IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ライブパーソン, インコーポレイテッドの特許一覧

特許7551785インテントメッセージングのためのシステムおよび方法
<>
  • 特許-インテントメッセージングのためのシステムおよび方法 図1
  • 特許-インテントメッセージングのためのシステムおよび方法 図2
  • 特許-インテントメッセージングのためのシステムおよび方法 図3
  • 特許-インテントメッセージングのためのシステムおよび方法 図4
  • 特許-インテントメッセージングのためのシステムおよび方法 図5
  • 特許-インテントメッセージングのためのシステムおよび方法 図6
  • 特許-インテントメッセージングのためのシステムおよび方法 図7
  • 特許-インテントメッセージングのためのシステムおよび方法 図8
  • 特許-インテントメッセージングのためのシステムおよび方法 図9
  • 特許-インテントメッセージングのためのシステムおよび方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-06
(45)【発行日】2024-09-17
(54)【発明の名称】インテントメッセージングのためのシステムおよび方法
(51)【国際特許分類】
   H04L 51/02 20220101AFI20240909BHJP
   G06Q 50/00 20240101ALI20240909BHJP
   H04L 51/21 20220101ALI20240909BHJP
   G06F 16/90 20190101ALI20240909BHJP
【FI】
H04L51/02
G06Q50/00 300
H04L51/21
G06F16/90 100
【請求項の数】 20
(21)【出願番号】P 2022574294
(86)(22)【出願日】2021-06-02
(65)【公表番号】
(43)【公表日】2023-07-06
(86)【国際出願番号】 US2021035380
(87)【国際公開番号】W WO2021247655
(87)【国際公開日】2021-12-09
【審査請求日】2023-01-31
(31)【優先権主張番号】63/033,529
(32)【優先日】2020-06-02
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】511094772
【氏名又は名称】ライブパーソン, インコーポレイテッド
(74)【代理人】
【識別番号】110003708
【氏名又は名称】弁理士法人鈴榮特許綜合事務所
(74)【代理人】
【識別番号】100108855
【弁理士】
【氏名又は名称】蔵田 昌俊
(74)【代理人】
【識別番号】100179062
【弁理士】
【氏名又は名称】井上 正
(74)【代理人】
【識別番号】100199565
【弁理士】
【氏名又は名称】飯野 茂
(74)【代理人】
【識別番号】100212705
【弁理士】
【氏名又は名称】矢頭 尚之
(74)【代理人】
【識別番号】100219542
【弁理士】
【氏名又は名称】大宅 郁治
(74)【代理人】
【識別番号】100153051
【弁理士】
【氏名又は名称】河野 直樹
(74)【代理人】
【識別番号】100162570
【弁理士】
【氏名又は名称】金子 早苗
(72)【発明者】
【氏名】ソルター、ジェフリー
(72)【発明者】
【氏名】ケドミ、アビ
【審査官】岩田 玲彦
(56)【参考文献】
【文献】米国特許出願公開第2020/0160416(US,A1)
【文献】特表2013-519174(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04L 51/02
G06Q 50/00
H04L 51/21
G06F 16/90
(57)【特許請求の範囲】
【請求項1】
コンピュータ実装方法であって、
インテントを取得することであって、前記インテントが、対処されるべき要求に対応し、および、前記インテントが顧客に関連付けられる、前記インデントを取得することと、
前記インテントをそれらに提供すべき1人または複数のユーザを識別することであって、前記1人または複数のユーザが、前記インテントの特性のセットに基づいて識別される、前記インテントをそれらに提供すべき1人または複数のユーザを識別することと、
前記インテントを提供することであって、前記インテントが、前記インテントに対する応答を送信請求すべき前記1人または複数のユーザに提供される、前記インテントを提供することと、
前記インテントに対する応答のセットを取得することと、
前記インテントに対して関連する応答を識別するために応答の前記セットを評価することであって、応答の前記セットからの関連しない応答が廃棄される、前記インテントに対して関連する応答を識別するために応答の前記セットを評価することと、
前記インテントに応答して、前記関連する応答を前記顧客に提示させるために、前記関連する応答を提供することと
を備える、コンピュータ実装方法。
【請求項2】
ユーザとの通信チャネルを開始するようにとの別の要求を受信することであって、前記別の要求が、前記インテントと、前記インテントに対する前記ユーザの応答とに関連付けられる、前記ユーザとの通信チャネルを開始するようにとの別の要求を受信することと、
前記ユーザが前記通信チャネル上で前記インテントに応答して通信を送信することを可能にするために前記通信チャネルを確立することと
をさらに備える、請求項1に記載のコンピュータ実装方法。
【請求項3】
応答の前記セットが、分類モデルを使用して評価され、前記分類モデルが、サンプルインテントと、前記サンプルインテントに対する既知の関連する応答と、前記サンプルインテントに対する既知の関連しない応答とを使用して更新される、請求項1に記載のコンピュータ実装方法。
【請求項4】
前記1人または複数のユーザが、機械学習モデルを使用して識別され、前記機械学習モデルが、前記1人または複数のユーザの特徴に対応するサンプルインテントとサンプル出力とを使用して更新される、請求項1に記載のコンピュータ実装方法。
【請求項5】
前記1人または複数のユーザによって実装されたアプリケーションに、前記アプリケーションに新しい応答の作成を禁止させるための命令を送信することをさらに備え、前記命令が、応答の前記セットを取得したことに応答して送信される、請求項1に記載のコンピュータ実装方法。
【請求項6】
前記インテントが、前記要求の意味解析に基づいて前記要求から抽出される、請求項1に記載のコンピュータ実装方法。
【請求項7】
前記インテントの特性の前記セットが、前記インテントに関連付けられた追加の情報についてのクエリに応答して取得される、請求項1に記載のコンピュータ実装方法。
【請求項8】
システムであって、
1つまたは複数のプロセッサと、
命令を記憶したメモリと
を備え、前記命令は、前記1つまたは複数のプロセッサによって実行された結果として、前記システムに、
インテントを取得することであって、前記インテントが、対処されるべき要求に対応し、および、前記インテントが顧客に関連付けられる、前記インテントを取得することと、
前記インテントをそれらに提供すべき1人または複数のユーザを識別することであって、前記1人または複数のユーザが、前記インテントの特性のセットに基づいて識別される、前記インテントをそれらに提供すべき1人または複数のユーザを識別することと、
前記インテントを提供することであって、前記インテントが、前記インテントに対する応答を送信請求すべき前記1人または複数のユーザに提供される、前記インテントを提供することと、
前記インテントに対する応答のセットを取得することと、
前記インテントに対して関連する応答を識別するために応答の前記セットを評価することであって、応答の前記セットからの関連しない応答が廃棄される、前記インテントに対して関連する応答を識別するために応答の前記セットを評価することと、
前記インテントに応答して、前記関連する応答を前記顧客に提示させるために、前記関連する応答を提供することと
を行わせる、システム。
【請求項9】
前記関連する応答が、分類モデルを使用して識別され、前記分類モデルが、サンプルインテントと、前記サンプルインテントに対する既知の関連する応答と、前記サンプルインテントに対する既知の関連しない応答とを使用して生成される、請求項8に記載のシステム。
【請求項10】
前記命令は、前記1人または複数のユーザによって利用されるアプリケーションに、さらなる応答が生成されることを禁止させるために、応答の前記セットを生成するための実行可能な命令を前記アプリケーションに送信することを前記システムにさらに行わせ、前記実行可能な命令が、応答の前記セットを取得したことに応答して送信される、請求項8に記載のシステム。
【請求項11】
前記命令は、前記システムに、
前記顧客の第1のコンピューティングシステムとユーザの第2のコンピューティングシステムとの間の通信チャネルを確立するようにとの別の要求を取得することであって、前記別の要求は、前記ユーザからの応答が前記インテントを満たすという決定に応答して取得される、前記顧客の第1のコンピューティングシステムとユーザの第2のコンピューティングシステムとの間の通信チャネルを確立するようにとの別の要求を取得することと、
前記別の要求に応答して前記通信チャネルを確立することと
をさらに行わせる、請求項8に記載のシステム。
【請求項12】
前記1人または複数のユーザが、機械学習モデルを使用して識別され、前記機械学習モデルが、前記1人または複数のユーザの特徴に対応するサンプルインテントとサンプル出力とを使用して生成される、請求項8に記載のシステム。
【請求項13】
前記命令がさらに、前記インテントに関連付けられた情報を送信請求するために前記システムに自然言語処理を利用させ、前記インテントに関連付けられた前記情報が、前記要求から前記インテントを抽出するために使用される、請求項8に記載のシステム。
【請求項14】
前記命令がさらに、前記要求から前記インテントを抽出するために前記要求の意味解析を前記システムに実施させる、請求項8に記載のシステム。
【請求項15】
実行可能な命令を記憶した非一時的コンピュータ可読記憶媒体であって、前記実行可能な命令は、コンピュータシステムの1つまたは複数のプロセッサによって実行された結果として、前記コンピュータシステムに、
インテントを取得することであって、前記インテントが、対処されるべき要求に対応し、およびここにおいて、前記インテントが顧客に関連付けられる、前記インテントを取得することと、
前記インテントをそれらに提供すべき1人または複数のユーザを識別することであって、前記1人または複数のユーザが、前記インテントの特性のセットに基づいて識別される、前記インテントをそれらに提供すべき1人または複数のユーザを識別することと、
前記インテントを提供することであって、前記インテントが、前記インテントに対する応答を送信請求すべき前記1人または複数のユーザに提供される、前記インテントを提供することと、
前記インテントに対する応答のセットを取得することと、
前記インテントに対して関連する応答を識別するために応答の前記セットを評価することであって、応答の前記セットからの関連しない応答が廃棄される、前記インテントに対して関連する応答を識別するために応答の前記セットを評価することと、
前記インテントに応答して、前記関連する応答を前記顧客に提示させるために、前記関連する応答を提供することと
を行わせる、非一時的コンピュータ可読記憶媒体。
【請求項16】
前記実行可能な命令は、前記コンピュータシステムにさらに、
前記顧客の第1のコンピューティングデバイスと関連する応答を提供したユーザの第2のコンピューティングデバイスとの間の通信チャネルを確立するようにとの別の要求を取得することと、
前記インテントに関して前記通信チャネル上で前記顧客と前記ユーザとの間の対話を引き起こすために、前記顧客の前記第1のコンピューティングデバイスと前記ユーザの前記第2のコンピューティングデバイスとの間の前記通信チャネルを確立することと
を行わせる、請求項15に記載の非一時的コンピュータ可読媒体。
【請求項17】
前記実行可能な命令がさらに、前記コンピュータシステムに、前記インテントを取得するために前記要求の意味解析を実施させる、請求項15に記載の非一時的コンピュータ可読記憶媒体。
【請求項18】
前記1人または複数のユーザが、機械学習モデルを使用して識別され、前記機械学習モデルが、前記1人または複数のユーザの特徴に対応するサンプルインテントとサンプル出力とを使用して生成される、請求項15に記載の非一時的コンピュータ可読記憶媒体。
【請求項19】
前記実行可能な命令がさらに、前記コンピュータシステムに、応答の前記セットを評価するために分類モデルを使用させ、前記分類モデルが、サンプルインテントと、前記サンプルインテントに対する既知の関連する応答と、前記サンプルインテントに対する既知の関連しない応答とを使用して更新される、請求項15に記載の非一時的コンピュータ可読記憶媒体。
【請求項20】
前記1人または複数のユーザが、機械学習モデルを使用して識別され、前記機械学習モデルが、前記1人または複数のユーザの特徴に対応するサンプルインテントとサンプル出力とを使用して更新される、請求項15に記載の非一時的コンピュータ可読記憶媒体。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001]本特許出願は、2020年6月2日に出願された米国仮特許出願第63/033,529号の優先権の利益を主張し、その開示が参照により本明細書に組み込まれる。
【0002】
[0002]本開示は、一般に、顧客とブランドとの間のメッセージングを容易にするためのシステムおよび方法に関する。より詳細には、顧客によって通信されるインテントに対するブランドおよび他のユーザからの関連する応答を取得する際にこれらの顧客を支援するためにフレームワークを展開するための技法が提供される。
【発明の概要】
【0003】
[0003]開示される実施形態は、顧客がブランドおよび他のユーザと対話することを可能にするインテント処理システムが、それらのインテントに対して関連する応答を取得するためのフレームワークを提供する。いくつかの実施形態によれば、コンピュータ実装方法が提供される。コンピュータ実装方法は、インテントを取得することを備える。インテントは、対処されるべき要求に対応する。さらに、インテントは、顧客に関連付けられる。コンピュータ実装方法は、インテントをそれらに提供すべき1人または複数のユーザを識別することをさらに備える。1人または複数のユーザは、インテントの特性のセットに基づいて識別される。コンピュータ実装方法は、インテントを提供することをさらに備える。インテントは、インテントに対する応答を送信請求すべき1人または複数のユーザに提供される。コンピュータ実装方法は、インテントに対する応答のセットを取得することをさらに備える。コンピュータ実装方法は、インテントに対して関連する応答を識別するために応答のセットを評価することをさらに備える。応答のセットからの関連しない応答は、廃棄される。コンピュータ実装方法は、インテントに応答して、関連する応答を顧客に提示させるために、関連する応答を提供することをさらに備える。
【0004】
[0004]一例では、システムは、1つまたは複数のプロセッサと、命令を含むメモリとを備え、命令は、1つまたは複数のプロセッサによって実行された結果として、本明細書で説明されるプロセスをシステムに実施させる。別の例では、非一時的コンピュータ可読記憶媒体は、その上に実行可能な命令を記憶し、実行可能な命令は、コンピュータシステムの1つまたは複数のプロセッサによって実行された結果として、本明細書で説明されるプロセスをコンピュータシステムに実施させる。
【0005】
[0005]この概要は、特許請求される主題の重要なまたは本質的な特徴を識別することを意図されておらず、特許請求される主題の範囲を決定するために分離して使用されることも意図されていない。主題は、本特許出願の明細書全体の適切な部分、いずれかまたはすべての図面、および各請求項を参照することによって理解されるべきである。
【0006】
[0006]上記について、他の特徴および例とともに、以下の明細書、特許請求の範囲、および添付の図面において以下でより詳細に説明される。
【0007】
[0007]本開示の様々な実施形態が以下で詳細に論じられる。特定の実装形態が論じられるが、これは、例示のみの目的で行われることを理解されたい。当業者であれば、他の構成要素および構成が、本開示の趣旨および範囲から離れることなしに使用され得ることを認識されよう。したがって、以下の説明および図面は、例示的であって、限定的なものとして解釈されるべきではない。本開示の完全な理解を提供するために、多数の具体的な詳細について説明される。しかしながら、いくつかの事例では、説明を不明瞭にすることを回避するために、よく知られているまたは従来の詳細について説明されない。本開示における一実施形態または実施形態への言及は、同じ実施形態または任意の実施形態への言及であり得、そのような言及は、実施形態のうちの少なくとも1つを意味する。
【0008】
[0008]「一実施形態」または「実施形態」への言及は、実施形態に関連して説明される特有の特徴、構造、または特性が、本開示の少なくとも1つの実施形態に含まれることを意味する。本明細書の様々な場所における「一実施形態」という句の出現は、必ずしもすべてが同じ実施形態を指しているとは限らず、他の実施形態を相互に含まない別個のまたは代替の実施形態を指しているとも限らない。その上、他の実施形態によってではなく、いくつかの実施形態によって示され得る、様々な特徴について説明される。
【0009】
[0009]本明細書で使用される用語は、概して、本開示のコンテキスト内で、および各用語が使用される特定のコンテキストにおいて、当技術分野におけるそれらの通常の意味を有する。代替的な文言および類義語は、本明細書で説明される用語のうちのいずれか1つまたは複数のために使用され得、用語が本明細書で詳述または説明されるか否かに特別な重要性が置かれるべきでない。いくつかの場合には、いくつかの用語のための類義語が提供される。1つまたは複数の類義語の詳述は他の類義語の使用を除外しない。本明細書で説明されるあらゆる用語の例を含む本明細書の任意の場所での例の使用は、例示的なものにすぎず、本開示またはあらゆる例示的な用語の範囲および意味をさらに限定することは意図されていない。同様に、本開示は、本明細書で与えられる様々な実施形態に限定されない。
【0010】
[0010]本開示の範囲を限定する意図なしに、本開示の実施形態による機器、装置、方法およびそれらの関係する結果の例が以下で与えられる。タイトルまたはサブタイトルが読者の便宜のために例において使用され得、いかなる場合も、これは、本開示の範囲を限定するべきでないことに留意されたい。別段に定義されていない限り、本明細書で使用される技術的なおよび科学的な用語は、本開示が関係する当業者によって一般に理解されるものとしての意味を有する。矛盾する場合、定義を含めて、本文書が優先することにする。
【0011】
[0011]本開示の追加の特徴および利点は、以下の説明に記載され、部分的には説明から明らかになるか、または本明細書に開示される原理の実践によって知られ得る。本開示の特徴および利点は、特に添付の特許請求の範囲において指摘される機器および組合せによって実現および取得され得る。本開示のこれらおよび他の特徴は、以下の説明および添付の特許請求の範囲からより完全に明らかになるか、または本明細書に記載される原理の実践によって知られ得る。
【0012】
[0012]本開示は、以下の添付の図と併せて説明される。
【図面の簡単な説明】
【0013】
図1】[0013]少なくとも1つの実施形態による、インテントメッセージングサービスが顧客からインテントを取得し、ブランドおよび他のユーザからのインテントに対する応答を顧客に提示する環境の例示的な例を示す図。
図2】[0014]少なくとも1つの実施形態による、インテントメッセージングサービスが、顧客によってサブミットされたインテントに対する応答を送信請求すべきブランドおよび他のユーザを識別する環境の例示的な例を示す図。
図3】[0015]少なくとも1つの実施形態による、顧客が、ユーザインターフェースを介して、インテントメッセージングサービスのブランドおよび他のユーザに応答を送信請求するようにとのインテントを生成する環境の例示的な例を示す図。
図4】[0016]少なくとも1つの実施形態による、顧客が、ユーザインターフェースを介して顧客によってサブミットされたインテントに関するステータスを提供される環境の例示的な例を示す図。
図5】[0017]少なくとも1つの実施形態による、顧客が、ユーザインターフェースを介して、顧客のインテントに対する応答に基づいて別のユーザまたはブランドを既存の会話に導入する環境の例示的な例を示す図。
図6】[0018]少なくとも1つの実施形態による、顧客が、ユーザインターフェースを介して、インテントに関してブランドと会話するためにブランドとの通信チャネルを開始する環境の例示的な例を示す図。
図7】[0019]少なくとも1つの実施形態による、顧客が、ユーザインターフェースを介して、別の顧客のインテントに対する応答を提供する環境の例示的な例を示す図。
図8】[0020]少なくとも1つの実施形態による、インテントを取得し、インテントを他のユーザおよびブランドに提供するためのプロセスの例示的な例を示す図。
図9】[0021]少なくとも1つの実施形態による、インテントに応答して顧客に提示可能な関連する応答を識別するために、ブランドおよび他のユーザからの提案された応答を評価するためのプロセスの例示的な例を示す図。
図10】[0022]様々な実施形態が実装され得る環境の例示的な例を示す図。
【発明を実施するための形態】
【0014】
[0023]添付の図では、同様の構成要素および/または特徴は、同じ参照ラベルを有することができる。さらに、同じタイプの様々な構成要素は、参照ラベルと、それの後にダッシュと、同様の構成要素同士を区別する第2のラベルとを続けることによって、区別され得る。本明細書において第1の参照ラベルのみが使用される場合、説明は、第2の参照ラベルにかかわらず、同じ第1の参照ラベルを有する同様の構成要素のいずれの1つにも適用可能である。
【0015】
[0024]以下の説明は、実施形態の好ましい例を提供するにすぎず、本開示の範囲、適用可能性または構成を限定することを意図されていない。そうではなく、実施形態の好ましい例についての以下の説明は、実施形態の好ましい例を実装するための使用可能な説明を当業者に提供する。添付の特許請求の範囲に記載された趣旨および範囲から逸脱することなく、要素の機能および構成において様々な変更が行われ得ることを理解されたい。
【0016】
[0025]図1は、少なくとも1つの実施形態による、インテントメッセージングサービス102が顧客108からインテントを取得し、ブランド112および他のユーザ114からのインテントに対する応答を顧客に提示する環境100の例示的な例を示す。インテントは、顧客が解決していることを望む問題に対応し得る。インテントの例は、(たとえば)トピック、感情、複雑さ、および緊急度を含むことができる。トピックは、限定はされないが、主題、製品、サービス、技術的問題、使用法の質問、苦情、返金要求または購買要求などを含むことができる。インテントは、たとえば、(たとえば、キーワード、文構造、繰り返されたワード、句読文字および/または非冠詞ワードを識別することによる)メッセージの意味解析、(たとえば、1つまたは複数のカテゴリーを選択している)ユーザ入力、ならびに/あるいはメッセージ関連の統計値(たとえば、タイピングスピードおよび/または応答レイテンシ)に基づいて決定され得る。
【0017】
[0026]環境100において、顧客108は、コンピューティングデバイス110上に実装されたインテントメッセージングアプリケーションを介して、インテントメッセージングサービス102に関連付けられた1つまたは複数のブランド112および/または他のユーザ114からの要求に対する1つまたは複数の応答を取得するために、インテントメッセージングサービス102のインテント処理システム104に要求を送信する。他のユーザ114は、ブランド112のインテントに対する応答を取得するためにそれらとも対話し得、インテントに関連付けられ得る様々なトピック、商品、サービス、または他の領域に関する経験を有し得る、インテントメッセージングサービス102コミュニティのメンバーを含み得る。コンピューティングデバイス110上に実装されたインテントメッセージングアプリケーションは、顧客108などの顧客が、インテントメッセージングサービス102に関連付けられたブランド112および他のユーザ114(たとえば、インテントメッセージングサービス102を利用するユーザのコミュニティ)と対話することを可能にするために、インテントメッセージングサービス102によって提供され得、顧客に商品およびサービスを提供し得る。インテントメッセージングサービス102は、これらの顧客によってサブミットされたインテントに関する推奨およびアドバイスを提供するために顧客とブランドが接続するためのプラットフォームを提供し得る。
【0018】
[0027]顧客108からの要求を取得したことに応答して、インテント処理システム104は、要求を評価して、顧客108によって表現され、顧客の要求に対して関連する応答を提供し得るブランド112および他のユーザ114を識別するために使用され得るインテントを抽出し得る。一実施形態では、インテント処理システム104は、要求からインテントを識別し抽出するために、機械学習モデルを利用して要求を処理する。機械学習モデルは、要求の中に表現されたインテントを識別するために、(たとえば、キーワード、文構造、繰り返されたワード、句読文字および/または非冠詞ワードを識別することによって)要求の意味解析を実施するために使用され得る。インテント処理システム104によって利用される機械学習モデルは、教師あり学習技法を使用して動的にトレーニングされ得る。たとえば、入力要求と、入力要求に含まれる既知のインテントとのデータセットが、機械学習モデルのトレーニングのために選択され得る。いくつかの実装形態では、機械学習モデルをトレーニングするために使用される既知のインテントは、これらのインテントの特性を含み得る。機械学習モデルは、機械学習モデルに供給された入力サンプル要求に基づいて、機械学習モデルが要求の各々から予想されるインテントを抽出しているかどうかを決定するために、評価され得る。この評価に基づいて、機械学習モデルは、機械学習モデルが所望の結果を生成する尤度を増加させるように修正され得る。機械学習モデルは、サブミットされた要求から取得された、抽出されたインテントに関して、顧客108を含む顧客にフィードバックを送信請求することによって、さらに動的にトレーニングされ得る。たとえば、インテントに対する応答を送信請求すべき1つまたは複数のブランド112または他のユーザ114の識別のために抽出されたインテントをサブミットするより前に、抽出されたインテントは、抽出されたインテントが、顧客108によってサブミットされた要求に対応するかどうかを決定するために、顧客108に提示され得る。顧客108からの応答は、このようにして、要求からインテントを識別する際の機械学習モデルの精度に基づいて機械学習モデルをトレーニングするために利用され得る。
【0019】
[0028]インテント処理システム104は、インテントメッセージングサービス102のインテントマッチングシステム106に、抽出されたインテントを提供し得る。インテントマッチングシステム106は、インテントメッセージングサービス102のコンピューティングシステムまたは他のシステム(たとえば、サーバ、仮想マシンインスタンスなど)上に実装され得る。代替的に、インテントマッチングシステム106は、インテントメッセージングサービス102のコンピューティングシステム上で実行されるアプリケーションまたは他のプロセスとして実装され得る。一実施形態では、インテント処理システム104から新しいインテントを取得したことに応答して、インテントマッチングシステム106は、インテントに対して関連する応答を提供する可能性があり得る1つまたは複数のブランド112および/または他のユーザ114を識別するための機械学習モデルへの入力として、この新しいインテント、ならびにインテントメッセージングサービス102に関連付けられた様々なブランド112および他のユーザに関する情報を利用する。様々なブランド112および他のユーザ114に関する情報は、以前に提供されたインテントに対する様々なブランド112および他のユーザ114によってサブミットされた応答に対応する履歴データを含み得る。履歴データは、ブランドまたは他のユーザにサブミットされた様々なインテントに対して関連する応答を提供する際におけるブランドまたは他のユーザのパフォーマンス、ブランド/他のユーザと顧客108との間の何らかの以前の対話に関する情報、(もしあれば)ブランドまたは他のユーザとの顧客の対話に関係する顧客フィードバックなどを示し得る。さらに、ブランドまたは他のユーザに関する情報は、ブランドまたは他のユーザが応答する際に専門知識を有し得るインテントのタイプを指定し得る。たとえば、情報は、どんな商品およびサービスがブランドによって提供されるか、どんな商品およびサービスをユーザが利用しているか、または特定のインテントの解決がこれらの商品およびサービスを伴い得るかどうかを識別する際に有用であり得る任意の他の情報を示し得る。
【0020】
[0029]インテントマッチングシステム106によって利用される機械学習モデルは、インテントが提供されるべきブランド112および他のユーザ114を識別するために使用され得るブランド112および他のユーザ114の特徴に対応するサンプルインテントとサンプル出力とを使用して動的にトレーニングされ得る。さらに、機械学習モデルは、インテントを受信した様々なブランド112および他のユーザ114からのフィードバックを使用して動的にトレーニングされ得る。このフィードバックは、機械学習モデルが、関連する応答でインテントに応答することが可能であるかまたは他の方法でインテントの特徴に関連付けられているブランド112および他のユーザ114を選択しているかどうかを決定するために使用され得る。このフィードバックは、インテントマッチングシステム106によって利用される機械学習モデルをさらにトレーニングするために使用され得る。このようにして、様々なブランド112および他のユーザ114にサブミットされた無数のインテントについてこれらの様々なブランド112および他のユーザ114からフィードバックがインテントマッチングシステム106によって取得されるにつれて、機械学習モデルはリアルタイムで動的にトレーニングされ得る。代替的に、機械学習モデルは、ブランド112および他のユーザ114から取得されたフィードバックに基づいて定期的にトレーニングされ得る。
【0021】
[0030]インテントマッチングシステム106によって利用される機械学習モデルの出力は、1つまたは複数のブランド112および/または他のユーザ114の各々に応答を送信請求するために新しいインテントが提供されるべき1つまたは複数のブランド112および/または他のユーザ114に対応する識別子を含み得る。新しいインテントは、1つまたは複数のブランド112および/または他のユーザ114から取得された応答が、一意の識別子を参照して特定のインテントに関連付けられ得るように、一意の識別子を割り当てられ得る。一実施形態では、インテントマッチングシステム106は、特定のインテントに対する応答の送信請求を示すために、各ブランド112または他のユーザ114によって利用されるインテントメッセージングアプリケーションのユーザインターフェースを更新する。たとえば、このユーザインターフェースを通して、インテントマッチングシステム106は、ブランド112または他のユーザ114に関連付けられたエージェントに、新しいインテント、ならびにインテントに応答するためのオプションを提示し得る。ブランド112または他のユーザ114に関連付けられたエージェントは、このユーザインターフェースを介して、インテントに応答するか、インテントを拒否/無視するか、あるいはインテントがブランド112または他のユーザに関連しないというインジケーションをインテントマッチングシステム106に提供し得る。ブランド112または他のユーザ114に関連付けられたエージェントによって実施される行為は、インテントに応答するためのブランド112および他のユーザを選択するためにインテントマッチングシステム106によって利用される機械学習モデルをさらに動的にトレーニングするために使用され得る。たとえば、ブランドに関連付けられたエージェントが、提供されたインテントがブランドに関連しないことを示す場合、インテントマッチングシステムは、関連しないインテントがブランドに提供されないように機械学習モデルをトレーニングするために、このフィードバックを利用し得る。
【0022】
[0031]一実施形態では、インテントを受信したブランド112(たとえば、インテントメッセージングサービス102と対話するために割り当てられたブランドに関連付けられたエージェント)または他のユーザ114は、インテントに対して単一の応答に制限される。たとえば、ブランド112または他のユーザ114に関連付けられたエージェントが、インテントに対する応答をインテント処理システム104にサブミットしたとき、ブランド112または他のユーザ114に関連付けられたエージェントによって利用されるインテントメッセージングアプリケーションは、顧客108がインテントに関してブランド112または他のユーザ114にさらに関与することを望むことを示すまで、追加の応答をインテントにサブミットする能力を無効にし得る。これは、ブランド112または他のユーザ114がインテントに対する応答で顧客108を充満させること(たとえば、「スパミング」)を防止し得る。さらに、顧客108がブランド112または他のユーザ114に関与することを拒否した場合、顧客108は、ブランド112または他のユーザ114からの追加の応答から免れさせられ得る。
【0023】
[0032]ブランド112または他のユーザ114に関連付けられたエージェントが、顧客108のためにインテント処理システム104に対するインテント応答をサブミットした場合、インテント処理システム104は、インテント応答が顧客108によってサブミットされたインテントに関連するかどうかを決定するために、インテント応答を評価し得る。一実施形態では、インテント処理システム104は、インテント応答をインテントに関連するかまたはインテントに関連しないのいずれかとして分類するために分類アルゴリズムまたは他の機械学習モデルを利用する。インテント処理システム104によって利用される分類アルゴリズムまたは他の機械学習モデルは、教師あり学習技法を使用して動的にトレーニングされ得る。たとえば、入力インテントと、既知の関連する応答と、既知の関連しない応答と、分類とのデータセットが、分類アルゴリズムまたは他の機械学習モデルのトレーニングのために選択され得る。いくつかの例では、入力インテントは、インテントメッセージングサービスの管理者、インテントメッセージングサービスの顧客、またはインテントメッセージングサービスに関連する他のソースから取得され得る。いくつかの実装形態では、インテント処理システムによって利用される分類アルゴリズムまたは他の機械学習モデルをトレーニングするために使用される既知の関連する応答と既知の関連しない応答とは、サンプルインテントを生成したエンティティによって生成される応答を含む。さらに、インテント応答を関連するか関連しないとして分類するために使用される分類アルゴリズムまたは他の機械学習モデルは、顧客108を含む顧客からのフィードバックを使用してトレーニングされ得る。たとえば、インテントに関連するとして分類された応答が顧客108に提供された場合、顧客108は、応答がインテントに本当に関連したかどうかを示すフィードバックを提供し得る。このフィードバックは、(たとえば、関連するとして分類された応答が、顧客によってインテントに関連すると見なされた)モデルを補強するために、あるいは(たとえば、関連するとして分類された応答が、顧客によってインテントに関連しないと見なされた)モデルを更新するために使用され得る。インテントメッセージングサービス102の顧客がこのフィードバックをインテントメッセージングサービス102に提供するにつれて、分類アルゴリズムまたは他の機械学習モデルはリアルタイムで動的に更新され得る。
【0024】
[0033]インテント処理システム104は、上記で説明された分類アルゴリズムまたは機械学習モデルを使用して、インテントに関連しないとして分類されたどんな応答も廃棄し得る。一実施形態では、インテント処理システム104が、ブランド112または他のユーザがインテントに対して関連しない応答を提供したと決定した場合、インテント処理システム104は、それがインテントに対して関連しない応答を提供したことを示すようにブランド112または他のユーザのプロファイルを更新する。これは、同様のインテントに応答するためにインテントマッチングシステム106によってブランド112または他のユーザ114が選択される尤度を低減し得る。いくつかの事例では、このフィードバックはまた、同様のインテントに対する応答を提供するためにそのブランド112または他のユーザ114が送信請求される尤度をさらに低減するように、インテントマッチングシステム106によって利用される機械学習モデルを動的にトレーニングするために使用され得る。ブランド112または他のユーザ114が一貫して関連しない応答を提供していると見なされた場合、ブランド112または他のユーザをインテントメッセージングサービス102から関連付け解除または削除することなど、他の改善動作が実施され得る。
【0025】
[0034]インテント処理システム104が、インテントに対して関連する応答が取得されたと決定した場合、インテント処理システム104は、コンピューティングデバイス110上で動作するインテントメッセージングアプリケーションを介して顧客108にこの応答を提供し得る。これにより、インテント応答は、コンピューティングデバイス110のユーザインターフェース上に表示され得る。このユーザインターフェースを通して、顧客108は、インテント応答を評価し、ブランド112または他のユーザ114にさらに関与すべきか、応答に関するブランド112または他のユーザに感謝するかまたは謝意を表すべきか、あるいはインテント応答を無視すべきかを決定し得る。さらに、顧客108は、インテント応答の品質に関してインテント処理システム104にフィードバックを提供し得る。このフィードバックは、インテントに対する応答を送信請求するためにインテントが提供されるブランド112および他のユーザ114を識別するために使用されるインテントマッチングシステム106によって利用される機械学習モデルをさらに動的にトレーニングするために利用され得る。
【0026】
[0035]一実施形態では、顧客108が、顧客108によってサブミットされたインテントに関してさらにブランド112または他のユーザ114と通信することを希望すると決定した場合、インテントメッセージングサービス102は、顧客108とブランド112または他のユーザ114との間の通信チャネルを確立し、これを通して、顧客108とブランド112または他のユーザ114は、メッセージおよび他のコンテンツを交換し得る。上述されたように、ブランド112または他のユーザ114がインテントに対する応答をサブミットしたとき、ブランド112または他のユーザによって利用されるインテントメッセージングアプリケーションは、ブランド112または他のユーザ114が追加の応答をサブミットすることを禁止し得る。しかしながら、顧客108が、インテントに関してブランド112または他のユーザ114と会話することを望むことを示す場合、インテントメッセージングサービス102は、ブランド112または他のユーザ114がインテントメッセージングアプリケーションを介して顧客108に対する追加の応答をサブミットすることを可能にするための命令または他のインジケーションをインテントメッセージングアプリケーションに送信し得る。さらに、インテントメッセージングサービス102は、顧客108に関する追加の情報(たとえば、顧客の名前、顧客の住所、顧客の画像、顧客の連絡先情報など)をブランド112または他のユーザに提供し得る。
【0027】
[0036]図2は、少なくとも1つの実施形態による、インテントメッセージングサービス202が、顧客218によってサブミットされたインテントに対する応答を送信請求すべきブランド220および他のユーザ222を識別する環境200の例示的な例を示す。環境200において、インテントメッセージングサービス202は、特定のインテントに関して1つまたは複数のブランド220および/または他のユーザ222に応答を送信請求するようにとの要求を顧客218から取得する。たとえば、顧客218は、顧客218によって利用されるコンピューティングデバイス上にインストールされたかまたは他の方法で(たとえば、ウェブサイトなどを介して)コンピューティングデバイスを使用して顧客218によってアクセスされるインテントメッセージングアプリケーションを使用して、要求を生成し、要求において、関連する応答を顧客218が求めているインテントを示し得る。インテントは、(たとえば)トピック、感情、複雑さ、および/または緊急度レベルであり得る。トピックは、限定はされないが、主題、製品、サービス、技術的問題、使用法の質問、苦情、返金要求または購買要求などを含むことができる。
【0028】
[0037]顧客218は、インテントメッセージングアプリケーションを介して、それの要求および対応するインテントをインテント処理システム204の顧客メッセージングシステム206に送信し得る。顧客メッセージングシステム206は、インテントメッセージングサービス202のコンピューティングシステム上に実装されるか、またはインテント処理システム204のコンピューティングシステムによって実行されるアプリケーションとして実装され得る。顧客メッセージングシステム206は、顧客218と、インテントメッセージングサービス202と、インテントメッセージングサービス202に関連付けられた何らかのブランド220および/または他のユーザ222との間の通信を容易にし得る。たとえば、顧客メッセージングシステム206は、顧客218が特定のインテントに関してインテントメッセージングアプリケーションを介して会話に関与することを選択した何らかのブランド220または他のユーザ222との通信チャネルを確立し得る。さらに、顧客メッセージングシステム206は、提供されたインテントと、特定のインテントについてインテント応答がそれに送信請求され得るブランド220および他のユーザ222を識別するインテントメッセージングサービス202から取得された応答とに基づいて、インテントメッセージングアプリケーションのユーザインターフェースを更新するように働き得る。
【0029】
[0038]顧客218から要求および対応するインテントを取得したことに応答して、顧客メッセージングシステム206は、要求からインテントを抽出するために、インテント処理システム204のインテント抽出エンジン208に要求および対応するインテントを送信し得る。インテント抽出エンジン208は、顧客218からの着信要求を処理して要求の中に表現されたインテントを識別するために機械学習モデルを利用するコンピュータシステムとして実装され得る。たとえば、機械学習モデルは、要求の中に表現されたインテントを識別するために、(たとえば、キーワード、文構造、繰り返されたワード、句読文字および/または非冠詞ワードを識別することによって)要求の意味解析を実施するために使用され得る。インテントはまた、たとえば、(たとえば、1つまたは複数のカテゴリーを選択している)ユーザ入力、ならびに/あるいはメッセージ関連の統計値(たとえば、タイピングスピードおよび/または応答レイテンシ)に基づいて決定され得る。
【0030】
[0039]インテント抽出エンジン208によって利用される機械学習モデルは、教師あり学習技法を使用してトレーニングされ得る。たとえば、入力要求と、入力要求に含まれる既知のインテントとのデータセットが、インテント抽出エンジン208によって実装された機械学習モデルのトレーニングのために選択され得る。いくつかの例では、入力要求は、インテントメッセージングサービス202の管理者、インテントメッセージングサービス202の顧客、またはインテントメッセージングサービス202に関連する他のソースから取得され得る。いくつかの実装形態では、インテント抽出エンジン208によって利用される機械学習モデルをトレーニングするために使用される既知のインテントは、サンプル要求を生成したエンティティによって提供されるこれらのインテントの特性を含み得る。機械学習モデルは、機械学習モデルに供給された入力サンプル要求に基づいて、機械学習モデルが要求の各々から予想されるインテントを抽出しているかどうかを決定するために、評価され得る。この評価に基づいて、機械学習モデルは、機械学習モデルが所望の結果(たとえば、予想されるインテント)を生成する尤度を増加させるように修正され得る(たとえば、1つまたは複数のパラメータまたは変数が更新され得る)。
【0031】
[0040]一実施形態では、インテント抽出エンジン208は、インテントに対して関連する応答を提供し得るブランド220および/または他のユーザ222の識別を可能にするために、顧客208からの要求を評価して、インテントを要求から抽出するかまたは他の方法で補足するために追加の情報が必要とされるかどうかを決定する。たとえば、インテント抽出エンジン208は、インテントの解決のために顧客の地理的ロケーションおよび時間フレームが必要とされると決定し得る。インテント抽出エンジン208は、顧客218にこの追加の情報を送信請求するための要求を顧客メッセージングシステム206に送信し得る。一実施形態では、顧客メッセージングシステム206は、要求された情報について顧客208に送信請求するために自然言語処理(NLP)または他の人工知能を利用する。たとえば、NLPまたは他の人工知能を使用して、顧客メッセージングシステム206は、顧客218に対して、それのロケーション、インテントの解決のための時間フレーム、顧客218がどんなユーザまたはブランドに応答を送信請求することを望むかなどを提供するように依頼し得る。顧客218によって提供された応答はインテント抽出エンジン208に提供され得、インテント抽出エンジン208は、インテントを抽出し、顧客218によって提供された追加の情報でインテントを補足するために、顧客218からのこれらの応答および供給された要求を使用し得る。これは、インテントに対する応答を取得するために送信請求され得るブランド220および/または他のユーザ222を識別するためにインテントマッチングシステム210によって使用され得る。
【0032】
[0041]インテント抽出エンジン208は、顧客218によってサブミットされた要求からの抽出されたインテントを、インテントマッチングシステム210のインテント機械学習モデリングエンジン212に提供し得る。インテント機械学習モデリングエンジン212は、インテントマッチングシステム210のコンピューティングシステム上に実装されるか、または他の方法でインテントマッチングシステム210のコンピューティングシステム上で実行されるアプリケーションもしくはプロセスとして実装され得る。一実施形態では、インテント機械学習モデリングエンジン212は、インテントに対する応答を送信請求するためにインテントが供給され得るブランド220および/または他のユーザ222を識別するように構成された機械学習モデルを実装する。インテント機械学習モデリングエンジン212によって実装される機械学習モデルは、インテントに対して関連する応答を提供する可能性があるブランド220および/またはユーザ222を識別するための機械学習モデルへの入力として、インテントマッチングシステム210によって維持されたブランドデータベース214およびユーザデータベース216、ならびに顧客のインテントを利用し得る。ブランドデータベース214およびユーザデータベース216は、それぞれ、インテントメッセージングサービス202に関連付けられ得るブランド220およびユーザ222の各々のプロファイルを含み得る。各プロファイルは、特定のインテントまたはインテントのカテゴリーに応答しているユーザまたはブランドの経験、ならびにインテントの基礎をなすトピックまたは分類におけるユーザまたはブランドの関心を示し得る。さらに、各プロファイルは、以前に提供されたインテントに対するユーザまたはブランドの応答に関するフィードバックを示し得る。このフィードバックは、特定のインテントについて提供された応答が関連していたか、有用であったか、または他の方法で対応する顧客によって賞賛されたかどうかを指定し得る。
【0033】
[0042]ユーザデータベース216は、顧客218のプロファイルをさらに含み得る。顧客218のプロファイルは、特定のブランド220または他のユーザ222について任意の顧客の選好を示し得る。たとえば、顧客218のプロファイルは、以前に供給されたインテントに対処するために顧客218がどのブランド220または他のユーザ222と対話したかを指定し得る。さらに、これらの対話の各々について、プロファイルは、顧客218からのフィードバックを含み得る。このフィードバックは、特定のブランドまたは他のユーザとの対話が、対応するインテントに関連していたか、対応するインテントに対処する際に有用であったか、あるいは他の方法でブランドまたは他のユーザとの肯定的な経験につながったかどうかを示し得る。この情報はまた、インテントに対する応答を取得するためにどのブランド220および/または他のユーザ222に送信請求すべきかを識別するためにインテント機械学習モデリングエンジン212によって利用され得る。
【0034】
[0043]インテント機械学習モデリングエンジン212によって利用される機械学習モデルは、インテントが提供されるべきブランド220および他のユーザ222を識別するために使用され得るブランド220および他のユーザ222の特徴に対応するサンプルインテントとサンプル出力とを使用してトレーニングされ得る。さらに、機械学習モデルは、インテントを受信した様々なブランド220および他のユーザ222からのフィードバックを使用してトレーニングされ得る。このフィードバックは、機械学習モデルが、関連する応答でインテントに応答することが可能であるかまたは他の方法でインテントの特徴に関連付けられているブランド220および他のユーザ222を選択しているかどうかを決定するために使用され得る。たとえば、インテリアデザインサービスを提供するブランドが、インテリアデザインに関係しないインテントを取得した場合、このブランドは、提供されたインテントがブランドに関連しないことを示すフィードバックを提供し得る。このフィードバックは、インテント機械学習モデリングエンジン212によって利用される機械学習モデルをさらにトレーニングするために使用され得る。
【0035】
[0044]インテント機械学習モデリングエンジン212によって実装された機械学習モデルによって生成される出力は、ブランド220および/または他のユーザ222に応答を送信請求するためにインテントが提供されるべきブランド220および/または他のユーザ222に対応する識別子を含み得る。この出力に基づいて、インテント機械学習モデリングエンジン212は、識別されたブランド220および/または他のユーザ222にインテントを送信し得る。たとえば、インテント機械学習モデリングエンジン212は、インテントを提示するために、識別されたブランド220および/または他のユーザ222の各々のインテントメッセージングアプリケーションのユーザインターフェースを更新し得る。インテントは、インテントに対するブランド220および/または他のユーザ222からの応答が、一意の識別子によってインテントに関連付けられ得るように、一意の識別子を割り当てられ得る。インテントメッセージングアプリケーションを介してインテントを受信したブランドまたは他のユーザは、インテントに応答し、インテント処理システム204に応答をサブミットし得、インテント処理システム204は、応答がインテントに関連するかどうかを決定するために応答を評価し得る。
【0036】
[0045]一実施形態では、インテントは、識別されたブランド220および/または他のユーザ222に匿名で提供される。たとえば、インテント機械学習モデリングエンジン212は、識別されたブランド220および/または他のユーザ222にインテントを供給するとき、顧客218のいかなる識別情報(たとえば、顧客の名前、顧客の住所、顧客の連絡先情報など)をも削除し得る。しかしながら、インテント機械学習モデリングエンジン212は、インテントに加えて、インテントに対する応答を準備する際にブランドまたは他のユーザにとって有用であり得る他の情報を提供し得る。たとえば、インテントは、顧客218の一般的なロケーション(たとえば、都市、州など)とともに提供され得る。この一般的なロケーションは、一般的なロケーションにおいて顧客218を支援する能力(たとえば、ブランドが一般的なロケーション内に店を維持し得、ユーザが一般的なロケーションにおいて商品およびサービスを提供するなど)を示し得る、ブランドまたは他のユーザがインテントに対する応答を提供することができるかどうかを決定するために使用され得る。
【0037】
[0046]一実施形態では、ブランドまたは他のユーザがインテントに対する応答をサブミットすると、インテントメッセージングサービス202は、インテントメッセージングアプリケーションを介してインテントに対して追加の応答を提供するブランドまたは他のユーザの能力を無効にし得る。これは、ブランドまたは他のユーザが特定のインテントに対する応答で顧客218を潜在的に充満させることを防止する。顧客218との会話は、特定のブランド220または他のユーザ222との通信チャネルを開始するようにとの顧客218からの要求時に、インテントメッセージングアプリケーションを介して確立され得る。
【0038】
[0047]一実施形態では、インテント処理システム204は、ブランドまたは他のユーザからインテント応答を取得したことに応答して、インテント応答をインテントに関連するかまたはインテントに関連しないのいずれかとして分類するために、分類アルゴリズムまたは他の機械学習モデルを利用してインテント応答を評価する。インテントに関連しないとして分類されたどんな応答も、インテント処理システム204によって廃棄され得る。インテントに関連するとして分類された応答は、顧客のコンピューティングデバイス上に実装されたインテントメッセージングアプリケーションを介して、顧客メッセージングシステム206によって顧客218に提示され得る。さらに、インテント応答は、インテント応答をサブミットしたブランドまたは他のユーザをインテントに関する会話に勧誘するか、それらのインテント応答についてブランドまたは他のユーザに感謝するか、ブランドまたは他のユーザからのインテント応答を無視するか、ブランドまたは他のユーザからの将来の応答を無視する(たとえば、ブランドまたは他のユーザをブロックする)など、顧客218のためのオプションとともに提供され得る。顧客218が、提供されたインテント応答に基づいてブランドまたは他のユーザと会話することを選択した場合、顧客メッセージングシステム206は、顧客218とブランドまたは他のユーザがそれらの尊重するインテントメッセージングアプリケーションを使用して会話することを可能にするために、顧客218とブランドまたは他のユーザとの間の通信チャネルを確立し得る。一実施形態では、顧客メッセージングシステム206は、通信チャネルを確立すると、ブランドまたは他のユーザに、顧客情報(たとえば、名前、画像、住所、連絡先情報など)を提供する。さらに、顧客メッセージングシステム206は、ブランドまたは他のユーザが、新たに確立された通信チャネル上で顧客218にメッセージまたは応答を送信することを再び可能にする。
【0039】
[0048]ブランド220および/または他のユーザ222からのインテントに対する応答は、顧客218のインテントに対するそれらの関連性を決定するために、インテント処理システム204によって評価され得る。
【0040】
[0049]図3は、少なくとも1つの実施形態による、顧客306が、ユーザインターフェース310を介して、インテントメッセージングサービス302のブランド304および他のユーザ305に応答を送信請求するようにとのインテントを生成する環境300の例示的な例を示す。環境300において、顧客306は、コンピューティングデバイス308上で動作するインテントメッセージングアプリケーションを介して、インテントメッセージングサービス302に関連付けられたブランド304および他のユーザ305に1つまたは複数の応答を送信請求するためにインテントメッセージングサービス302にサブミットされ得る新しいインテントを生成する。たとえば、ユーザインターフェース310を介してインテントメッセージングアプリケーションを使用して、顧客306は、インテントメッセージングアプリケーション302に関連付けられたブランド304および他のユーザ305に顧客306が応答を求めている要求またはインテントを定義し得る。
【0041】
[0050]図3に示されているように、顧客306は、ユーザインターフェース310を介して、それの要求またはインテントにタイトルを提供するためのオプション、ならびに要求またはインテントを定義するためのオプションを提示され得る。たとえば、顧客306は、それの要求またはインテントへのタイトルとして、顧客306にとって有用であり得るインテリアデザイナーの推奨のために顧客306からの送信請求として働く要求またはインテントに「インテリアデザイン推奨」を提供し得る。さらに、ユーザインターフェース310を介して、顧客306は、要求またはインテントのパラメータを定義し得る(たとえば、「私は良いインテリアデザイナーを探している」)。この情報は、顧客306のインテントを抽出し、顧客306によってサブミットされたインテントに対する応答を送信請求すべき1つまたは複数のブランド304および他のユーザ305を識別するために、インテントメッセージングサービス302によって利用され得る。
【0042】
[0051]一実施形態では、インテントメッセージングサービス302は、インテントを補足し、インテントに対して関連する応答を提供する可能性があり得るブランド304および他のユーザ305の適合された識別を可能にするために使用され得る、追加の情報について顧客306を照会するために、自然言語処理または他の人工知能を利用することができる。たとえば、インテントメッセージングサービス302は、顧客のロケーション、それのインテントをもつ顧客を他のユーザが助けることができるかどうか、インテントの解決のためにどんな時間フレームであるなどを識別するために、顧客306を照会し得る。顧客306によってインテントメッセージングサービス302に提供される応答は、インテントに対する応答がそれらに送信請求され得るブランド304および他のユーザ305の選択をさらに狭めるために使用され得る。
【0043】
[0052]一実施形態では、顧客306は、インテントメッセージングアプリケーションによってユーザインターフェース310を介して、サブミットされたインテントに関する会話に追加され得る連絡先または他の参加者のリスティングを提示され得る。たとえば、インテントメッセージングアプリケーションは、顧客のコンピューティングデバイス308から、ユーザインターフェース310を介して提示され得る連絡先のリスティングを取得し得る。代替的に、インテントメッセージングアプリケーションは、インテントメッセージングサービス302から、インテントメッセージングサービス302を同じく利用する顧客306に関連付けられた連絡先のリスティングを取得し得る。インテントメッセージングサービス302からの連絡先のこのリスティングは、顧客306が「友人」として指定しているかまたは他の方法でインテントメッセージングサービス302を介して顧客306と直接通信することが可能なユーザを含み得る。
【0044】
[0053]一実施形態では、ユーザインターフェース310を介して、インテントメッセージングサービス302は、サブミットされたインテントに対する応答を顧客306が送信請求することができるブランド304および/または他のユーザ305の推奨をさらに提供することができる。たとえば、インテントメッセージングサービス302によるインテントの評価に基づいて、インテントメッセージングサービス302は、サブミットされたインテントに対して関連する応答を提供する可能性があり得る1つまたは複数のブランド304または他のユーザ305を推奨し得る。インテントメッセージングサービス302は、インテントに対する応答を送信請求するためにどのブランド304または他のユーザ305がインテントを受信すべきかを顧客306が選択することを可能にするために、これらの1つまたは複数のブランド304または他のユーザ305を提示し得る。顧客の選択に基づいて、インテントメッセージングサービス302は、選択されたブランドおよび/または他のユーザにインテントに対する応答を送信請求し得る。
【0045】
[0054]図4は、少なくとも1つの実施形態による、顧客406が、ユーザインターフェース410を介して顧客406によってサブミットされたインテントに関するステータスを提供される環境400の例示的な例を示す。環境400において、1つまたは複数のブランド404および他のユーザ405にインテントに対する応答を送信請求するためにインテントメッセージングサービス402に新しいインテントをサブミットしたことに応答して、インテントメッセージングサービス402は、インテントに対する応答を提供するために送信請求され得るブランド404および他のユーザ405のサブセットを識別するために、インテントと、インテントメッセージングサービス402に関連付けられた様々なブランドおよびユーザのプロファイルとを評価し得る。一実施形態では、インテントメッセージングサービス402は、インテントマッチングシステムによって実装された機械学習モデルを使用して、顧客406によってサブミットされたインテントに対して関連する応答を提供する可能性があるブランド404および他のユーザ405を識別する。機械学習モデルは、インテントに対して関連する応答を提供する可能性があるブランドおよび/またはユーザを識別するための機械学習モデルへの入力として、インテントマッチングシステムによって維持されたブランドデータベースおよびユーザデータベース、ならびに顧客のインテントを利用し得る。ブランドデータベースおよびユーザデータベースは、それぞれ、インテントメッセージングサービス402に関連付けられ得るブランドおよびユーザの各々のプロファイルを含み得る。各プロファイルは、特定のインテントまたはインテントのカテゴリーに応答しているユーザまたはブランドの経験、ならびにインテントの基礎をなすトピックまたは分類におけるユーザまたはブランドの関心を示し得る。さらに、各プロファイルは、以前に提供されたインテントに対するユーザまたはブランドの応答に関するフィードバックを示し得る。このフィードバックは、インテントに応答して提供された応答が関連していたか、有用であったか、または他の方法で対応する顧客によって賞賛されたかどうかを指定し得る。
【0046】
[0055]顧客406からインテントを取得したことに応答して、インテントメッセージングサービス402は、提供されたインテントのための新しい会話ウィンドウを提供するようにユーザインターフェース410を更新し得る。ユーザインターフェース410を介して提示される会話ウィンドウの名前またはタイトルは、ユーザインターフェース410を介して顧客406によってインテントメッセージングサービス402にサブミットされた要求の名前またはタイトルに対応し得る。さらに、ユーザインターフェース410を介して、およびインテントのための会話ウィンドウ内で、インテントメッセージングサービス402は、顧客の提供されたインテントの処理に関するステータスを提供し得る。たとえば、図4に示されているように、インテントメッセージングサービス402は、インテントがインテントメッセージングサービスのコミュニティ(たとえば、インテントに対する応答を提供するために送信請求されるブランド404および他のユーザ405)と共有されていることを示し得る。さらに、インテントメッセージングサービス402は、ユーザインターフェース410を介して、ブランド404および/または他のユーザ405からの何らかの調査された応答が、顧客406によってサブミットされたインテントに関係する会話ウィンドウ内で顧客406に提示され得ることを示し得る。
【0047】
[0056]一実施形態では、顧客406は、会話ウィンドウ内で顧客406とこれらの1つまたは複数の連絡先との間の通信を可能にするために、会話ウィンドウに1つまたは複数の他の連絡先を導入することができる。たとえば、顧客406は、利用可能な連絡先のリスティングから、サブミットされたインテントにひも付けされた会話に参加するように顧客406が勧誘し得る1つまたは複数の連絡先を選択し得る。利用可能な連絡先のこのリスティングは、インテントメッセージングサービス402によって維持され得、コンピューティングデバイス408上で動作するインテントメッセージングアプリケーションを介して顧客406に提供され得る。代替的に、利用可能な連絡先のリスティングは、コンピューティングデバイス408上で維持され得る。顧客406がこのリスティングから1つまたは複数の連絡先を選択した場合、インテントメッセージングサービス402は、これらの1つまたは複数の連絡先の各々について連絡先情報を取得し、インテントに関する顧客406との会話に参加するようにこれらの1つまたは複数の連絡先を勧誘するための通知をこれらの1つまたは複数の連絡先の各々に送信し得る。連絡先のリスティングがコンピューティングデバイス408上で維持される場合、インテントメッセージングアプリケーションは、コンピューティングデバイス408から連絡先情報を取得し、会話に関してこれらの連絡先に通知を提供するためにこの連絡先情報をインテントメッセージングサービス402に提供し得る。一実施形態では、通知は、会話のユニフォームリソース識別子(URI)または他のネットワークアドレスを含むことができる。連絡先は、インテントメッセージングサービス402によって提供されたURIまたは他のネットワークアドレスを利用することによって会話にアクセスし得る。
【0048】
[0057]応答を送信請求するためにインテントが提供されたブランド404および他のユーザ405からインテントに対する応答が取得されると、インテントメッセージングサービス402は、応答が関連しており、顧客406によってサブミットされたインテントに応答しているかどうかを決定するように、これらの応答を決定し得る。一実施形態では、インテントメッセージングサービス402は、インテントに対する応答をインテントに関連するかまたはインテントに関連しないのいずれかとして分類するために分類アルゴリズムまたは他の機械学習モデルを利用する。インテントに関連しないとして分類された応答は、インテントメッセージングサービス402によって廃棄され、ユーザインターフェース410を介して顧客406に提示されないことがある。しかしながら、顧客406によってサブミットされたインテントに関連するとして分類されたいかなる応答も、ユーザインターフェース410を介して顧客406に提示され得る。たとえば、インテントメッセージングサービス402は、取得された応答を提示するように、インテントに関連付けられた会話ウィンドウをインテントメッセージングアプリケーションに更新させるために、関連する(たとえば、調査された)応答を顧客のコンピューティングデバイス408上のインテントメッセージングアプリケーションに送信し得る。顧客406は、インテントに対して取得された応答のいずれかを選択して、選択された応答を供給したブランド404または他のユーザ405との会話を開始し得る。この会話は、会話ウィンドウ内で提示され得、これを通して、顧客406はブランド404または他のユーザ405と通信し得る。
【0049】
[0058]図5は、少なくとも1つの実施形態による、顧客506が、ユーザインターフェース510を介して、顧客506のインテントに対する応答に基づいて別のユーザ504またはブランドを既存の会話に導入する環境500の例示的な例を示す。環境500において、顧客506は、顧客506のコンピューティングデバイス508上で動作するインテントメッセージングアプリケーションのユーザインターフェース510を介して、顧客506によってインテントメッセージングサービス502にサブミットされたインテントに対する別のユーザ504からの調査された応答を提示される。上述されたように、インテントは、1つまたは複数のファクタに基づいてブランドおよび他のユーザを選択するために提供され得る。たとえば、別のユーザ504は、この他のユーザ504が、同様のインテントに応答したおよび/または同様のインテントをインテントメッセージングサービス502にサブミットした経験を有している結果として、顧客506のインテントを提示され得る。さらに、他のユーザ504は、この他のユーザの関心が、インテントメッセージングサービス502にサブミットされたインテントのトピックにあることの結果として、インテントを提示され得る。一実施形態では、他のユーザ504は、インテントが提供されるべき選択されたブランドおよびユーザの識別子を含む出力を生成するための入力として、インテント、ならびにそれぞれのデータベースからのブランドおよびユーザプロファイルを利用し得る機械学習モデルを使用して生成された決定の結果として、インテントを提示される。
【0050】
[0059] ブランドおよび他のユーザ504からのインテントに対する応答は、これらの応答が特定のインテントに関連しているかどうかを決定するために、インテントメッセージングサービス502によって評価され得る。たとえば、インテントメッセージングサービス502は、インテントに対する応答を評価して、各応答をインテントに関連するかまたはインテントに関連しないのいずれかとして分類するために、分類アルゴリズムまたは他の機械学習モデルを利用し得る。インテントに関連しないとして分類されたどんな応答も、インテントメッセージングサービス502によって廃棄され得る。インテントに関連するとして分類された応答は、ユーザインターフェース510を介して顧客506に提示され得る。さらに、各応答は、他のユーザ504をインテントに関する会話に勧誘するか、それらの応答について他のユーザ504に感謝するか、他のユーザ504からの応答を無視するか、他のユーザ504からの将来の応答を無視する(たとえば、他のユーザ504をブロックする)など、顧客506のためのオプションとともに提供され得る。
【0051】
[0060]一実施形態では、顧客506は、顧客506によってインテントメッセージングサービス502にサブミットされたインテントに対する応答を待っている間、ユーザインターフェース510を介して、それの連絡先のうちの1つまたは複数と会話することができる。たとえば、インテントメッセージングアプリケーションは、顧客506によってインテントメッセージングサービス502にサブミットされたインテントに固有であるユーザインターフェース510を顧客506に提示し得る。このユーザインターフェース510を通して、顧客506は、インテントメッセージングサービス504によってインテントが提供された他のユーザ504およびブランドから、関連する応答を受信し得る。さらに、このユーザインターフェース510を通して、顧客506は、任意の既知の連絡先をインテントに関する会話に勧誘し得る。たとえば、インテントメッセージングサービス502によって提供されるインテントメッセージングアプリケーションを使用して、顧客506は、顧客506によってインテントメッセージングサービス502にサブミットされたインテントに関係する会話に追加すべき1つまたは複数の連絡先を選択し得る。これらの1つまたは複数の連絡先は、インテントメッセージングサービス502の顧客であってもよく、したがって、インテントメッセージングサービス502にアクセスし、顧客506と、他のユーザ504と、ブランドと対話するためにインテントメッセージングアプリケーションを同じく利用し得る。
【0052】
[0061]一実施形態では、顧客506は、追加または代替として、インテントメッセージングサービス502と提携していない連絡先を選択することができる。たとえば、顧客506は、コンピューティングデバイス508上に維持された連絡先のセットから1つまたは複数の連絡先を選択し得る。インテントメッセージングアプリケーションは、選択された連絡先が、特定のインテントに関して顧客506との会話に関与するために勧誘されていることを示す通知を、これらの選択された連絡先に送信するために、これらの連絡先の連絡先情報を利用し得る。通知は、これらの連絡先が、会話にアクセスするために必要とされるインテントメッセージングアプリケーションをそれから取得し得る、インテントメッセージングサービス502へのユニフォームリソース識別子(URI)または他のリンクを含み得る。他のユーザ504およびブランドからの応答を待っている間、顧客506は、ユーザインターフェース510を介して任意の勧誘された連絡先と会話し得る。これらの連絡先も、それらのそれぞれのコンピューティングデバイス上にあるインテントメッセージングサービス502によって提供され、または顧客506とそれの連絡先との間の通信を可能にするためにインテントメッセージングサービス502と対話し得る他のメッセージングアプリケーションを介して提供されるインテントメッセージングアプリケーションを利用し得る。
【0053】
[0062]インテントに対する調査された応答がユーザインターフェース510を介して顧客506に提示されたとき、顧客506との会話に関与しており、インテントに関連付けられた任意の他の参加者も、応答を閲覧し得る。これにより、これらの他の参加者は、調査された応答に関する参加者自身のフィードバックを提供することが可能になり得る。たとえば、図5に示されているように、顧客506と、特定のインテントのための何らかの選択された連絡先との間の会話における参加者は、ユーザインターフェース510を介した顧客506への提示のために別のユーザ504によってインテントメッセージングサービス502に提供される、調査された応答を提示され得る。特定のインテントのための顧客506との会話における他の参加者は、他のユーザ504からの取得された応答に関するコメントまたは提案を顧客506に提供し得る。
【0054】
[0063]顧客506は、ユーザインターフェース510を介して、顧客506にインテント応答を提供した他のユーザ504またはブランドを、インテントに関係する既存の会話に導入し得る。たとえば、図5に示されているように、別のユーザ504からの応答は、インテントに関する顧客506と他の連絡先との間の既存の会話に他のユーザ504を勧誘するか、それらの応答について他のユーザ504に感謝するか、他のユーザ504からの応答を無視するか、他のユーザ504からの将来の応答を無視する(たとえば、他のユーザ504をブロックする)など、顧客506のためのオプションとともに提供され得る。顧客506が、インテントに関する会話に参加するように他のユーザ504を勧誘した場合、コンピューティングデバイス508上で動作するインテントメッセージングアプリケーションは、他のユーザ504が、顧客506およびインテントに関係する会話に参加している任意の他の連絡先と対話することを可能にするための要求をインテントメッセージングサービス502に送信し得る。要求に応答して、インテントメッセージングサービス502は、追加の顧客情報を他のユーザ504に送信し得る。この追加の顧客情報は、顧客の名前、住所、連絡先情報、ピクチャなどを含み得る。さらに、インテントメッセージングサービス502は、他のユーザ504が、顧客506およびインテントに関する会話における任意の他の参加者と対話することを可能にし得る。
【0055】
[0064]図6は、少なくとも1つの実施形態による、顧客606が、ユーザインターフェース610を介して、インテントに関してブランド604と会話するためにブランド604との通信チャネルを開始する環境600の例示的な例を示す。環境600において、インテントメッセージングサービス602は、顧客のコンピューティングデバイス608上で動作するインテントメッセージングアプリケーションのユーザインターフェース610を介して、顧客606によってインテントメッセージングサービス602にサブミットされたインテントに対する調査された応答を提供し得る。調査された応答は、図6に示されているように、インテントに対する応答をサブミットしたブランド604の名前を含み得る。上述されたように、インテントメッセージングサービス602は、ブランド604および他のユーザからの応答が特定のインテントに関連するかどうかを決定するためにこれらの応答を評価し得る。たとえば、インテントメッセージングサービス602は、インテントに対する応答を評価して、各応答をインテントに関連するかまたはインテントに関連しないのいずれかとして分類するために、分類アルゴリズムまたは他の機械学習モデルを利用し得る。インテントに関連しないとして分類されたどんな応答も、インテントメッセージングサービス602によって廃棄され得る。インテントに関連するとして分類された応答は、ユーザインターフェース610を介して顧客606に提示され得る。さらに、各応答は、インテントに関する会話にブランド604を勧誘するか、それらの応答についてブランド604に感謝するか、ブランド604からの応答を無視するか、ブランド604からの将来の応答を無視する(たとえば、ブランド604をブロックする)など、顧客606のためのオプションとともに提供され得る。
【0056】
[0065]ユーザインターフェース610を通して、顧客606は、顧客606によってインテントメッセージングサービス602にサブミットされたインテントに対してブランド604によって提供される応答に関する会話に参加するようにブランド604を勧誘し得る。たとえば、ユーザインターフェース610を通して、顧客606は、顧客606との会話に関与するようにブランド604を勧誘するためのオプションを選択し得る。顧客606がこのオプションを選択した場合、顧客のコンピューティングデバイス608上のインテントメッセージングアプリケーションは、顧客606とブランド604との間の通信チャネルを開始するようにとの要求をインテントメッセージングサービス602に送信し得る。要求に応答して、インテントメッセージングサービス602は、追加の顧客情報をブランド604に送信し得る。この追加の顧客情報は、顧客の名前、住所、連絡先情報、ピクチャなどを含み得る。さらに、インテントメッセージングサービス602は、ブランド604が、顧客606とブランド604との間に確立された通信チャネルを介して顧客606と対話することを可能にし得る。
【0057】
[0066]顧客606とブランド604との間の通信チャネルが確立されると、顧客606は、ユーザインターフェース610を介してブランド604にメッセージを送信し得る。たとえば、図6に示されているように、顧客606は、ブランド604の調査された応答に応答してブランド604に挨拶し、ブランド604からの調査された応答に応答し得る、それのインテントに関する追加の詳細を提供し得る。顧客606からのこの応答は、インテントメッセージングサービス602によって確立された通信チャネル上でブランド604に送信され得る。これの結果として、応答は、ブランド604に関連付けられたエージェントまたは他のユーザによって利用されるインテントメッセージングアプリケーションのユーザインターフェースを介してブランド604に提示されることになり得る。ブランド604は、ユーザインターフェース610を介して顧客606に提示され得る追加の応答を提供し得る。したがって、インテントメッセージングサービス602を通して、顧客606およびブランド604は、インテントに対する解決を潜在的に識別するために顧客606の特定のインテントに関して通信し得る。
【0058】
[0067]図7は、少なくとも1つの実施形態による、顧客706が、ユーザインターフェース710を介して、別の顧客のインテントに対する応答を提供する環境700の例示的な例を示す。環境700において、インテントメッセージングサービス702は、インテントメッセージングサービス702の別のユーザ704によってサブミットされたインテントに対する応答を送信請求するために顧客706を選択し得る。上述されたように、ユーザからの要求を取得したことに応答して、インテントメッセージングサービス702は、要求からインテントを抽出し、インテントに関して関連する経験を有する可能性があり、インテントに対して関連する応答を提供する可能性がある1つまたは複数のブランドおよび他のユーザを識別し得る。たとえば、インテントメッセージングサービス702は、インテントマッチングシステムを介して、要求をサブミットしたユーザに提示され得るインテントに対する応答を送信請求するために、機械学習モデルを利用して、インテントを提供されるべき1つまたは複数のブランドおよび他のユーザを識別し得る。機械学習モデルは、インテントが提供されるべき選択されたブランドおよびユーザの識別子を含む出力を生成するための入力として、インテント、ならびにそれぞれのデータベースからのブランドおよびユーザプロファイルを利用し得る。
【0059】
[0068]図7に示されているように、顧客706は、顧客706にインテントに対する応答を送信請求するように、別のユーザ704からインテントを取得するためにインテントメッセージングサービス702によって選択される。顧客706は、1つまたは複数のファクタに基づいてインテントメッセージングサービス702によって選択されていることがある。たとえば、顧客706は、他のユーザ704からの特定のインテントに関して以前の経験を有することがある。例示的な例として、他のユーザ704が、人がペットフードを素早く注文することができるロケーションを識別するためのインテントを表現した場合、インテントメッセージングサービス702は、顧客706が、様々なブランドまたはロケーションからペットフードを取得する際における以前の経験を有していると決定し得る。この以前の経験は、顧客706によってインテントメッセージングサービス702にサブミットされた以前のインテントを通して、インテントメッセージングサービス702の他のユーザ704に提供された応答を通して、または顧客706によってインテントメッセージングサービス702に提供された他の表現(たとえば、顧客がペットに関心を示している、顧客がペットおよびペットの世話に関係するブランドと対話したことがあるなど)を通して、インテントメッセージングサービス702に対して表現されていることがある。
【0060】
[0069]インテントメッセージングサービス702は、他のユーザ704のインテントを提供するように、顧客のコンピューティングデバイス708上にインストールされたインテントメッセージングアプリケーションのユーザインターフェース710を更新し得る。たとえば、ユーザインターフェース710を通して、顧客706は、他のユーザのインテントを含む新しい会話ウィンドウを提示され得る。インテントは、インテントをサブミットした他のユーザ704のいかなる識別情報もなしに提示され得る。いくつかの事例では、インテントは、インテントに対する応答を提供する際に顧客706にとって有用であり得る他の情報とともに提供され得る。たとえば、インテントは、ユーザインターフェース710を介して、他のユーザ704の地理的ロケーション情報、インテントに対処するための時間フレームなどを提示され得る。この追加の情報は、インテントに対するそれの応答を適合させるために顧客706によって使用され得る。たとえば、インテントが、他のユーザ704がペットフードを素早く取得することができるロケーションを識別することである場合、インテントは、他のユーザ704の地理的ロケーションとともに提供され得る。顧客706は、指定された地理的ロケーションの近傍内にあるペットフードロケーションを識別するためにこの追加の情報を使用し得る。このようにして、この追加の情報は、顧客706がインテントに対して関連する応答を準備することを可能にするために、顧客706にとって有用であり得る。
【0061】
[0070]顧客706は、ユーザインターフェース710を介して、インテントに対する応答をサブミットし得る。図7に示されているように、顧客706は、インテントに対処するために他のユーザ704によって使用され得るブランドの名前を示している。さらに、顧客706は、他のユーザ704にとって有用であり得る他の情報を提供し得る。たとえば、顧客706は、指定されたブランドに関与することを決定した場合に他のユーザ704にとって有用であり得る、指定されたブランドとのそれ自身の経験を示し得る。ユーザインターフェース710を通して、顧客706は、インテントに応答して、他のユーザ704にとって有用であり得るデジタル画像、音声記録、ビデオ記録、または他の媒体をさらに提供し得る。
【0062】
[0071]インテントメッセージングサービス702は、顧客706によってユーザインターフェース710を介してコンピューティングデバイス708からサブミットされたインテント応答を取得し得る。顧客706からこのインテント応答を取得したことに応答して、インテントメッセージングサービス702は、このインテント応答が、他のユーザ704によってサブミットされたインテントに関連するかどうかを決定するために、インテント応答を評価し得る。たとえば、インテントメッセージングサービス702は、顧客706によってサブミットされたインテント応答をインテントに関連するかまたは関連しないとして分類するために、分類アルゴリズムまたは他の機械学習モデルを利用し得る。分類アルゴリズムまたは他の機械学習モデルは、教師あり学習技法を使用してトレーニングされ得る。たとえば、入力インテントと、既知の関連する応答と、既知の関連しない応答と、分類とのデータセットが、分類アルゴリズムまたは他の機械学習モデルのトレーニングのために選択され得る。いくつかの例では、入力インテントは、インテントメッセージングサービスの管理者、インテントメッセージングサービスの顧客、またはインテントメッセージングサービスに関連付けられた他のソースから取得され得る。いくつかの実装形態では、インテント処理システムによって利用される分類アルゴリズムまたは他の機械学習モデルをトレーニングするために使用される既知の関連する応答と既知の関連しない応答とは、サンプルインテントを生成したエンティティによって生成される応答を含む。
【0063】
[0072]インテントメッセージングサービス702が、インテントに対する顧客706によって提供された応答がインテントに関連すると決定した場合、インテントメッセージングサービス702は、応答を他のユーザ704に提供し得る。他のユーザ704は、顧客706からの応答を評価し、インテントメッセージングサービス702を通して会話において顧客706にさらに関与すべきかどうかを決定し得る。そうである場合、インテントメッセージングサービス702は、他のユーザ704の識別情報を顧客706に供給するように顧客706のユーザインターフェース710を更新し得る。さらに、インテントメッセージングサービス702は、顧客706と他のユーザ704がそれらのそれぞれのインテントメッセージングアプリケーションを使用して会話することを可能にするために、顧客706と他のユーザ704との間の通信チャネルを確立し得る。
【0064】
[0073]図8は、少なくとも1つの実施形態による、インテントを取得し、インテントを他のユーザおよびブランドに提供するためのプロセス800の例示的な例を示す。プロセス800はインテントメッセージングサービスによって実施され得、このインテントメッセージングサービスは、インテント処理システムを利用して、顧客およびインテントマッチングシステムによって生成された要求からインテントを抽出して、インテントがそれらに提供され得る1つまたは複数のブランドおよび他のユーザを識別して、これらの1つまたは複数のブランドおよび他のユーザに、インテントに対する応答を送信請求し得る。たとえば、インテントメッセージングアプリケーションを介して顧客から応答を送信請求するようにとの要求を取得したことに応答して、インテントメッセージングサービスは、顧客のインテントを取得し、インテントに対する応答を提供し得るブランドおよび他のユーザを識別し得る。顧客は、それらの要求対する解決を取得するためにどのブランドおよびユーザと通信すべきかを決定するために、これらの応答を使用し得る。
【0065】
[0074]ステップ802において、インテントメッセージングサービスは、インテントを作成するようにとの要求を取得する。たとえば、インテントメッセージングサービスによって提供され、顧客のコンピューティングデバイス上にインストールされたインテントメッセージングアプリケーションを使用して、顧客は、インテントメッセージングサービスのユーザのネットワーク内で様々なブランドまたは他のユーザに1つまたは複数の応答を送信請求するようにとの要求を生成し得る。要求において、顧客は、要求のための名前を指定し、ならびに提供された名前に関連付けられるべきそれの要求を提供し得る。要求は、顧客の要求に対して関連する応答を提供することが可能であり得るブランドおよび他のユーザを識別するために使用され得るインテントを含み得る。インテントの例は、(たとえば)トピック、感情、複雑さ、および緊急度を含むことができる。トピックは、限定はされないが、主題、製品、サービス、技術的問題、使用法の質問、苦情、返金要求または購買要求などを含むことができる。インテントは、たとえば、(たとえば、キーワード、文構造、繰り返されたワード、句読文字および/または非冠詞ワードを識別することによる)メッセージの意味解析、(たとえば、1つまたは複数のカテゴリーを選択している)ユーザ入力、ならびに/あるいはメッセージ関連の統計値(たとえば、タイピングスピードおよび/または応答レイテンシ)に基づいて決定され得る。
【0066】
[0075]顧客からの要求に応答して、インテントメッセージングサービスは、ステップ804において、顧客の新しいインテントを残存させる。たとえば、インテントメッセージングサービスは、顧客にとって有用であり得る関連する情報または応答で要求に応答する可能性があるブランドおよびユーザを識別するために使用され得るインテントを要求から抽出し得る。さらに、インテントメッセージングサービスは、インテントを追跡するために使用され得る一意の識別子をもつインテントと、インテントに対する任意の取得された応答とを関連付け得る。これは、インテントが提供されるべき様々なブランドまたはユーザからのインテントに対する応答を識別する際に、およびこれらのブランドまたはユーザからの関連する応答を顧客に提供するのに、インテントメッセージングサービスを支援し得る。
【0067】
[0076]ステップ806において、インテントメッセージングサービスは、インテントに対する応答を送信請求するためにどのブランドおよびユーザが選択され得るかを識別するために使用され得る顧客からの追加の情報が必要とされるかどうかを決定する。たとえば、インテントメッセージングサービスは、追加の情報が、顧客のインテントに対して関連する応答を提供することができるブランドおよびユーザのセットを識別する際に有用であるかどうかを決定するために、要求およびインテントを評価し得る。この追加の情報は、顧客の地理的ロケーション、要求の解決のための時間フレーム、特定のブランドおよび/またはユーザについての任意の顧客の選好などを含み得る。
【0068】
[0077]インテントメッセージングサービスが、顧客によって提供された要求およびインテントを補足するために追加の情報が必要とされると決定した場合、インテントメッセージングサービスは、ステップ808において、インテントに関連付けられた顧客に、追加の情報を送信請求し得る。たとえば、インテントメッセージングサービスは、この追加の情報を送信請求すべき顧客のインテントに関係する様々な質問を顧客に尋ねるために、インテントメッセージングアプリケーションを介して、自然言語処理(NLP)または他の人工知能アルゴリズムを利用し得る。たとえば、顧客がインテリアデザイン会社の推奨についての要求をサブミットした場合、インテントメッセージングサービスは、顧客がどこに住んでいるか、新しいインテリアデザインプロジェクトの完了のためにどんな時間フレームであるか、新しいインテリアデザインプロジェクトのためにどんな予算であるか、インテリアデザインプロジェクトの態様、および顧客のインテリアデザインクエリにひも付けされた他の質問を顧客に尋ね得る。顧客は、インテントメッセージングサービスからのこれらの追加の質問に応答して、インテントを補足し、顧客のインテントに対して関連する応答を提供する可能性があるブランドおよび他のユーザを識別するために使用され得る追加の情報を提供し得る。
【0069】
[0078]ステップ810において、インテントメッセージングサービスは、顧客のインテントに関連する(たとえば、関連する応答を提供する可能性がある)インテントメッセージングサービスに関連付けられたブランドおよび/または他のユーザを識別する。一実施形態では、インテントメッセージングサービスは、インテントマッチングシステムを介して、1つまたは複数のブランドおよび/または他のユーザに応答を送信請求するために、インテント機械学習モデリングエンジンを利用して、インテントを提供されるべき1つまたは複数のブランドおよび/または他のユーザを識別する。インテント機械学習モデリングエンジンは、インテントに対して関連する応答を提供する可能性があるブランドおよび/またはユーザを識別するための機械学習モデルへの入力として、インテントマッチングシステムによって維持されたブランドデータベースおよびユーザデータベース、ならびに顧客のインテントを利用し得る。ブランドデータベースおよびユーザデータベースは、それぞれ、インテントメッセージングサービスに関連付けられ得るブランドおよびユーザの各々のプロファイルを含み得る。各プロファイルは、特定のインテントまたはインテントのカテゴリーに応答しているユーザまたはブランドの経験、ならびにインテントの基礎をなすトピックまたは分類(たとえば、インテリアデザインなど)におけるユーザまたはブランドの関心を示し得る。さらに、各プロファイルは、以前に提供されたインテントに対するユーザまたはブランドの応答に関するフィードバックを示し得る。このフィードバックは、インテントに応答して提供された応答が関連していたか、有用であったか、または他の方法で対応する顧客によって賞賛されたかどうかを指定し得る。
【0070】
[0079]インテント機械学習モデリングエンジンによって利用される機械学習モデルは、インテントが提供されるべきブランドおよび他のユーザを識別するために使用され得るブランドおよび他のユーザの特徴に対応するサンプルインテントとサンプル出力とを使用してトレーニングされ得る。さらに、機械学習モデルは、インテントを受信した様々なブランドおよび他のユーザからのフィードバックを使用してトレーニングされ得る。このフィードバックは、機械学習モデルが、関連する応答でインテントに応答することが可能であるかまたは他の方法でインテントの特徴に関連付けられているブランドおよび他のユーザを選択しているかどうかを決定するために使用され得る。たとえば、インテリアデザインサービスを提供するブランドが、インテリアデザインに関係しないインテントを取得した場合、このブランドは、提供されたインテントがブランドに関連しないことを示すフィードバックを提供し得る。このフィードバックは、インテントマッチングシステムによって利用される機械学習モデルをさらにトレーニングするために使用され得る。
【0071】
[0080]ステップ812において、インテント機械学習モデリングエンジンによって生成された出力に基づいて、インテントメッセージングサービスは、顧客のインテントに対する応答をそれらに送信請求すべき他のユーザおよび/またはブランドを推奨する。たとえば、インテントメッセージングサービスは、インテントメッセージングアプリケーションを介して、顧客のインテントに対して関連する応答を提供する可能性があるとしてインテント機械学習モデリングエンジンによって識別されたブランドおよび/または他のユーザのリスティングを提供し得る。インテントメッセージングアプリケーションを使用して、顧客は、応答を送信請求するためにそれのインテントが提供されるべき他のユーザおよびブランドのサブセットを選択し得る。
【0072】
[0081]顧客の選択に基づいて、インテントメッセージングサービスは、ステップ814において、顧客によって選択された他のユーザおよび/またはブランドに顧客インテントを送信する。一実施形態では、顧客が、それのインテントが提供されるべきブランドおよび/またはユーザの選択を行わない場合、インテントメッセージングサービスは、デフォルトでインテント機械学習モデリングエンジンによって識別された他のユーザおよび/またはブランドに顧客のインテントを送信することができる。いくつかの事例では、インテントメッセージングサービスは、デフォルトで関連性しきい値に基づいて他のユーザおよび/またはブランドのサブセットを選択し得る。たとえば、各ブランドおよび他のユーザは、顧客のインテントに対して関連する応答を提供するそれらの尤度に基づいてスコアリングされ得る。このスコアは、顧客のインテントのトピックにおけるブランドまたはユーザの履歴的な関心、同様のインテントに応答する際におけるブランドまたはユーザの履歴的な経験などに基づいて、インテント機械学習モデリングエンジンによって計算され得る。
【0073】
[0082]図9は、少なくとも1つの実施形態による、インテントに応答して顧客に提示可能な関連する応答を識別するために、ブランドおよび他のユーザからの提案された応答を評価するためのプロセス900の例示的な例を示す。プロセス900はインテントメッセージングサービスによって実施され得、インテントメッセージングサービスは、インテント処理システムを利用して、インテントが提供された様々なブランドおよびユーザからのインテントに対する応答を評価して、応答がインテントに関連しており、顧客に提供され得るかどうかを決定し得る。一実施形態では、インテント処理システムは、様々なブランドおよびユーザからの応答を評価して、顧客のインテントに応答して顧客に提供され得る応答のサブセットを識別するために使用される機械学習モデルを実装する。
【0074】
[0083]ステップ902において、インテント処理システムは、応答を送信請求するために顧客インテントが提供されたブランドおよび他のユーザから、顧客インテントに対する1つまたは複数の提案された応答を取得する。上述されたように、インテントマッチングサービスのインテントマッチングシステムは、インテントメッセージングサービスの顧客によってサブミットされた顧客インテントに対して関連する応答を提供し得る1つまたは複数のブランドおよび他のユーザを識別し得る。たとえば、インテントマッチングシステムは、インテントに関心があり得るか、同様のインテントに応答した経験を有するか、または他の方法でインテントに対して関連する応答を提供し得るブランドおよびユーザを識別するために、それぞれブランドデータベースおよびユーザデータベースを照会し得る。一実施形態では、インテントマッチングシステムは、顧客インテントに対して関連する応答を提供する可能性があるブランドおよび他のユーザを識別するために機械学習モデルを利用する。機械学習モデルは、インテントが提供されるべきブランドおよび他のユーザを識別するために使用され得るブランドおよび他のユーザの特徴に対応するサンプルインテントとサンプル出力とを使用してトレーニングされ得る。さらに、機械学習モデルは、インテントを受信した様々なブランドおよび他のユーザからのフィードバックを使用してトレーニングされ得る。このフィードバックは、機械学習モデルが、関連する応答でインテントに応答することが可能であるかまたは他の方法でインテントの特徴に関連付けられているブランドおよび他のユーザを選択しているかどうかを決定するために使用され得る。たとえば、インテリアデザインサービスを提供するブランドが、インテリアデザインに関係しないインテントを取得した場合、このブランドは、提供されたインテントがブランドに関連しないことを示すフィードバックを提供し得る。このフィードバックは、インテントマッチングシステムによって利用される機械学習モデルをさらにトレーニングするために使用され得る。
【0075】
[0084]ステップ904において、インテント処理システムは、1つまたは複数のブランドおよび他のユーザによって提供される提案された応答を評価して、顧客インテントに対するこれらの提案された応答の関連性を決定する。たとえば、インテント処理システムは、応答を評価し、応答をインテントに関連するかまたはインテントに関連しないのいずれかとして分類するために、分類アルゴリズムまたは他の機械学習モデルを利用し得る。分類アルゴリズムまたは他の機械学習モデルは、教師あり学習技法を使用してトレーニングされ得る。たとえば、入力インテントと、既知の関連する応答と、既知の関連しない応答と、分類とのデータセットが、分類アルゴリズムまたは他の機械学習モデルのトレーニングのために選択され得る。いくつかの例では、入力インテントは、インテントメッセージングサービスの管理者、インテントメッセージングサービスの顧客、またはインテントメッセージングサービスに関連する他のソースから取得され得る。いくつかの実装形態では、インテント処理システムによって利用される分類アルゴリズムまたは他の機械学習モデルをトレーニングするために使用される既知の関連する応答と既知の関連しない応答とは、サンプルインテントを生成したエンティティによって生成される応答を含む。
【0076】
[0085]いくつかの例では、サンプルインテントに対する既知の関連する応答と既知の関連しない応答との得られた分類は、分類アルゴリズムまたは他の機械学習モデルをトレーニングするために使用され得る損失またはエラーを決定するために評価される。たとえば、分類アルゴリズムまたは他の機械学習モデルが、サンプルインテントに対して関連する応答を関連しない応答であるとして分類したか、またはサンプルインテントに対して関連しない応答を関連する応答であるとして分類した場合、分類アルゴリズムまたは他の機械学習モデルのパラメータは、サンプルインテントに対する応答の誤分類から生じた損失に従って調整され得る。これらのパラメータは、インテント処理システムによって利用される分類アルゴリズムまたは他の機械学習モデルの重みおよびバイアスを含み得る。
【0077】
[0086]一実施形態では、分類アルゴリズムまたは他の機械学習モデルはまた、応答の特性または他の特徴、ならびに応答がそれに対して生成されたインテントの特性または他の特徴を識別するようにトレーニングされる。これらの特性または特徴は、応答をインテントに関連するかまたは関連しないのいずれかとして分類するために使用され得る。たとえば、インテントが、インテリアデザイン要求に対応する1つまたは複数の特性を含む場合、分類アルゴリズムまたは他の機械学習モデルは、応答が、インテリアデザインに同じく対応する1つまたは複数の特性を含むかどうかを決定するために、応答を評価し得る。これらの特性の間の類似度に基づいて、分類アルゴリズムまたは他の機械学習モデルは関連性スコアを決定し得、この関連性スコアは、関連性しきい値を上回る場合、関連する応答に対応し得る。このようにして、分類アルゴリズムまたは他の機械学習モデルを使用して、インテント処理システムは、応答を評価し、応答を特定のインテントに関連するかまたは関連しないのいずれかとして分類し得る。
【0078】
[0087]ステップ906において、インテント処理システムは、顧客インテントに関連しないブランドおよび他のユーザからのいかなる応答をも廃棄する。上述されたように、インテント処理システムは、特定のインテントについてブランドまたは他のユーザから取得された各応答を分類するために分類アルゴリズムまたは他の機械学習モデルを利用し得る。分類アルゴリズムまたは他の機械学習モデルが、応答が関連性しきい値を満たさないと決定した場合、分類アルゴリズムまたは他の機械学習モデルは、応答をインテントに関連しないとして分類し得る。インテント処理システムは、このようにして、顧客インテントに関連しないとして分類される何らかの応答を取得し、これらの応答を廃棄し得る。一実施形態では、ブランドまたは他のユーザが、関連しない応答を提供したとして識別された場合、インテント処理システムは、インテントマッチングシステムに、ブランドまたは他のユーザに関する情報、ならびにブランドまたは他のユーザが関連しない応答を提供したと決定された顧客インテントを提供することができる。インテントマッチングシステムは、特定のインテントに対する応答の送信請求のために選択され得るブランドおよび他のユーザを識別するために利用されるそれの機械学習モデルをさらにトレーニングするために、この情報を利用し得る。これの結果として、関連しない応答を提供したブランドまたは他のユーザは、ブランドまたは他のユーザが関連しない応答をそれに提供した顧客インテントと同様のインテントに対して応答を提供するためにインテントマッチングシステムによって選択される可能性がより低くなり得る。
【0079】
[0088]ステップ908において、インテント処理システムは、インテントメッセージングアプリケーションを介した1つまたは複数のブランドおよび他のユーザとの顧客対話を可能にするために、これらのブランドおよび他のユーザから取得された関連する応答を顧客に提供する。たとえば、インテント処理システムは、インテントメッセージングアプリケーションに関連する応答を送信し得、それにより、インテントメッセージングアプリケーションは、顧客のコンピューティングデバイスを介して顧客に利用可能な応答を提示するようにGUIを更新し得る。このGUIから、顧客は、関連する応答を提供したブランドまたは他のユーザとの会話を開始すべきかどうかを決定し得る。顧客が、インテント処理システムによって関連していると見なされる応答を提供したブランドまたは他のユーザとの会話を開始することを望まない場合、顧客は、代わりに、インテントメッセージングサービスを介して、それの応答についてブランドまたは他のユーザに感謝する通知をブランドまたは他のユーザに送信し得る。追加または代替として、顧客は、取得された応答に関するフィードバックをサブミットし得る。たとえば、顧客は、提供された応答が、顧客によってサブミットされたインテントに関連していたかどうかを示し得る。このフィードバックは、所与のインテントに対して関連する応答を識別するために利用される分類アルゴリズムまたは他の機械学習モデルをさらにトレーニングするためにインテント処理システムによって使用され得る。顧客がブランドまたは他のユーザとの会話を開始することを選択した場合、インテントメッセージングサービスは、顧客と特定のブランドまたは他のユーザとの間の通信チャネルを開き得る。これは、ブランドまたは他のユーザが通信チャネル上で顧客と対話することを可能にする。
【0080】
[0089]図10は、いくつかの実装形態による、バスなどの接続1006を使用して互いに電気通信している様々な構成要素を含むコンピューティングシステムアーキテクチャ1000を示す。例示的なシステムアーキテクチャ1000は、処理ユニット(CPUまたはプロセッサ)1004と、ROM1018およびRAM1016などのシステムメモリ1020を含む様々なシステム構成要素をプロセッサ1004に結合するシステム接続1006とを含む。システムアーキテクチャ1000は、プロセッサ1004と直接接続された、プロセッサ1004に極めて近接した、またはプロセッサ1004の一部として統合された、高速メモリのキャッシュ1002を含むことができる。システムアーキテクチャ1000は、プロセッサ1004による迅速なアクセスのために、メモリ1020および/または記憶デバイス1008からキャッシュ1002にデータをコピーすることができる。このようにして、キャッシュは、データを待っている間のプロセッサ1004遅延を回避する性能の向上を提供することができる。これらおよび他のモジュールは、様々なアクションを実施するようにプロセッサ1004を制御することができ、またはプロセッサ1004を制御するように構成され得る。
【0081】
[0090]他のシステムメモリ1020も、使用のために利用可能であり得る。メモリ1020は、異なる性能特性を有する、複数の異なるタイプのメモリを含むことができる。プロセッサ1004は、任意の汎用プロセッサと、プロセッサ1004ならびに専用プロセッサを制御するように構成された、記憶デバイス1008に記憶されたサービス1 1010、サービス2 1012、およびサービス3 1014など、ハードウェアまたはソフトウェアサービスとを含むことができ、ここで、ソフトウェア命令は、実際のプロセッサ設計に組み込まれる。プロセッサ1004は、複数のコアまたはプロセッサと、バスと、メモリコントローラと、キャッシュなどとを含んでいる、完全自己完結型コンピューティングシステムであってもよい。マルチコアプロセッサは、対称的であっても、または非対称的であってもよい。
【0082】
[0091]コンピューティングシステムアーキテクチャ1000とのユーザ対話を可能にするために、入力デバイス1022は、音声用のマイクロフォン、ジェスチャまたはグラフィック入力用のタッチセンシティブスクリーン、キーボード、マウス、モーション入力、音声など、任意の数の入力機構を表すことができる。出力デバイス1024も、当業者に知られているいくつかの出力機構のうちの1つまたは複数などであってよい。いくつかの事例では、マルチモーダルシステムは、ユーザが、コンピューティングシステムアーキテクチャ1000と通信するために複数のタイプの入力を提供することを可能にすることができる。通信インターフェース1026は、概して、ユーザ入力とシステム出力とを統制および管理することができる。任意の特定のハードウェア構成上で動作することに対する制限はなく、したがって、ここでの基本的特徴は、改善されたハードウェア構成またはファームウェア構成が開発されるにつれて、それらで容易に代用され得る。
【0083】
[0092]記憶デバイス1008は、不揮発性メモリであり、磁気カセット、フラッシュメモリカード、固体メモリデバイス、デジタル多用途ディスク、カートリッジ、RAM1016、ROM1018、およびそれらのハイブリッドなど、コンピュータによってアクセス可能であるデータを記憶することができるハードディスクまたは他のタイプのコンピュータ可読媒体であり得る。
【0084】
[0093]記憶デバイス1008は、プロセッサ1004を制御するためのサービス1010、1012、1014を含むことができる。他のハードウェアモジュールまたはソフトウェアモジュールが企図される。記憶デバイス1008は、システム接続1006に接続され得る。一態様では、特定の機能を実施するハードウェアモジュールは、その機能を行うために、プロセッサ1004、接続1006、出力デバイス1024など、必要なハードウェア構成要素に関して、コンピュータ可読媒体に記憶されたソフトウェア構成要素を含むことができる。
【0085】
[0094]開示された方法は、コンピューティングシステムを使用して実行され得る。例示的なコンピューティングシステムは、プロセッサ(たとえば、中央処理ユニット)と、メモリと、不揮発性メモリと、インターフェースデバイスとを含むことができる。メモリは、データおよび/または1つまたは複数のコードセット、ソフトウェア、スクリプトなどを記憶し得る。コンピュータシステムの構成要素は、バスを介してあるいは何らかの他の知られているまたは好都合なデバイスを通して一緒に結合され得る。プロセッサは、たとえば、たとえばメモリに記憶されたコードを実行することによって本明細書で説明される方法の全部または一部を行うように構成され得る。ユーザデバイスまたはコンピュータ、プロバイダサーバまたはシステム、あるいは中断されたデータベース更新システムのうちの1つまたは複数は、コンピューティングシステムの構成要素またはそのようなシステムの変形形態を含み得る。
【0086】
[0095]本開示は、限定はしないが、ポイントオブセールシステム(「POS」)を含む任意の好適な物理的形態をとるコンピュータシステムを企図する。限定ではなく例として、コンピュータシステムは、埋込みコンピュータシステム、システムオンチップ(SOC)、(たとえば、コンピュータオンモジュール(COM)もしくはシステムオンモジュール(SOM)などの)シングルボードコンピュータシステム(SBC)、デスクトップコンピュータシステム、ラップトップもしくはノートブックコンピュータシステム、対話型キオスク、メインフレーム、コンピュータシステムのメッシュ、携帯電話、携帯情報端末(PDA)、サーバ、または2つ以上のこれらの組合せであり得る。適切な場合、コンピュータシステムは、ユニタリであるかもしくは分散された、複数のロケーションにわたる、複数の機械にわたる、および/または1つもしくは複数のネットワーク中の1つもしくは複数のクラウド構成要素を含み得るクラウド中に常駐する1つまたは複数のコンピュータシステムを含み得る。適切な場合、1つまたは複数のコンピュータシステムは、実質的な空間的または時間的制限なしに本明細書で説明または例示されている1つまたは複数の方法の1つまたは複数のステップを実行し得る。限定ではなく例として、1つまたは複数のコンピュータシステムは、リアルタイムでまたはバッチモードで本明細書で説明または例示されている1つまたは複数の方法の1つまたは複数のステップを実行し得る。1つまたは複数のコンピュータシステムは、適切な場合、異なる時間にまたは異なるロケーションで本明細書で説明または例示されている1つまたは複数の方法の1つまたは複数のステップを実行し得る。
【0087】
[0096]プロセッサは、たとえば、インテルペンティアム(登録商標)マイクロプロセッサまたはモトローラパワーPCマイクロプロセッサなど、従来のマイクロプロセッサであってもよい。関連する技術の当業者は、「機械可読(記憶)媒体」または「コンピュータ可読(記憶)媒体」という用語には、プロセッサによってアクセス可能な任意のタイプのデバイスを含むということを認識するであろう。
【0088】
[0097]メモリは、たとえば、バスによってプロセッサに結合され得る。メモリは、限定ではなく例として、ダイナミックRAM(DRAM)およびスタティックRAM(SRAM)など、ランダムアクセスメモリ(RAM)を含むことができる。メモリは、ローカルに、遠隔に、または分散して存在することができる。
【0089】
[0098]バスはまた、プロセッサを不揮発性メモリおよび駆動ユニットに結合することができる。不揮発性メモリは、磁気フロッピー(登録商標)ディスクもしくはハードディスク、光磁気ディスク、光ディスク、CD-ROM、EPROM、もしくはEEPROM(登録商標)などの読取り専用メモリ(ROM)、磁気カードもしくは光カード、または大量のデータ用の別の形態の記憶装置であることが多い。このデータの一部が、ダイレクトメモリアクセス処理によって、コンピュータ内でソフトウェアの実行中にメモリに書き込まれることが多い。不揮発性記憶装置は、ローカルに、遠隔に、または分散して存在することができる。不揮発性記憶装置は、メモリ内で利用可能なすべての適用可能なデータを用いてシステムが作成され得るので任意的である。一般的なコンピュータシステムは、通常、少なくともプロセッサ、メモリ、およびメモリをプロセッサに結合するデバイス(たとえば、バス)を含む。
【0090】
[0099]ソフトウェアは、不揮発性メモリおよび/または駆動ユニットに記憶され得る。実際、大きいプログラムでは、メモリにプログラム全体を記憶することが可能でないことさえあり得る。それにもかかわらず、ソフトウェアが稼働するために、必要な場合、処理に適したコンピュータ可読ロケーションに移動され、説明の目的のために、そのロケーションは、本明細書ではメモリと呼ばれることを理解されたい。ソフトウェアが実行のためにメモリに移動されたときでも、プロセッサは、ソフトウェアに関連する値を記憶するためにハードウェアレジスタと、理想的には、実行を高速化するように働くローカルキャッシュとを利用することができる。本明細書で使用されるソフトウェアプログラムは、そのソフトウェアプログラムが「コンピュータ可読媒体において実装される」と呼ばれるとき、任意の知られているまたは好都合なロケーション(不揮発性記憶装置からハードウェアレジスタまで)に記憶されると仮定される。プログラムに関連する少なくとも1つの値がプロセッサによって読取り可能なレジスタに記憶されるとき、プロセッサは、「プログラムを実行するように構成される」と見なされる。
【0091】
[0100]バスはまた、ネットワークインターフェースデバイスにプロセッサを結合することができる。インターフェースは、モデムまたはネットワークインターフェースのうちの1つまたは複数を含むことができる。モデムまたはネットワークインターフェースがコンピュータシステムの一部であると見なされ得ることが諒解されよう。インターフェースは、アナログモデム、統合サービスデジタルネットワーク(ISDN0モデム、ケーブルモデム、トークンリングインターフェース、衛星送信インターフェース(たとえば、「直接PC」)、またはコンピュータシステムを他のコンピュータシステムに結合するための他のインターフェースを含むことができる。インターフェースは、1つまたは複数の入力および/または出力(I/O)デバイスを含むことができる。I/Oデバイスは、限定ではなく例として、キーボードと、マウスまたは他のポインティングデバイスと、ディスクドライブと、プリンタと、スキャナと、ディスプレイデバイスを含む他の入力および/または出力デバイスとを含むことができる。ディスプレイデバイスは、限定ではなく例として、陰極線管(CRT)、液晶ディスプレイ(LCD)、あるいは何らかの他の適用可能な知られているまたは好都合なディスプレイデバイスを含むことができる。
【0092】
[0101]動作中、コンピュータシステムは、ディスクオペレーティングシステムなどのファイル管理システムを含むオペレーティングシステムソフトウェアによって制御され得る。関連するファイル管理システムソフトウェアをもつオペレーティングシステムソフトウェアの一例は、ワシントン州RedmondのMicrosoft CorporationからのWindows(登録商標)として知られるオペレーティングシステムのファミリおよびそれらの関連するファイル管理システムである。それの関連するファイル管理システムソフトウェアをもつオペレーティングシステムソフトウェアの別の例は、Linux(登録商標)オペレーティングシステムおよびそれの関連するファイル管理システムである。ファイル管理システムは、不揮発性メモリおよび/または駆動ユニット中に記憶され得、データを入力および出力することと、不揮発性メモリおよび/または駆動ユニット上にファイルを記憶することを含むメモリ中にデータを記憶することとをオペレーティングシステムが行うために必要とされる様々な行為を実行することをプロセッサに行わせることができる。
【0093】
[0102]詳細な説明のいくつかの部分は、コンピュータメモリ内のデータビットに対する演算のアルゴリズムおよび記号表現に関して提示され得る。これらのアルゴリズムの説明および表現は、データ処理分野の当業者によって、自身の仕事の本質を他の当業者に最も効果的に伝達するために使用される手段である。アルゴリズムは、本明細書では、および一般には、所望の結果をもたらす自己無撞着な一連の動作であると想到される。動作は、物理量の物理的操作を必要とするものである。通常、必ずしも必要とは限らないが、これらの量は、記憶、転送、結合、比較、および他の方法で操作されることが可能な電気信号または磁気信号の形態をとる。主に一般的な用法という理由で、これらの信号をビット、値、要素、記号、文字、項、数、などと呼ぶことが時々便利であることがわかっている。
【0094】
[0103]ただし、これらおよび同様の用語のすべては、適切な物理量に関連付けられるべきものであり、これらの量に適用される便利なラベルにすぎないことに留意されたい。別段に明記されていない限り、以下の説明から明らかなように、説明全体にわたって、「処理する」または「計算する」または「算出する」または「決定する」または「表示する」または「生成する」などの用語を利用する説明は、コンピュータシステムのレジスタおよびメモリ内の物理(電子)量として表されるデータを操作し、コンピュータシステムのメモリまたはレジスタまたは他のそのような情報記憶、送信もしくはディスプレイデバイス内の物理量として同様に表される他のデータに変換するコンピュータシステムまたは同様の電子コンピューティングデバイスの行為およびプロセスを指すことを諒解されたい。
【0095】
[0104]本明細書で提示されるアルゴリズムおよびディスプレイは、任意の特定のコンピュータまたは他の装置に本質的に関連しない。様々な汎用システムは、本明細書の教示に従ってプログラムとともに使用され得るか、またはいくつかの例の方法を実行するためにより特殊な装置を構築するのに便利であるとがわかり得る。様々なこれらのシステムのために必要とされる構造が以下の説明から明らかになるであろう。さらに、技法は、任意の特定のプログラミング言語を参照しながら説明されず、したがって、様々な例は、様々なプログラミング言語を使用して実装され得る。
【0096】
[0105]様々な実装形態では、システムは、スタンドアロンデバイスとして動作するか、または他のシステムに接続(たとえば、ネットワーク化)され得る。ネットワーク化された展開では、システムは、クライアントサーバネットワーク環境におけるサーバまたはクライアントシステムの容量で、あるいはピアツーピア(または分散)ネットワーク環境におけるピアシステムとして動作し得る。
【0097】
[0106]システムは、サーバコンピュータ、クライアントコンピュータ、パーソナルコンピュータ(PC)、タブレットPC、ラップトップコンピュータ、セットトップボックス(STB)、携帯情報端末(PDA)、セルラー電話、iPhone(登録商標)、Blackberry、プロセッサ、電話、ウェブ機器、ネットワークルータ、スイッチまたはブリッジ、あるいはそのシステムによってとられるべきアクションを指定する命令のセット(連続またはそれ以外)を実行することが可能な任意のシステムであり得る。
【0098】
[0107]機械可読媒体または機械可読記憶媒体が、例として、単一の媒体であるものとして示されているが、「機械可読媒体」および「機械可読記憶媒体」という用語は、命令の1つまたは複数のセットを記憶する単一の媒体または複数の媒体(たとえば、集中もしくは分散データベースならびに/または関連するキャッシュおよびサーバ)を含むものと解釈されるべきである。「機械可読媒体」および「機械可読記憶媒体」という用語はまた、システムが実行するための命令のセットを記憶、符号化、または搬送することが可能であり、システムに本明細書で開示する方法またはモジュールのうちの任意の1つまたは複数を実行させる任意の媒体を含むものとする。
【0099】
[0108]概して、本開示の実装形態を実装するために実行されるルーチンは、オペレーティングシステムの部分または特定のアプリケーション、構成要素、プログラム、オブジェクト、モジュールまたは「コンピュータプログラム」と呼ばれる一連の命令として実装され得る。コンピュータプログラムは一般に、コンピュータ中の1つまたは複数の処理ユニットまたはプロセッサによって読み取られ、実行されたときに、コンピュータに、本開示の様々な態様に関与する要素を実行するために動作を実行させる、コンピュータ中の様々なメモリおよび記憶デバイス中のいろいろな時点での1つまたは複数の命令セットを備える。
【0100】
[0109]さらに、完全に機能するコンピュータおよびコンピュータシステムのコンテキストで例を説明したが、様々な例が様々な形態のプログラムオブジェクトとして分散されることが可能であること、および分散に実際に影響を及ぼすために使用される特定のタイプの機械またはコンピュータ可読媒体にかかわらず本開示が等しく適用されることを、当業者は諒解されよう。
【0101】
[0110]機械可読記憶媒体、機械可読媒体、またはコンピュータ可読(記憶)媒体のさらなる例は、限定はしないが、特に、揮発性および不揮発性メモリデバイス、フロッピーディスクおよび他のリムーバブルディスク、ハードディスクドライブ、光ディスク(たとえば、読み出し専用コンパクトディスク(CD ROM)、デジタル多用途ディスク(DVD)など)などの記録可能型媒体と、デジタルおよびアナログ通信リンクなどの送信型媒体とを含む。
【0102】
[0111]いくつかの状況では、バイナリ1からバイナリ0への、またはその逆の状態の変化など、メモリデバイスの動作は、たとえば、物理的変換などの変換を備え得る。特定のタイプのメモリデバイスでは、そのような物理的変換は、異なる状態または物への物品の物理的変換を備え得る。たとえば、限定はしないが、いくつかのタイプのメモリデバイスの場合、状態の変化は、電荷の累積および蓄積、あるいは蓄積された電荷の解放を伴い得る。同様に、他のメモリデバイスでは、状態の変化は、磁気方位の物理的変化もしくは変換または結晶状からアモルファスへのもしくはその逆の分子構造の物理的変化もしくは変換を備え得る。上記は、メモリデバイスにおけるバイナリ1のバイナリ0へのまたはその逆への状態の変化が物理的変換などの変換を備え得る、すべての例の網羅的なリストになるように意図されていない。むしろ、上記は説明のための例として意図されている。
【0103】
[0112]記憶媒体は、一般に、非一時的であるか、または非一時的デバイスを備え得る。このコンテキストでは、非一時的記憶媒体は、有形であるデバイスを含み得、これは、デバイスが具体的な物理的形態を有することを意味するが、デバイスはそれの物理的状態を変化し得る。したがって、たとえば、非一時的は、状態のこの変化にもかかわらず有形にとどまるデバイスを指す。
【0104】
[0113]上記の説明および図面は、例示的なものであり、主題を開示する形態そのものに限定するものと解釈すべきではない。上記の開示に照らして多くの修正および変更が可能であることを、当業者は諒解することができる。本開示の完全な理解を与えるために、多数の具体的な詳細について説明した。しかしながら、いくつかの事例では、説明を不明瞭にすることを回避するために、よく知られているまたは従来の詳細について説明していない。
【0105】
[0114]本明細書で使用する「接続された」、「結合された」という用語またはそれの任意の変形形態は、システムのモジュールに適用されるときに、2つ以上の要素の間での直接的または間接的な任意の接続または結合を意味し、要素間の接続の結合は、物理的、論理的、またはそれらの任意の組合せであり得る。さらに、「本明細書で(herein)」、「上記で(above)」、「以下で(below)」などの用語、および同様の意味の用語は、本明細書で使用される場合、本明細書の任意の特定の部分ではなく、本明細書を全体として指すものとする。コンテキストが許せば、単数または複数を使用する、上記の発明を実施するための形態における用語は、それぞれ複数または単数も含み得る。2つ以上の項目のリストを参照する「または(or)」という語句は、リスト内の項目のうちのいずれか、リスト内の項目のうちのすべて、またはリスト内の項目の任意の組合せという語句の解釈のうちのすべてをカバーする。
【0106】
[0115]開示する主題が、以下に示されていない他の形態および方式において具体化され得ることを、当業者は諒解されよう。第1の(first)、第2の(second)、上部の(top)および下部の(bottom)などの関係を示す用語の使用は、もしあれば、1つのエンティティまたは行為を、そのようなエンティティまたは行為の間のいかなるそのような実際の関係または順序を必要とするかまたは暗示することなしに、別のものと区別するためだけに使用されることを理解されたい。
【0107】
[0116]プロセスまたはブロックが所与の順序で提示されているが、代替実装形態は、異なる順序で、ステップを有するルーチンを実行するか、またはブロックを有するシステムを採用し得、いくつかのプロセスまたはブロックは、代替または部分組合せを与えるために削除、移動、追加、再分割、置換、連結、および/または修正され得る。これらの処理またはブロックの各々は、様々な異なる方法で実装され得る。また、プロセスまたはブロックは、時々連続して実行されるものとして示されているが、これらのプロセスまたはブロックは、代わりに、並行して実行され得るか、または異なる時間に実行され得る。さらに、本明細書において言及された任意の特定の数は例にすぎず、代替実装形態は、異なる値または範囲を採用し得る。
【0108】
[0117]本明細書で提供される開示の教示は、必ずしも上記で説明されたシステムに限らず他のシステムに適用され得る。上記で説明された様々な例の要素および行為は、さらなる例を与えるために組み合わされ得る。
【0109】
[0118]添付の出願書類中にリストされ得る任意のものを含む上記で言及された任意の特許および出願および他の参考文献は、参照により本明細書に組み込まれる。本開示の態様は、必要な場合、本開示のまたさらなる例を与えるために上記で説明された様々な参考文献のシステム、機能、および概念を採用するために修正され得る。
【0110】
[0119]これらおよび他の変更は、上記の発明を実施するための形態に照らして本開示に行われ得る。上記の説明がいくつかの例について説明し、企図される最良の形態について説明するが、文章中でいかに詳述されているように見えたとしても、教示は多くの方法で実施され得る。システムの詳細は、本明細書で開示される主題によって依然として包含されるが、それの実装詳細において大幅に変動し得る。上記のように、本開示のいくつかの特徴または態様について説明するときに使用される特定の用語は、その用語が関連付けられる開示の任意の特定の特性、特徴、または態様に制限されるように、その用語が本明細書で再定義されていることを暗示するものととられるべきではない。概して、以下の特許請求の範囲において使用される用語は、上記の発明を実施するための形態セクションがそのような用語を明示的に定義しない限り、本明細書において開示される特定の実装形態に本開示を制限するものと解釈されるべきではない。したがって、本開示の実際の範囲は、開示される実装形態だけでなく、特許請求の範囲の下で本開示を実施または実装するすべての等価な方法をも包含する。
【0111】
[0120]本開示のいくつかの態様がいくつかの請求項の形式で以下に提示されているが、発明者は、任意の数の請求項の形式で本開示の様々な態様を企図する。米国特許法112条(f)の下で扱われることが意図されるあらゆる請求項は、「ための手段(means for)」という語句で始まることになる。したがって、出願人は、本開示の他の態様のためのそのような追加の請求項の形式を遂行するために本出願を出願した後に追加の請求項を追加する権利を留保する。
【0112】
[0121]本明細書において使用される用語は、概して、本開示のコンテキスト内で各用語が使用される特定のコンテキストにおいて当技術分野におけるそれらの通常の意味を有する。本開示について説明するために使用されるいくつかの用語は、本開示の説明に関して弁護士に追加の案内を与えるために上記でまたは本明細書の他の場所で説明される。便宜上、いくつかの用語は、たとえば、大文字化、イタリック、および/または引用符を使用して強調され得る。強調の使用は、用語の範囲および意味に対して影響を有さず、用語の範囲および意味は、それが強調されているか否かにかかわらず、同じコンテキストにおいて同じである。同じ要素が2つ以上の方法で説明され得ることを諒解されよう。
【0113】
[0122]したがって、代替的な文言および類義語が本明細書で説明される用語のうちのいずれか1つまたは複数に使用され得、また、用語が本明細書で詳述または説明されるか否かにいかなる特別な重要性も置かれない。いくつかの用語のための類義語が与えられる。1つまたは複数の類義語の詳述が他の類義語の使用を除外しない。本明細書で説明されるあらゆる用語の例を含む本明細書の任意の場所での例の使用は、例示的なものにすぎず、本開示またはあらゆる例示された用語の範囲および意味をさらに限定することは意図されない。同様に、本開示は、本明細書で与えられる様々な例に限定されない。
【0114】
[0123]本開示の範囲をさらに限定する意図なしに、本開示の例による機器(instrument)、装置、方法およびそれらの関係する結果の例が以下で与えられる。タイトルまたはサブタイトルが読者の便宜のために例中で使用され得、いかなる場合も、これは、本開示の範囲を限定すべきでないことに留意されたい。別段に定義されていない限り、本明細書で使用されるすべての技術的なおよび科学的な用語は、本開示が関係する当業者によって一般に理解されるものと同じ意味を有する。矛盾する場合、定義を含めて、本文書が優先することにする。
【0115】
[0124]本明細書のいくつかの部分は、情報に対する動作のアルゴリズムおよび記号表現に関して例について説明する。これらのアルゴリズムの説明および表現は、データ処理分野の当業者によって、自身の仕事の本質を他の当業者に効果的に伝達するために一般的に使用される。これらの動作は、機能的に、計算量的に、または論理的に説明されているが、コンピュータプログラムまたは等価な電気回路、マイクロコードなどによって実装されると理解される。さらに、一般性を失うことなく、モジュールとして動作のこれらの構成に言及することが時々好都合であることもわかっている。説明された動作およびそれらの関連するモジュールは、ソフトウェア、ファームウェア、ハードウェア、またはそれらの任意の組合せで具現され得る。
【0116】
[0125]本明細書で説明されるステップ、動作、またはプロセスのうちのいずれかは、単独でまたは他のデバイスとの組合せで、1つまたは複数のハードウェアモジュールもしくはソフトウェアモジュールを用いて実行または実装され得る。いくつかの例では、ソフトウェアモジュールは、コンピュータプログラムコードを含んでいるコンピュータ可読媒体を備えるコンピュータプログラムオブジェクトで実装され、これにより、説明されたステップ、動作、またはプロセスのうちのいずれかまたはすべてを実行するためのコンピュータプロセッサによって実行され得る。
【0117】
[0126]例はまた、本明細書における動作を実行するための装置に関し得る。この装置は、必要とされる目的のために特別に構築され得る、および/またはコンピュータ中に記憶されたコンピュータプラグラムにより選択的に起動もしくは再構成される汎用コンピューティングデバイスを備え得る。そのようなコンピュータプログラムは、非一時的な有形のコンピュータ可読記憶媒体、またはコンピュータシステムバスに結合されてもよい、電子命令を記憶するのに適した任意のタイプの媒体に記憶されてもよい。さらに、本明細書において言及される任意のコンピューティングシステムは、単一のプロセッサを含んでもよく、または演算能力を増大させる複数のプロセッサ設計を採用するアーキテクチャであってもよい。
【0118】
[0127]例はまた、本明細書で説明されるコンピューティングプロセスによって生成されるオブジェクトに関し得る。そのようなオブジェクトは、コンピューティングプロセスから生じる情報を備えても良く、この情報は、非一時的な有形のコンピュータ可読記憶媒体上に記憶され、本明細書で説明されるコンピュータプログラムオブジェクトまたは他のデータの組合せの任意の実装形態を含んでもよい。
【0119】
[0128]本明細書において使用される言語は、読みやすさおよび指導上の目的で主に選択されてきており、主題を線引きしまたは制限するために選択されてきていない場合がある。したがって、本開示の範囲は、この詳細な説明によってではなく、本明細書に基づく出願に関して発行される任意の請求項によって限定されることが意図される。したがって、例の開示は、以下の請求項に記載される主題の範囲を例示するものであり、限定するものではないことが意図される。
【0120】
[0129]コンテキスト接続システムのためのシステムおよび構成要素の様々な実装形態の完全な理解を与えるために具体的な詳細を前の説明で与えた。しかしながら、上記で説明された実装形態がこれらの具体的な詳細なしに実施され得ることを当業者は理解されよう。たとえば、回路、システム、ネットワーク、プロセス、および他の構成要素は、実施形態を不必要な詳細で不明瞭にしないように、ブロック図の形式において構成要素として示され得る。他の事例では、実施形態を不明瞭にすることを避けるために、よく知られている回路、プロセス、アルゴリズム、構造、および技法が不要な詳細なしに示され得る。
【0121】
[0130]個々の実装形態は、フローチャート、流れ図、データフロー図、構造図、またはブロック図として示されるプロセスとして説明される場合があることにも留意されたい。フローチャートは動作を逐次プロセスとして説明することがあるが、動作の多くは並行してまたは同時に実行され得る。さらに、動作の順序は並べ替えられ得る。それの動作が完了されるとき、プロセスは終了されるが、図中に含まれない追加のステップを有し得る。プロセスは、方法、関数、プロシージャ、サブルーチン、サブプログラムなどに対応し得る。プロセスが機能に対応する場合、その終了は、呼出関数またはメイン関数への関数の戻り値に対応し得る。
【0122】
[0131]クライアントデバイス、ネットワークデバイス、および他のデバイスは、特に、1つまたは複数の集積回路、入力デバイス、出力デバイス、データ記憶デバイス、および/またはネットワークインターフェースを含むコンピューティングシステムであり得る。集積回路は、特に、たとえば、1つまたは複数のプロセッサ、揮発性メモリ、および/または不揮発性メモリを含むことができる。入力デバイスは、たとえば、キーボード、マウス、キーパッド、タッチインターフェース、マイクロフォン、カメラ、および/または他のタイプの入力デバイスを含むことができる。出力デバイスは、たとえば、ディスプレイスクリーン、スピーカー、触覚フィードバックシステム、プリンタ、および/または他のタイプの出力デバイスを含むことができる。ハードドライブまたはフラッシュメモリなどのデータ記憶デバイスは、コンピューティングデバイスが、一時的にまたは永続的にデータを記憶することを可能にすることができる。ワイヤレスまたはワイヤードインターフェースなどのネットワークインターフェースは、コンピューティングデバイスがネットワークと通信することを可能にすることができる。コンピューティングデバイスの例は、デスクトップコンピュータ、ラップトップコンピュータ、サーバコンピュータ、ハンドヘルドコンピュータ、タブレット、スマートフォン、携帯情報端末、デジタルホームアシスタント、ならびにコンピューティングデバイスが組み込まれた機械および装置を含む。
【0123】
[0132]「コンピュータ可読媒体」という用語は、限定はしないが、ポータブルまたは非ポータブル記憶デバイス、光記憶デバイス、ならびに命令および/またはデータを記憶、含有、または搬送することが可能な様々な他の媒体を含む。コンピュータ可読媒体は、データがそこに記憶され得る非一時的媒体を含み得、それは、ワイヤレスにまたはワイヤード接続を介して伝搬する搬送波および/または一時的電子信号を含まない。非一時的媒体の例は、限定はしないが、磁気ディスクまたはテープ、コンパクトディスク(CD)またはデジタル多用途ディスク(DVD)などの光記憶媒体、フラッシュメモリ、メモリまたはメモリデバイスを含み得る。コンピュータ可読媒体は、プロシージャ、関数、サブプログラム、プログラム、ルーチン、サブルーチン、モジュール、ソフトウェアパッケージ、クラス、あるいは命令、データ構造、またはプログラムステートメントの任意の組合せを表現し得る、コードおよび/または機械実行可能命令をその上に記憶していることがある。コードセグメントは、情報、データ、引数、パラメータ、またはメモリコンテンツをパスおよび/または受信することによって、別のコードセグメントまたはハードウェア回路に結合され得る。情報、引数、パラメータ、データなどは、メモリ共有、メッセージパッシング、トークンパッシング、ネットワーク送信などを含む、任意の好適な手段を介してパス、フォワーディング、または送信され得る。
【0124】
[0133]上記で説明された様々な例は、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、またはそれらの任意の組合せによって実装され得る。ソフトウェア、ファームウェア、ミドルウェアまたはマイクロコードで実装されるとき、必要なタスクを実施するためのプログラムコードまたはコードセグメント(たとえば、コンピュータプログラム製品)は、コンピュータ可読または機械可読記憶媒体(たとえば、プログラムコードまたはコードセグメントを記憶するための媒体)に記憶され得る。集積回路中に実装されるプロセッサが、必要なタスクを実施し得る。
【0125】
[0134]構成要素が、ある動作を実施する「ように構成されて」いるものとして説明される場合、そのような構成は、たとえば、動作を実施するように電子回路または他のハードウェアを設計することによって、動作を実施するようにプログラマブル電子回路(たとえば、マイクロプロセッサ、または他の好適な電子回路)をプログラムすることによって、またはそれらの任意の組合せによって、達成され得る。
【0126】
[0135]本明細書で開示される実装形態に関連して説明される、様々な例示的な論理ブロック、モジュール、回路、およびアルゴリズムステップは、電子ハードウェア、コンピュータソフトウェア、ファームウェア、またはそれらの組合せとして実装され得る。ハードウェアとソフトウェアとのこの互換性を明確に示すために、様々な例示的な構成要素、ブロック、モジュール、回路、およびステップが、概して、それらの機能に関して上記で説明された。そのような機能がハードウェアとして実装されるのか、ソフトウェアとして実装されるのかは、特定の適用例および全体的なシステムに課される設計制約に依存する。当業者は、説明された機能を特定の適用例ごとに様々な方法で実装し得るが、そのような実装の決定は、本開示の範囲からの逸脱を生じるものと解釈されるべきではない。
【0127】
[0136]本明細書で説明される技法は、電子ハードウェア、コンピュータソフトウェア、ファームウェア、またはそれらの任意の組合せにおいても実装され得る。そのような技法は、汎用コンピュータ、ワイヤレス通信デバイスハンドセット、またはワイヤレス通信デバイスハンドセットおよび他のデバイスにおける適用を含む複数の用途を有する集積回路デバイスなど、様々なデバイスのうちのいずれかにおいて実装され得る。モジュールまたは構成要素として説明された任意の特徴は、集積論理デバイスに一緒に、または個別であるが相互運用可能な論理デバイスとして別個に実装され得る。ソフトウェアで実装された場合、本技法は、実行されたとき、上記で説明された方法のうちの1つまたは複数を実施する命令を含むプログラムコードを備えるコンピュータ可読データ記憶媒体によって、少なくとも部分的に実現され得る。コンピュータ可読データ記憶媒体は、パッケージング材料を含み得るコンピュータプログラム製品の一部を形成し得る。コンピュータ可読媒体は、同期型ダイナミックランダムアクセスメモリ(SDRAM)などのランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、電気的消去可能プログラマブル読取り専用メモリ(EEPROM)、FLASH(登録商標)メモリ、磁気もしくは光学データ記憶媒体など、メモリまたはデータ記憶媒体を備え得る。本技法は、追加または代替として、伝搬信号または電波など、命令またはデータ構造の形式でプログラムコードを搬送または通信し、コンピュータによってアクセスされ、読み取られ、および/または実行され得るコンピュータ可読通信媒体によって少なくとも部分的に実現され得る。
【0128】
[0137]プログラムコードは、1つまたは複数のデジタル信号プロセッサ(DSP)、汎用マイクロプロセッサ、特定用途向け集積回路(ASIC)、フィールドプログラマブル論理アレイ(FPGA)、または他の等価な集積回路またはディスクリート論理回路など、1つまたは複数のプロセッサを含み得るプロセッサによって実行され得る。そのようなプロセッサは、本開示において説明される技法のうちのいずれかを実施するように構成され得る。汎用プロセッサはマイクロプロセッサであり得るが、代替として、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、または状態機械であり得る。プロセッサは、コンピューティングデバイスの組合せ、たとえば、DSPとマイクロプロセッサとの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つまたは複数のマイクロプロセッサ、または、任意の他のそのような構成としても実装され得る。したがって、本明細書で使用される「プロセッサ」という用語は、上記の構造、上記の構造の任意の組合せ、または、本明細書で説明される技法の実装に好適な任意の他の構造もしくは装置のいずれかを指し得る。さらに、いくつかの態様では、本明細書で説明される機能は、中断されたデータベース更新システムを実装するために構成された専用のソフトウェアモジュールまたはハードウェアモジュール内に与えられ得る。
【0129】
[0138]本技術の上記の詳細な説明は、例示および説明のために提示された。それは、網羅的なものでも、開示された形態そのものに本技術を限定するものでもない。上記の教示に照らして、多くの修正形態および変形形態が可能である。本技術の原理およびそれの実際的適用例について最良に説明し、他の当業者が、様々な実施形態において、企図された特定の用途に好適であるような様々な修正を加えて本技術を最良に利用することを可能にするために、説明される実施形態が選定された。本技術の範囲が特許請求の範囲によって定義されることが意図される。
以下に本願の出願当初の特許請求の範囲に記載された発明を付記する。
[C1]
コンピュータ実装方法であって、
インテントを取得すること、ここにおいて、前記インテントが、対処されるべき要求に対応し、およびここにおいて、前記インテントが顧客に関連付けられる、と、
前記インテントをそれらに提供すべき1人または複数のユーザを識別すること、ここにおいて、前記1人または複数のユーザが、前記インテントの特性のセットに基づいて識別される、と、
前記インテントを提供すること、ここにおいて、前記インテントが、前記インテントに対する応答を送信請求すべき前記1人または複数のユーザに提供される、と、
前記インテントに対する応答のセットを取得することと、
前記インテントに対して関連する応答を識別するために応答の前記セットを評価すること、ここにおいて、応答の前記セットからの関連しない応答が廃棄される、と、
前記インテントに応答して、前記関連する応答を前記顧客に提示させるために、前記関連する応答を提供することと
を備える、コンピュータ実装方法。
[C2]
ユーザとの通信チャネルを開始するようにとの別の要求を受信すること、ここにおいて、前記別の要求が、前記インテントと、前記インテントに対する前記ユーザの応答とに関連付けられる、と、
前記ユーザが前記通信チャネル上で前記インテントに応答して通信を送信することを可能にするために前記通信チャネルを確立することと
をさらに備える、C1に記載のコンピュータ実装方法。
[C3]
応答の前記セットが、分類モデルを使用して評価され、ここにおいて、前記分類モデルが、サンプルインテントと、前記サンプルインテントに対する既知の関連する応答と、前記サンプルインテントに対する既知の関連しない応答とを使用して更新される、C1に記載のコンピュータ実装方法。
[C4]
前記1人または複数のユーザが、機械学習モデルを使用して識別され、ここにおいて、前記機械学習モデルが、前記1人または複数のユーザの特徴に対応するサンプルインテントとサンプル出力とを使用して更新される、C1に記載のコンピュータ実装方法。
[C5]
前記1人または複数のユーザによって実装されたアプリケーションに、前記アプリケーションに新しい応答の作成を禁止させるための命令を送信することをさらに備え、ここにおいて、前記命令が、応答の前記セットを取得したことに応答して送信される、C1に記載のコンピュータ実装方法。
[C6]
前記インテントが、前記要求の意味解析に基づいて前記要求から抽出される、C1に記載のコンピュータ実装方法。
[C7]
前記インテントの特性の前記セットが、前記インテントに関連付けられた追加の情報についてのクエリに応答して取得される、C1に記載のコンピュータ実装方法。
[C8]
システムであって、
1つまたは複数のプロセッサと、
命令を記憶したメモリと
を備え、前記命令は、前記1つまたは複数のプロセッサによって実行された結果として、前記システムに、
インテントを取得すること、ここにおいて、前記インテントが、対処されるべき要求に対応し、およびここにおいて、前記インテントが顧客に関連付けられる、と、
前記インテントをそれらに提供すべき1人または複数のユーザを識別すること、ここにおいて、前記1人または複数のユーザが、前記インテントの特性のセットに基づいて識別される、と、
前記インテントを提供すること、ここにおいて、前記インテントが、前記インテントに対する応答を送信請求すべき前記1人または複数のユーザに提供される、と、
前記インテントに対する応答のセットを取得することと、
前記インテントに対して関連する応答を識別するために応答の前記セットを評価すること、ここにおいて、応答の前記セットからの関連しない応答が廃棄される、と、
前記インテントに応答して、前記関連する応答を前記顧客に提示させるために、前記関連する応答を提供することと
を行わせる、システム。
[C9]
前記関連する応答が、分類モデルを使用して識別され、ここにおいて、前記分類モデルが、サンプルインテントと、前記サンプルインテントに対する既知の関連する応答と、前記サンプルインテントに対する既知の関連しない応答とを使用して生成される、C8に記載のシステム。
[C10]
前記命令は、前記1人または複数のユーザによって利用されるアプリケーションに、さらなる応答が生成されることを禁止させるために、応答の前記セットを生成するための実行可能な命令を前記アプリケーションに送信することを前記システムにさらに行わせ、ここにおいて、前記実行可能な命令が、応答の前記セットを取得したことに応答して送信される、C8に記載のシステム。
[C11]
前記命令は、前記システムに、
前記顧客の第1のコンピューティングシステムとユーザの第2のコンピューティングシステムとの間の通信チャネルを確立するようにとの別の要求を取得すること、ここにおいて、前記別の要求は、前記ユーザからの応答が前記インテントを満たすという決定に応答して取得される、と、
前記別の要求に応答して前記通信チャネルを確立することと
をさらに行わせる、C8に記載のシステム。
[C12]
前記1人または複数のユーザが、機械学習モデルを使用して識別され、ここにおいて、前記機械学習モデルが、前記1人または複数のユーザの特徴に対応するサンプルインテントとサンプル出力とを使用して生成される、C8に記載のシステム。
[C13]
前記命令がさらに、前記インテントに関連付けられた情報を送信請求するために前記システムに自然言語処理を利用させ、ここにおいて、前記インテントに関連付けられた前記情報が、前記要求から前記インテントを抽出するために使用される、C8に記載のシステム。
[C14]
前記命令がさらに、前記要求から前記インテントを抽出するために前記要求の意味解析を前記システムに実施させる、C8に記載のシステム。
[C15]
実行可能な命令を記憶した非一時的コンピュータ可読記憶媒体であって、前記実行可能な命令は、コンピュータシステムの1つまたは複数のプロセッサによって実行された結果として、前記コンピュータシステムに、
インテントを取得すること、ここにおいて、前記インテントが、対処されるべき要求に対応し、およびここにおいて、前記インテントが顧客に関連付けられる、と、
前記インテントをそれらに提供すべき1人または複数のユーザを識別すること、ここにおいて、前記1人または複数のユーザが、前記インテントの特性のセットに基づいて識別される、と、
前記インテントを提供すること、ここにおいて、前記インテントが、前記インテントに対する応答を送信請求すべき前記1人または複数のユーザに提供される、と、
前記インテントに対する応答のセットを取得することと、
前記インテントに対して関連する応答を識別するために応答の前記セットを評価すること、ここにおいて、応答の前記セットからの関連しない応答が廃棄される、と、
前記インテントに応答して、前記関連する応答を前記顧客に提示させるために、前記関連する応答を提供することと
を行わせる、非一時的コンピュータ可読記憶媒体。
[C16]
前記実行可能な命令は、前記コンピュータシステムにさらに、
前記顧客の第1のコンピューティングデバイスと関連する応答を提供したユーザの第2のコンピューティングデバイスとの間の通信チャネルを確立するようにとの別の要求を取得することと、
前記インテントに関して前記通信チャネル上で前記顧客と前記ユーザとの間の対話を引き起こすために、前記顧客の前記第1のコンピューティングデバイスと前記ユーザの前記第2のコンピューティングデバイスとの間の前記通信チャネルを確立することと
を行わせる、C15に記載の非一時的コンピュータ可読媒体。
[C17]
前記実行可能な命令がさらに、前記コンピュータシステムに、前記インテントを取得するために前記要求の意味解析を実施させる、C15に記載の非一時的コンピュータ可読記憶媒体。
[C18]
前記1人または複数のユーザが、機械学習モデルを使用して識別され、ここにおいて、前記機械学習モデルが、前記1人または複数のユーザの特徴に対応するサンプルインテントとサンプル出力とを使用して生成される、C15に記載の非一時的コンピュータ可読記憶媒体。
[C19]
前記実行可能な命令がさらに、前記コンピュータシステムに、応答の前記セットを評価するために分類モデルを使用させ、ここにおいて、前記分類モデルが、サンプルインテントと、前記サンプルインテントに対する既知の関連する応答と、前記サンプルインテントに対する既知の関連しない応答とを使用して更新される、C15に記載の非一時的コンピュータ可読記憶媒体。
[C20]
前記1人または複数のユーザが、機械学習モデルを使用して識別され、ここにおいて、前記機械学習モデルが、前記1人または複数のユーザの特徴に対応するサンプルインテントとサンプル出力とを使用して更新される、C15に記載の非一時的コンピュータ可読記憶媒体。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10