IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ジェイテクトの特許一覧 ▶ トヨタ自動車株式会社の特許一覧

<>
  • 特許-操舵制御装置 図1
  • 特許-操舵制御装置 図2
  • 特許-操舵制御装置 図3
  • 特許-操舵制御装置 図4
  • 特許-操舵制御装置 図5
  • 特許-操舵制御装置 図6
  • 特許-操舵制御装置 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-06
(45)【発行日】2024-09-17
(54)【発明の名称】操舵制御装置
(51)【国際特許分類】
   B62D 6/00 20060101AFI20240909BHJP
   B62D 5/04 20060101ALI20240909BHJP
   B62D 119/00 20060101ALN20240909BHJP
   B62D 113/00 20060101ALN20240909BHJP
   B62D 101/00 20060101ALN20240909BHJP
【FI】
B62D6/00
B62D5/04
B62D119:00
B62D113:00
B62D101:00
【請求項の数】 5
(21)【出願番号】P 2021058726
(22)【出願日】2021-03-30
(65)【公開番号】P2022155295
(43)【公開日】2022-10-13
【審査請求日】2024-01-11
(73)【特許権者】
【識別番号】000001247
【氏名又は名称】株式会社ジェイテクト
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】100105957
【弁理士】
【氏名又は名称】恩田 誠
(74)【代理人】
【識別番号】100068755
【弁理士】
【氏名又は名称】恩田 博宣
(72)【発明者】
【氏名】位田 祐基
(72)【発明者】
【氏名】並河 勲
(72)【発明者】
【氏名】末廣 優樹
(72)【発明者】
【氏名】工藤 佳夫
【審査官】飯島 尚郎
(56)【参考文献】
【文献】特開2021-030838(JP,A)
【文献】特開2016-144974(JP,A)
【文献】米国特許出願公開第2014/0288778(US,A1)
【文献】独国特許出願公開第102010042135(DE,A1)
【文献】特開2020-142596(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B62D 6/00
B62D 5/04
B62D 101/00-137/00
(57)【特許請求の範囲】
【請求項1】
モータを駆動源とするアクチュエータが付与するモータトルクによりステアリングホイールの操舵に必要な操舵トルクを可変とする操舵装置を制御対象とし、前記モータトルクが発生するように前記モータの作動を制御する際の前記モータトルクの目標値であるトルク指令値を演算するトルク指令値演算部を備えるものであり、
前記トルク指令値演算部は、
前記操舵装置の動作に応じて変化する第1状態変数に応じた第1成分を演算する第1成分演算部と、
前記操舵装置の動作に応じて変化する第2状態変数に応じた第2成分を演算する第2成分演算部と、
前記トルク指令値を演算する際に用いるトルク成分を、前記第1成分、及び前記第2成分の少なくともいずれかに基づいて演算するトルク成分演算部と、を有し、
前記第1状態変数には前記操舵装置の動作に応じて変化する特定の状態変数の変化に対してヒステリシス特性を有さない状態変数を設定するとともに、前記第2状態変数には前記特定の状態変数の変化に対してヒステリシス特性を有する状態変数を設定するものであり、
前記第1成分演算部は、前記第1成分を演算する際に、前記特定の状態変数の変化に対してヒステリシス特性を有するように演算上のヒステリシス成分を付加する機能を有し、
前記トルク成分演算部は、
前記第2成分演算部を通じて得られた前記第2成分に対して、当該第2成分の前記特定の状態変数の変化に対する勾配を調整し、当該調整後の前記第2成分を前記トルク成分の演算に用いる第1の演算状態と、
前記第1成分、及び前記第2成分の少なくともいずれかに基づいて演算して得られたトルク成分に対して、当該トルク成分の前記特定の状態変数の変化に対する勾配を調整し、当該調整後のトルク成分を最終的なトルク成分として演算する第2の演算状態と、を含むように構成されている操舵制御装置。
【請求項2】
前記第1成分演算部は、車両の転舵輪の転舵角に換算可能な角度に応じて定められるとともに路面情報が反映されない軸力である角度軸力を前記第1成分として演算する角度軸力演算部であり、
前記第2成分演算部は、前記モータに供給される電流に応じて定められるとともに路面情報が反映された軸力である電流軸力を前記第2成分として演算する電流軸力演算部である請求項1に記載の操舵制御装置。
【請求項3】
前記トルク成分演算部は、
車両が停車状態を含む第1車速である場合に、前記第1の演算状態の演算で得られた前記トルク成分を前記トルク指令値に反映させるとともに、
車両が走行状態を含む第2車速である場合に、前記第2の演算状態の演算で得られた前記トルク成分を前記トルク指令値に反映させるように構成されている請求項1または請求項2に記載の操舵制御装置。
【請求項4】
前記トルク成分演算部は、前記第1の演算状態と前記第2の演算状態とを並列的に実行するなかで、前記第1の演算状態と前記第2の演算状態との演算でそれぞれ得られた前記トルク成分のうちいずれの前記トルク成分を前記トルク指令値に反映させるかを調停する調停部をさらに含み、
前記調停部は、
車両が停車状態を含む第1車速である場合に、前記第1の演算状態の演算で得られた前記トルク成分を前記トルク指令値に反映させるとともに、
車両が走行状態を含む第2車速である場合に、前記第2の演算状態の演算で得られた前記トルク成分を前記トルク指令値に反映させるように構成されている請求項1~請求項3のいずれか一項に記載の操舵制御装置。
【請求項5】
前記調停部は、前記第1の演算状態の演算で得られた前記トルク成分と前記第2の演算状態の演算で得られた前記トルク成分との間で前記トルク指令値に反映させる成分を切り替える際、当該切り替え前後での前記トルク成分の急変を抑制するように当該トルク成分を補償する機能を有するように構成されている請求項4に記載の操舵制御装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、操舵制御装置に関する。
【背景技術】
【0002】
従来、操舵装置の一種として、運転者により操舵される操舵部と運転者の操舵に応じて転舵輪を転舵させる転舵部との間の動力伝達路が分離されたステアバイワイヤ式の操舵装置がある。同形式の操舵装置では、転舵輪が受ける路面反力等の路面情報が機械的にはステアリングホイールに伝達されない。そこで、同形式の操舵装置を制御対象とする操舵制御装置には、ステアリングホイールに対して路面情報を考慮した操舵反力を付与するように操舵部に設けられた操舵側アクチュエータを制御することで、路面情報を運転者に伝えるように制御するものがある。
【0003】
例えば、特許文献1の操舵制御装置では、操舵反力を決定する際に転舵部に設けられた転舵軸に作用する軸力を考慮して、当該考慮する軸力の一つとして複数種の軸力を所定の配分比率で合算した配分軸力を用いている。特許文献1には、複数種の軸力として、ステアリングホイールの操舵角に基づき演算される転舵輪の転舵角を制御するための目標転舵角に基づく角度軸力や、転舵側アクチュエータの駆動源である転舵側モータの駆動電流に基づく電流軸力等が例示されている。特許文献1の操舵制御装置では、角度軸力と電流軸力とを配分した配分軸力に基づいて操舵反力を演算している。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2020-142596号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記目標転舵角の基になる上記操舵角と転舵軸に実際に作用する軸力との関係は、車速に応じて変化する。車両が停車状態である場合、上記操舵角に対する軸力の変化割合である軸力勾配は小さくなり、かつ上記操舵角の変化に対する軸力のヒステリシス幅は大きくなる。一方、車両が中高速程度で走行している場合には、上記軸力勾配は大きくなり、かつ上記ヒステリシス幅は小さくなる。こうした操舵角の変化に対する軸力の実際のヒステリシスの状況を反映させたヒステリシス幅を有するように演算上のヒステリシス成分を付加して角度軸力を演算することがある。
【0006】
ところで、路面反力等の路面状況をより的確に運転者に伝える場合、例えば、配分軸力の軸力勾配を大きくするように調整することが考えられる。これは、電流軸力の配分割合が大きい場合に有効である。これに対して、角度軸力の配分割合が大きい場合、配分軸力の軸力勾配を大きくするように調整すると、付加している演算上のヒステリシス成分の勾配が想定以上に大きくなって制御上の振動特性が現れる可能性がある。
【0007】
なお、このような問題は、操舵反力の成分として演算される角度軸力に限らず、実際のヒステリシスの状況を反映させるためにヒステリシス幅を有するように演算上のヒステリシス成分を付加して演算される操舵反力の成分であれば、同様に生じ得る。
【課題を解決するための手段】
【0008】
上記課題を解決する操舵制御装置は、モータを駆動源とするアクチュエータが付与するモータトルクによりステアリングホイールの操舵に必要な操舵トルクを可変とする操舵装置を制御対象とし、前記モータトルクが発生するように前記モータの作動を制御する際の前記モータトルクの目標値であるトルク指令値を演算するトルク指令値演算部を備えるものであり、前記トルク指令値演算部は、前記操舵装置の動作に応じて変化する第1状態変数に応じた第1成分を演算する第1成分演算部と、前記操舵装置の動作に応じて変化する第2状態変数に応じた第2成分を演算する第2成分演算部と、前記トルク指令値を演算する際に用いるトルク成分を、前記第1成分、及び前記第2成分の少なくともいずれかに基づいて演算するトルク成分演算部と、を有し、前記第1状態変数には前記操舵装置の動作に応じて変化する特定の状態変数の変化に対してヒステリシス特性を有さない状態変数を設定するとともに、前記第2状態変数には前記特定の状態変数の変化に対してヒステリシス特性を有する状態変数を設定するものであり、前記第1成分演算部は、前記第1成分を演算する際に、前記特定の状態変数の変化に対してヒステリシス特性を有するように演算上のヒステリシス成分を付加する機能を有し、前記トルク成分演算部は、前記第2成分演算部を通じて得られた前記第2成分に対して、当該第2成分の前記特定の状態変数の変化に対する勾配を調整し、当該調整後の前記第2成分を前記トルク成分の演算に用いる第1の演算状態と、前記第1成分、及び前記第2成分の少なくともいずれかに基づいて演算して得られたトルク成分に対して、当該トルク成分の前記特定の状態変数の変化に対する勾配を調整し、当該調整後のトルク成分を最終的なトルク成分として演算する第2の演算状態と、を含むように構成されている。
【0009】
上記構成では、状況に応じて、第1の演算状態と第2の演算状態とを使い分けて最終的なトルク成分を演算することができる。例えば、第2の演算状態を使用してしまうと第1成分に付加している演算上のヒステリシス成分のヒステリシス勾配が想定以上に大きくなってしまうことが想定される状況では、第1の演算状態を使用して第2成分の特定の状態変数の変化に対する勾配を大きくしつつ、第1成分に関わるヒステリシス勾配が想定以上に大きくなることに起因した制御上の振動特性が現れることを抑えることができる。したがって、制御上の安定性の向上を図ることができる。
【0010】
上記操舵制御装置において、前記第1成分演算部は、車両の転舵輪の転舵角に換算可能な角度に応じて定められるとともに路面情報が反映されない軸力である角度軸力を前記第1成分として演算する角度軸力演算部であり、前記第2成分演算部は、前記モータに供給される電流に応じて定められるとともに路面情報が反映された軸力である電流軸力を前記第2成分として演算する電流軸力演算部として具体化することができる。
【0011】
上記操舵制御装置において、前記トルク成分演算部は、車両が停車状態を含む第1車速である場合に、前記第1の演算状態の演算で得られた前記トルク成分を前記トルク指令値に反映させるとともに、車両が走行状態を含む第2車速である場合に、前記第2の演算状態の演算で得られた前記トルク成分を前記トルク指令値に反映させるように構成されていることが好ましい。
【0012】
上記構成によれば、停車状態では、第1の演算状態を使用して第2成分の特定の状態変数の変化に対する勾配を大きくしつつ、第1成分に関わるヒステリシス勾配が想定以上に大きくなることに起因した制御上の振動特性が現れることを抑えることができる。路面反力等の路面状況を運転者に伝える観点で言えば、停車状態と走行状態との間では、停車状態でトルク成分について特定の状態変数の変化に対する勾配を大きくすると都合がよくなる。つまり、第1成分に付加している演算上のヒステリシス成分のヒステリシス勾配が想定以上に大きくなってしまうことが想定される状況には、停車状態と走行状態との間では停車状態が該当する。したがって、路面反力等の路面状況を運転者に伝える観点で都合がよい仕様を実現するなかで、制御上の安定性の向上を図ることができる。
【0013】
上記操舵制御装置において、前記トルク成分演算部は、前記第1の演算状態と前記第2の演算状態とを並列的に実行するなかで、前記第1の演算状態と前記第2の演算状態との演算でそれぞれ得られた前記トルク成分のうちいずれの前記トルク成分を前記トルク指令値に反映させるかを調停する調停部をさらに含み、前記調停部は、車両が停車状態を含む第1車速である場合に、前記第1の演算状態の演算で得られた前記トルク成分を前記トルク指令値に反映させるとともに、車両が走行状態を含む第2車速である場合に、前記第2の演算状態の演算で得られた前記トルク成分を前記トルク指令値に反映させるように構成されていることが好ましい。
【0014】
上記構成によれば、第1の演算状態の演算で得られたトルク成分と第2の演算状態の演算で得られたトルク成分とについて、なるべく最新の状況を加味してトルク指令値に反映させることができる。したがって、制御上の安定性の向上を図るべき状況をより的確に判断することができる。
【0015】
上記操舵制御装置において、前記調停部は、前記第1の演算状態の演算で得られた前記トルク成分と前記第2の演算状態の演算で得られた前記トルク成分との間で前記トルク指令値に反映させる成分を切り替える際、当該切り替え前後での前記トルク成分の急変を抑制するように当該トルク成分を補償する機能を有するように構成されていることが好ましい。
【0016】
上記構成によれば、第1の演算状態の演算で得られたトルク成分と第2の演算状態の演算で得られたトルク成分との間でトルク指令値に反映させる成分を切り替える際、当該切り替え前後でトルク成分の急変を抑えることができる。これは、制御上の安定性の向上を図るうえでは効果的である。
【発明の効果】
【0017】
本発明の操舵制御装置によれば、制御上の安定性の向上を図ることができる。
【図面の簡単な説明】
【0018】
図1】ステアバイワイヤ式の操舵装置の概略構成を示す図。
図2】操舵制御装置の機能を示すブロック図。
図3】軸力演算部の機能を示すブロック図。
図4】配分軸力演算部の機能を示すブロック図。
図5】(a)は、切り込み操舵時における操舵角とヒステリシス成分との関係を示すグラフ、(b)は、切り戻し操舵時における操舵角とヒステリシス成分との関係を示すグラフ。
図6】停車時における勾配調整マップの一例を示すグラフ。
図7】走行時における勾配調整マップの一例を示すグラフ。
【発明を実施するための形態】
【0019】
操舵制御装置の一実施形態を図面に従って説明する。
図1に示すように、操舵制御装置1の制御対象となる車両の操舵装置2は、ステアバイワイヤ式の操舵装置として構成されている。操舵装置2は、ステアリングホイール3を介して運転者により操舵される操舵部4と、運転者により操舵部4に入力される操舵に応じて転舵輪5を転舵させる転舵部6とを備えている。
【0020】
操舵部4は、ステアリング軸11と、操舵側アクチュエータ12とを備えている。ステアリング軸11は、ステアリングホイール3に連結されている。操舵側アクチュエータ12は、駆動源である操舵側モータ13と、操舵側減速機構14とを有している。操舵側モータ13は、ステアリング軸11を介してステアリングホイール3に対して操舵に抗する力である操舵反力を付与する。操舵側モータ13は、例えば、ウォームアンドホイールからなる操舵側減速機構14を介してステアリング軸11に連結されている。本実施形態の操舵側モータ13には、例えば三相のブラシレスモータが採用されている。
【0021】
転舵部6は、ピニオン軸21と、ピニオン軸21に連結された転舵軸としてのラック軸22と、ラックハウジング23とを備えている。ピニオン軸21とラック軸22とは、所定の交差角をもって連結されている。ピニオン軸21に形成されたピニオン歯21aとラック軸22に形成されたラック歯22aとを噛み合わせることによりラックアンドピニオン機構24が構成されている。ラックハウジング23は、ラックアンドピニオン機構24を収容している。なお、ピニオン軸21のラック軸22と連結される側と反対側の一端は、ラックハウジング23から突出している。また、ラック軸22の両端は、ラックハウジング23の軸方向の両端から突出している。そして、ラック軸22の両端には、ボールジョイントからなるラックエンド25を介してタイロッド26が連結されている。タイロッド26の先端は、それぞれ左右の転舵輪5が組み付けられた図示しないナックルに連結されている。
【0022】
転舵部6は、ラック軸22に転舵輪5を転舵させる転舵力を付与する転舵側アクチュエータ31を備えている。転舵側アクチュエータ31は、駆動源である転舵側モータ32と、伝達機構33と、変換機構34とを備えている。転舵側モータ32は、伝達機構33及び変換機構34を介してラック軸22に対して転舵輪5を転舵させる転舵力を付与する。転舵側モータ32は、例えば、ベルト伝達機構からなる伝達機構33を介して変換機構34に対して回転を伝達する。伝達機構33は、例えば、ボールねじ機構からなる変換機構34を介して転舵側モータ32の回転をラック軸22の往復動に変換する。
【0023】
このように構成された操舵装置2では、運転者によるステアリング操舵に応じて転舵側アクチュエータ31からラック軸22にモータトルクが転舵力として付与されることで、転舵輪5の転舵角が変更される。このとき、操舵側アクチュエータ12からは、運転者の操舵に抗する操舵反力がステアリングホイール3に付与される。つまり、操舵装置2では、操舵側アクチュエータ12から付与されるモータトルクである操舵反力により、ステアリングホイール3の操舵に必要な操舵トルクThが変更される。
【0024】
ちなみに、ピニオン軸21を設ける理由は、ピニオン軸21と共にラック軸22をラックハウジング23の内部に支持するためである。すなわち、操舵装置2に設けられる図示しない支持機構によって、ラック軸22は、その軸方向に沿って移動可能に支持されるとともに、ピニオン軸21へ向けて押圧される。これにより、ラック軸22はラックハウジング23の内部に支持される。ただし、ピニオン軸21を使用せずにラック軸22をラックハウジング23に支持する他の支持機構を設けてもよい。
【0025】
<操舵装置2の電気的構成>
図1に示すように、操舵側モータ13及び転舵側モータ32は、操舵制御装置1に接続されている。操舵制御装置1は、操舵側モータ13及び転舵側モータ32の作動を制御する。
【0026】
操舵制御装置1には、トルクセンサ41と、操舵側回転角センサ42と、転舵側回転角センサ43と、車速センサ44とが接続されている。
トルクセンサ41は、運転者のステアリング操舵によりステアリング軸11に付与されたトルクを示す値である操舵トルクThを検出する。トルクセンサ41は、ステアリング軸11における操舵側減速機構14よりもステアリングホイール3側の部分に設けられている。トルクセンサ41は、ステアリング軸11の途中に設けられたトーションバー41aの捩れに基づいて操舵トルクThを検出する。なお、操舵トルクThは、例えば右方向に操舵した場合に正の値、左方向に操舵した場合に負の値として検出する。
【0027】
操舵側回転角センサ42は、操舵側モータ13の回転軸の角度である回転角θaを360度の範囲内で検出する。操舵側回転角センサ42は、操舵側モータ13に設けられている。操舵側モータ13の回転角θaは、操舵角θsの演算に使用される。操舵側モータ13と、ステアリング軸11とは、操舵側減速機構14を介して連動する。このため、操舵側モータ13の回転角θaと、ステアリング軸11の回転角、ひいてはステアリングホイール3の回転角である操舵角θsとの間には相関がある。したがって、操舵側モータ13の回転角θaに基づき操舵角θsを求めることができる。なお、回転角θaは、例えば右方向に操舵した場合に正の値、左方向に操舵した場合に負の値として検出する。
【0028】
転舵側回転角センサ43は、転舵側モータ32の回転軸の角度である回転角θbを360度の範囲内で検出する。転舵側回転角センサ43は、転舵側モータ32に設けられている。転舵側モータ32の回転角θbは、ピニオン角θpの演算に使用される。転舵側モータ32と、ピニオン軸21とは、伝達機構33、変換機構34、及びラックアンドピニオン機構24を介して連動する。このため、転舵側モータ32の回転角θbと、ピニオン軸21の回転角度であるピニオン角θpとの間には相関がある。したがって、転舵側モータ32の回転角θbに基づきピニオン角θpを求めることができる。また、ピニオン軸21は、ラック軸22に噛合されている。このため、ピニオン角θpとラック軸22の移動量との間にも相関関係がある。すなわち、ピニオン角θpは、転舵輪5の転舵角を反映する値である。なお、回転角θbは、例えば右方向に操舵した場合に正の値、左方向に操舵した場合に負の値として検出する。
【0029】
車速センサ44は、車両の走行速度を示す情報として設定される車速Vを検出する。
<操舵制御装置1の機能>
操舵制御装置1は、図示しない中央処理装置やメモリを備えている。操舵制御装置1は、所定の演算周期毎にメモリに記憶されたプログラムをCPUが実行する。これにより、各種の制御が実行する。
【0030】
図2に示すように、操舵制御装置1は、操舵側モータ13に対する給電を制御する操舵側制御部50を備えている。操舵側制御部50は、操舵側電流センサ54を有している。操舵側電流センサ54は、操舵側制御部50と、操舵側モータ13の各相のモータコイルとの間の接続線を流れる操舵側モータ13の各相の電流値から得られる操舵側実電流値Iaを検出する。操舵側電流センサ54は、操舵側モータ13に対応して設けられる図示しないインバータにおいて、スイッチング素子のそれぞれのソース側に接続されたシャント抵抗の電圧降下を電流として取得する。なお、図2では、説明の便宜上、各相の接続線及び各相の電流センサをそれぞれ1つに纏めて図示している。
【0031】
また、操舵制御装置1は、転舵側モータ32に対する給電を制御する転舵側制御部60を備えている。転舵側制御部60は、転舵側電流センサ65を有している。転舵側電流センサ65は、転舵側制御部60と転舵側モータ32の各相のモータコイルとの間の接続線を流れる転舵側モータ32の各相の電流値から得られる転舵側実電流値Ibを検出する。転舵側電流センサ65は、転舵側モータ32に対応して設けられる図示しないインバータにおいて、スイッチング素子のそれぞれのソース側に接続されたシャント抵抗の電圧降下を電流として取得する。なお、図2では、説明の便宜上、各相の接続線及び各相の電流センサをそれぞれ1つに纏めて図示している。
【0032】
<操舵側制御部50>
操舵側制御部50には、操舵トルクTh、車速V、回転角θa、転舵側実電流値Ib、ピニオン角θp、及び後述の目標ピニオン角θp*が入力される。操舵側制御部50は、操舵トルクTh、車速V、回転角θa、転舵側実電流値Ib、ピニオン角θp、及び目標ピニオン角θp*に基づいて、操舵側モータ13に対する給電を制御する。
【0033】
操舵側制御部50は、操舵角演算部51と、目標反力トルク演算部52と、通電制御部53とを有している。
操舵角演算部51には、回転角θaが入力される。操舵角演算部51は、回転角θaを、例えば、車両が直進しているときのステアリングホイール3の位置であるステアリング中立位置からの操舵側モータ13の回転数をカウントすることにより、360度を超える範囲を含む積算角に換算する。操舵角演算部51は、換算して得られた積算角に操舵側減速機構14の回転速度比に基づき換算係数を乗算することで、操舵角θsを演算する。こうして得られた操舵角θsは、目標反力トルク演算部52に出力される。また、操舵角θsは、転舵側制御部60、すなわち後述の舵角比可変制御部62に出力される。
【0034】
目標反力トルク演算部52には、操舵トルクTh、車速V、転舵側実電流値Ib、操舵角θs、ピニオン角θp、及び後述の目標ピニオン角θp*が入力される。目標反力トルク演算部52は、操舵トルクTh、車速V、転舵側実電流値Ib、操舵角θs、ピニオン角θp、及び目標ピニオン角θp*に基づいて、操舵側モータ13を通じて発生させるべきステアリングホイール3の操舵反力の目標値となる反力制御量としての目標反力トルクTs*を演算する。本実施形態において、目標反力トルクTs*はトルク指令値の一例であり、目標反力トルク演算部52はトルク指令値演算部の一例である。
【0035】
具体的には、目標反力トルク演算部52は、操舵力演算部55と、軸力演算部56とを有している。
操舵力演算部55には、操舵トルクTh及び車速Vが入力される。操舵力演算部55は、操舵トルクTh及び車速Vに基づいて、操舵力Tb*を演算する。操舵力Tb*は、運転者の操舵方向と同一方向に作用する。操舵力演算部55は、操舵トルクThの絶対値が大きいほど、また車速Vが遅いほど、より大きな絶対値の操舵力Tb*を演算する。操舵力Tb*は、トルクの次元(N・m)の値として演算される。こうして得られた操舵力Tb*は、減算器57に出力される。
【0036】
軸力演算部56には、車速V、操舵角θs、転舵側実電流値Ib、ピニオン角θp、及び後述の目標ピニオン角θp*が入力される。軸力演算部56は、車速V、操舵角θs、転舵側実電流値Ib、ピニオン角θp、及び目標ピニオン角θp*に基づいて、転舵輪5を通じてラック軸22に作用する軸力Fを演算する。軸力Fは、トルクの次元(N・m)の値として演算される。軸力Fは、運転者の操舵方向とは反対方向に作用する。減算器57にて、操舵力Tb*から軸力Fが差し引かれることで、目標反力トルクTs*が演算される。こうして得られた目標反力トルクTs*は、通電制御部53に出力される。
【0037】
通電制御部53には、目標反力トルクTs*、回転角θa、及び操舵側実電流値Iaが入力される。通電制御部53は、目標反力トルクTs*に基づいて、操舵側モータ13に対する電流指令値Ia*を演算する。通電制御部53は、電流指令値Ia*と、操舵側実電流値Iaを回転角θaに基づき変換して得られるdq座標上の電流値との偏差を求め、当該偏差を無くすように操舵側モータ13に対する給電を制御する。操舵側モータ13は、目標反力トルクTs*に応じたトルクを発生する。これにより、運転者に対して適度な手応え感を与えることができる。
【0038】
<転舵側制御部60>
転舵側制御部60には、操舵角θs、車速V、及び回転角θbが入力される。転舵側制御部60は、操舵角θs、車速V、及び回転角θbに基づいて、転舵側モータ32に対する給電を制御する。
【0039】
転舵側制御部60は、ピニオン角演算部61と、舵角比可変制御部62と、ピニオン角フィードバック制御部(図2中「ピニオン角F/B制御部」)63と、通電制御部64とを有している。
【0040】
ピニオン角演算部61には、回転角θbが入力される。ピニオン角演算部61は、回転角θbを、例えば、車両が直進しているときのラック軸22の位置であるラック中立位置からの転舵側モータ32の回転数をカウントすることにより、360度を超える範囲を含む積算角に換算する。ピニオン角演算部61は、換算して得られた積算角に伝達機構33の減速比、変換機構34のリード、及びラックアンドピニオン機構24の回転速度比に基づく換算係数を乗算することで、ピニオン軸21の実際の回転角であるピニオン角θpを演算する。なお、ピニオン角θpは、ラック中立位置よりも、例えば右側の角度である場合に正、左側の角度である場合に負とする。こうして得られたピニオン角θpは、ピニオン角フィードバック制御部63に出力される。また、ピニオン角θpは、操舵側制御部50、すなわち目標反力トルク演算部52の軸力演算部56に出力される。
【0041】
舵角比可変制御部62には、車速V及び操舵角θsが入力される。舵角比可変制御部62は、操舵角θsに調整量を加算することによって目標ピニオン角θp*を演算する。舵角比可変制御部62は、操舵角θsに対する目標ピニオン角θp*の比率である舵角比を可変するための調整量を、車速Vに応じて可変させる。例えば、車速Vが遅い場合に速い場合よりも、操舵角θsの変化に対する目標ピニオン角θp*の変化を大きくするように、調整量を可変させる。操舵角θsと、目標ピニオン角θp*との間には、相関関係がある。また、ピニオン角θpは、目標ピニオン角θp*に基づいて制御される。このため、操舵角θsと、ピニオン角θpとの間にも相関関係がある。
【0042】
ピニオン角フィードバック制御部63には、目標ピニオン角θp*及びピニオン角θpが入力される。ピニオン角フィードバック制御部63は、ピニオン角θpを目標ピニオン角θp*に追従させるべくピニオン角θpのフィードバック制御として、比例項、積分項、及び微分項を用いたPID制御を実行する。すなわち、ピニオン角フィードバック制御部63は、目標ピニオン角θp*とピニオン角θpとの偏差を求め、当該偏差を無くすように、転舵力の目標となる目標制御量としての転舵力指令値T*を演算する。
【0043】
通電制御部64には、転舵力指令値T*、回転角θb、及び転舵側実電流値Ibが入力される。通電制御部64は、転舵力指令値T*に基づいて、転舵側モータ32に対する電流指令値Ib*を演算する。そして、通電制御部64は、電流指令値Ib*と、転舵側実電流値Ibを回転角θbに基づき変換して得られるdq座標上の電流値との偏差を求め、当該偏差を無くすように転舵側モータ32に対する給電を制御する。これにより、転舵側モータ32は、転舵力指令値T*に応じた角度だけ回転する。
【0044】
<軸力演算部56>
ここで、軸力演算部56の機能について詳しく説明する。
図3に示すように、軸力演算部56は、配分軸力演算部71と、エンド軸力演算部72と、偏差軸力演算部73と、軸力選択部74とを有している。
【0045】
配分軸力演算部71は、ラック軸22に作用する軸力に応じた配分軸力Fdを演算する。配分軸力Fdは、転舵輪5を通じてラック軸22に作用する軸力が好適に反映されるように、後述の角度軸力Fr及び電流軸力Fiをそれぞれの配分比率で配分して得られるラック軸22に作用する軸力を推定した演算上の軸力に相当する。こうして得られた配分軸力Fdは、加算器75に出力される。本実施形態において、配分軸力Fdはトルク成分の一例である。
【0046】
エンド軸力演算部72は、ステアリングホイール3の操舵限界、すなわち転舵輪5の転舵限界に達する状況になる場合に当該状況を運転者に伝えるエンド軸力Fieを演算する。エンド軸力Fieは、操舵角θsの絶対値が操舵限界に対応する操舵角限界に近付く場合に、当該操舵角限界を超える側への更なるステアリングホイール3の操舵を規制するべく、当該操舵に対して抗する力に相当する。
【0047】
エンド軸力演算部72には、目標ピニオン角θp*が入力される。エンド軸力演算部72は、目標ピニオン角θp*に基づいてエンド軸力Fieを演算する。具体的には、エンド軸力演算部72は、目標ピニオン角θp*と、エンド軸力Fieとの関係を定めたエンド軸力マップを備えており、目標ピニオン角θp*を入力として、エンド軸力Fieをマップ演算する。エンド軸力演算部72は、目標ピニオン角θp*の絶対値が閾値角度θie以下である場合、エンド軸力Fieを「0」として演算する。エンド軸力演算部72は、目標ピニオン角θp*の絶対値が閾値角度θieよりも大きい場合、操舵角θsが操舵角限界を超える状況になるとして、絶対値が「0」よりも大きなエンド軸力Fieを演算する。エンド軸力Fieは、目標ピニオン角θp*の絶対値が閾値角度θieを超えてある程度大きくなると、人の手ではそれ以上のステアリングホイール3の操舵ができないほどに大きな絶対値となるように設定されている。こうして得られたエンド軸力Fieは、軸力選択部74に出力される。
【0048】
偏差軸力演算部73は、ステアリングホイール3の操舵状態と、転舵輪5の転舵状態との間の舵角比を考慮した関係にずれが生じる状況になる場合に当該状況を運転者に伝える偏差軸力Fvを演算する。ステアリングホイール3の操舵状態と、転舵輪5の転舵状態との間の舵角比を考慮した関係にずれが生じる場合としては、例えば、転舵輪5が縁石等の障害物に当たっている状況が挙げられる。この場合、転舵輪5を上記障害物側の一方向へ転舵させることができないにもかかわらず、転舵輪5の停止位置に対応するステアリングホイール3の停止位置を超えて当該一方向へ操舵される可能性がある。これは、操舵部4と転舵部6との間の動力伝達路が分離されているからである。他にも、ステアリングホイール3の操舵状態と、転舵輪5の転舵状態との間の舵角比を考慮した関係にずれが生じる場合としては、過熱保護のために転舵側モータ32の作動が制限される結果、操舵角θsと転舵角との間の相関が崩れる状況が挙げられる。これは、ピニオン角θpが目標ピニオン角θp*に追従し難くなるからである。偏差軸力Fvは、転舵輪5が縁石等の障害物に当たった場合に、ステアリングホイール3の更なる操舵を規制するため、当該操舵に対して抗する力に相当する。また、過熱保護のため転舵側モータ32の作動が制限される場合、ピニオン角θpの目標ピニオン角θp*への追従性を確保するためにステアリングホイール3の操舵を規制するべく、当該操舵に対して抗する力に相当する。
【0049】
偏差軸力演算部73には、操舵角θs、ピニオン角θp、及び転舵側実電流値Ibが入力される。偏差軸力演算部73は、ピニオン角θpに調整量を加算することによって、転舵角の指標の値として表されているピニオン角θpを舵角比に応じて操舵角の指標の値として表されるように換算した換算角を演算する。偏差軸力演算部73は、調整量を、舵角比可変制御部62が定義する演算規則に対して入力及び出力の関係を逆とした演算規則となるように、車速Vに応じて可変させる。偏差軸力演算部73は、操舵角θsから換算角を差し引いて得られる偏差に基づいて、偏差軸力Fvを演算する。具体的には、偏差軸力演算部73は、偏差の絶対値と、偏差軸力Fvとの関係を定めた偏差軸力マップを備えており、偏差を入力として、偏差軸力Fvをマップ演算する。そして、偏差軸力演算部73は、転舵側実電流値Ibに基づいて偏差軸力Fvの符号を設定する。すなわち、偏差軸力演算部73は、転舵側実電流値Ibがゼロ値を含む正値の場合に偏差軸力Fvを正とし、転舵側実電流値Ibが負値の場合に偏差軸力Fvを負とする。こうして得られた偏差軸力Fvは、軸力選択部74に出力される。
【0050】
軸力選択部74には、エンド軸力Fie及び偏差軸力Fvが入力される。軸力選択部74は、エンド軸力Fie及び偏差軸力Fvのうちの絶対値が最も大きい軸力を選択し、当該選択した軸力を選択軸力Fslとして演算する。加算器75にて、選択軸力Fslが配分軸力Fdに加算されることで、軸力Fが演算される。図2に示すように、こうして得られた軸力Fは、減算器57に出力される。減算器57にて、操舵力Tb*から軸力Fが差し引かれることで目標反力トルクTs*が演算される。こうして得られた目標反力トルクTs*は、通電制御部53に出力される。
【0051】
<配分軸力演算部71>
次に、配分軸力演算部71の機能について詳しく説明する。
図4に示すように、配分軸力演算部71は、角度軸力演算部81と、電流軸力演算部82と、配分比演算部83と、停車時勾配調整部84と、停車時配分軸力演算部85と、走行時配分軸力演算部86と、走行時勾配調整部87と、軸力調停部88とを有している。
【0052】
具体的には、角度軸力演算部81は、軸力基礎成分演算部91と、ヒステリシス成分演算部92とを有している。
軸力基礎成分演算部91には、目標ピニオン角θp*が入力される。軸力基礎成分演算部91は、目標ピニオン角θp*に基づいて、角度軸力Frの基礎成分である軸力基礎成分Frbを演算する。角度軸力Frは、任意に設定する車両のモデルにより規定される軸力の理想値である。角度軸力Frは、路面情報が反映されない軸力として演算される。路面情報とは、車両の横方向への挙動に影響を与えない微小な凹凸や車両の横方向への挙動に影響を与える段差等の情報である。具体的には、軸力基礎成分演算部91は、目標ピニオン角θp*の絶対値が大きくなるほど、軸力基礎成分Frbの絶対値が大きくなるように演算する。軸力基礎成分Frbは、トルクの次元(N・m)の値として演算される。こうして得られた軸力基礎成分Frbは、加算器93に出力される。
【0053】
ヒステリシス成分演算部92には、操舵角θsが入力される。ヒステリシス成分演算部92は、操舵角θsに基づいて、角度軸力Frがヒステリシス特性を有するように軸力基礎成分Frbに付加する成分であるヒステリシス成分Fhyを演算する。
【0054】
図5(a),(b)に示すように、ヒステリシス成分演算部92は、操舵角θsと、ヒステリシス成分Fhyとの関係を定めたヒステリシスマップM1,M2を備えている。ヒステリシス成分演算部92は、操舵角θsの符号及び増減に基づき判断される切り込み操舵であるか、切り戻し操舵であるかに応じて、ヒステリシスマップM1,M2のいずれかを用いてヒステリシス成分Fhyをマップ演算する。本実施形態において、切り込み操舵は、操舵の方向が同一の一方向への操舵を継続する操舵のことである。また、本実施形態において、切り戻し操舵は、操舵の方向が変化した後の僅か所定範囲内の操舵角θsの間の操舵のことである。なお、ヒステリシスマップM1,M2において、「θs」とは、後述のように、切り込み操舵や切り戻し操舵の開始位置での操舵角θsを原点とした場合の操舵角θsの変化量を示している。
【0055】
具体的には、ヒステリシス成分演算部92は、切り込み操舵時には、ヒステリシスマップM1を用いて、ヒステリシス成分Fhyを演算する。この場合、ヒステリシス成分Fhyは、操舵角θsの絶対値が大きくなるほど、絶対値が大きくなるとともに、操舵角θsに対するヒステリシス成分Fhyの立ち上がり時の変化率であるヒステリシス勾配の絶対値が小さくなるように算出される。この場合のヒステリシス成分Fhyの絶対値は、操舵角θsが所定以上の範囲で飽和するようになっており、その時の値の最大値が最大値Fmax以下となるように算出される。
【0056】
そして、ヒステリシス成分演算部92は、右方向への切り込み操舵時、その切り込み操舵の開始位置での操舵角θsをヒステリシスマップM1の原点として第1象限に示される値を用いる。また、ヒステリシス成分演算部92は、左方向への切り込み操舵を行う場合、その切り込み操舵の開始位置での操舵角θsをヒステリシスマップM1の原点として第3象限に示される値を用いる。
【0057】
一方、ヒステリシス成分演算部92は、切り戻し操舵時には、ヒステリシスマップM2を用いて、ヒステリシス成分Fhyを演算する。この場合、ヒステリシス成分Fhyは、操舵角θsに比例するように算出される。この場合のヒステリシス成分Fhyは、原点から所定範囲内の操舵角θsの場合にのみ算出される。
【0058】
そして、ヒステリシス成分演算部92は、右方向への切り戻し操舵を行う場合、その切り戻し操舵の開始位置での操舵角θsをヒステリシスマップM2の原点として、当該原点から操舵角θsが所定範囲内にある間だけ第1象限に示される値を用いる。また、ヒステリシス成分演算部92は、左方向への切り戻し操舵を行う場合、その切り戻し操舵の開始位置での操舵角θsをヒステリシスマップM2の原点として、当該原点から操舵角θsが所定範囲内にある間だけ第3象限に示される値を用いる。
【0059】
本実施形態において、ヒステリシスマップM1,M2は、車速Vに応じてヒステリシス成分Fhyを変更するように構成されている。ヒステリシスマップM1,M2は、所望の操舵フィーリングを実現することを目的として、車速Vに応じてヒステリシス成分Fhyを変更する。本実施形態では、例えば、車速Vが小さいほど、ヒステリシス勾配を大きくするようにヒステリシス成分Fhyを変更するようにしている。なお、操舵角θsの微分値である操舵速度に応じてヒステリシス成分Fhyを変更してもよい。この場合、例えば、操舵速度が大きいほど、ヒステリシス勾配を小さくするようにヒステリシス成分Fhyを変更するようにしてもよい。
【0060】
これにより、ステアリングホイール3を一定周波数で周期的に切り込み操舵及び切り戻し操舵を繰り返し行うサイン操舵した際において、ヒステリシス成分演算部92は、操舵角θsの変化に対してヒステリシス特性を有するように演算上のヒステリシス成分Fhyを演算する。こうして得られたヒステリシス成分Fhyは、加算器93に出力される。加算器93にて、軸力基礎成分Frbにヒステリシス成分Fhyが加算されることで角度軸力Frが演算される。こうして得られた角度軸力Frは、停車時配分軸力演算部85及び走行時配分軸力演算部86に出力される。
【0061】
本実施形態において、ピニオン角θp及び目標ピニオン角θp*は、操舵装置2の動作に応じて変化する第1状態変数の一例である。そして、操舵装置2の動作に応じて変化する特定の状態変数の一例として、操舵角θsを設定する場合、ピニオン角θp及び目標ピニオン角θp*は、操舵角θsと相関を有しており、操舵角θsに連動して変化する。このため、ピニオン角θp及び目標ピニオン角θp*は、操舵角θsに対して基本的にヒステリシス特性を有さないことになる。つまり、角度軸力演算部81は、第1成分演算部の一例である。また、角度軸力Frは、第1成分の一例である。
【0062】
電流軸力演算部82には、転舵側実電流値Ibが入力される。電流軸力演算部82は、転舵側実電流値Ibに基づいて、電流軸力Fiを演算する。電流軸力Fiは、転舵輪5を転舵させるべく動作するラック軸22に実際に作用する軸力、すなわちラック軸22に実際に伝達される軸力の推定値である。電流軸力Fiは、上記路面情報が反映される軸力として演算される。具体的には、電流軸力演算部82は、転舵側モータ32によってラック軸22に加えられるトルクと、転舵輪5を通じてラック軸22に加えられる力に応じたトルクとが釣り合うとして、転舵側実電流値Ibの絶対値が大きくなるほど、電流軸力Fiの絶対値が大きくなるように演算する。電流軸力Fiは、トルクの次元(N・m)の値として演算される。こうして得られた電流軸力Fiは、停車時勾配調整部84及び走行時配分軸力演算部86に出力される。
【0063】
本実施形態において、転舵側実電流値Ibは、操舵装置2の動作に応じて変化する第2状態変数の一例である。そして、操舵装置2の動作に応じて変化する特定の状態変数の一例として、操舵角θsを設定する場合、転舵側実電流値Ibは、操舵角θsと相関を有するピニオン角θpで転舵輪5に実際に作用する軸力に連動して変化する。転舵輪5に実際に作用する軸力は、ピニオン角θpの変化に対してヒステリシス特性を有する。このため、転舵側実電流値Ibは、操舵角θsに対して基本的にヒステリシス特性を有することになる。つまり、電流軸力演算部82は、第2成分演算部の一例である。また、電流軸力Fiは、第2成分の一例である。
【0064】
配分比演算部83には、目標ピニオン角θp*及び車速Vが入力される。配分比演算部83は、目標ピニオン角θp*及び車速Vに基づいて、配分ゲインDを演算する。配分ゲインDは、角度軸力Frと、電流軸力Fiとを配分して配分軸力Fdを得る際の電流軸力Fiの配分比率である。具体的には、配分比演算部83は、目標ピニオン角θp*及び車速Vと、配分ゲインDとの関係を定めた配分ゲインマップを備えており、目標ピニオン角θp*及び車速Vを入力として、配分ゲインDをマップ演算する。こうして得られた配分ゲインDは、停車時配分軸力演算部85及び走行時配分軸力演算部86に出力される。
【0065】
配分ゲインDは、車速Vが、例えば、時速6キロ未満等の停車状態を含む低車速である第1車速の範囲でゼロ値に近付くほど「1(100%)」に近付くように変位する。この場合、第1車速では、角度軸力Fr及び電流軸力Fiの間で、配分軸力Fdに対する電流軸力Fiの影響が支配的になるように配分されることになる。また、配分ゲインDは、車速Vが、例えば、時速6キロ以上等の中高速の走行状態を含む第2車速の範囲で大きくなるほど「ゼロ値(0%)」に近付くように変位する。この場合、第2高速では、角度軸力Fr及び電流軸力Fiの間で、配分軸力Fdに対する角度軸力Frの影響が支配的になるように配分されることになる。
【0066】
また、配分ゲインDは、目標ピニオン角θp*が大きい場合に小さい場合よりも値が大きくなるように変位する。一方、配分ゲインDは、目標ピニオン角θp*が小さい場合に大きい場合よりも値が小さくなるように変位する。この場合、第1車速では、配分軸力Fdに対する電流軸力Fiの影響が支配的になる傾向のなかで、当該傾向が目標ピニオン角θp*が大きくなるほど強まる。一方、第1車速では、配分軸力Fdに対する電流軸力Fiの影響が支配的になる傾向のなかで、当該傾向が目標ピニオン角θp*が小さくなるほど弱まる。
【0067】
なお、配分ゲインDは、角度軸力Fr及び電流軸力Fiのいずれかしか配分軸力Fdに配分しない、「1(100%)」又は「ゼロ値(0%)」となる状況を含んでいる。つまり、本実施形態の配分ゲインDは、ゼロ値の概念を含む。
【0068】
停車時勾配調整部84には、電流軸力Fiが入力される。停車時勾配調整部84は、電流軸力Fiについて、当該電流軸力Fiの変化態様を示す軸力勾配の大小を変化させるように調整して得られる調整後の電流軸力Fiaを演算する。ここで、電流軸力Fiの軸力勾配を調整することは、当該電流軸力Fiの操舵角θsに対する変化態様を示す軸力勾配を調整することに相当する。具体的には、停車時勾配調整部84は、電流軸力Fiと、調整後の電流軸力Fiaとの関係を定めた勾配調整マップM11を備えており、電流軸力Fiを入力として、調整後の電流軸力Fiaをマップ演算する。こうして得られた調整後の電流軸力Fiaは、停車時配分軸力演算部85に出力される。
【0069】
図6に示すように、勾配調整マップM11は、入力及び出力の関係が比例を示す比例形状M0に対して、入力に対して出力の値が増大する関係を示す増幅形状となるように構成されている。つまり、調整後の電流軸力Fiaは、電流軸力Fiに対して当該電流軸力Fiの絶対値を増大させた値として演算される。そして、電流軸力Fiに対する調整後の電流軸力Fiaの増幅率は、電流軸力Fiの絶対値がゼロ値付近で最も大きくなり、電流軸力Fiの絶対値が大きくなるほど小さくなるとともに、電流軸力Fiの絶対値が所定値以上の範囲で飽和するようになっている。この電流軸力Fiに対する調整後の電流軸力Fiaの増幅率が飽和する時の調整後の電流軸力Fiaの最大値が最大値F0となるように演算される。この場合、調整後の電流軸力Fiaの軸力勾配は、電流軸力Fiの絶対値がゼロ値付近で、調整前の電流軸力Fiと比べて大きくなる。電流軸力Fiに対する調整後の電流軸力Fiaの増幅率や、最大値F0に関わる勾配調整マップM11は、調整後の電流軸力Fiaを用いて制御を続けたとしても、制御上の振動特性が現れることを抑えて制御上の安定性を確保することができる観点で、試験やシミュレーション等に基づいて設定されている。
【0070】
図4の説明に戻り、停車時配分軸力演算部85には、角度軸力Fr、調整後の電流軸力Fia、及び配分ゲインDが入力される。停車時配分軸力演算部85は、配分ゲインDを調整後の電流軸力Fiaに乗算した値と、「1」から配分ゲインDが差し引かれることで得られたゲインを調整後の角度軸力Frに乗算した値とを足し合わせることにより、停車時配分軸力Fd1を演算する。つまり、停車時配分軸力Fd1は、配分している角度軸力Fr及び電流軸力Fiのうち電流軸力Fiについてのみ軸力勾配が調整された成分として演算される。一方、停車時配分軸力Fd1は、配分している角度軸力Fr及び電流軸力Fiのうち角度軸力Frについてはヒステリシス勾配が調整されない成分として演算される。こうして得られた停車時配分軸力Fd1は、軸力調停部88に出力される。
【0071】
本実施形態において、停車時勾配調整部84と停車時配分軸力演算部85との機能を通じて実現される演算は、電流軸力Fiについて軸力勾配を調整することで得られる調整後の電流軸力Fiを配分軸力Fdの演算に用いる第1の演算状態に相当する。
【0072】
走行時配分軸力演算部86には、角度軸力Fr、電流軸力Fi、及び配分ゲインDが入力される。走行時配分軸力演算部86は、配分ゲインDを電流軸力Fiに乗算した値と、「1」から配分ゲインDが差し引かれることで得られたゲインを角度軸力Frに乗算した値とを足し合わせることにより、走行時配分軸力Fd2を演算する。こうして得られた走行時配分軸力Fd2は、走行時勾配調整部87に出力される。
【0073】
走行時勾配調整部87には、走行時配分軸力Fd2が入力される。走行時勾配調整部87は、走行時配分軸力Fd2について、当該走行時配分軸力Fd2の変化態様を示す軸力勾配の大小を変化させるように調整して得られる調整後の走行時配分軸力Fd2aを演算する。ここで、走行時配分軸力Fd2の軸力勾配を調整することは、走行時配分軸力Fd2に含まれる角度軸力Frについて、当該角度軸力Frの操舵角θsに対する変化態様を示すヒステリシス勾配を調整することに相当する。また、走行時配分軸力Fd2の軸力勾配を調整することは、走行時配分軸力Fd2に含まれる電流軸力Fiについて、当該電流軸力Fiの操舵角θsに対する変化態様を示す軸力勾配を調整することに相当する。具体的には、走行時勾配調整部87は、走行時配分軸力Fd2と、調整後の走行時配分軸力Fd2aとの関係を定めた勾配調整マップM12を備えており、走行時配分軸力Fd2を入力として、調整後の走行時配分軸力Fd2aをマップ演算する。つまり、走行時配分軸力Fd2aは、配分している角度軸力Frについて、ヒステリシス勾配が調整されているとともに、配分している電流軸力Fiについて軸力勾配が調整されている成分として演算される。こうして得られた調整後の走行時配分軸力Fd2aは、軸力調停部88に出力される。
【0074】
図7に示すように、勾配調整マップM12は、入力及び出力の関係が比例を示す比例形状M0に対して、入力に対して出力の値が増大する関係を示す増幅形状となるように構成されている。つまり、調整後の走行時配分軸力Fd2aは、走行時配分軸力Fd2に対して当該走行時配分軸力Fd2の絶対値を増大させた値として演算される。そして、走行時配分軸力Fd2に対する調整後の走行時配分軸力Fd2aの増幅率は、走行時配分軸力Fd2の絶対値がゼロ値付近で最も大きくなり、走行時配分軸力Fd2の絶対値が大きくなるほど小さくなるとともに、走行時配分軸力Fd2の絶対値が所定値以上の範囲で飽和するようになっている。この走行時配分軸力Fd2に対する調整後の走行時配分軸力Fd2aの増幅率が飽和する時の調整後の走行時配分軸力Fd2aの最大値が最大値F1となるように演算される。この場合、調整後の走行時配分軸力Fd2の軸力勾配は、走行時配分軸力Fd2の絶対値がゼロ値付近で、調整前の走行時配分軸力Fd2と比べて大きくなる。走行時配分軸力Fd2に対する調整後の走行時配分軸力Fd2aの増幅率は、当該走行時配分軸力Fd2の絶対値がゼロ値付近であっても、勾配調整マップM11の電流軸力Fiの絶対値がゼロ値付近の増幅率と比べて小さく設定されている。また、最大値F1は、勾配調整マップM11の最大値F0と比べて小さく設定されている。また、走行時配分軸力Fd2に対する調整後の走行時配分軸力Fd2aの増幅率や、最大値F1に関わる勾配調整マップM12は、調整後の走行時配分軸力Fd2aを用いて制御を続けたとしても、制御上の振動特性が現れることを抑えて制御上の安定性を確保することができる観点で、試験やシミュレーション等に基づいて設定されている。
【0075】
本実施形態において、走行時配分軸力演算部86と走行時勾配調整部87との機能を通じて実現される演算は、角度軸力Frについてヒステリシス勾配を調整するとともに、電流軸力Fiについて軸力勾配を調整することで得られる調整後の走行時配分軸力Fd2aを配分軸力Fdの演算に用いる第2の演算状態に相当する。
【0076】
軸力調停部88には、停車時配分軸力Fd1、調整後の走行時配分軸力Fd2a、及び車速Vが入力される。配分軸力演算部71では、停車時勾配調整部84と停車時配分軸力演算部85との機能を通じて実現される第1の演算状態と、走行時配分軸力演算部86と走行時勾配調整部87との機能を通じて実現される第2の演算状態とが並列的に実行されるなかで、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aがそれぞれに得られる。そして、軸力調停部88には、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aが並列的に入力される。軸力調停部88は、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aを所定配分比率で合算するなかで、車速Vに基づいた調停を実施する。
【0077】
具体的には、軸力調停部88は、第1車速を示す車速Vが入力された場合、停車時配分軸力Fd1の配分比率を「100%」、調整後の走行時配分軸力Fd2aの配分比率を「ゼロ値」として配分軸力Fdを演算する。この場合、軸力調停部88は、停車時配分軸力Fd1を配分軸力Fdとして出力するように調停する。一方、軸力調停部88は、第2車速を示す車速Vが入力された場合、停車時配分軸力Fd1の配分比率を「ゼロ値」、調整後の走行時配分軸力Fd2aの配分比率を「100%」として配分軸力Fdを演算する。この場合、軸力調停部88は、調整後の走行時配分軸力Fd2aを配分軸力Fdとして出力するように調停する。図3に示すように、こうして得られた配分軸力Fdは、加算器75に出力される。
【0078】
また、図4に示すように、軸力調停部88は、直前周期(1周期前)に対して、第1車速及び第2車速の間で異なる車速Vが入力されると、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aの各配分比率を徐々に変化させる機能を有している。直前周期(1周期前)に対して、第1車速及び第2車速の間で異なる車速Vが入力される状況では、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aの間で配分軸力Fdとして出力される成分、すなわち目標反力トルクTs*に反映させる成分が切り替わる。そして、軸力調停部88は、直前周期(1周期前)に対して、第1車速及び第2車速の間で異なる車速Vが入力された場合、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aの各配分比率に対して、時間に対する徐変処理を実行する。
【0079】
例えば、軸力調停部88は、車速Vが第1車速から第2車速に変化した場合、停車時配分軸力Fd1の配分比率を「100%」から「ゼロ値」へと切り替えるなかで、当該配分比率を経過時間に対して徐々に変化させる。この場合、軸力調停部88は、調整後の走行時配分軸力Fd2aの配分比率を「ゼロ値」から「100%」へと切り替えるなかで、当該配分比率を経過時間に対して徐々に変化させる。つまり、軸力調停部88は、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aの間で配分軸力Fdとして出力する成分、すなわち目標反力トルクTs*に反映させる成分を切り替える際、当該切り替え前後での配分軸力Fdの急変を抑制するように当該配分軸力Fdを補償する機能を有する。
【0080】
なお、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aの各配分比率を徐々に変化させる手法としては、例えば、軸力調停部88は、いずれかの配分比率について切り替え前後の偏差を取得し、当該偏差分をオフセット量として演算するようにしてもよい。この場合、軸力調停部88は、切り替え後の配分比率を切り替え前の配分比率側にオフセット量だけずらすとともに、オフセット量を時間に対して徐々に小さくしていずれ切り替え後の配分比率が本来の切り替え後の値となるように変化させればよい。停車時勾配調整部84と、停車時配分軸力演算部85と、走行時配分軸力演算部86と、走行時勾配調整部87と、軸力調停部88とは、トルク成分演算部の一例である。
【0081】
本実施形態の作用を説明する。
本実施形態では、状況に応じて、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aを使い分けて配分軸力Fdを演算している。特に、車速Vが第1車速の状況で、停車時配分軸力Fd1を配分軸力Fdとして使用するようにしている。つまり、車両が第1車速を示す車速Vでゆっくりと直進するような状況では、目標ピニオン角θp*が小さいことから配分軸力Fdに対する電流軸力Fiの影響が弱まるなかで、これを補うように電流軸力Fiの軸力勾配が大きくなるように勾配調整マップM11による調整がされる。この場合、車速Vが第1車速であることから角度軸力Frのヒステリシス勾配が大きくなるなかで、当該ヒステリシス勾配が想定以上に大きくならないように勾配調整マップM11による調整がされない。
【0082】
例えば、段差、すなわち凹凸が小さい溝状の走行路を車両が第1車速を示す車速Vでゆっくりと直進するような状況を想定する。この場合、溝状の走行路の段差に転舵輪5が乗り上げたとしても、当該段差が小さいことに起因して、電流軸力Fiとして絶対値が小さい値になることが考えられる。これに対して、勾配調整マップM11による調整がされた調整後の電流軸力Fiaは、電流軸力Fiとして絶対値がゼロ値付近の小さい値であったとしても当該電流軸力Fiの絶対値を増幅して得られた値が算出される。つまり、段差が小さい溝状の走行路を車両がゆっくりと直進するような状況で、溝状の走行路の段差に転舵輪5が乗り上げた場合、その旨を運転者に的確に伝えることができる。この場合、勾配調整マップM11による調整がされない角度軸力Frは、ヒステリシス勾配が想定以上に大きくなることが抑えられている。
【0083】
一方、車速Vが第1車速の状況で、調整後の走行時配分軸力Fd2aを配分軸力Fdとして使用してしまうと、勾配調整マップM12による調整がされた調整後の電流軸力Fiaは、電流軸力Fiとして絶対値がゼロ値付近の小さい値になったとしても当該電流軸力Fiの絶対値を増幅して得られた値が算出されることは上述と同様である。この場合、車速Vが第1車速であることから角度軸力Frのヒステリシス勾配が大きくなるなかで、当該ヒステリシス勾配が想定以上に大きくなるように勾配調整マップM12による調整がされてしまう。つまり、勾配調整マップM12による調整がされてしまう角度軸力Frは、ヒステリシス勾配が想定以上に大きくなってしまう。
【0084】
本実施形態の効果を説明する。
(1)本実施形態では、車速Vが第1車速の状況で、停車時配分軸力Fd1を配分軸力Fdとして使用して電流軸力Fiの軸力勾配を大きくしつつ、角度軸力Frに関わるヒステリシス勾配が想定以上に大きくなることに起因した制御上の振動特性が現れることを抑えることができる。したがって、制御上の安定性の向上を図ることができる。
【0085】
(2)停車状態では、停車時配分軸力Fd1を配分軸力Fdとして使用して、電流軸力Fiの軸力勾配を大きくしつつ、角度軸力Frに関わるヒステリシス勾配が想定以上に大きくなることに起因した制御上の振動特性が現れることを抑えることができる。路面反力等の路面状況を運転者に伝える観点で言えば、停車状態と走行状態との間では、停車状態で配分軸力Fdの軸力勾配を高めると都合がよくなる。つまり、角度軸力Frに付加している演算上のヒステリシス成分Fhyのヒステリシス勾配が想定以上に大きくなってしまうことが想定される状況には、停車状態と走行状態との間では停車状態が該当する。したがって、路面反力等の路面状況を運転者に伝える観点で都合がよい仕様を実現するなかで、制御上の安定性の向上を図ることができる。
【0086】
(3)並列的な演算により得られる停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aは、軸力調停部88の調停を通じて目標反力トルクTs*に反映されるようにしている。この場合、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aについて、なるべく最新の状況を加味して目標反力トルクTs*に反映させることができる。したがって、制御上の安定性の向上を図るべき状況をより的確に判断することができる。
【0087】
(4)また、軸力調停部88の機能を通じては、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aの間で目標反力トルクTs*に反映させる配分軸力Fdを切り替える際、当該切り替え前後で配分軸力Fdの急変を抑えることができる。
【0088】
上記実施形態は次のように変更してもよい。また、以下の他の実施形態は、技術的に矛盾しない範囲において、互いに組み合わせることができる。
・上記実施形態では、目標ピニオン角θp*を用いている部分について、目標ピニオン角θp*の代わりに、当該目標ピニオン角θp*と相関のある状態変数に基づき各種成分を演算するようにしてもよい。このような目標ピニオン角θp*と相関のある状態変数としては、例えば、ピニオン角θpや、操舵角θsや、回転角θaや、回転角θbであり、これらは操舵装置2の動作に応じて変化する状態変数の一例である。これらの目標ピニオン角θp*や、目標ピニオン角θp*と相関のあるこれらの角度は、転舵輪5の転舵角に換算可能な角度である。つまり、軸力基礎成分Frbや、エンド軸力Fieは、例えば、ピニオン角θpに基づき演算されるようにしてもよい。本変形例の場合であっても、上記実施形態と同様の効果を得ることができる。これは、操舵角θsや、ピニオン角θp等の目標ピニオン角θp*と相関のある状態変数についても同様である。つまり、ヒステリシス成分Fhyは、例えば、操舵角θsの代わりに、目標ピニオン角θp*に基づき演算されるようにしてもよい。
【0089】
・操舵力演算部55では、操舵力Tb*を演算する際、ステアリングホイール3の動作に関わる状態変数を少なくとも用いていればよく、車速Vを用いなくてもよいし、他の要素を組み合わせて用いるようにしてもよい。ステアリングホイール3の動作に関わる状態変数としては、上記実施形態で例示した操舵トルクThの代わりに、操舵角θsを用いたり他の要素を用いたりしてもよい。
【0090】
・ヒステリシス成分演算部92は、ヒステリシス成分Fhyを演算する際、操舵角θsを少なくとも用いていればよく、車速V等の他の要素を組み合わせて用いるようにしてもよい。
【0091】
・軸力基礎成分演算部91は、軸力基礎成分Frbを演算する際、目標ピニオン角θp*を少なくとも用いていればよく、車速V等の他の要素を組み合わせて用いるようにしてもよい。
【0092】
・配分比演算部83は、配分ゲインDを演算する際、車速Vあるいは目標ピニオン角θp*の少なくとも一方を用いていればよく、他の要素を組み合わせて用いるようにしてもよい。
【0093】
・軸力演算部56では、エンド軸力演算部72、及び偏差軸力演算部73を削除してもよい。この場合、軸力選択部74及び加算器75は、削除してもよい。そして、配分軸力演算部71で演算された配分軸力Fdは、減算器57に出力される。
【0094】
・勾配調整マップM11は、電流軸力Fiに加えて、車速V等の他の要素を組み合わせたものを入力としてマップ演算するようにしてもよい。この場合、勾配調整マップM11では、電流軸力Fiに対する調整後の電流軸力Fiaの増幅率が、例えば、車速Vが大きくなるほど小さくなるように変化させてもよい。
【0095】
・勾配調整マップM12は、走行時配分軸力Fd2に加えて、車速V等の他の要素を組み合わせたものを入力としてマップ演算するようにしてもよい。この場合、勾配調整マップM12では、例えば、走行時配分軸力Fd2に対する調整後の走行時配分軸力Fd2aの増幅率が、例えば、車速Vが大きくなるほど小さくなるように変化させてもよいし、比例形状M0に対して、入力に対して出力の値が減少する関係を示す減衰形状となるように構成してもよい。
【0096】
・軸力調停部88は、停車時配分軸力Fd1及び走行時配分軸力Fd2aの間で目標反力トルクTs*に反映する軸力を、車速Vに代えてあるいは加えて、操舵角θs等の操舵部4の操舵状態や、ピニオン角θp等の転舵部6の転舵状態を考慮するようにしてもよい。なお、車速Vに代える状態変数としては、車両の停車状態及び走行状態を判断できるような、例えば、車両の前後加速度や、車両のアクセル又はブレーキの操作状態等が考えられる。
【0097】
・軸力調停部88は、配分比率を徐変させる際、経過時間に代えてあるいは加えて、操舵角θs等の操舵部4の操舵状態や、ピニオン角θp等の転舵部6の転舵状態を考慮するようにしてもよい。
【0098】
・軸力調停部88は、車速Vに基づいて、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aのいずれを配分軸力Fdとするか選択状態を切り替える構成であってもよい。
【0099】
・停車時勾配調整部84及び停車時配分軸力演算部85の機能を通じて実現される第1の演算状態と、走行時配分軸力演算部86及び走行時勾配調整部87の機能を通じて実現される第2の演算状態とは、車速Vに基づいて、いずれ一方のみが機能するように演算状態を切り替える構成であってもよい。この場合、軸力調停部88は、削除することができる。
【0100】
・演算上のヒステリシス成分を付加する対象にする成分は、角度軸力Frの他、例えば、操舵力Tb*や、ヨーレート及び横加速度を考慮して得られる軸力等、ヒステリシス特性を有することで操舵装置2を動作させるのに都合がよくなる成分であれば適宜変更可能である。また、操舵角θsの変化に対してヒステリシス特性を有する状態変数に応じた成分は、電流軸力Fiの他、例えば、ラック軸22に作用する実際の軸力を考慮して得られる軸力や、転舵輪5に作用するタイヤ力を考慮して得られる軸力等、適宜変更可能である。そして、適宜変更された成分の間で、上記実施形態と同様の課題を生じるとしても、当該課題を上記実施形態に準じた構成を適用することで解決することができる。
【0101】
・ヒステリシス勾配や、軸力勾配は、操舵角θsの変化に対するものの他、例えば、操舵角θsと相関のあるピニオン角θp又は目標ピニオン角θp*や、操舵角θsと相関はなくても操舵装置2の動作に応じて変化する状態変数等、適宜変更可能である。そして、適宜変更されたヒステリシス勾配や、軸力勾配の間で、上記実施形態と同様の課題を生じるとしても、当該課題を上記実施形態に準じた構成を適用することで解決することができる。
【0102】
・配分軸力演算部71では、停車時配分軸力Fd1及び調整後の走行時配分軸力Fd2aの他、例えば、角度軸力Frのヒステリシス勾配を調整して得られる軸力を演算する機能を追加してもよい。こうして追加した機能により演算される軸力についても、適切な状況に対応付けた構成を採用することで、上記実施形態と同様の効果を得ることができる。
【0103】
・第1車速の範囲は、停車状態を含んでいれば、時速10キロ未満等のより大きい範囲にしてもよいし、時速3キロ未満等のより小さい範囲にしてもよい。これは、第2車速の範囲についても同様である。つまり、第2車速の範囲は、走行状態を含んでいれば、その大小は適宜変更可能である。
【0104】
・上記実施形態において、操舵側制御部50は、転舵側制御部60の機能として付加してもよい。
・上記実施形態において、転舵側モータ32は、例えば、ラック軸22の同軸上に配置するものや、ラック軸22にラックアンドピニオン機構を構成するピニオン軸に対してウォームアンドホイールを介して接続されるものを採用してもよい。
【0105】
・上記実施形態において、操舵制御装置1は、1)コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサ、2)各種処理のうち少なくとも一部の処理を実行する特定用途向け集積回路(ASIC)等の1つ以上の専用のハードウェア回路、あるいは、3)それらの組み合わせ、を含む処理回路によって構成することができる。プロセッサは、CPU並びに、RAM及びROM等のメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわち非一時的なコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。
【0106】
・上記実施形態は、操舵装置2を、操舵部4と転舵部6との間が機械的に常時分離したリンクレスの構造としたが、これに限らず、クラッチにより操舵部4と転舵部6との間が機械的に分離可能な構造としてもよい。また、操舵装置2は、運転者によるステアリング操舵を補助するための力であるアシスト力を付与する電動パワーステアリング装置としてもよい。この場合、ステアリングホイール3は、ステアリング軸11を介してピニオン軸21が機械的に接続される。
【符号の説明】
【0107】
1…操舵制御装置
2…操舵装置
3…ステアリングホイール
5…転舵輪
12…操舵アクチュエータ(アクチュエータ)
13…操舵側モータ(モータ)
52…目標反力トルク演算部(トルク指令値演算部)
81…角度軸力演算部(第1成分演算部)
82…電流軸力演算部(第2成分演算部)
84…停車時勾配調整部(トルク成分演算部)
85…停車時配分軸力演算部(トルク成分演算部)
86…走行時配分軸力演算部(トルク成分演算部)
87…走行時勾配調整部(トルク成分演算部)
88…軸力調停部(調停部)
図1
図2
図3
図4
図5
図6
図7