(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-09
(45)【発行日】2024-09-18
(54)【発明の名称】低pHウイルス不活化のための新しい連続フロー反応器
(51)【国際特許分類】
C12M 1/12 20060101AFI20240910BHJP
C12N 7/04 20060101ALI20240910BHJP
【FI】
C12M1/12
C12N7/04
【外国語出願】
(21)【出願番号】P 2023011968
(22)【出願日】2023-01-30
(62)【分割の表示】P 2021518901の分割
【原出願日】2019-10-07
【審査請求日】2023-01-30
(32)【優先日】2018-10-08
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】503385923
【氏名又は名称】ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング
(74)【代理人】
【識別番号】110001508
【氏名又は名称】弁理士法人 津国
(72)【発明者】
【氏名】パーカー,ステファニー
(72)【発明者】
【氏名】バードリビング,キャメロン・リー
(72)【発明者】
【氏名】コフマン,ジョナサン
(72)【発明者】
【氏名】ゴッドフリー,スコット
(72)【発明者】
【氏名】オロスコ,ラケル
【審査官】松原 寛子
(56)【参考文献】
【文献】米国特許出願公開第2016/0375159(US,A1)
【文献】国際公開第2017/156355(WO,A1)
【文献】国際公開第2016/173982(WO,A1)
【文献】Biotechnology and bioengineering,2018年03月,Vol.115,p.606-616
(58)【調査した分野】(Int.Cl.,DB名)
C12M 1/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
ウイルス不活性化装置であって、
入口と出口との間に蛇行パターンを形成する交互交代する曲がり部の組を備えた管状流路を含む、少なくとも1つの連続ウイルス不活化反応器、
を備え、
前記管状流路は、0.6cm~0.7cmの直径を含み、
前記交互交代する曲がり部の組は、少なくとも2つの積み重ねられた層に垂直に分割されており、
前記少なくとも2つの積み重ねられた層の各々は、0.7cm~1.2cmの厚さを含む、ウイルス不活性化装置。
【請求項2】
前記少なくとも1つの連続ウイルス不活化反応器は、インライン管状連続ウイルス不活化反応器である、請求項1に記載のウイルス不活性化装置。
【請求項3】
前記交互交代する曲がり部の組は、270°~280°の角度を有する少なくとも2つの交互交代する曲がり部を含む、請求項1に記載のウイルス不活性化装置。
【請求項4】
前記交互交代する曲がり部の組は、270°~280°の角度を有する2~325の交互交代する曲がり部を含む、請求項1に記載のウイルス不活性化装置。
【請求項5】
前記少なくとも2つの積み重ねられた層の各々は、単一面内に12.5の交互交代する曲がり部を含み、前記交互交代する曲がり部の各々は、270°~280°の角度を含む、請求項1に記載のウイルス不活性化装置。
【請求項6】
前記少なくとも2つの積み重ねられた層の各々は、前記管状流路の1つの180°曲がり部を介して互いに接続されている、請求項1に記載のウイルス不活性化装置。
【請求項7】
前記少なくとも2つの積み重ねられた層は、前記管状流路の25個の180°曲がり部を介して互いに接続された26層である、請求項
6に記載のウイルス不活性化装置。
【請求項8】
前記少なくとも1つの連続ウイルス不活化反応器は、直列に接続された2~6のウイルス不活化反応器を含む、請求項1に記載のウイルス不活性化装置。
【請求項9】
前記交互交代する曲がり部の組は、渦を生成して、187.7~375.5のレイノルズ数を備える層流を有する生成物ストリームの混合を誘発するように配置されている、請求項1に記載のウイルス不活性化装置。
【請求項10】
ウイルス不活化装置であって、
第1の静的混合器と流体連絡する入口と、第2の静的混合器と流体連絡する出口とを有する低pH連続ウイルス不活化反応器、
を含み、
ここで、前記低pH連続ウイルス不活化反応器は、交互交代する曲がり部の組で形成された管を含み、
前記管は、0.6cm~0.7cmの直径を含み、
交互交代する前記曲がり部の組は、少なくとも2つの積み重ねられた層に垂直に分割されており、
前記少なくとも2つの積み重ねられた層の各々は、0.7cm~1.2cmの厚さを含む、ウイルス不活性化装置。
【請求項11】
前記交互交代する曲がり部の組における各曲がり部が、270°~280°までの角度を含む、請求項
10に記載のウイルス不活性化装置。
【請求項12】
前記交互交代する曲がり部の組は、0.85cm~2cmの曲率半径を含む、請求項
10に記載のウイルス不活性化装置。
【請求項13】
前記管は、325の交互交代する曲がり部を含む、請求項
10に記載のウイルス不活性化装置。
【請求項14】
前記管は、25個の管状流路であって、その各々が1つの180°曲がり部を有しているものによって、互いに接続された26層の垂直層に分割されている、請求項
10に記載のウイルス不活性化装置。
【請求項15】
前記管は、少なくとも12.5回の交互交代する曲がり部を単一の面内に含んでいる、請求項
10に記載のウイルス不活性化装置。
【請求項16】
前記低pH連続ウイルス不活化反応器は、直列に接続された2~6のウイルス不活化反応器を含んでいる、請求項
10に記載のウイルス不活性化装置。
【請求項17】
生成物ストリームの連続低pHウイルス不活化のための方法であって、
前記生成物ストリームを、そのpHを所定のウイルス不活化pHにまで下げるために、第1の静的混合器に導入すること、
不活性化されるために前記第1の静的混合器を出る前記生成物ストリームを、単一面内に複数の曲がり部の組を有する管の入口に導入すること、
ここで、
前記管は、0.6cm~0.7cmの直径を含み、
交互交代する前記曲がり部の組は、少なくとも2つの積み重ねられた層に垂直に分割されており、
前記少なくとも2つの積み重ねられた層の各々は、0.7cm~1.2cmの厚さを含み、
前記生成物ストリームをウイルス不活化条件下で前記管を通して流すこと、及び
前記生成物ストリームを前記管の出口を通して前記管から出すこと、
を包含し、
ここで、前記生成物ストリームの前記pHを下げるために、低pH緩衝液が前記第1の静的混合器に導入される、方法。
【請求項18】
単一面内の前記複数の曲がり部は、蛇行パターンを形成している、請求項
17に記載の方法。
【請求項19】
前記生成物ストリームは、プロテインA捕捉器から前記第1の静的混合器に導入される、請求項
17に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、一般に、新規の反応器のための装置及び方法に関する。より具体的には、本開示は、低pHウイルス不活化のための連続流れ反応器のための装置及び方法に関する。
【背景技術】
【0002】
本発明は、タンパク質のような生物学的生成物の産生の分野にあり、これは通常、バイオ反応器(発酵槽)で行われ、そこでは、例えば、真核細胞が、目的のタンパク質を産生するために培養される。従って、例えば、流加回分(フェドバッチ)発酵又は連続発酵又は灌流発酵などの様々なテクノロジーが確立されている。使用する前に、生成物は精製される必要がある。精製工程の中で、特に生成物が人間での使用を目的としている場合、ウイルスの不活化は必須である。
【0003】
現在、低pHでのウイルス不活化は、バッチ反応器で実施されている。不活化されるべき材料(即ち、活性ウイルスを潜在的に含む液体)が、バッチ反応器に導入される。不活化されるべき材料は、酸性溶液によってpH≦4にされ、必要とされる時間そのままにされる。ウイルスの不活化は、或る特定の製品及びプロセスに依存する時間の間、ウイルスが酸性溶液と接触することによって影響を受ける。バッチ反応器の全内容物は、実質的に同一の滞留時間で不活性化を経験する。さらに、各バッチで達成されるウイルスの削減は実質的に同じである。
【発明の概要】
【0004】
1実施態様において、ウイルス不活化装置が提供される。上記ウイルス不活化装置は、入口、出口、及び上記入口と上記出口との間に蛇行パターンを形成する交互交代する曲がり部の組を備えた管状流路を含む、少なくとも1つの連続的ウイルス不活化反応器を含む。
【0005】
1実施態様において、上記少なくとも1つの連続ウイルス不活化反応器は、インライン管状連続ウイルス不活化反応器である。
【0006】
別の実施態様において、上記交互交代する曲がり部の組は、約270°~約280°の角度を有する少なくとも2つの交互交代する曲がり部を含む。
【0007】
さらなる実施態様において、上記交互交代する曲がり部の組は、約270°~約280°の角度を有する約2~約325ターンの交互交代する曲がり部を含む。
【0008】
さらに別の実施態様において、上記管状流路は、約0.6cm~約0.7cmの直径を含む。
【0009】
1実施態様において、上記交互交代する曲がり部の組は、少なくとも2つの積み重ねられた層に垂直に分割されている。
【0010】
さらなる実施態様において、上記少なくとも2つの積み重ねられた層の各々は、単一面内に12.5の交互交代する曲がり部を含み、上記交互交代する曲がり部の各々は、約270°~約280°の角度を含む。
【0011】
1実施態様において、上記少なくとも2つの積み重ねられた層の各々は、約0.7cm~約1.2cmの厚さを含む。
【0012】
1実施態様において、上記少なくとも2つの積み重ねられた層の各々は、上記管状流路の1つの180°曲がり部を介して互いに接続されている。
【0013】
別の実施態様において、上記少なくとも2つの積み重ねられた層は、上記管状流路の25の180°曲がり部を介して互いに接続された26層である。
【0014】
更なる態様において、上記少なくとも1つの連続的なウイルス不活化反応器は、直列に接続された約2~約6のウイルス不活化反応器を含む。
【0015】
さらに別の実施態様において、上記交互交代する曲がり部の組は、渦を生成して、約187.7~約375.5のレイノルズ数を備える層流を有する生成物ストリームの混合を誘発する。
【0016】
1実施態様において、上記管状流路は、生成物ストリームが少なくとも30分間、上記連続ウイルス不活化反応器内にあるような寸法を取られている。
【0017】
別の実施態様において、ウイルス不活化装置は、第1の静的混合器と流体連絡する入口と、第2の静的混合器と流体連絡する出口とを有する低pH連続ウイルス不活化反応器を含む。ここで、上記低pH連続ウイルス不活化反応器は、交互交代する曲がり部の組で形成された管を含む。
【0018】
更なる実施態様において、上記管は、生成物ストリームが少なくとも30分間、低pH連続ウイルス不活化反応器内にあるように寸法を取られている。
【0019】
更に別の実施態様において、上記交互交代する曲がり部の組における各曲がり部は、約270°~約280°までの角度を含む。
【0020】
1実施態様において、上記交互交代する曲がり部の組は、約0.85cm~約2cmの曲率半径を含む。
【0021】
別の実施態様において、上記管は325ターンの交互交代する曲がり部を含む。
【0022】
更なる実施態様において、上記管は、25個の管状流路であって、その各々が1つの180°曲がり部を有するものによって、互いに接続された26個の垂直層に分割されている。
【0023】
更に別の実施態様において、上記管は、少なくとも12.5ターンの交互交代する曲がり部を単一の平面内に含んでいる。
【0024】
1実施態様において、上記低pH連続ウイルス不活化反応器は、直列に接続された約2~約6のウイルス不活化反応器を含んでいる。
【0025】
別の実施態様において、生成物ストリームの連続低pHウイルス不活化のための方法であって、上記生成物ストリームを、そのpHを所定のウイルス不活化pHにまで下げるために、第1の静的混合器に導入すること;不活性化されるために上記第1の静的混合器を出る生成物ストリームを、単一面内に複数の曲がり部の組を有する管の入口に導入すること;上記生成物ストリームをウイルス不活化条件下で上記管を通して流すこと;及び、上記生成物のストリームを上記管の出口を通して上記管から出すこと;を包含している上記方法、ここで、上記生成物ストリームのpHを下げるために、低pH緩衝液が上記第1の静的混合器に導入される。
【0026】
更なる実施態様において、単一面内の上記複数の曲がり部は、蛇行パターンを形成する。
【0027】
1実施態様において、上記生成物ストリームは、プロテインA捕捉器から第1の静的混合器に導入される。
【0028】
様々な実施形態の追加の特徴及び利点は、部分的には以下の説明に記載され、部分的には説明から明らかであるか、又は様々な実施形態の実施によって学ばれうる。様々な実施形態の目的及び他の利点は、本明細書の説明で特に指摘された要素及び組み合わせによって実現及び達成されるであろう。
【0029】
いくつかの実施態様及び実施形態における本開示は、以下の詳細な説明及び添付の図面からより完全に理解することができる。
【図面の簡単な説明】
【0030】
【
図1】本開示の1実施例による、全体的な連続低pHウイルス不活化スキームを示す図である。
【
図2A】本開示の1実施例による、連続管状反応器の管状流路の上面図である。
【
図2B】本開示の1実施例による、連続管状反応器の部分的斜視図である。
【
図2C】本開示の1実施例による、連続管状反応器の側面図及び等角図である。
【
図2D】本開示の1実施例による、互いに接続された複数の連続管状反応器を示す図である。
【
図2E】本開示の1実施例による、連続管状反応器の層を示す図である。
【
図3】本開示の1実施例による、交互交代する270°曲がり部を有する連続管状反応器の曲率半径に対する、弧長、必要な二次流れ進展曲がり長さ(LDT)、及び或る流量での特性ディーン数との夫々の相関関係を示す図である。
【
図4A】本開示の1実施例による、連続管状反応器の中心面速度分布図の計算流体力学の結果を示す図である。
【
図4B】本開示の1実施例による、連続管状反応器の中心面速度プロファイルの計算流体力学の結果を示す図である。
【
図5】本開示の1実施例による、連続管状反応器に関する2つの流量での断面速度分布図及び二次流れパターンの計算流体力学解析を示す図である。
【
図6】本開示の1実施例による、連続ウイルス不活化反応器に関するCFDモデル及びトレーサー実験での無次元E(θ)滞留時間分布(RTD)曲線の2つの流量での比較である。
【
図7A】
図7Aは、本開示の1実施例による、所定の流量での連続管状反応器のCFDモデルによる長さ対RTD分散の線形関係を示す。
【
図7B】
図7Bは、本開示の1実施例による、所定の流量での連続管状反応器の実験による長さ対RTD分散の線形関係を示す。
【
図7C】
図7Cは、本開示の1実施例による、所定の流量での連続管状反応器の無次元RTD曲線を示す。
【発明を実施するための形態】
【0031】
本明細書及び図面において、類似の参照符号は、一貫して類似の要素を識別する。
【0032】
前述の一般的な記載と以下の詳細な記載の両方とも、ただ例示的且つ説明的であり、本教示の様々な実施形態の説明を与えることを意図していることを理解されたい。
【0033】
ウイルスの安全性は、哺乳動物細胞内で産生されたタンパク質治療薬に対して義務付けられており、ウイルス除去手順は高度に規制されている。低pHウイルス不活化(VI:Viral Inactivation)は、モノクローナル抗体精製プロセスで用いれる非常に効果的な方法であり、4log(10)を超える大きなエンベロープウイルス(内在性レトロウイルスを含む)を一貫して除去する。米国材料試験協会(ASTM)の「Standard Practice for Process for Inactivation of Retrovirus by pH(pHによるレトロウイルスの不活化プロセスの標準的な手順)」では、低pHウイルス不活化に関して次の条件が規定されている。指定のpHでのシステム特定緩衝材内において、pH≦3.6、15℃以上、30分以上で、5以上の対数減少値(LRV:log reduction value)を提供する。
【0034】
本発明による連続フロー反応器は、任意の適切な不活性材料(例えば、ガラス、合成材料、又は金属)で製作されうる。
図1は、1の例示的な連続ウイルス不活化(CVI:continuous viral inactivation)プロセスシステム10を示している。CVIプロセスシステム10は、定常状態動作、プロセス柔軟性、生産能力に対する装置サイズの比率の減少、効率化されたプロセス制御、改善された製品品質管理、及び資本コストの削減を包含しうるので有利である。この目的のために、上記プロセスシステム10は、捕捉器(例えば、プロテインA捕捉器20)、第1の静的混合器(/スタティックミキサー)40、第2の静的混合器60、及び連続フロー反応器(例えば、上記第1の静的混合器40と上記第2の静的混合器60との間に配置されたインライン管状CVI反応器(箱の中の治具(jig in a box:JIB)とも呼ばれる)100を含むことができる。プロテインA捕捉溶出物から不活性化されるべき生成物ストリームの連続フローは、第1の静的混合器40を通過して、プロテインA捕捉溶出物のpHを所定のウイルス不活化pHに調整することができる。これは、プロテインA捕捉溶出液を低pH緩衝材と混合することによって実現されうる。調整されたpHを有するプロテインA捕捉溶出物は、インライン管状CVI反応器100に導入され、最後に、更なる下流の処理工程に移る前に、pH調整のために第2の静的混合器60に導入されうる。
【0035】
図1は、プロテインA捕捉器がインライン管状CVI反応器100への入力プロセス流として用いられるCVIプロセスシステムを示しているが、任意のプロセス流が、インライン管状CVI反応器100への入力プロセス流として用いられうる。そのようなプロセス流は、バイオリアクター流出物、陰イオン交換クロマトグラフィー流出物、陽イオン交換クロマトグラフィー流出物、水性二相抽出からの流出物、沈殿反応からの流出物、膜濾過工程からの流出物、及び限外濾過工程からの流出物を包含しうるが、これらに限定するものではない。
【0036】
1実施例において、インライン管状CVI反応器100は、圧力降下及び軸方向分散を最小化、及び/又は、低減するように構成又は設計されうる。従って、インライン管状CVI反応器100は、低レイノルズ(Re)数(それは、2000未満のRe数を有する流れとして規定される)で動作できる。ここで、Re=ρvd/μとして定義され、ρは密度、vは平均速度、dは管径、μは動粘度である。例えば、Re数の計算は、25℃の温度、ρ=1000kgm
-3、及びμ=8.9E-4Pa・sの生成物ストリームに基づきうる。しかし、層流は、放物線状の速度プロファイルによって特徴付けられるように、軸方向の分散を引き起こしうる。管の中心での流体要素が壁に近い要素よりも速く移動し、幅広い滞留時間分布(RTD:Residence Time Distribution)をもたらす。
図2Bに示されるように、軸方向分散を低減、及び/又は少なくとも部分的に除去するために、インライン管状CVI反応器100は、半径方向の混合を強化し且つ軸方向の分散を減らす二次の流れを生成するように、少なくとも1つの曲がり部又は湾曲部110を有する流路(例えば、管状流路112)を含みうる。
【0037】
曲がり部又は湾曲部110の曲率半径(ROC)は、ディーン(Dean)数(D)と円環形状の長さ(LDT)に対する曲がり部の長さの比との関数として決定することができる。ここで、D=Re√(d/2R)であり、dは管内径、Rは流路の曲率半径であり、LDT=0.322xdc
0.31x Re0.59xdi
0.76であり、ここでdiは内径であり、dcは、コイルの直径(メートル単位)である。
【0038】
図2A~2Dは、低Reで動作することができる例示的なインライン管状CVI反応器100を示している。インライン管状CVI反応器100は、曲がり部又は湾曲部110を備える管状流路112を含みうる。曲がり部又は湾曲部110は、1つの曲がり部から次の曲がり部への曲率の方向が変化し、及び/又はシフトして、半径方向の混合を強化し且つ軸方向の分散を減らすように、配置される。更に、1実施例において、管状流路112は、寸法(即ち、直径、長さ、及び圧力の間の関係)を含むことができ、その結果、生成物ストリームは少なくとも30分間CVI反応器内にある。
【0039】
図2A~2Eを参照すると、管状流路112の内径Dは、約0.5cm~約1cm、又は更に、例えば、約0.6cm~約0.7cm(例えば、約0.635cmの内径)でありうる。このサイズの管は、体積流量(Q)で約10ml/分(Reは37.5)~200ml/分(Reは750.9)、又は更に、例えば、約50ml/分~約100ml/分(Re数は、約187~約380、例えば、約187.7~約375.5を有する)を可能にしうる。1実施例において、インライン管状CVI反応器100内の流路112は、蛇行パターンを含むことができる。この蛇行パターンは、交互交代する曲がり部の約2曲がり部~約2000ターンの曲がり部、又は更に、例えば、約100~約500ターンの曲がり部、又は200~約400ターンの曲がり部(例えば、約325ターンの曲がり部)を有する管状流路112によって作成され得て、これは、約260°~約280°、例えば、約270°の角度を有しうる。1実施例において、第1の曲がり部は約270°の角度を含み得、第2の曲がり部は約278.3°の角度を含みうる。例えば、
図3に示されるように、インライン管状CVI反応器100は、約325ターンの交互交代する曲がり部を含むことができ、その曲がり部の曲率半径(ROC)は約0.85cm~約2cm、又は更に、例えば、約0.85cm~約0.99cmであり、これは、約4cm~約9.5cm、又は更に、例えば、約4.71cmの曲がり部長をもたらしうる。インライン管状CVI反応器100のパラメータは、約240から約145のディーン数(例えば、約210以上のディーン数)又は更に、及び約4.5cm~約11cmのL
DT、例えば、約6.4cmから約8.5cm、例えば、約6.76cmのL
DTに対応しうる。
【0040】
図2Aを参照すると、管状流路112の各湾曲部110は、凡そ1.5cm(例えば、約1.479cm)の2つの曲がり部間の各中心間の垂直距離(L1)を含みうる。さらに、各湾曲部110は、約1.375cmの2つ曲がり部間の中心間の水平距離(L2)を含みうる。さらに、管状流路112内の各湾曲部110の半径は、実質的に一定であり得る。1実施例において、ROCが約0.85cm~約0.99cmである場合、各湾曲部110の曲率の角度は約270°でありうる。別の実施例において、ROCが約0.99cm以上である場合、各湾曲部の曲率角は同じでありうるか、又は第1の湾曲部110の曲率角は約270°であり得、第1の湾曲部に隣接する第2の湾曲部110の曲率角は、約270°以上でありうる。上記の各例示的なシナリオにおいて、R1及びR2は、交互交代する曲がり部間のディーン数の実質的な差異を防ぐために、互いに0.05cm以内にありうる。
【0041】
1実施例において、管状流路112内の各湾曲部110は、同じ半径(例えば、1cmの半径)を含むことができる。別の実施例において、管状流路112内の各湾曲部110は、異なる半径を含むことができる。例えば、第1の湾曲部110は、半径R1(それは1cmでありうる)を含むことができ、第2の湾曲部110は、半径R2(それは1.02cmでありうる)を含むことができる。この実施例において、半径R1に対応する曲率の角度は約270°であり得、半径R2に対応する曲率の角度は約278.27°でありうる。別の実施例において、各管状流路112内の湾曲部110の第1の半分は、第1の半径R1(それは1cmでありうる)を含むことができ、各管状流路112内の湾曲部110の第2の半分は、第2の半径R2(それは1.02cmでありうる)を含むことができる。
【0042】
図2B及び2Cを参照すると、約325ターンの交互交代する270°曲がり部をコンパクトな設計に収容するために、インライン管状CVI反応器100における管状流路112は、複数の積み重ねられた層114、例えば、約2層114から約50層114まで、又は更に、例えば、
図1及び
図2Cに示されたように、26層114に垂直に分割されうる。1実施例において、積み重ねられた層114における各層114(a)~114(z)は、単一の平面内に約10.5ターンの曲がり部~約15.5ターンの曲がり部を含みうる。例えば、積み重ねられた層114における各層114(a)~114(z)は、12.5の曲がり部を含みうる。1実施例において、各層114は、1つの180°垂直曲がり部116によって隣接下側層114に接続されうる。代わりに、各層114における流路112の最後の曲がり部110の後半部は、次の層の管状流路112を接続するために(例えば、層114(a)を第2の層114(b)における管状流路112へ接続するために)垂直に180°だけ曲げられうる。1実施例において、インライン管状CVI反応器100が26層114を含む場合、26層114は、25個の180°垂直曲がり部116によって互いに接続されうる。
【0043】
図2Eを参照すると、1実施例において、インライン管状CVI反応器100における各層114は、深さL3を含みうる。深さL3は、第1の層114における管状流路112の中心から、第1の層114の真下の第2の層114における管状流路112の中心までの距離でありうる。深さL3は、約0.7cm~約1.2cm、又は更に、例えば、約0.8cm~約0.9cm(例えば、約0.835cmの深さ)でありうる。1実施例において、第1の層における管状流路112の底部から第1の層の真下の第2の層における管状流路112の上部までの距離(L4)は、約0.15cm(1.5mm)~約0.4cm(4mm)、例えば、約0.17cm(1.7mm)~約0.255cm(2.55mm)、例えば、約0.2cm(2mm)でありうる。
【0044】
図2Dに示されるような1実施例において、経路長及びインキュベーション時間の変更を可能にするために、複数の層114を有するインライン管状CVI反応器100に加えて、複数のインライン管状CVI反応器100が、互いに直列に接続されうる。これは、1つ又は複数のフランジ付きコネクタ118によって達成されうる。1実施例において、少なくとも2つのインライン管状CVI反応器100、例えば少なくとも6つのインライン管状CVI反応器100が、互いに接続されうる。この特定の実施例において、インライン管状CVI反応器100の各端部の管状流路112は、インライン管状CVI反応器100から部分的に延びることができる(拡張セクション115)。拡張セクション115はまた、
図2Bに示されるようにフランジ120を含みうる。1のコネクタ118は、水平方向の1の180°の曲がり部を含むことができ、及び/又は、「U」字の形状でありうる。コネクタ118の一つの端部は、第1のインライン管状CVI反応器100の管状流路112又はフランジ120に接続され得、コネクタ118の第2の端部は、隣接するインライン管状CVI反応器100の管状流路112又はフランジ120に接続されうる。
【0045】
コネクタ118は、
図2Dに示されるように、クランプ122によって、又は他の固定デバイス(例えば、ねじ、接着剤など)によって、各管状流路112又はフランジ120に接続されうる。1実施例において、ガスケットは、管状流路112の端部又はフランジ120とコネクタ118の各端部との間に配置されうる。
【0046】
1実施例において、インライン管状CVI反応器100は、20×4.9×23cmの本体又は設置面積を含むことができ、約16.43mの長さの流路112を含むことができ、その結果、約520mlの流量が得られる。インライン管状CVI反応器100の本体は、
図2Cに示されるように、第1側面124及び第2側面126を含みうる。1実施例において、第1側面124は、少なくとも1つの溝又は窪み124Aを含むことができ、第2側面126は、少なくとも1つの突起126Aを含むことができる。少なくとも1つの窪み124A及び少なくとも1つの突起126Aは、2つのインライン管状CVI反応器100が互いに向き合っている場合に、それら窪み124A及び突起126Aは整列され且つ1つのインライン管状CVI反応器100を隣接するインライン管状CVI反応器100に取外し可能に固定しうるように、配置されうる。
実施例
【0047】
CVI反応器を用いたパルストレーサー実験は、最初にJIBをMilli-Q(商標)水(Barnstead Nanopure Water Purification System、Thermo Scientific会社、マサチューセッツ州ウォルサム)で洗い流し、続いて50mg/mlリボフラビンの13mlパルス注入、そして最後に蠕動ポンプ(520 IP31、Watson-Marlow Flow Technology Group会社、カリフォルニア州レイクフォレスト)を介してMilli-Q水で追跡することから成る。出口でのトレーサーの吸光度は、Cary 60 UV-Vis Spectrophotometer(分光光度計)(Agilent Technologies会社、カリフォルニア州サンタクララ)と統合されたFlowVPE(C Technologies.会社、ニューヨーク州、ニュージャージー)流れセルユニットを用いて、波長372nmで測定された。シリコーンチューブ0.25インチID(Masterflex 96410-24、Cole-Parmer会社、イリノイ州、ヴァーノンヒルズ)が、ポンプを反応器に接続し、且つ反応器を分光光度計に接続するのに用いられた。
実施例1-計算流体力学
【0048】
ANSYSFluent Workbench(ANSYS流体力学ワークベンチ) v. 17.2の種輸送モデルが、JIBトレーサー実験をシミュレートするために用いられた。この作業では、CVI反応器のSOLIDWORKS CADの幾何形状が、ANSYSに直接インポートされた。CFD(計算流体力学)の形状は、真直ぐな配管を入口と測定点の前に追加することによって、実験の設定と合致させられた。3D流れ領域は、ANSYS MESHINGを用いて壁近傍の流れの物理を捕捉するために、管壁で用いられる高解像度のメッシュ要素を備えた六面体卓越の有限体積に分割された。具体的には、エッジに沿うインフレーションを有する非構造格子が出口面に適用され、分割のスイープ数によって規定される全てのクワッド自由面メッシュを用いて、ボディの残りの部分をスイープした。グリッドの独立性の検討は、セルボリュームの最大変化の2.5の比率に基づいて、150~650万要素の範囲で、グローバルメッシュ・リファインメントアルゴリズムを用いて実行された。圧力降下と出口速度を監視する定常状態シミュレーションは、グリッド細分化の各レベルで実行された。メッシュ独立性検討の結果は、更なる実験のために250万の要素で十分であることを示した。
【0049】
計算モデルは、先ず定常状態について、速度場に関して1e
-8の残差の収束基準を用いて解かれた。次に、上記定常状態の速度場は、0.8×10
-9m
2s
-1の質量拡散係数を持つ13mlの体積パルストレーサーが反応器に注入される過渡モデルを初期化するために用いられた。実験の設定と一致させるために、上記トレーサーは、シミュレーションの開始時、即ち、t=0で、13mlの直管に含まれており、次にモデルはパルストレーサー体積が反応器を通過するのをシミュレートする。反応器の出口での表面モニターは、各時間ステップで出口でのトレーサーの質量加重モル濃度を記録した。ANSYS Fluentは、以下の対流拡散方程式を用いて、i番目の種に対する対流拡散方程式の解を通して、各種の局所質量分率Yiを予測する。
【数1】
【0050】
上記の式において、J
iは、濃度の勾配による種iの拡散流束であり、vは、定常状態の速度場である。層流における質量拡散の濃度勾配による拡散を近似するために、ANSYS Fluentは、次のように記述されるフィックの法則(Fick’s law)の希薄近似を解く。
【数2】
【0051】
ここで、Di,mは、混合物中の種iの質量拡散係数である。
結果の例
流れ動力学の結果
【0052】
JIBの定常状態の流れ場は、ANSYSソルバーを使用して計算され、システムの流れの動力学は、中心面の速度プロファイル、断面速度プロファイル、及び二次流れパターンを介して特徴付けられた。JIBの流れ力学の特性が、流路における曲率の追加が、層流レジームに特有の均一で高度に秩序化された運動を乱す程度を決定するために用いられた。JIB中心線速度プロファイルは、
図4Aに示されように、入口に垂直な流路の中心面で測定された。
図4Aは、100ml/分の体積流量でのJIBの中心面速度分布を示している(線速度は0.0526m/秒、Reは375.5である)。
図4Aに示されたように、中心面の速度は、或る振動パターンを有しており、そこでは、最大速度の領域が、二次流れの生成に起因して、交互交代する270°曲がり部の外側に向かって連続的にシフトさせられている。速度分布は、中心線での最大速度の位置と大きさが、特有な放物線状の層流速度プロファイルから逸脱する流路の交互の曲率に応じて絶えず変化していることを示している。
【0053】
図4Bにおいて、速度プロファイルの大きさは、270°曲がり部の0.758cm間隔でプロットされている。入口で(ここでは、流路が直線である)、速度プロファイルは、特有の層流放物線プロファイルであり、そこでは、中心線速度は0.1052m/s、又は平均0.0526m/sの2倍である(
図4Bの位置1)。以前に
図4A及び4Bの速度分布において示されたように、中心面での最大速度の位置が左から右にシフトし、曲がり部の外壁に向かって移動することをグラフで示している。
図4Bにプロットされた間隔は、中心面での最大速度の大きさが、
図4Aの位置9に示されたように、特性値0.1052m/sと比較された場合に減少し、且つ0.076m/s、即ち27.8%低いことを更にグラフで示している。従って、層流レジーム(Reは375.5)で動作しているにもかかわらず、ROCが1cmの交互交代する270°曲がり部は、特有の放物線状の層流速度プロファイルを破壊し、最大中心線速度の大きさを減少させた。
【0054】
JIB流れ力学のより包括的な評価のために、断面軸方向速度分布及び二次流れの流線パターンが、Reが187.7及び375.5で計算的に評価された(
図5)。
図5において、曲がり部の中心と流れ反転点の前後の断面速度と二次流れ流線パターンの画像は、流路の曲率と流れの反転のために速度プロファイルと二次流れパターンが非常に不安定であることを示している。二次流れ線は、流体が入口の曲がり部の中心に到達すると対称であり、その後徐々に乱れ、流れが反応器を通過するときに渦巻きパターンの不均一な領域に分割される。この効果は、Reが高いほど顕著になる。
図5に示されたように、二次の通過線のこの非対称な挙動は、ディーン数の値が大きい場合(D>100)に予想される。この場合、屈曲部の外側で圧力差が大きくなり、二次流れが対流し、軸方向運動量のピークは、断面の中心からかなり離れる。
【0055】
Reが187.7及び375.5の両方について
図5に見られるように、流れの反転は、二次流れの方向を変化させ、ひいては軸方向運動量ピーク又は最大速度の位置を変化させる。チャネルの一方の側から次の側への運動量ピークシフトの中間点は、
図5の上部と下部の断面3と6に示されるように、交互交代する270°曲がり部の中心で発生する。
図5における断面速度分布は、この中間点で最大速度の領域が垂直に分割されること、チャネルの上半分と下半分に2つのピーク速度領域を作り出すこと、半径方向の混合を示していることを表示している。
【0056】
以前に
図4においてプロットされた、位置3での速度プロファイルに示されたように、流れが曲がり部の変曲点に近づくと(
図5の断面4)、最大速度は、Reが187.7及び375.5について、それぞれ約0.041m/秒及び0.079m/秒に減少する。これらの値は、両方のRe値で層流に特有な最大速度よりもそれぞれ22%及び24.9%低くなっている。このようにして、流路の曲率は、半径方向の混合を引き起こすだけでなく、断面の最大速度を低下させる。これらの要因の両方が、JIBのRTDを狭めるために重要である。
滞留時間分布(RTD)の結果
【0057】
CFDトレーサーRTDシミュレーションが、構築前のJIBの特有な軸方向分散及び最小滞留時間(MRT)を予測するために実施され、その後、実験的に検証された。これらのCFDシミュレーションと実験データは、JIBの長さが16.43mで、交互交代する270°曲がり部が325回繰り返される場合について生成された。MRTは、最初のトレーサー流体要素が反応器を出る時間であり、
【数3】
、この式で表されたF曲線(累積分布曲線)が0.005に等しい(F
0.005)時間として近似される。実験モデルとCFDモデルとに関する無次元E曲線が、比較のために、
図6(a)(b)に示されるように、50及び100ml/分(Reは187.7及び375.5)で夫々プロットされた。経験的データは、各流量に対して3回の実験の結果を平均することによって生成された。
【0058】
CFDモデルの精度を定量的に決定するために、分散(σ2)、無次元分散、無次元最小滞留時間(θ
0.5%)、無次元最大滞留時間(θ
99.5%)、相対幅、平均滞留時間、及びMRT値が計算され、表1に示すように2つの流量(50及び100ml/分)についての経験値と比較された。50及び100ml/分でのCFDモデルによって生成された分散値は、表1に示されるように、それぞれ実験結果の11%及び15.8%以内である。50及び100ml/分でのCFDモデルのRwは、それぞれ実験データの8.6及び10.1%以内であった。50及び100ml/分の場合に、CFDモデルは、9.15分及び4.83分のMRTを予測したが、これは、それぞれ実験値(9.62分及び5.01分)の4.9%及び3.6%以内である(表1)。このようにして、CFDモデルは良好な精度で実行され、50~100ml/分の動作範囲に対して、JIBのMRT及びRTDの分散は、4.9~15.8%以内で予測する。
【表1】
JIBにおける圧力損失の結果
【0059】
湾曲したパイプにおいて、流れに対する抵抗は、流体に作用する外向きの力が半径方向の圧力勾配を引き起こすために、直線のパイプよりも大きい。したがって、例で使用されているJIBの圧力降下は、同じ長さの直線状の管の圧力降下よりも大きかった。ここでの設計目標は、圧力降下値を最大5psiに制限することであった。ウイルス不活化工程における圧力損失は、連続的な下流プロセスでの全体的な圧力負荷に追加され、特に圧力に非常に敏感なインラインクロマトグラフィー工程に影響を与える。JIB長さが16.43~148.5mの間で変化する場合(1~9個のJIB(520ml単位)に対応する)の圧力は、50、100、及び150ml/分での水で実験的に測定された。50、100、及び150ml/分での9個のJIBの圧力値(レイノルズ数は187.7、375.5、及び563.2)は、それぞれ0.74、1.9、及び3.44 psiであった。これらは、ハーゲン・ポアズイユの法則によって計算された、同じ条件下での直線状の管の理論値である0.451、0.902、1.353 psiよりも64%、110%、及び154%高くなっている。曲率はシステム内の混合を増加させる一方で、圧力降下の大幅な増加にも寄与し、この効果は、より高い流量でより顕著であることを示している。しかし、50~100ml/分の動作範囲内では、60分のインキュベーション時間を提供する長さに関する圧力降下は、5 psi未満であり、これはそれぞれ約66m且つ0.45psi~214.5m且つ2.8psiに相当する。
スケーリング結果
【0060】
JIBのRTD及びMRTが長さとともにどのように拡大縮小するかを決定するために、表面モニターが、50ml/分でシミュレートされたRTDを測定するために、CFDモデルのJIB流路に沿って間隔を置いて配置された。
図7Aに示されるように、CFDモデルは、勾配0.0452を有する、長さに対する分散の線形関係を予測した。CFDモデルの実験的検証のために、パルストレーサー実験が、
図2Dに示されたように、直列に接続された複数のJIB(1~7ユニット、即ち16.43~115mであり、それは325~2275(270°)ターンの曲がり部で構成されている)に対して、50ml/分又はReが187.7で実施された。実験結果は、
図7Bに示されるように、勾配0.0447を有する、長さと分散との間の線形関係を示した。CFDモデルの勾配は実験値の1.12%以内であった。これは、CFDモデルを使用して、様々な長さでのJIBのRTDとMRTとを正確に予測できることを示している。
【0061】
さらに、無次元RTD曲線(
図7Cにプロットされている)は、反応器の長さが増加するにつれて、そのプロファイルは平均滞留時間(θ=1)に対してより対称的になり且つより狭まることを示し、JIBの長さの増加に伴うプラグフローからの偏差が小さいことを示している。長さの増加に伴いプラグフローに向かうこの収束は、トレーサー要素がより多くの半径方向位置を、従ってより多くの速度プロファイルを、サンプリングする可能性があり、各トレーサー要素を同じ平均速度に近づけさせる。これは、理想的なプラグフロー容積(ここで、t
min=t
mean)を超えて必要とされる追加の容積が、長さが長くなるにつれて減少することを意味する。このようにして、最小容積のプラグフロー反応器は、課せられた圧力制限を考慮して許容される最大の長さを有するものであろう。最大許容圧力を達成するために、最小の容積を有するプラグフロー反応器を達成するために、異なる流量に関する、管の直径、曲率の直径、及び長さを最適化することを想像できる。それでも、現在の設計は、試験された流量について最適に十分近い。t
minはt
meanよりもわずか15%小さい(表1を参照)。このようにして、JIB容積のさらなる削減は、必要ではない。さらに、
図7の無次元形式で示されているような実験データから決定された、7ユニット又は115mのJIB反応器の長さに関するMRTは、70.4±0.46分であり、同じ50ml/分の流量での同じ容量(実験容量3,642ml)についてのプラグフロー値72.84分からわずか2.44分であった。ここで、プラグフローはV/Qであり、Vは容量、Qは流量である。
実施例からの結論
【0062】
連続的な低pHウイルス不活化のための連続流管状反応器、即ちJIBが設計され、計算流体力学を使用して評価され、実験的検証のために3D印刷された。JIBの設計要件は、反応器の圧力降下を制限すること、及び下流の精製プロセスへの効率的統合化することを目的として生成された。即ち、i)管の長さに沿って5 psi以下の圧力降下、(ii)可動部品なしで軸方向の分散を最小かするために、半径方向の混合を実現する、及び(iii)層流レジームで動作する。さらに、最小滞留時間(MRT)アプローチが、所望の製品保持時間が満たされることを保証するために使用された。
【0063】
JIBの流路は、交互交代する270°曲がり部する蛇行パターンで設計された。 CFDモデルが、湾曲したJIB流路形状によって生成されたディーン渦がRTDに及ぼす影響を調査し定量化するために、使用された。CFDモデルの結果は、流路の曲率がディーン渦の生成をもたらすことを示し、流れ方向の変化が速度プロファイルを乱すことを確認した。速度プロファイルにおけるこれらの二次流れ及び運動量シフトは、受動的混合を示し、その結果、同じ長さの直線状管内の層流と比較したとき、軸方向の分散が減少し、RTDが狭くなる。CFDモデルの精度は、分散(σ2)、無次元MRT(θ0.5%)、及び無次元最大滞留時間(θ99.5%)についての実験値と計算値とを比較して定量的に示された。分散値は、モデルと実験のデータの間で15.8%以内の精度であった。
【0064】
CVI反応器(即ちJIB)は、ある範囲の流量での流れ力学、圧力降下、及びRTDに関して特徴づけられた。設計は、コンパクトで、柔軟性があり、モジュール式で、スケーラブルであり、容易にプロセスの統合を可能にする。RTD曲線はプラグフローに近い挙動を示し、MRTは、F曲線応答を介して簡単に決定され、且つCFDモデルを用いて予測されうる。
【0065】
前述の説明から、当業者は、本教示が様々な形態において実施されうることを理解することができる。従って、これらの教示は特定の実施形態及びその例に関連して説明されてきたが、本教示の真の範囲は、そのように限定されるべきではない。本明細書の教示の範囲から逸脱しない限り、様々な変更及び修正が行なわれてよい。
【0066】
本開示の範囲は、広く解釈されるべきである。本開示は、本明細書に開示された装置、動作、及び機械的作用を達成するための同等物、手段、システム、及び方法を開示することが意図されている。開示された各装置、物品、方法、手段、機械的要素、又は機構について、本開示はまた、その開示及び教示において、本明細書に開示された多くの実施態様、機構、及び装置を実施するための同等物、手段、システム、及び方法を包含することが意図されている。さらに、本開示は、コーティング及びその多くの側面、特徴、及び要素を考慮する。そのような装置は、その使用及び操作において動的でありうる。本開示は、同等物、手段、システム、及び製造装置及び/又は製造物品の使用の方法、並びに本明細書に開示された操作及び機能の記載及び精神と一致するその多くの側面を包含することが意図されている。本出願の請求項は同様に広く解釈されるべきである。
【0067】
本明細書の多くの実施形態における本発明の説明は、本質的に単なる例示であり、したがって、本発明の要旨から逸脱しない変形は、本発明の範囲内にあることが意図されている。そのような変形は、本発明の精神及び範囲からの逸脱と見なされるべきではない。