IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社島津製作所の特許一覧

<>
  • 特許-イオン分析装置 図1
  • 特許-イオン分析装置 図2
  • 特許-イオン分析装置 図3
  • 特許-イオン分析装置 図4
  • 特許-イオン分析装置 図5
  • 特許-イオン分析装置 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-02
(45)【発行日】2024-09-10
(54)【発明の名称】イオン分析装置
(51)【国際特許分類】
   H01J 49/06 20060101AFI20240903BHJP
   H01J 49/42 20060101ALI20240903BHJP
   H01J 49/10 20060101ALI20240903BHJP
   H01J 49/24 20060101ALI20240903BHJP
【FI】
H01J49/06 300
H01J49/06 800
H01J49/42 150
H01J49/10
H01J49/24
【請求項の数】 7
(21)【出願番号】P 2021133743
(22)【出願日】2021-08-19
(65)【公開番号】P2023028190
(43)【公開日】2023-03-03
【審査請求日】2023-12-11
(73)【特許権者】
【識別番号】000001993
【氏名又は名称】株式会社島津製作所
(74)【代理人】
【識別番号】110001069
【氏名又は名称】弁理士法人京都国際特許事務所
(72)【発明者】
【氏名】西口 克
【審査官】坂上 大貴
(56)【参考文献】
【文献】特表2015-507334(JP,A)
【文献】国際公開第2017/122339(WO,A1)
【文献】米国特許出願公開第2008/0265154(US,A1)
【文献】中国特許出願公開第101515532(CN,A)
【文献】中国特許出願公開第112992649(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 40/00-49/48
(57)【特許請求の範囲】
【請求項1】
イオン光軸を囲み放射状に配置され、それぞれが該イオン光軸の方向に延伸する4本のロッド電極を含み、該4本のロッド電極で囲まれる空間に導入されたイオンの少なくとも一部を収束しつつ後段へ送るイオン光学素子と、
前記空間にRF電場を形成するべく、前記4本のロッド電極のうち前記イオン光軸を挟んで対向する2本のロッド電極を1組とし、一方の組の2本のロッド電極と他方の組の2本のロッド電極とに互いに極性が相違するRF電圧を印加する電圧印加部と、
を備え、前記4本のロッド電極の、前記イオン光軸に直交する直交面上の断面形状は、該イオン光軸を中心とする円の接線の一部である第1辺と、該第1辺の両端とそれぞれ所定角度を以て接続される第2辺及び第3辺とを有し、該所定角度は前記第2辺及び前記第3辺により形成されるRF電場が前記空間に影響を及ぼさないような角度であり、且つ、前記空間に形成されるRF電場における十二重極電場の成分量が所定値以下又は所定の値になるように、前記円の半径r0と前記第1辺の幅wとの比率w/r0が定められているイオン分析装置。
【請求項2】
前記所定の角度は90°である、請求項1に記載のイオン分析装置。
【請求項3】
前記比率w/r0は0.8~0.85の範囲である、請求項1又は2に記載のイオン分析装置。
【請求項4】
イオン光軸を囲み放射状に配置され、それぞれが該イオン光軸の方向に延伸する4本のロッド電極を含み、該4本のロッド電極で囲まれる空間に導入されたイオンの少なくとも一部を収束しつつ後段へ送るイオン光学素子と、
前記空間にRF電場を形成するべく、前記4本のロッド電極のうち前記イオン光軸を挟んで対向する2本のロッド電極を1組とし、一方の組の2本のロッド電極と他方の組の2本のロッド電極とに互いに極性が相違するRF電圧を印加する電圧印加部と、
を備え、前記4本のロッド電極の、前記イオン光軸に直交する直交面上の断面形状は、該イオン光軸を中心とする円の接線の一部である第1辺の両端の角部がそれぞれC面取りされた半矩形状であり、前記空間に形成されるRF電場における十二重極電場の成分量が所定値以下又は所定の値になるように、前記円の半径r0と前記C面取りの寸法cとの比率c/r0、及び、前記第1辺の幅w、が定められているイオン分析装置。
【請求項5】
前記イオン光学素子は四重極イオンガイドである、請求項1~4のいずれか1項に記載のイオン分析装置。
【請求項6】
大気圧イオン源が配置されるイオン化室と、質量分離部が配置される分析室との間に1以上の中間真空室が設けられる多段差動排気系の構成であり、前記イオン光学素子は前記イオン化室の次段又は次々段の中間真空室内に配置される、請求項5に記載のイオン分析装置。
【請求項7】
前記イオン光学素子は四重極マスフィルターである、請求項1~4のいずれか1項に記載のイオン分析装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、質量分析装置やイオン移動度分析装置を含むイオン分析装置に関する。
【背景技術】
【0002】
大気圧イオン源を用いた質量分析装置では、一般的に、大気圧イオン源が配置される略大気圧であるイオン化室と、質量分離器及びイオン検出器が配置される高真空の分析室との間に、2以上の中間真空室が配置される多段差動排気系の構成が採用されている。こうした質量分析装置では、各中間真空室においてイオンを効率良く収集しつつ次段へと送るために、イオン光学素子の一種であるイオンガイドが用いられる。
【0003】
通常、ガス圧が100Pa程度である低真空の中間真空室や、ガス圧が1Pa程度である中真空の中間真空室では、高周波電場(RF電場)の作用によりイオンを捕捉しつつ輸送するRFイオンガイドが用いられる(特許文献1等参照)。典型的なRFイオンガイドは、イオン光軸の周りに4本のロッド電極を配置した四重極イオンガイドである。四重極イオンガイドは、八重極イオンガイドに比べてイオンの閉じ込め能力は低いものの、イオン通過空間に形成されるポテンシャル井戸の底部が径方向においてイオン光軸付近の狭い範囲に限られるため、イオンがイオン光軸付近に収束され易いという特徴がある。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2013-247000号公報
【文献】国際公開第2009/110025号
【文献】国際公開第2018/069982号
【発明の概要】
【発明が解決しようとする課題】
【0005】
多くの場合、四重極イオンガイドを構成する各ロッド電極は、周面が円筒状に加工される。即ち、イオン光軸に直交する面における各電極の断面は、イオン光軸に向いた部分が円弧状になるように加工される。これは、イオン通過空間におけるRF電場を、できるだけ理想的な四重極電場に近付けるためである。しかしながら、周面を精密に円筒状に成形する加工は技術的に難度が高いためにコストが掛かり、装置全体のコスト低減を阻む一因になっている。
【0006】
上記の問題は、イオンを輸送するためのイオンガイドのみならず、質量分離器として用いられる四重極マスフィルターについても同様である。
【0007】
本発明はこうした課題に鑑みて成されたものであり、その主たる目的は、四重極イオンガイドや四重極マスフィルターを構成する電極をより簡単に製造可能とすることで、コスト低減を図ることができるイオン分析装置を提供することである。
【課題を解決するための手段】
【0008】
上記課題を解決するために成された本発明に係るイオン分析装置の一態様は、
イオン光軸を囲み放射状に配置され、それぞれが該イオン光軸の方向に延伸する4本のロッド電極を含み、該4本のロッド電極で囲まれる空間に導入されたイオンの少なくとも一部を収束しつつ後段へ送るイオン光学素子と、
前記空間にRF電場を形成するべく、前記4本のロッド電極のうち前記イオン光軸を挟んで対向する2本のロッド電極を1組とし、一方の組の2本のロッド電極と他方の組の2本のロッド電極とに互いに極性が相違するRF電圧を印加する電圧印加部と、
を備え、前記4本のロッド電極の、前記イオン光軸に直交する直交面上の断面形状は、該イオン光軸を中心とする円の接線の一部である第1辺と、該第1辺の両端とそれぞれ所定角度を以て接続される第2辺及び第3辺とを有し、該所定角度は前記第2辺及び前記第3辺により形成されるRF電場が前記空間に影響を及ぼさないような角度であり、且つ、前記空間に形成されるRF電場における十二重極電場の成分量が所定値以下又は所定の値になるように、前記円の半径r0と前記第1辺の幅wとの比率w/r0が定められている。
【0009】
また、上記課題を解決するために成された本発明に係るイオン分析装置の他の態様は、
イオン光軸を囲み放射状に配置され、それぞれが該イオン光軸の方向に延伸する4本のロッド電極を含み、該4本のロッド電極で囲まれる空間に導入されたイオンの少なくとも一部を収束しつつ後段へ送るイオン光学素子と、
前記空間にRF電場を形成するべく、前記4本のロッド電極のうち前記イオン光軸を挟んで対向する2本のロッド電極を1組とし、一方の組の2本のロッド電極と他方の組の2本のロッド電極とに互いに極性が相違するRF電圧を印加する電圧印加部と、
を備え、前記4本のロッド電極の、前記イオン光軸に直交する直交面上の断面形状は、該イオン光軸を中心とする円の接線の一部である第1辺の両端の角部がそれぞれC面取りされた半矩形状であり、前記空間に形成されるRF電場における十二重極電場の成分量が所定値以下又は所定の値になるように、前記円の半径r0と前記C面取りの寸法cとの比率c/r0、及び、前記第1辺の幅w、が定められている。
【発明の効果】
【0010】
本発明に係る上記態様のイオン分析装置によれば、四重極イオンガイドや四重極マスフィルター等のイオン光学素子を構成するロッド電極の形状が平面を組み合わせたものとなる。これにより、従来の周面が円筒形状であるロッド電極に比べて製造上の難易度を下げることができ、そうしたイオン光学素子のコストを低減することができる。ひいては、イオン分析装置の製造コストを抑えることが可能となる。
【図面の簡単な説明】
【0011】
図1】本発明の一実施形態である質量分析装置の全体構成図。
図2】本実施形態の質量分析装置におけるイオンガイドの電極部の概略斜視図。
図3図2に示したイオンガイド電極部のイオン光軸Cに直交する面での断面図。
図4】変形例である質量分析装置におけるイオンガイド電極部のイオン光軸Cに直交する面での断面図。
図5図3に示したイオンガイド電極部におけるw/r0と十二重極電場成分量との関係の計算結果を示す図。
図6図3及び図4に示す電極形状における最適化パラメーターと多重極電場の計算結果を示す図。
【発明を実施するための形態】
【0012】
本発明に係るイオン分析装置の上記二つの態様において、4本のロッド電極は典型的には、イオン光軸の周りに等角度間隔、つまり90°角度間隔で配置されているものとすることができる。
【0013】
また、各ロッド電極は、イオン光軸に平行に延伸する1本のロッド電極でもよいが、イオン光軸の方向に複数に分割された構造でもよい。
【0014】
また本発明に係るイオン分析装置の上記態様は、典型的には、質量分析装置、イオン移動度分析装置、さらには、イオン移動度分離部と質量分離部の両方を組み合わせたイオン移動度-質量分析装置、を含む。
【0015】
また、本発明に係るイオン分析装置の上記態様において、イオン光学素子は、単にイオンを収束しつつ後段へと輸送するイオンガイドと、特定の質量電荷比(厳密には斜体字の「m/z」であるが、本明細書では「質量電荷比」又は「m/z」と記す)又は質量電荷比範囲のイオンを選択的に通過させ、それ以外のイオンを発散させる機能を有する四重極マスフィルターと、を含む。
【0016】
以下、本発明に係るイオン分析装置の一実施形態である質量分析装置について、添付図面を参照して説明する。
図1は、本実施形態の質量分析装置の概略構成図である。この質量分析装置は、大気圧イオン源を備えるシングルタイプの四重極型質量分析装置である。説明の便宜上、図1に示すように、互いに直交するX、Y、Zの3軸を空間内に定義する。
【0017】
本実施形態の質量分析装置において、チャンバー1の内部には、イオン化室11、第1中間真空室12、第2中間真空室13、及び分析室14の4室が設けられている。イオン化室11は略大気圧であり、第1中間真空室12、第2中間真空室13、及び分析室14はそれぞれ図示しない真空ポンプにより真空排気される。この質量分析装置は、イオン化室11から第1中間真空室12、第2中間真空室13、分析室14に向かって順に真空度が高まる多段差動排気系の構成となっている。一例として、第1中間真空室12のガス圧は100Pa程度、第2中間真空室13のガス圧は1Pa程度、分析室14のガス圧は10-2~10-4Pa程度である。
【0018】
イオン化室11にはイオン源としてESIプローブ2が設けられている。ESIプローブ2は試料液を微小な帯電液滴としてイオン化室11内に噴霧することにより、該試料液に含まれる各種成分をイオン化する。イオン化室11と第1中間真空室12とは細径の脱溶媒管3を通して連通しており、イオン化室11内で生成されたイオンは脱溶媒管3の両端間の差圧によって形成されるガス流に乗って脱溶媒管3に吸い込まれる。脱溶媒管3は所定温度に加熱されており、溶媒が十分に気化していない帯電液滴が脱溶媒管3に吸い込まれると、該脱溶媒管3を通過する際に溶媒の気化が促進されてイオンが発生する。
【0019】
第1中間真空室12及び第2中間真空室13にはそれぞれイオンガイド4、6が配置されている。イオンガイド4、6を構成する複数の電極にはそれぞれ電源部9から所定の電圧が印加され、これにより、複数の電極で囲まれる空間にはイオンを収束させつつ輸送する電場が形成される。第1中間真空室12に導入された試料成分由来のイオンはイオンガイド4により収束され、スキマー5の頂部に設けられた小孔を通して第2中間真空室13へ送られる。第2中間真空室13に導入されたイオンはイオンガイド6により収束され、分析室14へと送られる。
【0020】
分析室14には、イオン光軸Cに沿って四重極マスフィルター7とイオン検出器8が配置されている。この例では、四重極マスフィルター7は、メインロッド電極と、その前段及び後段にそれぞれ配置されたプリロッド電極及びポストロッド電極を含む。四重極マスフィルター7を構成する複数のロッド電極には、電源部9から所定の電圧が印加され、これにより、特定の質量電荷比を有する(又は特定の質量電荷比範囲に含まれる)イオンを選択的に通過させ、それ以外のイオンを発散させる電場が形成される。分析室14に導入された各種イオンのうち、例えば特定の質量電荷比を有するイオンのみが四重極マスフィルター7を通り抜けてイオン検出器8に到達する。
【0021】
イオン検出器8は、入射したイオンの量に応じたイオン強度信号を出力する。このイオン強度信号は、図示しないデータ処理部に入力され、該データ処理部においてデータ処理が行われる。例えば四重極マスフィルター7を構成する電極に印加する電圧を所定の範囲で走査すると、四重極マスフィルター7を通過し得るイオンの質量電荷比が変化し、データ処理部では、所定の質量電荷比範囲に亘るイオン強度の変化を示すマススペクトルを作成することができる。
【0022】
図2は、本実施形態の質量分析装置におけるイオンガイド4の電極構造を示す概略斜視図である。図3は、イオン光軸Cに直交する面(X-Y平面)でのイオンガイド4の断面平面図である。
【0023】
このイオンガイド4は、イオン光軸Cを囲んで放射状に、且つ該イオン光軸Cに平行に4本のロッド電極41、42、43、44を配置した四重極イオンガイドである。但し、一般的な四重極イオンガイドは、各ロッド電極の周面が円柱状であるか、或いは、少なくともイオン光軸Cに向いた面の断面形状(以下「断面」は全てイオン光軸Cに直交するX-Y平面での断面)が円弧状であるが、ここで用いられているロッド電極41~44の断面形状は長方形状である。
【0024】
即ち、このイオンガイド4は、イオン光軸Cの方向(Z軸方向)に細長い直方体形状である4本のロッド電極41~44が、イオン光軸Cの周りに90°角度間隔離して回転対称に配置されている。各ロッド電極41~44のイオン光軸Cに向いた部分の断面形状は半矩形状であり、それらは半径がr0である円Aに外接している。つまり、各ロッド電極41~44とイオン光軸Cとの最短距離はr0である。また、各ロッド電極41~44の断面におけるイオン光軸Cに向いた一辺(第1辺)の長さ、つまりイオン光軸Cからロッド電極41~44を見たときの該ロッド電極41~44の幅はwである。なお、各ロッド電極41~44の断面における第1辺の幅wに直交する辺(第2辺及び第3辺)の長さ、つまりは径方向の長さは、各ロッド電極41~44に印加される電圧によって、ロッド電極41~44で囲まれる空間に形成される電場に影響がない範囲で、適宜に決めることができる。
【0025】
図3に示すように、イオン光軸Cを挟んで対向する2本のロッド電極41、43には、電源部9から所定のRF電圧(Vcosωt)が印加され、他の2本のロッド電極42、44には、電源部9から、極性が逆であるRF電圧(-Vcosωt)が印加される。但し、これらRF電圧に所定の直流バイアス電圧を加算した電圧を各ロッド電極41~44に印加してもよい。こうした印加電圧自体は、従来の四重極イオンガイドと同じである。
【0026】
一般に、四重極イオンガイドでは、各ロッド電極に印加される電圧によって、四重極電場のほかに、2以上のnについて4×(2n-1)重極、つまりは十二重極、二十重極、…の高次多重極電場が形成されることが知られている。これは四重極マスフィルターでも同様である。
【0027】
周面が円筒形状であるロッド電極を用いた四重極イオンガイドでは、通常、4本のロッド電極が接する円(図3中の円Aに相当する円)の半径とロッド電極の半径との比率を調整することによって、高次多重極電場成分の中でもイオンの挙動に対する影響が最も大きい十二重極電場の発生量を調整する。しかしながら、上述したように、その場合、ロッド電極の断面形状を高精度の円形状にする必要があり、ロッド電極には高い加工精度が必要とされ、それだけコストが高くなる。これに対し、本発明者は綿密な計算を繰り返すことによって、ロッド電極の断面形状を矩形状、或いは、後述するような面取り形状とした場合でも、その電極自体と配置上の寸法によって、十二重極電場の発生量を調整できることを見出した。
【0028】
一般に、多重極構造のイオンガイドにおいて内部空間に形成されるポテンシャルは、次の多重極展開により表現されることが知られている(特許文献2、3等参照)。
Φ(r,θ)=ΣKn(r/r0n cos[n(θ-θ0)] …(1)
ここで、nは多重極電場の次数を表す正の整数である。Σはnについての総和である。Knは2n重極電場成分の大きさを表す展開係数である。rはロッド電極で囲まれる空間内の半径方向の位置である。θは極座標系の角度である。θ0は初期位相である。
【0029】
多くの場合、(1)式において展開係数K2の項のみが発現するのが理想的であるものの、ロッド電極が図3に示したような形状である場合、十二重極、二十重極といった特徴的な次数(4×(2m-1))の高次多重極電場成分が発生する。二十重極電場成分は実質的に問題とならない程度に小さいので、問題となるのは十二重極電場成分である。
【0030】
いま、ロッド電極41~44の幅wと円Aの半径r0の比率w/r0を変えながら、(1)式における十二重極電場に対応する展開係数K6を計算すると、図5に示すような関係となる。図5の縦軸は展開係数K6に対応する。図5から分かるように、十二重極電場成分量はゼロを横切るように正値と負値の間で変化する。一つの目安として、十二重極電場成分の発現量を四重極電場成分の1%以下にするには、w/r0を0.806~0.840の範囲内に設定すればよい。1%以下という閾値はそれほど厳密ではないので、概ねw/r0を.0.8~0.85程度に設定しておけば、十二重極電場成分の発現量を妥当な程度に抑えられるということができる。
【0031】
即ち、上述したようにロッド電極の断面形状を矩形状にした場合、目的とする四重極電場のほかに、イオンの好ましくない挙動をもたらす十二重極電場成分が比較的多く発現するが、その断面の形状、具体的にはw/r0を適宜の値にすることで、十二重極電場成分の発現量を実質的に問題とならない程度に抑制することができる。それにより、周面が円筒形状であるロッド電極を用いた一般的な四重極イオンガイドに代えて、上記イオンガイド4を使用しても、高いイオン透過率を達成し、十分な分析感度を確保することができる。
【0032】
本実施形態の質量分析装置において、第1中間真空室12に配置されたイオンガイド4のみならず、第2中間真空室13に配置されたイオンガイド6についても同様である。さらにまた、イオンガイドのみならず、分析室14に配置された四重極マスフィルター7でも同様である。
【0033】
上記実施形態の質量分析装置では、ロッド電極41~44の断面形状は矩形状である(イオン光軸Cに向いた部分が半矩形状である)が、図4に示したロッド電極401~404のように、イオン光軸Cに向いた半矩形部の二つの角部をC面取りした形状(面取りの角度が45°)とすることもできる。この構成では、各ロッド電極401~404の幅よりも、むしろC面取りの寸法cが多重極電場成分の発現に影響を与える。そのため、ロッド電極401~404の幅wを所定値に固定した状態では、C面取りの寸法cと円Aの半径r0の比率c/r0と展開係数K6とが図5に示したような所定の関係になる。従って、上記実施形態と同様に、ロッド電極401~404の断面の形状、具体的にはw及びc/r0をそれぞれ適宜の値にすることで、十二重極電場成分の発現量を実質的に問題とならない程度に抑制することができる。
【0034】
一般的には、イオンガイドや四重極マスフィルターでは、目的とするイオンの透過率を最大にすることが望ましいため、十二重極電場成分は好ましくはゼロで、できるだけゼロに近いほうがよい。そこで、図3及び図4の構成においてそれぞれ、十二重極電場成分が最もゼロに近くなるように最適化した場合の、パラメーターと多重極電場成分量の一例を図6に示す。なお、面取り形状における電極幅wは5mmであるが、これは一例である。
【0035】
図6に示すように、いずれの構成においても十二重極電場成分をほぼゼロに抑えることが可能である。十二重極電場よりも高次(二十重極)の多重極電場成分は、従来の周面が円筒状であるロッド電極の場合よりも大きくなるが、イオンガイドとして用いる場合には、それは大きな問題とはならない。一方、四重極マスフィルターとして用いる場合には、十二重極電場よりも高次の多重極電場成分が問題となる場合があり得るので、十二重極電場成分とのバランスをとるようにしたほうがよいことがある。
【0036】
また、図3の例では、各ロッド電極41~44の断面形状において、イオン光軸Cに向いた第1辺とその両側の第2辺及び第3辺とのなす角度は90°であるが、90°以下の角度であってもよい。図4の例ではこの角度が45°であるが、45°の場合には、第2辺及び第3辺の電位がロッド電極で囲まれる空間に形成されるRF電場に影響を与える。これに対し、第1辺とその両側の第2辺及び第3辺とのなす角度が45°~90°の範囲で90°に近ければ、第2辺及び第3辺の電位はロッド電極で囲まれる空間に形成されるRF電場に実質的に影響を及ぼさない。例えば、この角度が60°程度以上であれば、第2辺及び第3辺の電位はロッド電極で囲まれる空間に形成されるRF電場に実質的に影響を及ぼさず、図3の例と同様に、w/r0を適宜の値にすることで十二重極電場成分の発現量を制御することができる。
【0037】
また、上記説明から明らかであるように、十二重極電場成分をゼロではなく所定の目標値にするようにロッド電極41~44、401~404の寸法を定めることも容易である。例えば特許文献3に記載されているように、特定の高次多重極電場を四重極電場に重畳させることで特定の質量電荷比や質量電荷比範囲のイオンを共鳴させることで排除することができる。こうした性能上の要求から所定の大きさの十二重極電場成分を発現させる場合にも、本発明における手法を利用することができる。
【0038】
上記実施形態は本発明の一例にすぎず、本発明の趣旨の範囲で適宜に変形、修正、追加を行っても、本願特許請求の範囲に包含されることは当然である。
【0039】
例えば、上記実施形態はシングルタイプの四重極型質量分析装置であるが、四重極イオンガイドや四重極マスフィルターが搭載されている質量分析装置全般に本発明を適用可能である。
【0040】
[種々の態様]
上述した例示的な実施形態及び変形例は、以下の態様の具体例であることが当業者により理解される。
【0041】
(第1項)本発明に係るイオン分析装置の一態様は、
イオン光軸を囲み放射状に配置され、それぞれが該イオン光軸の方向に延伸する4本のロッド電極を含み、該4本のロッド電極で囲まれる空間に導入されたイオンの少なくとも一部を収束しつつ後段へ送るイオン光学素子と、
前記空間にRF電場を形成するべく、前記4本のロッド電極のうち前記イオン光軸を挟んで対向する2本のロッド電極を1組とし、一方の組の2本のロッド電極と他方の組の2本のロッド電極とに互いに極性が相違するRF電圧を印加する電圧印加部と、
を備え、前記4本のロッド電極の、前記イオン光軸に直交する直交面上の断面形状は、該イオン光軸を中心とする円の接線の一部である第1辺と、該第1辺の両端とそれぞれ所定角度を以て接続される第2辺及び第3辺とを有し、該所定角度は前記第2辺及び前記第3辺により形成されるRF電場が前記空間に影響を及ぼさないような角度であり、且つ、前記空間に形成されるRF電場における十二重極電場の成分量が所定値以下又は所定の値になるように、前記円の半径r0と前記第1辺の幅wとの比率w/r0が定められている。
【0042】
(第4項)本発明に係るイオン分析装置の他の態様は、
イオン光軸を囲み放射状に配置され、それぞれが該イオン光軸の方向に延伸する4本のロッド電極を含み、該4本のロッド電極で囲まれる空間に導入されたイオンの少なくとも一部を収束しつつ後段へ送るイオン光学素子と、
前記空間にRF電場を形成するべく、前記4本のロッド電極のうち前記イオン光軸を挟んで対向する2本のロッド電極を1組とし、一方の組の2本のロッド電極と他方の組の2本のロッド電極とに互いに極性が相違するRF電圧を印加する電圧印加部と、
を備え、前記4本のロッド電極の、前記イオン光軸に直交する直交面上の断面形状は、該イオン光軸を中心とする円の接線の一部である第1辺の両端の角部がそれぞれC面取りされた半矩形状であり、前記空間に形成されるRF電場における十二重極電場の成分量が所定値以下又は所定の値になるように、前記円の半径r0と前記C面取りの寸法cとの比率c/r0、及び、前記第1辺の幅w、が定められている。
【0043】
第1項又は第4項に記載のイオン分析装置によれば、四重極イオンガイドや四重極マスフィルター等のイオン光学素子を構成するロッド電極の形状が曲面ではなく平面を組み合わせたものとなる。これにより、周面が円筒形状である従来のロッド電極に比べて製造上の難易度を下げることができ、そうしたイオン光学素子のコストを低減することができる。ひいては、イオン分析装置の製造コストを抑えることが可能となる。
【0044】
また第1項又は第3項に記載のイオン分析装置によれば、十二重極電場の成分量をゼロに近付けるほか、所定の値に制御することもできる。それによって、要求される性能に適合したイオン光学素子を容易に入手することができる。
【0045】
(第2項)第1項に記載のイオン分析装置において、前記所定の角度は90°とすることができる。即ち、4本のロッド電極の、イオン光軸に直交する直交面上の断面形状は半矩形状である。
【0046】
第2項に記載のイオン分析装置によれば、ロッド電極を細長い直方体形状とすることができ、製造が特に容易である。
【0047】
(第3項)第1又は2項に記載のイオン分析装置において、前記比率w/r0は0.8~0.85の範囲とすることができる。
【0048】
第3項に記載のイオン分析装置によれば、十二重極電場成分量を実用上十分に抑制して、高いイオン透過率を実現することができる。
【0049】
(第5項)第1項~第4項のいずれか1項に記載のイオン分析装置において、前記イオン光学素子は四重極イオンガイドとすることができる。
【0050】
(第6項)第5項に記載のイオン分析装置は、大気圧イオン源が配置されるイオン化室と、質量分離部が配置される分析室との間に1以上の中間真空室が設けられる多段差動排気系の構成であり、前記イオン光学素子は前記イオン化室の次段又は次々段の中間真空室内に配置されるものとすることができる。
【0051】
第5項又は第6項に記載のイオン分析装置によれば、前段から送られて来たイオンを効率良く、つまりは損失を抑えながら後段へと輸送し分析に供することができる。それによって、高い分析感度を達成することができる。
【0052】
(第7項)第1項~第4項のいずれか1項に記載のイオン分析装置において、前記イオン光学素子は四重極マスフィルターとすることができる。
【0053】
第7項に記載のイオン分析装置によれば、目的とするイオンを高い選択性を以て透過させることができる。それによって、高い分析感度を達成することができる。
【符号の説明】
【0054】
1…チャンバー
11…イオン化室
12…第1中間真空室
13…第2中間真空室
14…分析室
2…ESIプローブ
3…脱溶媒管
4、6…イオンガイド
41、42、43、44、401、402、403、404…ロッド電極
5…スキマー
7…四重極マスフィルター
8…イオン検出器
9…電源部
C…イオン光軸
図1
図2
図3
図4
図5
図6