズ23を配置する。光ファイバ13は、その先端面13bがレンズ23から一定距離離間した箇所に位置するように配置される。光ファイバ13が配置される一定距離は、レンズ23の焦点距離とは異なり、焦点距離からオフセットしている。レンズ23の焦点距離からオフセットした位置に光ファイバ13が配置されることにより、受光素子21に電界が集中することを抑制できるので、受光素子21におけるキャリアの引き抜き抑制を発生しないようにすることができる。従って、キャリアの引き抜き抑制を低減して周波数特性を改善することができる。更に、本実施形態では、キャリアの引き抜き抑制を低減して周波数特性を改善できると共に、広い波長帯域の入力光に対して感度を高めることができ、更に入力光パワーと感度とのリニアリティ(線形性)を高めることができる。これらの効果については、後述する実施例において詳細に説明する。
【0045】
前述した一定距離は、焦点距離よりも長い。従って、光ファイバ13の先端面13bからレンズ23までの距離が焦点距離よりも遠い箇所に光ファイバ13を配置することができる。また、前述した一定距離は、焦点距離よりも短くてもよい。この場合、光ファイバ13の先端面13bからレンズ23までの距離が焦点距離よりも近い箇所に光ファイバ13を配置することができる。但し、光ファイバ13の先端面13bからレンズ23までの距離が焦点距離よりも遠い箇所に光ファイバ13を配置する場合には、YAG溶接を一層容易に行うことができるという利点がある。
【0046】
レンズ23は、非球面レンズである。このように、レンズ23が非球面レンズであっても、レンズ23の焦点距離からオフセットした位置に光ファイバ13が配置されることにより、キャリアの引き抜き抑制を低減して周波数特性を改善することができる。
【0047】
本実施形態に係る受光モジュール1の製造方法は、光ファイバを配置する工程よりも前に、一定距離を定める工程を備え、一定距離を定める工程では、受光素子21が受光する光の感度が、光ファイバ13がレンズ23から焦点距離離間した位置に配置された場合における最大感度の一定割合以上(一例として99%)となる距離を一定距離として定める。よって、受光素子21が受光する光の感度が最大感度の一定割合以上となる距離が一定距離として定められる。従って、感度が最大感度に近い値となるように一定距離を定めることができる。
【0048】
一定距離を定める工程では、図5に示されるように、受光素子21に第1の光を入力する工程と、受光素子21に第1の光よりも強度が小さい第2の光を入力する工程と、を含んでいる。第1の光を入力する工程では、受光素子21が受光する光の感度が低下するレンズ23から光ファイバ13までの距離であるディップ距離を測定する。第2の光を入力する工程では、ディップ距離から離れた距離であって、且つ、受光素子21が受光する光の感度が最大感度の一定割合以上となる距離を一定距離Z1として定める。すなわち、第2の光よりも強度が大きい第1の光を入力して感度が低下するディップ距離を測定する。このように第1の光を入力することによって感度が低下する光ファイバ13からレンズ23までのディップ距離を測定できる。また、第2の光を入力して、受光素子21が受光する光の感度が最大感度の一定割合以上となる距離であって且つディップ距離から離れた距離が一定距離として定められる。従って、第1の光、及び第2の光を用いて感度が最大感度に近い値になると共にディップ距離を避けた距離として、一定距離を定めることができる。
【0049】
レンズ23は、レンズホルダ22によって保持されており、光ファイバ13は、筒状のスリーブ14によって保持されており、レンズを配置する工程の後に、レンズホルダ22及びスリーブ14に接合される接続スリーブ19を配置する工程を更に備える。よって、レンズ23を保持するレンズホルダ22、及び光ファイバ13を保持する筒状のスリーブ14を、接続スリーブ19を介して互いに接合することができる。
【0050】
受光素子21における光の受光径R1がレンズ23の集光径R2よりも大きい。このように、受光素子21の受光径R1がレンズ23の集光径R2より大きい場合であっても、レンズ23の焦点位置からオフセットした位置に光ファイバ13が配置されることにより、キャリアの引き抜き抑制を低減して周波数特性を改善することができる。
【0051】
[実施例]
以下では、本開示に係る受光モジュールの製造方法の実施例について説明する。なお、本発明は、以下の実施例には限定されない。実施例では、受光モジュール1の光学系Aを用いて受光素子21が受光するビームに関する種々のシミュレーションを行った。まず、図2に示されるように、光ファイバ13の先端面13bとレンズ23との距離が300μmであるときにビームの中心が受光素子21の受光面の中心に位置するように光ファイバ13の位置を決定した。レンズ23と受光素子21との距離Eは、2160μmとした。ビームの波長は1310nmとし、光ファイバ13の先端面13bにおけるMFDは9.2μmとした。光ファイバ13の先端面13bは、フェルール11の中心軸線に垂直な面に対して4°傾斜させた。レンズ23としては非球面レンズを用いた。受光素子21の受光径R1は230μmである。また、レンズ23の中心に対して受光素子21の受光面の中心をX方向に100μmオフセットして配置した。
【0052】
以上の光学系Aに対して、光ファイバ13の先端面13bからレンズホルダ22までの距離Zと受光素子21の受光率との関係をシミュレーションした。その結果を図6に示す。図6に示されるように、光学系Aでは、距離Zが0μm以上且つ800μm以下の範囲では受光素子21の受光率が略1.0であるのに対し、距離Zが800μm以上になると受光素子21の受光率が1.0から徐々に低下することが分かった。
【0053】
図7は、距離Zが280μm(焦点距離)であるときにおける受光素子21のビームを示している。図8は、距離Zが300μmであるときにおける受光素子21のビームを示している。図9は、距離Zが500μmであるときにおける受光素子21のビームを示している。図7図9に示されるように、距離Zが焦点距離から長くなるに従って受光素子21におけるビームの径が大きくなっていることが分かる。
【0054】
図10は、距離Zと受光素子21におけるビーム半径との関係を示すグラフである。図10に示されるように、距離Zが280μm(焦点距離)から離れるに従ってビーム半径が大きくなっていることが分かる。距離Zが300μmであるときにおける受光素子21のビーム半径は6.5μmであり、距離Zが500μmであるときにおける受光素子21のビーム半径は26.7μmであった。
【0055】
図11は、距離Zと受光素子21におけるビームのピーク強度との関係を示すグラフである。図11に示されるように、距離Zが280μm(焦点距離)から離れるに従ってビームのピーク強度が小さくなっていることが分かる。距離Zが280μmであるときにおけるビームのピーク強度は18300W/mmであり、距離Zが300μmであるときにおけるビームのピーク強度は15300W/mmであった。また、距離Zが500μmであるときにおけるビームのピーク強度は900W/mmであり、距離Zが550μmであるときにおけるビームのピーク強度は610W/mmであった。このように、距離Zが500μm以上且つ550μm以下である場合には、距離Zが280μm以上且つ300μm以下である場合と比較してピーク強度を大幅に低下できる。その結果、受光素子21におけるキャリアの引き抜き抑制の発生を低減できると考えられる。
【0056】
図12は、距離Zが550μm(焦点距離からオフセットした距離)である場合における光の周波数と光のロスとの関係を示すグラフである。図13は、距離Zが300μmである場合における光の周波数と光のロスとの関係を示すグラフである。図12及び図13は、周波数特性を測定したシミュレーション結果を示している。周波数特性を示すシミュレーションでは、入力光パワーを1.62mWとし、入力光の波長を1310nmとした。
【0057】
図12及び図13に示されるように、距離Zが300μmであって焦点距離に近い場合には、距離Zが550μmである場合と比較して、周波数が高くなることに伴うロスが大きくなることが分かった。距離Zが300μmである場合には、特に電圧が5V又は6Vであるときに逆バイアスの依存性によってロスが大きくなることが分かった。これに対し、距離Zが550μmである場合には、電圧が5V又は6Vであっても、周波数が1.0×10以下であるときにはロスが大きくなることはなく、周波数特性が良好であることが分かった。
【0058】
図14は、距離Zが550μmである場合における入力光パワーと感度との関係を示すグラフである。図15は、距離Zが300μmである場合における入力光パワーと感度との関係を示すグラフである。図14及び図15は、入力光パワーと感度とのリニアリティを測定したシミュレーション結果を示している。図14及び図15に示されるように、距離Zが300μmであって焦点距離に近い場合には、距離Zが550μmである場合と比較して、入力光パワーに対する感度が低いことが分かった。距離Zが300μmである場合には、特に入力光パワーが1.0×10-3Wを超えたときに感度が顕著に低下することが分かった。これに対し、距離Zが550μmである場合には、入力光パワーが強い場合であっても、感度が顕著に低下することはなく、入力光パワーと感度とのリニアリティを維持できていることが分かった。
【0059】
以上、本開示に係る受光モジュールの製造方法の実施形態及び実施例について説明した。しかしながら、本発明は、前述した実施形態又は実施例に限定されない。すなわち、本発明が特許請求の範囲に記載した要旨の範囲内において種々の変形及び変更が可能であることは当業者によって容易に認識される。
【0060】
例えば、前述の実施形態では、SCコネクタが接続される光レセプタクル10を備えた受光モジュール1について説明した。しかしながら、受光モジュールは、SCコネクタ以外のコネクタ(例えばLCコネクタ等)が接続される光レセプタクルを備えていてもよい。前述の実施形態では、非球面レンズであるレンズ23を備える受光モジュール1について説明した。しかしながら、受光モジュールのレンズの種類は、球面レンズであってもよく、特に限定されない。また、前述の実施形態では、接続スリーブ19を備える受光モジュール1について説明した。しかしながら、接続スリーブ19を有しない受光モジュールであってもよい。このように、受光モジュールの各部の構成、並びに、受光モジュールの製造方法の工程の内容及び順序は、前述した実施形態及び実施例に限られず適宜変更可能である。
【符号の説明】
【0061】
1…受光モジュール
10…光レセプタクル
11…フェルール
11b…第1端面
11c…第2端面
11d…外周面
11f…ファイバ保持孔
12…ファイバスタブ
13…光ファイバ
13b,13c…先端面
14…スリーブ
14b…貫通孔
14c…基端面
14d…先端面
14f…外周面
16…コネクタスリーブ
16b…基端
16c…先端
16d…外周面
16f…内周面
19…接続スリーブ
20…受光部
21…受光素子
21b…受光部
21c…電極
21d…パッド電極
21f…弧状部
21g…接続部
22…レンズホルダ
22b…一端
22c…他端
23…レンズ
23b…樹脂
24…ステム
24b…主面
25…キャリア
26…集積回路チップ
27…リードピン
29…金具
29b…一端面
29c…他端面
29d…窓穴
A…光学系
D…ディップ
E…距離
L…光
R1…受光径
R2…集光径
Z…距離
Z1…一定距離

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15