(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-09
(45)【発行日】2024-09-18
(54)【発明の名称】量子ビットを制御する極低温度CMOSインタフェース
(51)【国際特許分類】
G06N 10/40 20220101AFI20240910BHJP
H01L 27/088 20060101ALI20240910BHJP
H01L 21/8238 20060101ALI20240910BHJP
H01L 27/092 20060101ALI20240910BHJP
【FI】
G06N10/40
H01L27/088 331E
H01L27/092 B
(21)【出願番号】P 2021572577
(86)(22)【出願日】2020-04-27
(86)【国際出願番号】 US2020030071
(87)【国際公開番号】W WO2021025738
(87)【国際公開日】2021-02-11
【審査請求日】2023-03-17
(32)【優先日】2019-06-17
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-11-01
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-12-05
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】314015767
【氏名又は名称】マイクロソフト テクノロジー ライセンシング,エルエルシー
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】ダス,クシャル
(72)【発明者】
【氏名】モイニ,アリレザ
(72)【発明者】
【氏名】ライリー,デイビッド ジェイ.
【審査官】大倉 崚吾
(56)【参考文献】
【文献】米国特許出願公開第2018/0260245(US,A1)
【文献】EKANAYAKE, S. Ramesh et al.,"Quantum bit controller and observer circuits in SOS-CMOS technology for gigahertz low-temperature operation",2007 7th IEEE Conference on Nanotechnology (IEEE NANO) [online],2007年,p. 1283-1287,[2024年04月05日検索],インターネット<URL:https://ieeexplore.ieee.org/document/4601417>
【文献】PUDDY, R. K. et al.,"Multiplexed charge-locking device for large arrays of quantum devices",APPLIED PHYSICS LETTERS [online],2015年,107, 143501,[2024年04月05日検索],インターネット<URL:https://doi.org/10.1063/1.4932012>
(58)【調査した分野】(Int.Cl.,DB名)
G06N 10/00-10/80
H01L 27/088-27/092
(57)【特許請求の範囲】
【請求項1】
量子ビットゲートを制御するシステムであって、
複数の量子ビットゲートを含む量子デバイスを含む第1パッケージデバイスであって、前記量子デバイスは、極低温度で動作するよう構成される、第1パッケージデバイスと、
極低温
度で動作するよう構成される制御システムを備える第2パッケージデバイスであって、前記第1パッケージデバイスは、前記第2パッケージデバイスに結合される、第2パッケージデバイスと、
を含み、
前記制御システムは、
複数の電荷ロック回路であって、前記複数の電荷ロック回路の各々は、前記複数の電荷ロック回路の各々が少なくとも1つの量子ビットゲートに電圧信号を供給するよう構成されるように、前記複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに相互接続を介して結合される、複数の電荷ロック回路と、
前記複数の電荷ロック回路のうちの少なくとも1つを選択的にイネーブルし、前記複数の電荷ロック回路のうちの選択された1つへの少なくとも1つの電圧信号の提供を選択的にイネーブルするように少なくとも1つの制御信号を提供するよう構成される有限状態マシンを備える制御回路と、
を含む、システム。
【請求項2】
前記複数の電荷ロック回路のうちの少なくとも1つのサブセットは、キャパシタを含み、前記制御
回路は、前記複数の電荷ロック回路のうちの前記少なくとも1つのサブセットのうちの選択された1つに関連付けられたキャパシタへの少なくとも1つの電圧信号の提供を選択的にイネーブルするよう更に構成される、請求項1に記載のシステム。
【請求項3】
前記制御システムは、波形発生器と、前記波形発生器により生成される波形に対応するビットパターンを格納するレジスタとを更に含む、請求項1に記載のシステム。
【請求項4】
前記複数の電荷ロック回路の各々は、入力電圧信号を受信する入力端子と、前記電圧信号を少なくとも1つの量子ビットゲートへ選択的に供給する出力端子と、を含む、請求項3に記載のシステム。
【請求項5】
前記複数の電荷ロック回路の各々は、前記入力電圧信号を受信する第1端子と第1電圧量又は第2電圧量を選択的に受信する第2端子とを有するキャパシタを含む、請求項4に記載のシステム。
【請求項6】
前記制御システムは、時間量を指定する制御レジスタを更に含み、前記有限状態マシンは、前記制御レジスタ内で指定された前記時間量の間、前記複数の電荷ロック回路のうちの前記選択された1つに関連する前記キャパシタへの少なくとも1つの電圧信号の供給を選択的にイネーブルするよう構成される、請求項5に記載のシステム。
【請求項7】
前記複数の電荷ロック回路の各々は、制御された大きさを有するパルス信号として電圧信号を生成するよう構成され、前記制御された大きさは、少なくとも前記第1電圧量及び前記第2電圧量に依存する、請求項6に記載のシステム。
【請求項8】
量子ビットゲートを制御するシステムであって、
複数の量子ビットゲートを含む量子デバイスを含む第1パッケージデバイスであって、前記量子デバイスは、極低温度で動作するよう構成される、第1パッケージデバイスと、
極低温度で動作するよう構成される制御システムを含む第2パッケージデバイスであって、前記第1パッケージデバイスは前記第2パッケージデバイスに結合される、第2パッケージデバイスと、
を含み、
前記制御システムは、
複数の電荷ロック回路であって、前記複数の電荷ロック回路の各々は、前記複数の電荷ロック回路の各々が少なくとも1つの量子ビットゲートに電圧信号を供給するよう構成されるように、前記複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに相互接続を介して結合される、複数の電荷ロック回路と、
前記複数の電荷ロック回路のうちの少なくとも1つを選択的にイネーブルするために、少なくとも1つの制御信号を提供するよう構成される制御ロジックを含む制御回路と、
を含む、システム。
【請求項9】
前記制御ロジックは、前記複数の電荷ロック回路のうちの選択された1つへの少なくとも1つの電圧信号の供給を選択的にイネーブルするよう構成される有限状態マシンを含む、請求項8に記載のシステム。
【請求項10】
前記複数の電荷ロック回路のうちの少なくともサブセットは、キャパシタを含み、前記制御ロジックは、前記複数の電荷ロック回路のうちの前記少なくとも1つのサブセットのうちの選択された1つに関連付けられたキャパシタへの少なくとも1つの電圧信号の提供を選択的にイネーブルするよう更に構成される、請求項8に記載のシステム。
【請求項11】
前記制御システムは、波形発生器と、前記波形発生器により生成される波形に対応するビットパターンを格納するレジスタとを更に含む、請求項9に記載のシステム。
【請求項12】
前記複数の電荷ロック回路の各々は、入力電圧信号を受信する入力端子と、前記電圧信号を少なくとも1つの量子ビットゲートへ選択的に供給する出力端子と、を含む、請求項11に記載のシステム。
【請求項13】
前記複数の電荷ロック回路の各々は、前記入力電圧信号を受信する第1端子と第1電圧量又は第2電圧量を選択的に受信する第2端子とを有するキャパシタを更に含む、請求項12に記載のシステム。
【請求項14】
前記制御システムは、時間量を指定する制御レジスタを更に含み、前記有限状態マシンは、前記制御レジスタ内で指定された前記時間量の間、前記複数の電荷ロック回路のうちの前記選択された1つに関連する前記キャパシタへの少なくとも1つの電圧信号の供給を選択的にイネーブルするよう構成される、請求項13に記載のシステム。
【請求項15】
前記複数の電荷ロック回路の各々は、制御された大きさを有するパルス信号として電圧信号を生成するよう構成され、前記制御された大きさは、少なくとも前記第1電圧量及び前記第2電圧量に依存する、請求項14に記載のシステム。
【発明の詳細な説明】
【背景技術】
【0001】
デジタルプロセッサのような電子デバイス内で使用される半導体に基づく集積回路は、相補型金属酸化物半導体(complementary metal-oxide semiconductor (CMOS))技術に基づくデジタル回路を含む。CMOS技術に基づく、プロセッサ及び関連コンポーネントの使用のための更なるアプローチは、超伝導論理に基づくデバイスの使用である。超伝導論理に基づくデバイスは、量子ビット(qubit)のような量子情報を処理するためにも使用できる。
【発明の概要】
【0002】
一態様では、本開示は、量子ビットゲートを制御するシステムに関する。前記システムは、複数の量子ビットゲートを含む量子デバイスを含む第1パッケージデバイスを含んでよく、前記量子デバイスは、極低温度で動作するよう構成される。前記システムは、前記極低温度で動作するよう構成される制御回路を含む第2パッケージデバイスを更に含んでよく、前記第1パッケージデバイスは前記第2パッケージデバイスに結合され、前記制御回路は複数の電荷ロック回路を含み、前記複数の電荷ロック回路の各々は、前記複数の電荷ロック回路の各々が少なくとも1つの量子ビットゲートに電圧信号を供給するよう構成されるように、相互接続を介して前記複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに結合される。
【0003】
別の態様では、本開示は、複数の量子ビットゲートを含む量子デバイスを含む量子ビットゲートを制御する方法及びシステムに関し、前記量子デバイスは極低温度で動作するよう構成され、前記制御回路は前記極低温度で動作するよう構成され、前記制御回路は複数の電荷ロック回路を含み、前記複数の電荷ロック回路の各々は、前記複数の電荷ロック回路の各々が、前記少なくとも1つの量子ビットゲートに電圧信号を供給するよう構成されるように、相互接続を介して前記複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに結合され、前記複数の電荷ロック回路の各々は、入力電圧信号を受信する第1端子と、第1電圧量又は第2電圧量を選択的に受信する第2端子とを含み、前記第1電圧量は前記第2電圧量より大きい。前記方法は、少なくとも1つの量子ビットゲートに出力される前記電圧信号が第1の制御された大きさを有するパルス信号を含むように、前記複数の電荷ロック回路の第1サブセットを容量性モードで動作させるステップを含んでよく、前記第1の制御された大きさは、前記入力電圧信号の量と、前記第1電圧量及び前記第2電圧量の各々と、に依存する。前記方法は、少なくとも1つの量子ビットゲートに出力される前記電圧信号が第2の制御された大きさを有する信号を含むように、前記複数の電荷ロック回路の第2サブセットを直流モードで動作させるステップを更に含んでよく、前記第2の制御された大きさは、前記入力電圧信号と、前記第1電圧量又は前記第2電圧量の一方のみと、に依存する。
【0004】
更に別の態様では、本開示は、量子ビットゲートを制御するシステムに関する。前記システムは、複数の量子ビットゲートを含む量子デバイスを含んでよく、前記量子デバイスは、極低温度で動作するよう構成される。前記システムは、前記極低温度で動作するよう構成される制御回路を更に含んでよく、前記制御回路は、複数の電荷ロック回路を含み、前記複数の電荷ロック回路の各々は、前記複数の電荷ロック回路の各々が前記少なくとも1つの量子ビットゲートに電圧信号を供給するよう構成されるように、相互接続を介して前記複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに結合され、前記複数の電荷ロック回路の各々は、入力電圧信号を受信する入力端子と、前記少なくとも1つの量子ビットゲートに前記電圧信号を選択的に供給する出力端子と、を含み、前記制御回路は、前記複数の電荷ロック回路の各々に関連付けられた少なくとも1つの制御信号を提供するよう構成される制御ロジックを更に含む。
【0005】
更に別の態様では、本開示は、量子ビットゲートを制御するシステムに関する。前記システムは、複数の量子ビットゲートを含む量子デバイスを含む第1パッケージデバイスを含んでよく、前記量子デバイスは、極低温度で動作するよう構成される。前記システムは、前記極低温度で動作するよう構成される制御システムを含む第2パッケージデバイスを更に含んでよく、前記第1パッケージデバイスは前記第2パッケージデバイスに結合される。前記制御システムは、複数の電荷ロック回路を含んでよく、前記複数の電荷ロック回路の各々は、前記複数の電荷ロック回路の各々が少なくとも1つの量子ビットゲートに電圧信号を供給するよう構成されるように、相互接続を介して前記複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに結合される。前記制御システムは、前記複数の電荷ロック回路のうちの少なくとも1つを選択的にイネーブルするよう及び前記複数の電荷ロック回路の選択された1つへの少なくとも1つの電圧信号の供給を選択的にイネーブルするよう構成される少なくとも1つの制御信号を供給するよう構成される有限状態マシンを含む制御回路を更に含んでよい。
【0006】
更に別の態様では、本開示は、量子ビットゲートを制御するシステムに関する。前記システムは、複数の量子ビットゲートを含む量子デバイスを含む第1パッケージデバイスを含んでよく、前記量子デバイスは、極低温度で動作するよう構成される。前記システムは、前記極低温度で動作するよう構成される制御システムを含む第2パッケージデバイスを更に含んでよく、前記第1パッケージデバイスは前記第2パッケージデバイスに結合される。前記制御システムは、複数の電荷ロック回路を含んでよく、前記複数の電荷ロック回路の各々は、前記複数の電荷ロック回路の各々が少なくとも1つの量子ビットゲートに電圧信号を供給するよう構成されるように、相互接続を介して前記複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに結合される。前記制御システムは、前記複数の電荷ロック回路のうちの少なくとも1つを選択的にイネーブルにするために少なくとも1つの制御信号を提供するよう構成される制御回路を更に含んでよい。
【0007】
更に別の態様では、本開示は、量子ビットゲートを制御するシステムに関する。前記システムは、複数の量子ビットゲートを含む量子デバイスを含む第1パッケージデバイスを含んでよく、前記量子デバイスは、極低温度で動作するよう構成される。前記システムは、前記極低温度で動作するよう構成される制御システムを含む第2パッケージデバイスを更に含んでよく、前記第1パッケージデバイスは前記第2パッケージデバイスに結合される。前記制御システムは、複数の電荷ロック回路を含んでよく、前記複数の電荷ロック回路の各々は、前記複数の電荷ロック回路の各々が少なくとも1つの量子ビットゲートに電圧信号を供給するよう構成されるように、相互接続を介して前記複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに結合される。前記制御システムは、少なくとも1つの電圧信号を生成するデジタル-アナログ変換器を更に含んでよい。前記制御システムは、前記複数の電荷ロック回路のうちの少なくとも1つを選択的にイネーブルするよう及び前記複数の電荷ロック回路の選択された1つへの少なくとも1つの電圧信号の供給を選択的にイネーブルするよう構成される少なくとも1つの制御信号を供給するよう構成される有限状態マシンを含む制御回路を更に含んでよい。
【0008】
この概要は、簡略化した形式で概念の選択を紹介するために提供され、詳細な説明において以下に更に説明される。この概要は、請求される主題の主要な特徴又は必須の特徴を特定するものではなく、また、請求される主題の範囲を限定されるために使用されるべきではない。
【図面の簡単な説明】
【0009】
本開示は、例を用いて説明され、添付の図面により限定されない。図中の同様の参照符号は同様の要素を示す。図中の要素は、簡単及び明確のために図示され、必ずしも縮尺通りに描かれない。
【0010】
【
図1】一例による、量子ビットを制御するシステム100を示す。
【0011】
【
図2】一例による、極低温度CMOS制御チップ、量子ビットチップ、及び共振器チップを含む共通基板を示す。
【0012】
【
図3】一例による、高速制御多重化に関連する制御システムのブロック図を示す。
【0013】
【
図4】一例による、制御システムを含む極低温度CMOS制御チップのフロアプランを示す。
【0014】
【
図5】一例による、電荷ロック高速制御(charge-locking fast-gating (CLFG))セルを示す。
【0015】
【
図6】
図5のCLFGセルの動作に関連する例示的な波形600を示す。
【0016】
【
図7A】一例による、極低温度CMOS制御チップ700に関連する種々のブロックを示す。
【
図7B】一例による、極低温度CMOS制御チップ700に関連する種々のブロックを示す。
【0017】
【
図8】一例による、電荷ロック及び高速制御のブロック図を示す。
【0018】
【0019】
【
図10】一例による、CLFGセルの動作を制御する有限状態マシンを示す。
【0020】
【
図11A】例示的な極低温度CMOS制御チップの部分として、イネーブル信号を生成するために使用され得る例示的なシステムを示す。
【
図11B】例示的な極低温度CMOS制御チップの部分として、イネーブル信号を生成するために使用され得る例示的なシステムを示す。
【0021】
【0022】
【
図13】一例による、容量性モードで動作するよう構成される例示的なCLFGセルを示す。
【0023】
【
図14】一例による、容量性モード及び直流モードの両方を含むデュアルモードで動作するよう構成される例示的なCLFGセルを示す。
【0024】
【
図15】
図13及び
図14に示されるCLFGセルのための信号に関連する例示的な波形を示す。
【0025】
【
図16】容量性モードのCLFGセルのシミュレーションに関連する例示的な波形を示す。
【0026】
【
図17】電荷ロックテスト中の例示的な量子ビットデバイスのアクティブ領域の第1図及び第2図を示す。
【0027】
【
図18】一例による、量子ポイントコンタクト(quantum point contact (QPC))に関連する電圧及び電流の変化の図を示す。
【0028】
【
図19】量子ドットを有する高速制御動作のテスト中の極低温度CMOS制御チップに対応する例示的な波形を示す。
【0029】
【
図20】極低温度CMOS制御チップのテスト中の量子ドットを通じるリードアウト信号に対応する例示的なリードアウト波形を示す。
【0030】
【
図21】一例による、FDSOIデジタルデバイスを示す。
【0031】
【
図22】一例による、FDSOIアナログデバイスを示す。
【0032】
【
図23】本開示に記載されるシステムに関連する方法に対応するフローチャートを示す。
【発明を実施するための形態】
【0033】
本開示に記載される例は、量子ビット(qubit)ゲートを制御する極低温度(cryogenic)CMOSインタフェースに関する。量子デバイスを制御することは、理想的には量子デバイスと緊密に統合された極低温度で非常に多数の静的及び動的電圧信号を生成する必要がある。本開示で使用されるように、用語「極低温度(cryogenic temperature)」は、300ケルビン(Kelvin)以下の任意の温度を意味する。これは、極低温度環境がアクティブな電子機器の消費電力を強力に抑制することを考えると、大きな問題である。更に、多数の電圧信号は、量子コンピューティングデバイスにおいて量子ビットゲートに結合される必要もある。これは、量子コンピューティングデバイス内の量子ビットゲートを駆動するために、潜在的に何千本ものワイヤが電圧源に接続される必要があるからである。更に、従来、量子ビットは、低温槽内で減衰される大きな信号を生成しなければならない室温のパルス発生器により制御されていた。この減衰を克服するために必要な電力、及び更にはケーブルインピーダンスを駆動するために必要な電力は、量子コンピュータを拡張するための障害になる。
【0034】
本開示に記載される例は、量子コンピューティングデバイスのための低温制御回路及びアーキテクチャに関する。制御アーキテクチャは、量子ビット平面と共に緊密に集積される、低温制御回路を含む集積回路制御チップを含む。例として、制御チップは、量子ビット平面にワイヤボンディング又はフリップチップ搭載できる。更に、制御チップは、キャパシタ(相互接続キャパシタンスを含む)に電荷を蓄積して、電圧バイアスを生成する。単一のデジタル-アナログ変換器が、各キャパシタに電荷を設定するために使用されてよい。この電荷は、低温度で(cryo-temperature)、それらの温度における極めて低い漏れ経路のために長時間の間、残る。電荷のリフレッシュは、量子ビット動作に見合った時間スケールで周期的に行うことができる。減衰から生成される熱に関連する問題は、「電荷シャッフル」回路を配備して、電圧パルスを生成するためにキャパシタ間の電荷を移動することにより、解決される。キャパシタンスは、極低温度CMOS制御チップと量子ビット平面との間の緊密な統合により、可能な限り減少される。例えばチップスタックパッケージングアプローチによるこの緊密な集積化は、キャパシタンスを劇的に減少させ、それにより電力消費に影響を与える。
【0035】
一例では、極低温度CMOS制御チップは、絶縁体上の完全欠乏型半導体(fully-depleted semiconductor on insulator (FDSOI))プロセスを用いて実装されてよい。一例では、FDSOIプロセスに基づくデバイスは、ドープされていないゲートチャネル、薄膜ボディ、ソース、ドレイン、及びゲートの下にある薄膜埋め込み酸化膜(buried oxide (BOX))、隣接デバイスからの全誘電性絶縁体(total dielectric isolation)を含んでよい。電荷蓄積のために使用されるキャパシタは、オンチップデバイスを用いて実装される。各トランジスタデバイスのバックゲート又はボディバイアスは、冷却に関連付けられた効果のために動的に閾値電圧を構成するために使用できる。制御チップは、共通のバックゲートバイアスが与えられるドメインにパーティションされる回路ブロックを含む。別個のバイアスを有する例示的なドメインは、n型デバイスのための回路ブロック、p型デバイスのための回路ブロックアナログデバイスのための回路ブロック、及びデジタルデバイスのための回路ブロックを含む。幾つかの例では、異なるアスペクト比を有するトランジスタに、異なるバックゲートバイアスが提供される。
【0036】
量子ビット平面は、約20ミリケルビン(~20mK)で動作し得るトポロジカル計算ゲート(topological computing gate)を含んでよい。量子コンピューティングデバイスは、量子情報、例えば量子ビットを処理してよい。量子ビットは、光子、電子、ジョセフソン接合、量子ドット、又はヘテロ構造、を含む種々の物理システムを用いて実装されてよい。量子状態は、スピンの方向、量子ビットの一部としてのスピンの別の態様、電荷、エネルギ、又は励起段階、又は超伝導物質のトポロジ位相として符号化されてよい。例示的な量子ビットは、低周波数DC信号(例えば、バイアス電流)又は高周波数無線周波数信号(例えば、10GHz信号)に基づき、又はその両方の組合せに基づき、動作してよい。特定の例では、マイクロ波信号は、例えば量子ビット(qubit)の状態を含む、超伝導デバイスを制御するために使用されてよい。量子ビット(qubit)のゲートの特定の実装は、高周波数マイクロ波信号を必要としてよい。
【0037】
図1は、一例による、量子ビットを制御するシステム100を示す。本例では、システム100は、複数のステージを含んでよく、各ステージは、異なる温度で動作するよう構成されてよい。従って、システム100はステージ110、130、及び150を含んでよい。ステージ110は、室温(例えば、周囲温度)又は4ケルビンと室温との間で動作するよう構成されるコンポーネントを含んでよい。ステージ130は、300ケルビン以下、及び最大4ケルビンで動作するよう構成されるコンポーネントを含んでよい。ステージ150は、20ミリケルビン(mK)で又はその近くで動作するよう構成されるコンポーネントを含んでよい。ステージ110は、マイクロコントローラ112(又はマイクロプロセッサ)、デジタル-アナログ変換器(digital-to-analog converter (DAC))114、信号生成器116、及び測定デバイス118を含んでよい。マイクロコントローラ112は、量子ビット及びシステム100の他の側面を制御するよう構成される制御信号を生成してよい。DAC114は、マイクロコントローラ112から(又は他のコンポーネントから)デジタル制御信号を受信し、それらをアナログ形式に変換してよい。アナログ信号は、次に、必要なときに、他のステージへ送信されてよい。信号生成器116は、マイクロ波信号生成部、及び他のクロック信号生成器、を必要に応じて含んでよい。測定デバイス118は、スペクトルアナライザのような計測装置を含んでよい。
【0038】
引き続き
図1を参照すると、ステージ130は、熱的負荷を低減し及び室温のコンポーネントと20ミリケルビン(mK)のコンポーネントとの間で集合をするようにステージ110をステージ150と相互接続するよう構成されるコンポーネントを含んでよい。従って、本例では、ステージ130は、コンポーネント132、相互接続134、相互接続136、及び相互接続138を含んでよい。一例では、コンポーネント132は、光電子移動度トランジスタ(high-electron-mobility transistor(s) (HEMT(s)))低雑音増幅器として実装されてよい。相互接続134、136、及び138は、ニオブ及び銅のような導体を含むケーブルとして実装されてよい。導体は、ポリイミドのような適切な絶縁材料を用いて相互接続内で絶縁されてよい。
【0039】
更に
図1を参照すると、ステージ150は、カプラ152、リードアウト多重化154、高速制御多重化156、及び量子ビット160を含んでよい。カプラ152は、信号生成器(例えば、信号生成器116)からの信号をリードアウト多重化154に結合してよい。カプラ152は、反射信号もコンポーネント132へ向けてよい。リードアウト多重化154、及び高速制御多重化156は、単一の制御チップに実装されてよい(時に、低温制御CMOSチップと呼ばれる)。一例では、リードアウト多重化154は、サファイアのような不活性基質上のニオブ(niobium on an inert substrate)のような、超伝導材料を用いて実装されてよい。リードアウト多重化154チップは、共振器バンクを形成するのに適切なサイズの複数の誘導性要素、容量性要素、抵抗性要素を含んでよい。極低温度では、共振器回路は、超伝導を示し、高品質の共振器を生成する。これは、効率的な低損失周波数多重化メカニズムを提供できる。一例では、極低温度CMOS制御チップ(例えば、CMOSのような半導体技術を用いて製造されたASIC)は、量子ビット(例えば、量子ビット160)と同じ基板に搭載されてよく、量子ビットと同じ極低温度(例えば、20mK)で動作するよう構成されてよい。
【0040】
図2は、一例による、極低温度CMOS制御チップ210、量子ビットチップ250、及び共振器チップを208含む共通基板200を示す。極低温度CMOS制御チップ210は、ワイヤボンド(例えば、ワイヤボンド212及び214)を介してコンタクトパッド(例えば、コンタクトパッド222及び224)に結合されてよい。極低温度CMOS制御チップ210は、ワイヤボンド(例えば、ワイヤボンド216及び218)を介してコンタクトパッド(例えば、コンタクトパッド226及び228)に更に結合されてよい。極低温度CMOS制御チップ210は、ワイヤボンド(例えば、ワイヤボンド230及び232)を介して他のコンタクト(例えば、コンタクト234及び236)に更に結合されてよい。量子ビットチップ250は、ワイヤボンド(例えば、ワイヤボンド252及び254)を介してコンタクトパッド(例えば、コンタクトパッド256及び258)に結合されてよい。量子ビットチップ250は、ワイヤボンド(例えば、ワイヤボンド260及び262)を介して共振器チップ280に結合されてよい。量子ビットチップ280は、ワイヤボンド(例えば、ワイヤボンド282及び284)を介してコンタクト(例えば、コンタクト290及び292)に結合されてよい。
図2に示されないが、量子デバイスの不要な加熱を軽減するために、チップパッケージ構成は、希釈冷蔵庫(dilution refrigerator)の混合チャンバーステージと並列に熱接触している金メッキされた銅ピラーを分離するために各チップを接合する(cementing)ことによる熱管理も含んでよい。本例は、ワイヤボンディングによる制御チップと量子ビットとの間の緊密な集積化を示すが、他の技術も使用されてよい。例として、制御チップは、量子ビットを有する基板にボンディングされるフリップチップであってよい。代替として、パッケージオンパッケージ、システムインパッケージ、又は他のマルチチップ組立体も使用されてよい。
【0041】
本例では、極低温度CMOS制御チップは、極低温動作に適する、28nm-FDSOI技術の、本質的に低電力の漏れの少ないCMOSプラットフォームで実装されてよい。FDSOIにおけるトランジスタは、閾値電圧の変化を温度で相殺するために、バックゲートバイアスを構成するユーティリティを提供してよい。この例示的なプラットフォームは、高(1.8V)及び低(1V)の電圧セルを提供し、n型及びp型トランジスタ又は回路ブロック全体の個々のバックゲート制御、例示的な制御システムのような混合信号回路設計における有用な側面も可能にする。
【0042】
図3は、一例による、高速制御多重化156に関連する制御システム300のブロック図を示す。制御システム300は、制御チップの部分として組み込まれる電荷ロック及び高速制御(charge locking and fast gating (CLFG))セル360の動作を制御するために使用されてよい。制御システム300は、シリアル周辺インタフェース(serial peripheral interface (SPI))インタフェース310、波形メモリ320、電圧制御発振器(voltage-controlled oscillator (VCO))330、クロック選択マルチプレクサ(C
SEL)340、及び有限状態マシン350を含んでよい。図示のように、V
HOLD、V
HIGH、及びV
LOWを含む3個の異なる電圧レベルがセルに結合されてよい。C
SEL340は、有限状態マシンに供給されるクロック信号を選択するために使用される。有限状態マシン及び関連するレジスタに関する更なる詳細は、後に提供される。
【0043】
一例では、制御システム300は、極低温度CMOS制御チップの部分として実装されてよい。
図4は、一例による、制御システム420(
図1の制御システム300と同様)を含む極低温度CMOS制御チップ400のフロアプランを示す。極低温度CMOS制御チップ400は、デジタルブロックとアナログブロックの両方を含んでよい。本例では、極低温度CMOS制御チップ400は電荷ロック及び高速制御(charge-locking and fast-gating (CLFG))セル、及び制御システム420に対応するコンポーネントを含んでよい。本例では、極低温度CMOS制御チップ400は、ロジック410及びCLFGセルを含んでよい。一例では、ロジック410は、通信、波形メモリ、及び2個のFSMを介するチップの自律動作を提供する、結合されたデジタル論理回路のシリーズを含んでよい。ロジック410は、制御システム420を含んでよく、制御システム420は、発振器422、有限状態マシン(finite state machine FSM)及びSPIインタフェース(例えば、FSM+SPIインタフェース)424、並びにメモリ426を含んでよい。発振器422は、構成可能な長さ及び分周器を有するリング発振器として実装されてよい。FSMに関する追加の詳細は後に提供される。メモリ426は、128ビットレジスタとして構成されてよく、任意のパルスパターンを格納することを可能にする。チップの左端及び下端に沿ってタイル状に配置されているのは、量子ビットを制御するために必要な静的及び動的電圧を生成する反復アナログ回路ブロック「CLFG」であってよい。CLFGセルは、セル432、434、436、及び438を含んでよい。ここに記載される例では、CLFGセルは単一のダイに実現されるが、それらは一緒にパッケージングされる又は相互接続される多数のダイの上に形成され得る。
図4は極低温度CMOS制御チップ400のための特定のフロアプランを示すが、チップは異なるフロアプランを有してよい。更に、
図4は特定の方法で配置された特定数のコンポーネントを示すが、極低温度CMOS制御チップ400は、異なる方法で配置された追加の又はより少数のコンポーネントを含んでよい。
【0044】
図5は、一例による、CLFGセル500を示す。CLFGセル500は、電荷をロックし電圧出力を提供するよう構成されてよい。各CLFGセル500は、N個のセルのうちのいずれかに対応してよい。CLFGセル500は、2つの部分を含んでよい。つまり、静的電圧を出力端子(GATE<N>とラベルを付される)に結合する部分510と、(電圧V
HIGH又は電圧V
LOWの一方に基づき)動的電圧を出力端子に結合する部分550である。CLFGセル500の部分510は、信号G
LOCK,Nに応答して作動されてよいスイッチ512を含んでよい。この信号は、適切な有限状態マシン、又は別のタイプの制御ロジック若しくは命令の制御下で、提供されてよい。スイッチ512が閉じられると、電圧V
HOLDが、オンチップキャパシタンスを表すC
PULSE,Nとラベルを付されたキャパシタの一方のプレートに結合されてよい。CLFGセル500の部分550は、スイッチ552及びスイッチ554を更に含んでよい。CLFGセル500は、インバータ556を更に含んでよい。CLFGセル500は、これらのスイッチ(スイッチ552及びスイッチ554)のうちの一方のみが一度に閉じられるように、構成されてよい。本例では、G
FG,Nとラベルを付された信号はスイッチ552を制御してよく、この信号の反転バージョン(例えば、インバータ556により反転される)はスイッチ554を制御してよい。このように、一度に、電圧V
HIGH又は電圧V
LOWのどちらかが、2個のスイッチのうちの1つを介して、オンチップキャパシタンスを表すC
PULSE,Nとラベルを付されたキャパシタの第2のプレートに結合されてよい。
【0045】
引き続き
図5を参照すると、C
Pは、極低温度CMOS制御チップ及び量子ビットチップ内の配線、並びに両者を相互接続するために使用されるワイヤ(又は他の相互接続)に起因する寄生キャパシタンスの和であってよい。セルは、先ず、外部電圧源をCLFGセル500の入力端子(
図5でINとラベルを付される)に接続してその電位をV
HOLDにまで引き上げるオンチップ有限状態マシン(FSM)により構成のために選択されてよい。本例では、室温デジタル-アナログ変換器(digital-to-analog converter (DAC))の単一のチャネルは、ソースとして使用されてよく、FSMは各CLFGセルをこの電圧バイアスに接触するよう順次切り替えて、キャパシタにエネルギを供給する。キャパシタは、次に、高インピーダンス出力で静的電圧を生成するために必要な電荷をロックする。回路は、オンチップキャパシタンスC
PULSEと、ボンドパッド、ボンドワイヤ、及び量子ビットチップ上のゲート相互接続からの貢献を含む寄生キャパシタンスC
Pと、を組み込んでいる。充電に続いて、スイッチ512は、(例えば、G
LOCK,N信号を非アサートすることにより)FSMにより開かれて、キャパシタ及び量子ビットゲート上の電荷を浮遊させたままにする。このロックされた電荷は、次に、CLFGセル500が選択解除されたときでも残り、量子ビットデバイスのオフセットバイアスを構成するために使用できる静的電圧を確立する。
図5は特定の方法で配置された特定数のコンポーネントを示すが、CLFGセル500は、異なる方法で配置された追加の又はより少数のコンポーネントを含んでよい。
【0046】
図6は、CLFGセル500の動作に関連する例示的な波形600を示す。動的制御では、ゲートの電位及び量子ビットのエネルギ状態を迅速に変化させるために、電圧パルスが必要である。そのようなパルスを量子ビット平面からリモートで生成するために、電力が開放線の端で消散されない場合でも生成器はケーブルインピーダンスを駆動しなければならないので、有意なエネルギを必要とする。代替として、小さなキャパシタンスを有する回路の中の局所電荷の再分配により、僅かなエネルギで相当な大きさの電圧パルスが生成できる。本例では、CLFGセル500の動的動作を可能にするために、この概念が利用される。第2FSMの制御下で、セルはパルス化のために選択され、レジスタメモリに格納された予めロードされたパルスパターンがスイッチG
FGに加えられる。
【0047】
スイッチ552及び554は、2つの電圧源VHIGHとVLOWとの間のキャパシタCPULSEの下側プレートをトグルする方法で制御される。これらの電圧源は、チップの外部であり、又はローカルの予め充電されたキャパシタから得ることができる。VLOW又はVHIGHに切り替えられたCPULSEの下側プレートの電位により、上側プレートに電荷が誘起され、グランドを基準とする出力電圧VOUTを変化させる。
【0048】
本例では、パルスの大きさは次式により与えられる:
ΔVPULSE=(CPULSE/(CP+CPULSE))(VHIGH-VLOW)
電力消費PPULSEは合計キャパシタンス、パルス周波数f、及び2つのレベル電圧により与えられる:
PPULSE=((CP*CPULSE)/(CP+CPULSE))(VHIGH-VLOW)2fCP及びCPULSEは(pF)チップスケールのキャパシタンスであるので、それらは充電するために非常に僅かな電力しか必要ない。
【0049】
図7A及び7Bは、一例による、極低温度CMOS制御チップ700に関連する種々のブロックを示す。前述のように、極低温度CMOS制御チップ700は、アナログコンポーネント及びデジタルコンポーネントの両方を含んでよい。本例では、極低温度CMOS制御チップは、アナログ-デジタル変換器(ADC)バッファ702、ADC704、ADC SRAM706、及びADC制御708を含んでよい。極低温度CMOS制御チップ700は、クロックドライバ710、波形発生器720、及び基準及びバイアス生成器722を更に含んでよい。これらのコンポーネントは、種々のバスを介して結合されてよい。各バスは、少なくとも1つの信号線を含んでよい。
図7A及び7Bに示されるように、極低温度CMOS制御チップ700は、クロック信号、種々の電圧、及び制御信号、を含む種々の外部信号を受信してよい。図示のように、クロックのうちの幾つかは外部で生成され、制御チップに関連付けられたピンを介して受信される。
【0050】
引き続き
図7Aを参照すると、極低温度CMOS制御チップ700は、メイン制御及びレジスタ730、及び種々の多種多様なブロック740を更に含んでよい。メイン制御及びレジスタ730は、外部プロセッサとの通信を可能にし得るシリアル周辺インタフェース(serial-peripheral interface (SPI))を含んでよい。多種多様なブロック740は、サンプルアンドホールド(sample-and-hold (S&H))ブロック742、比較器744、及び無線周波数(radio frequency (RF))マルチプレクサ(MUX)746を含んでよい。RF MUX746は、2つの無線周波数信号(RFIN1及びRFIN2)の間の選択を可能にし得る。本例では、メイン制御及びレジスタ730のための高度周辺ブロッククロック(advanced peripheral block clock (APBCLK))入力、及び電荷ロック及び高速制御ブロック750のための別のAPBCLK入力ピンがある。
図7Bに示されるように、電荷ロック及び高速制御750のために、ローカル発振器(例えば、VCO754)を切り換える能力もある。ローカル発振器は、構成レジスタを通じて分割されることもできる。SPIクロック(SCLK)は、SPIマスタから生じる。本例では、APBCLKとSPIマスタからのSCLKとの間にクロック比要件がある。一例では、APBCLK>=4*SCLKでなければならない。正しいクロック供給を保証するために、クロックドメインクロッシング(clock domain crossing (CDC))ロジックが、SCLKとAPBCLKとの間に配置され、別のCDCロジックがAPBCLKと分割された発振器ブロックとの間に配置される。
【0051】
図7Bは、電荷ロック及び高速制御750の態様の一部の図を示す。電荷ロック及び高速制御750は、メイン制御及びレジスタ752、電圧制御発振器(VCO)754、及びCLFGセルアレイ760を含んでよい。制御及びレジスタ752は、SPIインタフェースを含んでよい。制御及びレジスタ752は、レジスタリード/ライトブロックを含んでよく、これはまた、レジスタファイルに結合されてよい。VCO754は、電荷ロック及び高速制御750の態様のうちの幾つかと共に使用するための別のクロック信号を供給するよう構成されてよい。CLFGセルアレイ760は、CLFGセル762及び764を含んでよい。CLFGセル762及び764の各々は
図5のCLFGセル500と同様であってよい。
【0052】
図8は、一例による、電荷ロック及び高速制御(CLFG)800のブロック図を示す。CLFG800は、バス(例えば、APB)を介してレジスタリード/ライトインタフェース820に結合されるSPIインタフェース810を含んでよい。レジスタリード/ライトインタフェース820は、また、レジスタ830に結合されてよい(例えば、レジスタはレジスタファイルの部分として含まれてよい)。CLFG800は、レジスタから入力を受信しCLFGセルアレイ880に出力信号を供給するよう構成されてよい有限状態マシン840を更に含んでよい。CLFGセルアレイ880は、また、量子ビットに電圧を供給してよい。CLFG800は、発振器850、分周器(frequency divider (FDIV))860、及びマルチプレクサ870を更に含んでよい。マルチプレクサ870は、APBクロックを1つの入力として、分周器出力を他の入力として受信してよい。このように、本例では、有限状態マシンは、APBCLK又はローカル発振器からのクロック信号のいずれかから作動できる。クロック制御モジュールは、ローカル発振器クロック信号を1から255までの整数値に分割するために使用されてよい。マルチプレクサ870は、APBCLKと分割された発振器クロックとの間で切り換えることを可能にするために使用されてよい。分割されたクロックに対してデューティサイクルの要件はない。クロック制御モジュールのクロック出力は、XCLKとして参照され、有限状態マシンにクロック供給するために使用される。
【0053】
以下の表1は、極低温度CMOS制御チップの信号のうちの幾つか及びそれらの説明を列挙する。
表1
【表1】
【0054】
以下の表2は、極低温度CMOS制御チップに関連するレジスタのうちの幾つかを列挙する。大部分のレジスタの説明は自明であるので、極低温度CMOS制御チップの動作を説明するために、レジスタのうちの一部のみ、及びそれらの機能が説明される。
表2
【表2-1】
【表2-2】
【表2-3】
【0055】
表2は、特定のレジスタ及びそれらの配置を示すが、追加の又はより少数のレジスタが使用されてよい。更に、表に提示された情報は、レジスタ以外の他のモダリティにより、極低温度CMOS制御チップに通信されてよい。例として、レジスタに含まれる情報を符号化するために、特別な命令が使用されてよい。表2に記載されたレジスタにより有効にされるアーキテクチャは、32個の電荷ロック高速制御(CLFG)セルを想定する。本例では、各CLFGセルは、独立してDC充電でき、FGSRレジスタに格納された波形に従い高速パルス化できる。この実装では、128ビットが4個の32ビットレジスタ(例えば、レジスタFGSR0~3)に格納でき、電荷ロック高速制御セルのうちの任意のものが、これらのレジスタに格納されたビットパターンに従い高速パルス化できる。ビットパターンは、連続的に繰り返される又はFSMの制御下で1度だけ再生されることができる。この実装は、2レベルのパルス化を提供するが、マルチレベルのパルス化に拡張することができる。この例示的なアーキテクチャでは、表2に記載されたREG_CTL1レジスタは、セルの充電を開始し完了するためにアクティブにされた有限状態マシンにより使用される情報を含む。例として、このレジスタのビット8は、FGSR選択のためのカウンタがイネーブルされ、XCLKのクロックサイクル毎に、127に達してカウンタがロールオーバするまでインクリメントされるときを制御する。別の例として、REG_CTL1レジスタのビット4及び5は、完全なDC充電シーケンスが32個のセルの全部に生じるかどうか、又は選択的なDC充電シーケンスが32個のセルのうちの一部分にのみ生じるかどうか、を制御する。
【0056】
図9は、高速制御回路900の一例を示す。前述のように、表2の部分のように、4個の32ビットレジスタは、高速制御回路900の出力を制御してよい。高速制御回路900は、カウンタ910、マルチプレクサ920を含んでよい。マルチプレクサ920は、カウンタ910の出力を1つの入力として、及びレジスタに対応する値REG_CTL<3>を別の入力として受信するよう結合されてよい。高速制御回路900は、ANDゲート930、マルチプレクサ940、及びゲート950を更に含んでよい。これらのゲートは
図9に示されるように互いに結合されてよい。これらの論理素子は、
図9に示される信号を更に受信してよい。カウンタ910は、CL_FG端子上に出力されるべき128ビット値のビット位置を選択する。本例では、これは128対1多重である。(例えば、
図9に示されるクロックXCLKに対応する)各クロックサイクルで、カウンタ910は1だけインクリメントされる。カウンタ910は、折り返して0になり、カウントを続ける。REG_CTL[8]に格納されたビットの値はカウンタ910をイネーブルする。従って、本例では、REG_CTL[8]=0のとき、カウンタは0のままでありインクリメントしない。電荷ロック状態マシンがアイドルではない場合、高速制御出力CL_FGは0である。この場合、カウンタは、REG_CTL[8]=1である限り、インクリメントし続ける。
【0057】
引き続き
図9を参照すると、一例では、128ビットFGSRを更新するためのプログラミンシーケンス及び新しい高速制御シーケンスは以下の通りである:(1)REG_CTL1[8]をクリアしてカウンタを0に保持するか、又はREG_CTL1[1]を設定してXCLKを停止する。(2)新しい値を4個の32ビットFGSRレジスタにライトする。(3)REG_CTL1[8]を設定してカウンタをインクリメントさせるか、又はREG_CTL1[1]をクリアしてXCLKを再開する。一例では、FG出力も上書きされ得る。REG_CTL1[2]=1のとき、CL_FG出力はREG_CTL1[3]に等しい。
図9は特定の方法で配置された特定数のコンポーネントを有する高速制御回路900を示すが、高速制御回路900は、異なる方法で配置された追加の又はより少数のコンポーネントを含んでよい。更に、他の信号が、追加の又はより少ない制御を提供するために使用されてよい。
【0058】
図10は、一例による、有限状態マシン1000を示す。本例では、有限状態マシン1000は、2個の有限状態マシン:FSM A及びFSM Bを含む。有限状態マシンの各々は、CLFGセル(例えば、CLFGセル500)のDC充電のために構成される。FSM Aは、CL_ENレジスタ内のビットに従いイネーブルされるCLFGセルのみを同時に充電するよう構成される有限状態マシンに対応する。FSM Bは、CLFGアレイ内の全部のCLFGセル(例えば、32個のセルを有するCLFGアレイ内の32個のセルの全部)を順に充電するよう構成される有限状態マシンに対応する。本例では、レジスタに格納されたビット値(例えば、表2に記載されたフィールドBEGIN_CHRGに対応する32ビットレジスタREG_CTL1のビット4及び5)は、2個の有限状態マシンのうちおどちらがアクティブであるかを決定する。本例では、BEGIN_CHRGフィールドが00から01に遷移すると、FSM Aはアクティブにされる。代替として、BEGIN_CHRGフィールドが00から10に遷移すると、FSM Bがアクティブにされる。FSM A及びFSM Bの両方からの出力信号は、CHRG信号として供給され、マルチプレクサ1002の入力のうちの1つに結合される。マルチプレクサ1002の他方の入力は、(表2に記載された)REG_CTL<6>に格納されたビット値を有する。マルチプレクサ1002の出力は、グローバルDC充電信号であり、CL_CHRGとラベルを付される。ビット7の値(例えば、REG_CTL<7>)は、FSM A及びFSM Bの出力がDC充電信号として供給されるかどうか、又はDC充電信号が、表2に記載されたREG_CTLレジスタのビット6の値になるようユーザ選択されたものかどうか、を決定する。
【0059】
引き続き
図10を参照すると、アクティブになると、FSM AはIdleA0状態で開始し、COUNTDOWN A状態へと遷移する。この遷移の部分として、FSM AはCHRG信号をアサートし、イネーブルされたCLFGセルをDC充電するためにカウントダウンを開始する。FSM Aの動作全体の間、CL_EN値は、ユーザにより予め指定されたものと同じままである。本例では、特定のCLFGセルのローカルイネーブル信号がハイ(high)(例えば、CL_EN<i>=1)のとき、i番目のCLFGセルがイネーブルされる。従って、CHRG信号を制御することにより、ローカルイネーブル信号は、CLFGセルが、充電されるためにイネーブルにされるときのみ、充電されることを保証する。充電の完了後、FSM Aはアイドル状態IdleA1に入る。以下の表3は、FSM Aについて
図10において参照された遷移/状態と、ビット及び他の信号の例示的な値との間の例示的な対応を示す。
表3
【表3】
【0060】
更に
図10を参照すると、アクティブ化により、FSM Bは、START_CHRG状態に入り、32個のCLFGセルがあると仮定すると、CL_EN<32>ビットが1に設定され、他のイネーブルビットの各々が0に設定されると、32番目のCLFGセルの充電を開始する。この処理の部分として、FSM Bは、COUNTDOWN B状態に入り、CLFGセルの順次充電のために必要なクロックサイクル(例えば、DCSRクロックサイクル)をカウントダウンする。状態START_CHRG及びCOUNTDOWNBを除き、FSM Bの動作全体の間、CL_EN値は、ユーザにより予め指定されたものと同じままである。CL_EN<31>ビットが1に設定され、イネーブルビットの残りが0に設定されると、32番目のCLFGセルのDC充電は終了し、31番目のCLFGセルのDC充電が開始する。本例では、これらのステップは、32個のCLFGセルの全部が充電されるまで繰り返される。次に、FSM Bはアイドル状態(例えば、IdleB1状態)に遷移する。以下の表4は、FSM Bについて
図10において参照された遷移/状態と、ビット及び他の信号の例示的な値との間の例示的な対応を示す。
表4
【表4】
【0061】
図10は特定の方法で動作する特定の有限状態マシンを示すが、他の状態マシンも使用されてよい。表3及び4は特定のビット及び信号、2つの有限状態マシンのそれぞれの値を参照するが、他のビット及び信号、及びそれらのそれぞれの値も使用されてよい。更に、状態マシンに関連する機能は、他のロジック又は命令を用いて達成されてよい。
【0062】
図11A及び11Bは、例示的な極低温度CMOS制御チップの部分として、イネーブル信号を生成するために使用され得る例示的なシステム1100を示す。前述のFSMは、充電されるCLFGセルを選択するために使用されるイネーブル信号を生成するために使用されてよいシステム1100とインタフェースするために使用されてよい。本例は、更に、制御される必要のある(32行及び32列を含むグリッドに配置された)1024個のCLFGセルがあると仮定する。システム1100は、マスタロジック及びクロック部分1110、行デコーダ1120、及び列デコーダ1130を含んでよい。マスタロジック及びクロック部分1110は、メモリ制御部と同様の方法で命令又はコマンドを格納し解釈するよう構成されるカイロ及びロジックを含んでよい。行デコーダ1120は、マスタロジック及びクロック部分1110から行アドレスを受信し、R
0~R
31とラベルを付された信号のうちの1つ以上をアサートするよう構成されてよい。列デコーダ1130は、マスタロジック及びクロック部分1110から列アドレスを受信し、C
0~C
31とラベルを付された信号のうちの1つ以上をアサートするよう構成されてよい。
【0063】
図11Bを参照すると、システム1100は、行デコーダ1120及び列デコーダ1130により生成された信号を回路1140に結合するバスシステムを更に含んでよい。回路1140は、その出力端子において、OUT
I,FGとラベルを付された信号を生成するよう構成されてよい。この信号は、量子ビットゲート1160に結合されてよい。回路1140は、前述のCLFGセルの「直流モード」と同様の例示的な実装である。従って、本例では、回路1160は、それぞれの行(R
J)信号及びそれぞれの列(C
I)信号がハイであり駆動線(D)信号がそれぞれハイ又はローであるとき、電圧バスV
LFG又はV
HFGに接続できる。回路1140は、(例えば、
図5に示され上述したように)CLFGセルのアレイとして実装されてもよい。
図11は特定の方法で配置された特定のコンポーネントを有するとしてシステム1100を示すが、異なる方法で配置されたより多数の又は少数のコンポーネントがあり得る。
【0064】
図12は、一例による、CLFGセルアレイ1200を示す。例として、CLFGセルアレイ1200は、
図7のCLFGセルアレイ760に対応してよく、極低温度CMOS制御チップの部分として含まれてよい。本例では、CLFGセルアレイ1200は、32個のCLFGセル(例えば、CLFGセル1210、1220、1230、1240、及び1250)を含んでよい。これらのCLFGセルの各々は、制御又は他のタイプの電圧を量子ビットに供給するために使用されてよいOUTCL信号のうちの1つを生成するよう構成されてよい。各CLFGセルは、CL_FG、CL_CHRG、VICL、VHFG、及びVLFGとしてラベルを付された信号を受信してよい。これらの信号は、
図13及び
図14に関して更に詳細に説明される。更に、これらの信号のうちの幾つかは、極低温度CMOS制御チップに関連する説明の部分としても前述されている。各CLFGセルは、イネーブル信号(例えば、
図12に示されるようなCL_EN<0>、CL_EN<1>、CL_EN<2>、CL_EN<30>又はCL_EN<31>)も受信してよい。イネーブル信号は、
図10の有限状態マシンの記載を参照して前述したように、選択的又は順次DC充電を可能にしてよい。
図12に示されるCLFGセルの各々は、ESD回路1212、1222,1232、1242、及び1252を含む静電放電(electrostatic discharge (ESD))回路も含んでよい。CLFGセルは、容量性モードのみで、又は容量性モード及び直流モードの両方を含むデュアルモードで、動作してよい。例として、CLFGセルアレイ1200は、32個のCLFGセルで構成されてよく、16個のCLFGセルは容量性モードで動作するよう構成され、16個のCLFGセルは直流モードで動作するよう構成される。一例では、各タイプのCLFGセルの半分は、削減されたESD保護を有するカスタムアナログパッドを組み込み、標準的なパッド構造を通じる漏れを更に最小化してよい。
図12は特定の方法で配置された特定のコンポーネントを有するとしてCLFGセルアレイ1200を示すが、異なる方法で配置されたより多数の又は少数のコンポーネントがあり得る。
【0065】
図13は、一例による、容量性モードで動作するよう構成されるCLFGセル1300の例を示す。特に示されない限り、
図13で参照される信号は、
図5~7B、表1及び2に関して前述したものと同じ意味を有する。CLFGセル1300は、
図5のCLFGセル500と同様の方法で構成される。CLFGセル1300は、電荷をロックし、CLFGセルに関連付けられた出力端子(OUT)に電圧出力を提供するよう構成される。各CLFGセル1300は、N個のセルのうちのいずれかに対応してよい。((
図5でV
HIGHとして参照される)VHFG端子を介して受信される電圧、又は(
図5でV
LOWとして参照される)VLFG端子を介して受信される電圧、のうちの1つに基づく)動的電圧は、出力端子に結合されてよい。CLFGセル1300は、信号CL_EN<N>信号に応答して作動されてよいスイッチ1312を含んでよい。この信号は、
図10に関して説明したように、適切な有限状態マシン又は別のタイプの制御ロジック若しくは命令の制御下で、提供されてよい。スイッチ1312が閉じられると、入力端子(IN)を介して信号線VICL上で受信される電圧(
図5でV
HOLDとして参照される)が、オンチップキャパシタンスを表すC
PULSE,Nとラベルを付されたキャパシタの一方のプレートに結合されてよい。CLFGセル1300は、スイッチ1314及びスイッチ1316を更に含んでよい。CLFGセル1300は、インバータ1318を更に含んでよい。CLFGセル1300は、これらのスイッチのうちの一方のみが一度に閉じられるように、構成されてよい。本例では、CL_EN<N>とラベルを付された信号はスイッチ1314を制御してよく、この信号の反転バージョン(例えば、インバータ1318により反転される)はスイッチ1316を制御してよい。このように、一度に、電圧V
HIGH又は電圧V
LOWのどちらかが、2個のスイッチのうちの1つを介して、オンチップキャパシタンスを表すC
PULSE,Nとラベルを付されたキャパシタの第2のプレートに結合されてよい。CLFGセル1300は、出力端子(OUT)に結合されるESD1320を更に含んでよい。量子ビットゲートに供給される出力電圧は、
図13に示す容量性構成により提供されるので、CLFGセル1300は、容量性モードでのみ動作する。
図13は特定の方法で配置された特定数のコンポーネントを示すが、CLFGセル1300は、異なる方法で配置された追加の又はより少数のコンポーネントを含んでよい。例として、CLFGセル1300は、ESD1320を含まなくてよい。
【0066】
図14は、一例による容量性モード及び直流モードの両方を含むデュアルモードで動作するよう構成されるCLFGセル1400の例を示す。特に示されない限り、
図14で参照される信号は、
図5~7B、表1及び2に関して前述したものと同じ意味を有する。CLFGセル1400は、電荷をロックし、CLFGセルに関連付けられた出力端子(OUT)に電圧出力を提供するよう構成される。各CLFGセル1400は、N個のセルのうちのいずれかに対応してよい。(スイッチ1414を介してアサートされるCL_MODEとラベルを付された信号のアサートによりイネーブルされる)容量性モードでは、((
図5でV
HIGHとして参照される)VHFG端子を介して受信される電圧、又は(
図5でV
LOWとして参照される)VLFG端子を介して受信される電圧、のうちの1つに基づく)動的電圧は、出力端子に結合されてよい。CLFGセル1400は、CL_EN<N>信号に応答して作動されてよいスイッチ1416を含んでよい。この信号は、
図10に関して説明したように、適切な有限状態マシン又は別のタイプの制御ロジック若しくは命令の制御下で、提供されてよい。スイッチ1416が閉じられると、入力端子(IN)を介して信号線VICL上で受信される電圧(
図5でV
HOLDとして参照される)が、オンチップキャパシタンスを表すC
PULSE,Nとラベルを付されたキャパシタの一方のプレートに結合されてよい。CLFGセル1400は、スイッチ1416及びスイッチ1418を更に含んでよい。CLFGセル1400は、インバータ1420を更に含んでよい。CLFGセル1400は、これらのスイッチ1416及び1418のうちの一方のみが一度に閉じられるように、構成されてよい。本例では、CL_EN<N>とラベルを付された信号はスイッチ1416を制御してよく、この信号の反転バージョン(例えば、インバータ1420により反転される)はスイッチ1418を制御してよい。このように、一度に、電圧V
HIGH又は電圧V
LOWのどちらかが、2個のスイッチのうちの1つを介して、オンチップキャパシタンスを表すC
PULSE,Nとラベルを付されたキャパシタの第2のプレートに結合されてよい。CL_MODE信号がアサートされると、量子ビットゲートに供給される出力電圧は、
図14に示す容量性構成により提供されるので、CLFGセル1400は、容量性モードで動作する。
【0067】
引き続き
図14を参照すると、CL_MODE信号が非アサートされると、CLFGセル1400は、直流モードで動作してよい。従って、CL_MODE信号が非アサートされると、スイッチ1434は閉じられ、CL_EN<N>信号の状態に依存して、スイッチ1436又はスイッチ1438のいずれかが閉じられる。その結果、一度に、電圧V
HIGH又は電圧V
LOWのいずれかが、2個のスイッチのうちの一方を介して、入力端子(IN)を介して電圧V
INが結合される同じ端子に結合されてよい。、CLFGセル1400は、出力端子(OUT)に結合されるESD1450を更に含んでよい。
図14は特定の方法で配置された特定数のコンポーネントを示すが、CLFGセル1400は、異なる方法で配置された追加の又はより少数のコンポーネントを含んでよい。例として、CLFGセル1400は、ESD1450を含まなくてよい。
【0068】
CLFGセル1300及びCLFGセル1400の両方の場合に、キャパシタが充電されると、極低温度環境における低い漏れは、それらがあまり頻繁にリフレッシュされる必要がないことを保証する。CLFGセルの各々は、単一のDACから電圧を受信してよい。単一のDAC電圧は、ディスプレイをラスタライズするのと同様の技術を用いて、CLFGセルの全部(例えば、前述の例における32個のCLFGセル)を充電するために使用されてよい。従って、本例では、DAC電圧は、DAC電圧線とキャパシタとの間の経路にあるスイッチを閉じることによりキャパシタに供給される。キャパシタが充電された後に、スイッチは開かれ、DAC電圧は、ラウンドロビン方式で次のキャパシタを充電するために使用される。共有DACを使用することにより、CLFGセルアレイを含む制御チップの間にある入力/出力線の数、及び室温電子機器が、有意に削減される。上述のように、極低温度CMOS制御チップと量子ビット平面との間の相互接続は、ワイヤボンディング、フリップチップボンディング、又は他の低インピーダンス相互接続技術を用いて形成される。
【0069】
図15は、CLFGセル1300及びCLFGセル1400のための信号に関連する例示的な波形1500を示す。本例では、CLFGセル1300及びCLFGセル1400の各々は、XCLKとラベルを付されたクロックに関連して動作するように示される。CL_CHRG信号は、極低温度CMOS制御チップに関連付けられた制御レジスタ(例えばREG_DCSR)の中で指定されたクロックサイクル(又は別のメトリック)に基づく時間期間の間、アサートされる。CL_FG制御信号は、充電シャッフル(charge shuffling)のために使用される。CLFGセル1300及びCLFGセル1400について、この制御信号がハイのときはいつも、OUTCL端子の電圧は、VICL+(V
HIGH電圧とV
LOW電圧との間の差)の間のパルスである。CL_FG制御信号がローのときはいつも、CLFGセル1300及びCLFGセル1400の両方がDCモードで動作し、その結果、出力電圧(DC MODEでOUTCLとラベルを付された波形により表される)は、(例えばCL_CHRG信号により)キャパシタが最初に充電された電圧に保持され、フィルレッシュがなければ、時間の経過と共に消散してよい。CAPACITIVE MODEでOUTCLとラベルを付された波形は、CLFGセル1300の出力信号を示す。この同じ波形は、CLFGセル1400が容量性モードで動作するときの、CLFGセル1400の出力も示す。DIRECT MODEでOUTCLとラベルを付された波形は、CLFGセル1400が直流モードで動作するときの、CLFGセル1400の出力信号を示す。これらのモードの各々は、
図13及び14を参照して上述された。
【0070】
引き続き
図15を参照すると、容量性モードのCLFGセル1400を使用する高速制御動作サイクルは、記憶キャパシタのDC充電、その後の一連のパルスを含む。一例では、DC充電期間は、REG_DCSR値により決定される。パルスの期間及び数は、128ビットに設定される、(上述の)CL_FGSRレジスタの内容により決定される。本例では、このレジスタの内容は、(例えば、波形発生器により)一度に1ビットリードされ、CL_FGとラベルを付された制御信号として適用される。直流駆動モードを使用するとき、高速制御は、一連のパルスで構成され、出力はVLFG又はVHFGに直接結合される。直流駆動モードでは、充電サイクルが依然として存在し、CL_FGSR上の「0」の値と同じように動作する。これらのモードの各々は、
図13及び14を参照して上述された。
【0071】
図16は、容量性モードのCLFGセル1400のシミュレーションに関連する例示的な波形1600を示す。OUTCLとラベルを付された波形は、CLFGセル1400が容量性モードで動作するときの、CLFGセル1400のシミュレートされた出力信号を示す。CL_ENとラベルを付された波形は、充電のためにCLFGセルをイネーブルするために使用されるイネーブル信号に対応する。CL_CHRG信号は、CLFGセルに関連付けられたキャパシタ(又は複数のキャパシタ)を充電するために使用される。前述のように、CL_CHRG信号は、極低温度CMOS制御チップに関連付けられた制御レジスタ(例えばREG_DCSR)の中で指定されたクロックサイクル(又は別のメトリック)に基づく時間期間の間、アサートされる。CLFGセル1400について、CL_FG制御信号がハイのときはいつも、OUTCL端子の電圧は、VICL+(V
HIGH電圧とV
LOW電圧との間の差)の間のパルスである。VICL電圧は、CLFGセルの入力端子の電圧に対応し、(上述の)DACから受信されてよい。V
HIGH電圧は、VHFG端子を介して受信され、波形は
図16のVHFGのようにラベル付けされる。V
LOW電圧は、VLFG端子を介して受信され、波形は
図16のVLFGのようにラベル付けされる。
【0072】
引き続き
図16を参照すると、OUTCL波形の部分1602は、CLFGセルの中のDC充電シーケンス電圧(例えば、1.8ボルト)のロックを示す。OUTCL波形の部分1604は、量子ビットに対する制御信号として使用できるパルスを生成するための電圧の高速制御を示す。部分1606は、パルスの生成後の復元されたロックされたDC電圧を示す。部分1608は、ロックされたDC電圧がリフレッシュ又は復元されないときの、OUTCL端子の電圧を示す。部分1610は、部分1602でロックされた電圧のレベルと異なるレベルのDC電圧(例えば、0.6ボルト)のロックを示す。部分1612は、パルスを生成するための電圧の高速制御を示し、異なる大きさを有し、量子ビット又は他のそのようなデバイスを制御するために使用できる。
図16は、OUTCL波形が長方形パルスを有するとして示すが、パルスは異なる形状を有してよい。
図16はOUTCL波形が2個の異なる大きさを有するとして示すが、OUTCL波形は大きさの他の変形を有してよい。同様に、OUTCL波形のパルス周波数は、前述の極低温度CMOS制御チップにより制御されてもよい。更に、OUTCL波形は、高周波数信号、例えばマイクロ波トーンを変調して、量子ビットゲート又は別のタイプの量子ビットデバイスのための制御信号を生成するために使用されてよい。
【0073】
図17は、電荷ロックテスト中の例示的な量子ビットデバイス1700のアクティブ領域の第1
図1710及び第2
図720を示す。量子ビットデバイス1700は、ガリウムヒ素(gallium-arsenide (GaAs))に基づく量子ドットデバイスであってよい。本例では、
図1710及び
図1750に示されるように、複数の信号が量子ドットを制御するために使用されてよい。上述の極低温度CMOS制御チップは、上述のCLFGセルに関連付けられた容量性モード又は直流モードのいずれかを使用して、制御信号のうちのいずれかを生成するために使用されてよい。量子ビットを制御する信号は、左壁(left wall (LW))信号、左プランジャ(left plunger (LP))信号、中央壁(center wall (CW))信号、右プランジャ(right plunger (RP))信号、及び右壁(right wall (RW))信号を含んでよい。量子ビットゲート内の量子ドット1730を検知することに関連する追加の信号は、ドット検知トップゲート(sensing dot top gate(SD
T))、ドット検知プランジャ(sensing dot plunger (SD
P))、及びドット検知ボトムゲート(sensing dot bottom gate (SD
B))を含んでよい。本例では、
図1710に示されるように、制御信号LW,、LP、CW、RP、及びRWの電位は、プログラミングされた有限状態マシンに基づき5個のCLFGセルを用いてロックされてよい。
図17は特定の制御信号を有する量子ビットデバイス1700を示すが、他の制御信号を有する他のタイプの量子ビットデバイスも上述の極低温度CMOS制御チップにより生成される電圧を受けてよい。
【0074】
図18は、一例による、量子ポイントコンタクト(quantum point contact (QPC))に関連する電圧及び電流の変化の
図1800を示す。グラフ1810は、時間に渡るQPC電流の変化を示す。グラフ1820は、QPC電流の変化を、左壁電圧の変化の関数として示す。グラフ1830は、時間に渡る極低温度CMOS制御チップの保持する電圧の変化を示す。
【0075】
図19は、量子ドットを有する高速制御動作のテスト中の極低温度CMOS制御チップに対応する例示的な波形を1900示す。例示的な波形1910は、高速制御が140kHzで実行されるときの、リードアウト信号に対応する。例示的な波形1920は、高速制御が1.26MHzで実行されるときの、リードアウト信号に対応する。例示的な波形1930は、高速制御が2.45MHzで実行されるときの、リードアウト信号に対応する。周波数は、分周器を用いて変化され得る。波形は、共通の時間スケールを共有しない。
図19は波形に関連付けられた電圧パルスの特定のデューティサイクル及び振幅を示すが、デューティサイクル及び振幅は、極低温度CMOS制御チップにより変化され得る。これは、有利なことに、室温設備からの量子ビットゲートの制御の必要を除去する。
【0076】
室温からの量子ビットゲートの制御は、室温で生成された電圧パルスを減衰する必要がある、その結果、室温電圧パルスから大量の熱を消散させるという要件をもたらす。更に、メートルの長さの(又はそれより長い)ケーブルの負荷(例えば、容量性負荷の点で200pFより大きい50Ωの伝送線)を扱うために、室温からの電圧信号を要求する代わりに、極低温度CMOS制御チップは、制御チップと量子ビットゲートとの間のフリップチップボンディングのキャパシタンス及び非常に短い相互接続を扱うだけでよい。このキャパシタンスは、0.1pFほど小さい。これは、極低温度CMOS制御チップが、膨大な量の熱消散を必要とすることなく、数千個もの量子ビットの状態を制御できるようにする。更に、高速制御からの電力消費が小さく、これは、制御チップが効率的に数千個にも及ぶ可能性のある量子ビットを管理できるようにする。量子ビットの制御についての電力要件の観点で、一例では、リードアウトクロック周波数が1MHzに設定され、量子ビット相互接続が1pFのキャパシタンスを有すると仮定すると、0.1ボルトパルスで、1000個の量子ビットゲート当たりの電量消費は10μWである。量子ビット当たり10個のゲートを想定すると、1MHzのクロック周波数で10000個の量子ビットを、又は10MHzのクロック周波数で1000個の量子ビットを制御するために、1mWの電力が使用できる。
【0077】
図20は、極低温度CMOS制御チップのテスト中の量子ドットを通じるリードアウト信号に対応する例示的なリードアウト波形2000を示す。波形2000は、CLFGセル電圧V
HIGH及びV
LOWが量子ドットを制御するためのパルスを生成するために使用され、及びドット検知プランジャ(SD
P)ゲートの電圧が掃引(swept)されるとき、生成される。波形2010はV
HIGH電圧の変動を示し、波形2020はV
LOW電圧の変動を示す。波形2030は、CLFGセルに引火されるパルスを示す。
【0078】
上述のように、一例では、極低温度CMOS制御チップは、絶縁体上の完全欠乏型半導体(fully-depleted semiconductor on insulator (FDSOI))プロセスを用いて実装されてよい。一例では、FDSOIプロセスに基づくデバイスは、ドープされていないゲートチャネル、薄膜ボディ、ソース、ドレイン、及びゲートの下にある薄膜埋め込み酸化膜(buried oxide (BOX))、隣接デバイスからの完全誘電性絶縁体(dielectric isolation)を含んでよい。上述のように、FDSOIプロセスに基づくデバイスは、デジタルデバイスとアナログデバイスの両方を含んでよい(例えば、トランジスタ又は他のデバイス)。
図21は、一例による、FDSOIデジタルデバイス2100を示す。FDSOIデジタルデバイス2100は、基板2102を含んでよい。本例では、基板2102は、シリコンオンインシュレータ(silicon-on-insulator (SOI))基板であってよい。深いnウェル2104は、n型添加物を基板にドープすることにより、基板2102内に形成されてよい。追加のウェルは、基板2102及び深いnウェル2104内に形成されてよい。例として、pウェル2106及びnウェル2108が形成されてよい。次に、幾つかのリソグラフィステップを用いて、トランジスタデバイス2120及びトランジスタデバイス2130が形成されてよい。本例では、トランジスタデバイス2120は、ボックス2126の上に形成されるゲートチャネル2122を有するp型トランジスタである。トランジスタデバイス2120は、p+型ソース/ドレイン領域、及びソース/ドレインへのコンタクトS及びDを更に含んでよい。本例では、トランジスタデバイス2130は、ボックス2136の上に形成されるゲートチャネル2132を有するn型トランジスタである。トランジスタデバイス2130は、n+型ソース/ドレイン領域、及びソース/ドレインへのコンタクトS及びDを更に含んでよい。電荷蓄積のために使用されるキャパシタは、そのようなトランジスタデバイスを用いて実装されてよい。種々のタイプのデバイス及び領域は、絶縁体を用いて形成されるシャロートレンチアイソレーション(shallow trench isolation (STI))領域を用いて隔離されてよい。FDSOIデジタルデバイス2100内に形成された例示的なSTI領域は、STI2150、STI2152、STI2154、STI2156、STI2158、及びSTI2160を含む。
【0079】
引き続き
図21を参照して、各トランジスタデバイスのバックゲート又はボディバイアスは、冷却に関連付けられた効果のために動的に閾値電圧を構成するために使用できる。従って、本例では、FDSOIデジタルデバイス2100は、n型デバイスのためのN
BG端子を介するバックゲートバイアス、及びp型デバイスのためのP
BG端子を介するバックゲートバイアスを含む。本例では、FDSOIデジタルデバイス2100は、n型及びp型デバイスの両方のためのバックゲートバイアスを変化させる能力を含むが、n型デバイスのバックゲート電圧は、p型デバイスのバックゲート電圧より低くなることが許されない。
【0080】
更に
図21を参照して、各トランジスタデバイスのバックゲート又はボディバイアスは、極低温環境にあるチップの冷却に関連付けられた効果のために動的に閾値電圧を構成するために使用できる。トランジスタデバイス及び関連する制御回路は、トランジスタデバイスの動作温度の大きな変化にも拘わらず、バックゲートバイアス制御を用いて、トランジスタデバイスの閾電圧が調整できるように設計される。極低温度CMOS制御チップは、共通のバックゲートバイアスが与えられるドメインにパーティションされる回路ブロックを含んでよい。別個のバイアスを有する例示的なドメインは、n型デバイスのための回路ブロック、p型デバイスのための回路ブロックアナログデバイスのための回路ブロック、及びデジタルデバイスのための回路ブロックを含む。幾つかの例では、異なるアスペクト比を有するトランジスタに、異なるバックゲートバイアスが提供される。
図21は、特定の数及びタイプのウェルを含むFDSOIデジタルデバイス2100を示すが、FDSOIデジタルデバイス2100は、追加の又はより少数の他のタイプのウェルを含んでよい。更に、トランジスタデバイスは、平面又は非平面(例えば、FinFETデバイス)であってよい。
【0081】
図22は、一例による、FDSOIアナログデバイス2200を示す。FDSOIデジタルデバイス2100と異なり、FDSOIアナログデバイス2200は、独立バックゲートバイアス制御を含み、p型デバイスのためのバックゲート電圧が、n型トランジスタのためのバックゲート電圧と独立に、電圧V
DDより高く引き上げられることができる。FDSOIアナログデバイス2200は、基板2202を含んでよい。本例では、基板2202は、シリコンオンインシュレータ(silicon-on-insulator (SOI))基板であってよい。深いnウェル2204は、n型添加物を基板にドープすることにより、基板2202内に形成されてよい。pウェル2206は深いnウェル2204内に形成されてよく、nウェル2208は基板2202内に形成されてよい。次に、幾つかのリソグラフィステップを用いて、トランジスタデバイス2220及びトランジスタデバイス2230が形成されてよい。本例では、トランジスタデバイス2220は、ボックス2226の上に形成されるゲートチャネル2222を有するp型トランジスタである。トランジスタデバイス2220は、p+型ソース/ドレイン領域、及びソース/ドレインへのコンタクトS及びDを更に含んでよい。本例では、トランジスタデバイス2230は、ボックス2236の上に形成されるゲートチャネル2232を有するn型トランジスタである。トランジスタデバイス2230は、n+型ソース/ドレイン領域、及びソース/ドレインへのコンタクトS及びDを更に含んでよい。種々のタイプのデバイス及び領域は、絶縁体を用いて形成されるシャロートレンチアイソレーション(shallow trench isolation (STI))領域を用いて隔離されてよい。FDSOIアナログデバイス2200内に形成された例示的なSTI領域は、STI2250、STI2252、STI2254、STI2256、STI2258、STI2260、STI2262、及びSTI2164を含む。
【0082】
引き続き
図22を参照して、各トランジスタデバイスのバックゲート又はボディバイアスは、冷却に関連付けられた効果のために動的に閾値電圧を構成するために使用できる。従って、本例では、FDSOIアナログデバイス2200は、n型デバイスのためのN
BG端子を介するバックゲートバイアス、及びp型デバイスのためのP
BG端子を介するバックゲートバイアスを含む。本例では、FDSOIデジタルデバイス2100と異なり、FDSOIアナログデバイス2200は、独立バックゲートバイアス制御を含み、p型デバイスのためのバックゲート電圧が、n型デバイスのためのバックゲート電圧と独立に、電圧V
DDより高く引き上げられることができる。
【0083】
更に
図22を参照して、各トランジスタデバイスのバックゲート又はボディバイアスは、極低温環境にあるチップの冷却に関連付けられた効果のために動的に閾値電圧を構成するために使用できる。トランジスタデバイス及び関連する制御回路は、トランジスタデバイスの動作温度の大きな変化にも拘わらず、バックゲートバイアス制御を用いて、トランジスタデバイスの閾電圧が調整できるように設計される。幾つかの例では、異なるアスペクト比を有するトランジスタに、異なるバックゲートバイアスが提供される。
図22は、特定の数及びタイプのウェルを含むFDSOIアナログデバイス2200を示すが、FDSOIアナログデバイス2200は、追加の又はより少数の他のタイプのウェルを含んでよい。更に、トランジスタデバイスは、平面又は非平面(例えば、FinFETデバイス)であってよい。
【0084】
1つの例示的な極低温度CMOS制御チップでは、FDSOIデジタルデバイス2100は、電圧のハイ値とロー値との間の差分のみを必要とし中間値に関連しない回路ブロックの部分として使用されてよい。FDSOIデジタルデバイス2100はFDSOIアナログデバイス2200より少ない面積を専有するので、それらが敏感すぎない限り、回路の大部分のためにそれを使用することは有利である。一例では、FDSOIアナログデバイス2200のみが製造され、n型デバイス及びp型デバイスの両方のための独立したバックゲートバイアス制御、及びこれらのデバイスのアスペクト比に基づく独立バックゲートバイアス制御が存在するようにする。上述のように、極低温度CMOS制御チップは、ドメインにパーティションされてよく、その結果、各ドメインが複数のトランジスタデバイスを含むが、共通のバックゲートバイアスを供給しない。一例では、n型デバイス対p型デバイス、及びデバイスの各型に関連する異なるアスペクト比の組み合わせに基づき、8個の領域が存在してよい。
【0085】
図23は、本開示に記載されるシステムに関連する方法に対応するフローチャート2300を示す。一例では、量子ビットゲートを制御するシステムは、複数の量子ビットゲートを含む量子デバイスを含んでよく、量子デバイスは、極低温度で動作するよう構成される。例として、量子デバイスは、
図1の量子ビット160に対応してよい。システムは、極低温度で動作するよう構成される制御回路を更に含んでよく、制御回路は複数の電荷ロック回路を含む。例として、制御回路は、上述の極低温度CMOS制御チップに含まれる回路に対応してよい。複数の電荷ロック回路の各々は、相互接続を介して複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに結合されてよい。その毛か、複数の電荷ロック回路の各々は、少なくとも1つの量子ビットゲートに電圧信号を供給し、複数の電荷ロック回路の各々は、入力電圧信号を受信するための第1端子と、第1電圧量又は第2電圧量を選択的に受信するための第2端子と、を含み、第1電圧量は第2電圧量より大きい。例として、電荷ロック回路は、CLFGセル360の部分として含まれてよい。各電荷ロック回路は、上述のCLFGセル500、CLFGセル1300、又はCLFGセル1400のいずれかに対応してよい。
【0086】
ステップ2310は、少なくとも1つの量子ビットゲートに出力される電圧信号が第1の制御された大きさを有するパルス信号を含むように、複数の電荷ロック回路の第1サブセットを容量性モードで動作させるステップを含んでよく、第1の制御された大きさは、入力電圧信号の量と、第1電圧量及び第2電圧量の各々と、に依存する。一例では、このステップは、CLFGセル1300の動作に関連してよい。上述のように、CLFGセル1300は、CL_EN<N>信号に応答して作動されてよいスイッチ1312を含んでよい。この信号は、
図10に関して説明したように、適切な有限状態マシン又は別のタイプのロジック若しくは命令の制御下で、提供されてよい。スイッチ1312が閉じられると、入力端子(IN)を介して信号線VICL上で受信される電圧(
図5でV
HOLDとして参照される)が、オンチップキャパシタンスを表すC
PULSE,Nとラベルを付されたキャパシタの一方のプレートに結合されてよい。CLFGセル1300は、スイッチ1314及びスイッチ1316を更に含んでよい。CLFGセル1300は、インバータ1318を更に含んでよい。CLFGセル1300は、これらのスイッチのうちの一方のみが一度に閉じられるように、構成されてよい。本例では、CL_EN<N>とラベルを付された信号はスイッチ1314を制御してよく、この信号の反転バージョン(例えば、インバータ1318により反転される)はスイッチ1316を制御してよい。このように、一度に、電圧V
HIGH又は電圧V
LOWのどちらかが、2個のスイッチのうちの1つを介して、オンチップキャパシタンスを表すC
PULSE,Nとラベルを付されたキャパシタの第2のプレートに結合されてよい。
【0087】
ステップ2320は、少なくとも1つの量子ビットゲートに出力される電圧信号が第2の制御された大きさを有する信号を含むように、複数の電荷ロック回路の第2サブセットを直流モードで動作させるステップを更に含んでよく、第2の制御された大きさは、入力電圧信号と、第1電圧量又は第2電圧量の一方のみと、に依存する。一例では、このステップは、CLFGセル1400の動作に関連してよい。上述のように、CL_MODE信号が非アサートされると、CLFGセル1400は、直流モードで動作してよい。従って、CL_MODE信号が非アサートされると、スイッチ1434は閉じられ、CL_EN<N>信号の状態に依存して、スイッチ1436又はスイッチ1438のいずれかが閉じられる。その結果、一度に、電圧VHIGH又は電圧VLOWのいずれかが、2個のスイッチのうちの一方を介して、入力端子(IN)を介して電圧VINが結合される同じ端子に結合されてよい。、
【0088】
纏めると、一態様では、本開示は、量子ビットゲートを制御するシステムに関する。システムは、複数の量子ビットゲートを含む量子デバイスを含む第1パッケージデバイスを含んでよく、量子デバイスは、極低温度で動作するよう構成される。前記システムは、前記極低温度で動作するよう構成される制御システムを含む第2パッケージデバイスを更に含んでよく、前記第1パッケージデバイスは前記第2パッケージデバイスに結合される。前記制御システムは、複数の電荷ロック回路を含んでよく、前記複数の電荷ロック回路の各々は、前記複数の電荷ロック回路の各々が少なくとも1つの量子ビットゲートに電圧信号を供給するよう構成されるように、相互接続を介して前記複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに結合される。前記制御システムは、前記複数の電荷ロック回路のうちの少なくとも1つを選択的にイネーブルするよう及び前記複数の電荷ロック回路の選択された1つへの少なくとも1つの電圧信号の供給を選択的にイネーブルするよう構成される少なくとも1つの制御信号を供給するよう構成される有限状態マシンを含む制御回路を更に含んでよい。
【0089】
前記複数の電荷ロック回路のうちの少なくともサブセットは、キャパシタを含み、前記制御ロジックは、前記複数の電荷ロック回路のうちの前記少なくとも1つのサブセットのうちの選択された1つに関連付けられたキャパシタへの少なくとも1つの電圧信号の提供を選択的にイネーブルするよう更に構成される。前記制御システムは、波形発生器と、前記波形発生器により生成される波形に対応するビットパターンを格納するレジスタとを更に含んでよい。
【0090】
前記複数の電荷ロック回路の各々は、入力電圧信号を受信する入力端子と、前記電圧信号を少なくとも1つの量子ビットゲートへ選択的に供給する出力端子と、を含んでよい。前記複数の電荷ロック回路の各々は、前記入力電圧信号を受信する第1端子と第1電圧量又は第2電圧量を選択的に受信する第2端子とを有するキャパシタを更に含んでよい。
【0091】
前記制御システムは、時間量を指定する制御レジスタを更に含んでよく、前記有限状態マシンは、前記制御レジスタ内で指定された前記時間量の間、前記複数の電荷ロック回路のうちの前記選択された1つに関連する前記キャパシタへの少なくとも1つの電圧信号の供給を選択的にイネーブルするよう構成される。前記複数の電荷ロック回路の各々は、制御された大きさを有するパルス信号として電圧信号を生成するよう更に構成されてよく、前記制御された大きさは、少なくとも前記第1電圧量及び前記第2電圧量に依存する。
【0092】
更に別の態様では、本開示は、量子ビットゲートを制御するシステムに関する。システムは、複数の量子ビットゲートを含む量子デバイスを含む第1パッケージデバイスを含んでよく、量子デバイスは、極低温度で動作するよう構成される。前記システムは、前記極低温度で動作するよう構成される制御システムを含む第2パッケージデバイスを更に含んでよく、前記第1パッケージデバイスは前記第2パッケージデバイスに結合される。前記制御システムは、複数の電荷ロック回路を含んでよく、前記複数の電荷ロック回路の各々は、前記複数の電荷ロック回路の各々が少なくとも1つの量子ビットゲートに電圧信号を供給するよう構成されるように、相互接続を介して前記複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに結合される。前記制御システムは、前記複数の電荷ロック回路のうちの少なくとも1つを選択的にイネーブルにするために少なくとも1つの制御信号を提供するよう構成される制御回路を更に含んでよい。
【0093】
前記制御ロジックは、前記複数の電荷ロック回路のうちの選択された1つへの少なくとも1つの電圧信号の供給を選択的にイネーブルするよう構成される有限状態マシンを含んでよい。前記複数の電荷ロック回路のうちの少なくともサブセットは、キャパシタを含み、前記制御ロジックは、前記複数の電荷ロック回路のうちの前記少なくとも1つのサブセットのうちの選択された1つに関連付けられたキャパシタへの少なくとも1つの電圧信号の提供を選択的にイネーブルするよう更に構成される。前記制御システムは、波形発生器と、前記波形発生器により生成される波形に対応するビットパターンを格納するレジスタとを更に含んでよい。
【0094】
前記複数の電荷ロック回路の各々は、入力電圧信号を受信する入力端子と、前記電圧信号を少なくとも1つの量子ビットゲートへ選択的に供給する出力端子と、を含んでよい。前記複数の電荷ロック回路の各々は、前記入力電圧信号を受信する第1端子と第1電圧量又は第2電圧量を選択的に受信する第2端子とを有するキャパシタを更に含んでよい。前記制御システムは、時間量を指定する制御レジスタを更に含んでよく、前記有限状態マシンは、前記制御レジスタ内で指定された前記時間量の間、前記複数の電荷ロック回路のうちの前記選択された1つに関連する前記キャパシタへの少なくとも1つの電圧信号の供給を選択的にイネーブルするよう構成される。前記複数の電荷ロック回路の各々は、制御された大きさを有するパルス信号として電圧信号を生成するよう更に構成されてよく、前記制御された大きさは、少なくとも前記第1電圧量及び前記第2電圧量に依存する。
【0095】
更に別の態様では、本開示は、量子ビットゲートを制御するシステムに関する。システムは、複数の量子ビットゲートを含む量子デバイスを含む第1パッケージデバイスを含んでよく、量子デバイスは、極低温度で動作するよう構成される。前記システムは、前記極低温度で動作するよう構成される制御システムを含む第2パッケージデバイスを更に含んでよく、前記第1パッケージデバイスは前記第2パッケージデバイスに結合される。前記制御システムは、複数の電荷ロック回路を含んでよく、前記複数の電荷ロック回路の各々は、前記複数の電荷ロック回路の各々が少なくとも1つの量子ビットゲートに電圧信号を供給するよう構成されるように、相互接続を介して前記複数の量子ビットゲートのうちの少なくとも1つの量子ビットゲートに結合される。前記制御システムは、少なくとも1つの電圧信号を生成するデジタル-アナログ変換器を更に含んでよい。前記制御システムは、前記複数の電荷ロック回路のうちの少なくとも1つを選択的にイネーブルするよう及び前記複数の電荷ロック回路の選択された1つへの少なくとも1つの電圧信号の供給を選択的にイネーブルするよう構成される少なくとも1つの制御信号を供給するよう構成される有限状態マシンを含む制御回路を更に含んでよい。
【0096】
前記制御システムは、波形発生器と、前記波形発生器により生成される波形に対応するビットパターンを格納するレジスタとを更に含んでよい。前記複数の電荷ロック回路の各々は、入力電圧信号を受信する入力端子と、前記電圧信号を少なくとも1つの量子ビットゲートへ選択的に供給する出力端子と、を含んでよく、前記複数の電荷ロック回路の各々は、前記入力電圧信号を受信する入力端子と、第1電圧量又は第2電圧量を選択的に受信する第2端子と、を有するキャパシタを更に含む。
【0097】
前記制御システムは、時間量を指定する制御レジスタを更に含んでよく、前記有限状態マシンは、前記制御レジスタ内で指定された前記時間量の間、前記複数の電荷ロック回路のうちの前記選択された1つに関連する前記キャパシタへの少なくとも1つの電圧信号の供給を選択的にイネーブルするよう構成される。前記複数の電荷ロック回路の各々は、制御された大きさを有するパルス信号として電圧信号を生成するよう更に構成されてよく、前記制御された大きさは、少なくとも前記第1電圧量及び前記第2電圧量に依存する。
【0098】
理解されるべきことに、本願明細書に示された方法、モジュール、及びコンポーネントは、単なる例である。例えば、限定ではなく、超伝導デバイスの説明のためのタイプは、フィールドプログラマブルゲートアレイ(Field-Programmable Gate Arrays (FPGAs))、特定用途向け集積回路(Application-Specific Integrated Circuits (ASICs))、特定用途用標準品(Application-Specific Standard Products (ASSPs))、システムオンチッップシステム(System-on-a-Chip systems (SOCs))、複合プログラマブルロジックデバイス(Complex Programmable Logic Devices (CPLDs))を含んでよい。
【0099】
更に、抽象的にではあるが、なお明確な意味で、同じ機能を達成するためのコンポーネントの任意の構成は、所望の機能が達成されるように実施的に「関連」される。従って、特定の機能を達成するために結合される本願明細書における任意の2つのコンポーネントは、アーキテクチャ又は中間コンポーネントに拘わらず、所望の機能が達成されるように、互いに「関連付けられている」と見なすことができる。同様に、そのように関連付けられた任意の2つのコンポーネントは、所望の機能を達成するために互いに「動作可能に接続されている」又は「結合されている」と見なすこともできる。
【0100】
更に、当業者は、上述の動作の機能の間の境界が単なる説明のためであることを理解するだろう。複数の動作の機能は、単一の動作に結合されてよく、及び/又は単一の動作の機能は追加の動作に分散されてよい。更に、代替の実施形態は、特定の動作の複数のインスタンスを含んでよく、動作の順序は種々の他の実施形態において変更されてよい。
【0101】
本開示は、特定の例を提供するが、種々の変更及び変化が、以下の請求の範囲に記載された本開示の範囲から逸脱することなく行われ得る。従って、明細書及び図面は、限定的意味ではなく説明であると考えられるべきである。全部のそのような変更は、本開示の範囲に含まれることが意図される。特定の例に関して本願明細書に記載された任意の利益、利点、又は問題に対するソリューションは、任意の又は全部の請求項の重要な、必要な、又は必須の特徴又は要素であると考えられるべきではない。
【0102】
更に、用語「a」又は「an」は、本願明細書で使用されるとき、1つ又は1つより多くとして定められる。また、請求項の中の「少なくとも1つ」及び「1つ以上の」のような前置語句の使用は、不定冠詞「a」又は「an」による別の請求項の要素の導入が、同一の請求項が前置語句「少なくとも1つ」又は「1つ以上の」及び「a」又は「an」のような不定冠詞を含むときでも、そのような導入された請求項の要素を含む任意の特定の請求項をそのような要素を1つだけ含む発明に限定することを意味すると解釈されるべきではない。定冠詞の使用についても同様である。
【0103】
特に断りのない限り、「第1」及び「第2」のような用語は、そのような用語が説明する要素の間を任意に区別するために使用される。従って、これらの用語は、必ずしも、そのような要素の時間的又は他の優先度を示すことを意図しない。