IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱電機株式会社の特許一覧

<>
  • 特許-加速空洞 図1
  • 特許-加速空洞 図2
  • 特許-加速空洞 図3
  • 特許-加速空洞 図4
  • 特許-加速空洞 図5
  • 特許-加速空洞 図6
  • 特許-加速空洞 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-05
(45)【発行日】2024-09-13
(54)【発明の名称】加速空洞
(51)【国際特許分類】
   H05H 7/18 20060101AFI20240906BHJP
   H05H 9/04 20060101ALI20240906BHJP
   H05H 9/00 20060101ALI20240906BHJP
【FI】
H05H7/18
H05H9/04
H05H9/00 B
【請求項の数】 5
(21)【出願番号】P 2021064559
(22)【出願日】2021-04-06
(65)【公開番号】P2022160053
(43)【公開日】2022-10-19
【審査請求日】2024-02-13
(73)【特許権者】
【識別番号】000006013
【氏名又は名称】三菱電機株式会社
(74)【代理人】
【識別番号】110002941
【氏名又は名称】弁理士法人ぱるも特許事務所
(72)【発明者】
【氏名】葛西 裕磨
【審査官】藤本 加代子
(56)【参考文献】
【文献】特開2017-016835(JP,A)
【文献】特表2017-517090(JP,A)
【文献】特開平11-067498(JP,A)
【文献】米国特許出願公開第2002/0190670(US,A1)
【文献】特開2011-096389(JP,A)
【文献】特開2009-266450(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05H 3/00-15/00
(57)【特許請求の範囲】
【請求項1】
荷電粒子ビームの出入口である2つのビームポート、
前記荷電粒子ビームの通過経路に配置されたドリフトチューブ、
前記ドリフトチューブを支持するステム、
前記ステムに変形力を付与することにより、前記ドリフトチューブの設置位置を互いに独立な3軸方向に変位させる変形力付与機構、
を備えたことを特徴とする加速空洞。
【請求項2】
前記変形力付与機構は、
前記荷電粒子ビームを加速する加速電界強度が前記通過経路の上流側と下流側とで予め定められた値となるように前記ドリフトチューブと前記ビームポート間の距離を変位させるとともに、前記ドリフトチューブの軸と前記2つのビームポートの中心を結ぶビーム軸とが一致するように前記ドリフトチューブの設置位置を変位させる、
ことを特徴とする請求項1に記載の加速空洞。
【請求項3】
前記加速空洞はスポーク型空洞であって、
前記変形力付与機構は、前記ドリフトチューブと接続され、前記ドリフトチューブに、互いに直交する3軸方向の変形力を付与する、
ことを特徴とする請求項1または2に記載の加速空洞。
【請求項4】
前記加速空洞は超伝導材料で構成され、冷媒で冷却することにより電気抵抗をゼロに近づけるスポーク型加速空洞であって、
前記加速空洞の外周側に配置され、前記加速空洞との隙間に前記加速空洞を冷却する前記冷媒が充填されるジャケットと、
前記ジャケットと前記ドリフトチューブとをベローズを介して接続する可動胴と、
を備え、
前記変形力付与機構の反力受けは、前記ジャケットの外周部に設けられるとともに、前記変形力付与機構は前記可動胴と接続されている、
ことを特徴とする請求項1から3のいずれか1項に記載の加速空洞。
【請求項5】
前記ドリフトチューブと接続され、関節棒、調整棒、ワイヤー、および巻取機構により、前記ドリフトチューブに変形力を付与する、
ことを特徴とする請求項1から4のいずれか1項に記載の加速空洞。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、加速空洞に関するものである。
【背景技術】
【0002】
電子、あるいは陽子などの荷電粒子ビーム(以下、単にビームとも呼ぶ)を、高周波を共振させて発生する電界を用いて加速する加速空洞が知られている。ビーム加速軸上に、パイプ状のビームポートとドリフトチューブが配置され、ドリフトチューブとビームポートに挟まれたギャップ空間に生じる電界で荷電粒子を加速する。電界強度はギャップ空間の長さに依存する。粒子を効率よく加速させるためには、粒子の通過経路であるドリフトチューブの中心軸をビーム軸に対し高精度に位置合わせする必要がある。設計通りの加速電界強度を達成するために、ドリフトチューブの設置位置についてビーム軸を基準に合わせ、ドリフトチューブとビームポートに挟まれたギャップ空間を合わせる必要がある。
【0003】
加速空洞には、超伝導材料を用いた超伝導加速空洞がある。冷媒で冷却することで超伝導化する。これにより超伝導加速空洞の電気抵抗がほぼゼロになり、電力損失なく荷電粒子の加速を効率良く行うことができる。超伝導加速空洞では、特異点による超伝導状態の破れを防ぐため、滑らかな内面が要求される。
【0004】
特許文献1では、ドリフトチューブ上部の空洞外部に位置調整機構を設け、ドリフトチューブの中心軸位置を1軸方向のみ調整可能とする方法が記載されている。
【0005】
特許文献2では、ドリフトチューブ上部に位置調整できる構造を設け、ドリフトチューブの中心軸位置を2軸方向で調整可能とする方法が記載されている。
【0006】
特許文献3では、多連型超伝導加速空洞において、ビーム軸方向に変形機構を設け、セルに弾性変形力を与えてビーム軸方向の位置調整を可能とする方法が記載されている。
【先行技術文献】
【特許文献】
【0007】
【文献】特開平4-118900号公報
【文献】特開2009-205939号公報
【文献】特開平11-67498号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1に記載の技術は、ドリフトチューブの高さを空洞外表面に設けた貫通穴を通して調整するものであるため、滑らかな内面を要求される超伝導加速空洞には適用できない。また調整はビーム軸に対し鉛直方向のみに限定されており、ビーム軸方向及び水平方向への調整は出来ない。
【0009】
特許文献2に記載の技術は、ドリフトチューブの位置を空洞外表面に設けた貫通穴を通して調整するものであるため、滑らかな内面を要求される超伝導加速空洞には適用できない。また調整はビーム軸方向及び水平方向に限定されており、高さ方向の調整は出来ない。
【0010】
特許文献3に記載の技術は、多連型超伝導加速空洞のセル境界部のビーム軸方向の調整のみであり、ビーム軸に対し鉛直方向及び水平方向への調整は出来ない。
【0011】
本願は上記のような課題を解決するためになされたものであり、ドリフトチューブの位置を3軸方向(ビーム軸方向、ビーム軸を含む面内でビーム軸に直交する方向、およびこれら2方向に直交する方向)に容易に調整できる機能を有する加速空洞を得ることを目的とする。
【課題を解決するための手段】
【0012】
本願に開示される加速空洞は、
荷電粒子ビームの出入口である2つのビームポート、
前記荷電粒子ビームの通過経路に配置されたドリフトチューブ、
前記ドリフトチューブを支持するステム、
前記ステムに変形力を付与することにより、前記ドリフトチューブの設置位置を互いに独立な3軸方向に変位させる変形力付与機構、
を備えたものである。
【発明の効果】
【0013】
本願に開示される加速空洞によれば、ドリフトチューブの位置を3軸方向(ビーム軸方向、ビーム軸を含む面内でビーム軸に直交する方向、およびこれら2方向に直交する方向)に容易に調整できる機能を有する加速空洞を得ることができる。
【図面の簡単な説明】
【0014】
図1】実施の形態1に係る加速空洞の概略構成の一例を示す断面模式図である。
図2】実施の形態1に係る加速空洞の一例であるスポーク型加速空洞の要部の斜視図である。
図3図2のスポーク型加速空洞の要部の断面模式図である。
図4】実施の形態1に係る加速空洞の一例であるQWR型加速空洞(Quarter Wave Resonator)を示す断面模式図である。
図5】実施の形態2に係る加速空洞の一例である常伝導スポーク型加速空洞を示す断面模式図である。
図6】実施の形態3に係る加速空洞の一例である超伝導スポーク型加速空洞を示す断面模式図である。
図7】実施の形態4に係る加速空洞の一例である別のQWR型加速空洞を示す断面模式図である。
【発明を実施するための形態】
【0015】
本願は、高周波電場を用いて荷電粒子ビームを加速する加速空洞に関し、特にスポーク型空洞(Spoke cavity)およびQWR型空洞(Quarter Wave Resonator)に関するものである。これらの加速空洞では、一般に、陽子、あるいは重イオンなどで粒子速度が光速に比べ、その比が比較的小さい(0.5より小さい)領域において、加速に寄与するギャップ長を広くとるために、比較的低い周波数が用いられる。
【0016】
実施の形態1.
以下、この実施の形態1に係る加速空洞100について、図1図3に基づいて説明する。図1は、実施の形態1に係る加速空洞100の概略構成を示す断面模式図である。図1に示すように、加速空洞100では、一般的に空洞壁5内に複数のドリフトチューブ2が、イオンが通過するビーム軸6方向に複数個配列されている。
【0017】
図1では、簡単のためドリフトチューブ2が7個配列されているものを図示しているが、さらに多くのドリフトチューブが配列されることが多い。なお、空洞壁5内は真空にされている。各ドリフトチューブは、前記ビーム軸6に沿って中央に貫通孔が設けられた円筒形をしており、ステム3により前記空洞壁5に支持されている。この図1では、隣り合うドリフトチューブのステム3が交互に反対側に延びている例を示している。
【0018】
通常、加速空洞では、空洞壁5内に図示しない高周波発生器から高周波電力を供給し、隣り合うドリフトチューブ間の間隙(以降ドリフトチューブ間隙と呼ぶ)G1、G2、…、G6に高周波電界を発生させ、この高周波電界によってビーム軸6に沿って進むイオンを加速する。以下、上述の課題を解決するため、これらのドリフトチューブの位置を調整してドリフトチューブ間の間隙を変位させる具体的な装置構成について詳しく説明する。
【0019】
まず、上述のドリフトチューブ2の位置を調整するための具体例について、図2図3を用いて説明する。図2は、代表的な加速空洞100の1つであるスポーク型加速空洞101の一例を示す斜視図、図3は、このスポーク型加速空洞101の断面模式図である。これらは、共に、シングルスポーク型加速空洞の一例を示している。ここで、図3(a)は、このシングルスポーク型加速空洞の正面図、図3(b)は図3(a)のAAに沿った断面図である。
【0020】
また、図2図3(a)、図3(b)において、上述のスポーク型加速空洞101は、2つの荷電粒子のビームポート1と1つのドリフトチューブ2と、このドリフトチューブ2を支持する1つのステム3を備える。ドリフトチューブ2には、支持棒4が取り付けられる。この支持棒4は、ステム3内を通る。
【0021】
ここで、上述の両ビームポート1の中心を通る軸がビーム軸に相当する。ビーム軸の長手方向をX軸、このビーム軸を含む面内の方向であってビーム軸に直交する方向をY軸、X軸とY軸がなす平面から鉛直方向をZ軸とする。従って、これら3軸は互いに直交する(互いに独立な)3次元の軸となっている。
【0022】
また、加速空洞の外部に、X軸方向の変形力付与機構11、Y軸方向の変形力付与機構12、Z軸方向の変形力付与機構13を設置し、ドリフトチューブ2は支持棒4を介して前述の変形力付与機構11、12、13と接続される。なお、上述のX軸方向の変形力付与機構11、Y軸方向の変形力付与機構12、およびZ軸方向の変形力付与機構13を合わせた変形力付与機構を総称して変形力付与機構とも呼ぶ。
【0023】
X軸方向の変形力付与機構11を調整する(動作させる)ことで、支持棒4を介してドリフトチューブのX軸方向位置を調整する。これにより、ドリフトチューブ2とビームポート1がなすギャップ空間の距離を予め与えられた値に調整することができ、荷電粒子ビームの上流側と下流側の加速電界強度を均一化することができる。
【0024】
Y軸方向の変形力付与機構12及びZ軸方向の変形力付与機構13を調整する(動作させる)ことで、ドリフトチューブの軸の位置を移動させてビーム軸に合わせることができる。
以上により、ドリフトチューブの位置を3次元に移動させてドリフトチューブの位置を調整することができる。これにより、加速電界の軸外方向の成分を抑え、効率的に荷電粒子ビームを加速させることができる。
【0025】
別の加速空洞の一例として、図4にQWR型加速空洞102の一例を示す。ここで、図4(a)はQWR型加速空洞102の正面図、図4(b)は図4(a)のAAに沿った断面図である。
【0026】
当該加速空洞は、2つのビームポート1とドリフトチューブ2と空洞壁5及びステム3を備える。ドリフトチューブ2には、ステム3内を通過する支持棒4が取り付けられる。加速空洞の外部には、X軸方向の変形力付与機構11、Y軸方向の変形力付与機構12、Z軸方向の変形力付与機構13が設置され、ドリフトチューブ2は支持棒4を介して前述の変形力付与機構11、12、13と接続される。
【0027】
X軸方向の変形力付与機構11を調整することで、支持棒4を介してドリフトチューブ2にX軸方向の変形力を与える。これにより、ドリフトチューブ2とビームポート1がなすギャップ空間の距離を調整することができ、荷電粒子ビームの上流側と下流側の加速電界強度を均一化することができる。または意図的に荷電粒子ビームの上流側と下流側の加速電界強度に差異を生じさせることもできる。
【0028】
Y軸方向の変形力付与機構12及びZ軸方向の変形力付与機構13を調整することで、支持棒4を介してドリフトチューブ2にY軸方向及びZ軸方向の変形力を与える。これにより、ドリフトチューブ2の軸の位置を移動させてビーム軸に合わせることができる。この結果、加速電界の軸外方向の成分を抑え、効率的に荷電粒子ビームを加速させることができる。
【0029】
実施の形態2.
次に、実施の形態2の加速空洞の一例について図5を用いて説明する。図5に示す実施形態2に係る加速空洞は、例えば、冷媒貯槽を有しない常伝導スポーク型加速空洞103である。ここで、図5(a)は正面図、図5(b)は図5(a)のAAに沿った断面図である。
【0030】
X軸方向の変形力付与機構11、Y軸方向の変形力付与機構12及びZ軸方向の変形力付与機構13は、それぞれ回転駆動部14とボールねじ15及び反力受け16で構成される。反力受け16は加速空洞の外表面に接続される。
【0031】
支持棒4にはねじ穴があけられ、ボールねじ15が通されている。ボールねじ15は、軸受板17を介して、反力受け16に支持されている。この反力受け16と前記軸受板17は、互いに滑るものとする。
【0032】
X軸方向の変形力付与機構11、Y軸方向の変形力付与機構12及びZ軸方向の変形力付与機構13のそれぞれの回転駆動部14の駆動軸が回転すると、それぞれのボールねじ15が回転し、支持棒4はこの回転軸により、X軸方向、Y軸方向、及びZ軸方向に移動する。支持棒4と固定されたドリフトチューブ2もこの動きに追従する変形力を受ける。
【0033】
上記機構により、ドリフトチューブ2の位置を3軸(X軸:ビーム軸方向、Y軸:水平方向、Z軸:鉛直方向)、すなわち3次元に移動させて容易に調整することができる。
【0034】
実施の形態3.
次に、実施の形態3に係る加速空洞の一例について図6を用いて説明する。図6に示す実施形態3に係る加速空洞は、例えば、超伝導スポーク型加速空洞104である。当該加速空洞は、その外周に冷媒が充填されるジャケット18と、ジャケット18とベローズ19で接続される可動胴20とを備える。なお、図6(a)は正面図、図6(b)は図6(a)のAAに沿った断面図である。
【0035】
可動胴20は支持棒4と接続されている。可動胴の外周にねじ穴の開いた座を設け、前記X軸方向の変形力付与機構11、前記Y軸方向の変形力付与機構12及び前記Z軸方向の変形力付与機構13のボールねじ15に接続されている。
【0036】
X軸方向の変形力付与機構11、Y軸方向の変形力付与機構12及びZ軸方向の変形力付与機構13のそれぞれの回転駆動部14が回転すると、それぞれのボールねじ15が回転し、可動胴は、X軸方向、Y軸方向、及びZ軸方向に移動する。それにより、支持棒4及び支持棒4と接続されたドリフトチューブ2が、移動に追従するような変形力を受ける。
【0037】
上記機構により、滑らかな内面が要求され、かつ加速空洞の外部に冷媒が充填されるジャケットを有する超伝導加速空洞においても、加速空洞の内部に何らかを突出さることなくドリフトチューブ2の位置を3軸(X軸:ビーム軸方向、Y軸:水平方向、Z軸:鉛直方向)、すなわち3次元に移動させて容易に調整することができる。
【0038】
実施の形態4.
次に、実施の形態4に係る加速空洞の一例について図7を用いて説明する。
実施形態4に係る加速空洞としては、例えば、図7に示すQWR型加速空洞105が挙げられる。なお、図7(a)は、このQWR型加速空洞105の正面図、図7(b)は図7(a)の点線で囲った部分のうち、BBに沿った要部断面図、図7(c)は図7(a)の点線で囲った部分のうち、C矢視の要部を示す図、図7(d)は、図7(b)の点線で囲ったD部で示した巻取機構の拡大図である。なお、図7(d)中の白抜きの矢印は、この巻取機構の回転方向を示す。
【0039】
なお、上記実施の形態2及び3では、X軸方向の変形力付与機構11、Y軸方向の変形力付与機構12及びZ軸方向の変形力付与機構13による変形力でドリフトチューブ位置を調整する例について述べたが、本実施の形態4に係る加速空洞は、以下に説明するように、上記実施の形態2及び3とは異なる形態となっている。
【0040】
図7において、加速空洞のドリフトチューブ2に取り付け座51が取り付けられ、それに関節棒52が接続され、それにZ軸方向調整棒53が接続されている。そして、当該調整棒は、支持座54に、例えば、ねじで固定されている。取り付け座51と関節棒52の接続部分は球面となっており、傾きの自由度を持つ。関節棒52とZ軸方向調整棒53の接続部は球面となっており、傾きの自由度を持つ。取り付け座51には、関節棒52を介して2本のX軸方向調整用ワイヤー55及びY軸方向調整用ワイヤー56が接続され、X軸方向調整用ワイヤー55及びY軸方向調整用ワイヤー56は、X軸方向調整用巻取機構57及びY軸方向調整用巻取機構58に接続されている。Z軸方向調整棒53は回転駆動部59と接続されている。
【0041】
X軸方向調整用巻取機構57でX軸方向調整用ワイヤー55を巻き出し、及び巻き取ることにより、ドリフトチューブ2は、X軸方向調整用ワイヤー55を介してX-Z方向(XおよびZ方向)への変形力を受ける。このとき、ドリフトチューブ2は取り付け座51及び関節棒52の接続部の動きにより、ビーム軸に対しドリフトチューブの軸を傾かせずに変形させることができる。
【0042】
また、Y軸方向調整用巻取機構58でY軸方向調整用ワイヤー56を巻き出し及び巻き取ることにより、ドリフトチューブ2は、Y軸方向調整用ワイヤー56を介してY-Z方向(YおよびZ方向)への変形力を受ける。また回転駆動部59を調整することで、Z軸方向調整棒53がZ軸に移動し、ドリフトチューブ2がZ軸方向への変形力を受ける。
【0043】
上記機構により、ドリフトチューブ2の位置を3軸(X軸:ビーム軸方向、Y軸:水平方向、Z軸:鉛直方向)で容易に調整することができる。滑らかな内面を要求される超伝導加速空洞にも適用可能である。
【0044】
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
【符号の説明】
【0045】
1 ビームポート、2 ドリフトチューブ、3 ステム、4 支持棒、5 空洞壁、6 ビーム軸、11 X軸方向の変形力付与機構、12 Y軸方向の変形力付与機構、13 Z軸方向の変形力付与機構、14 回転駆動部、15 ボールねじ、16 反力受け、17 軸受板、18 ジャケット、19 ベローズ、20 可動胴、51 取り付け座、52 関節棒、53 Z軸方向調整棒、54 支持座、55 X軸方向調整用ワイヤー、56 Y軸方向調整用ワイヤー、57 X軸方向調整用巻取機構、58 Y軸方向調整用巻取機構、100 加速空洞
図1
図2
図3
図4
図5
図6
図7