(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-11
(45)【発行日】2024-09-20
(54)【発明の名称】距離画像取得装置
(51)【国際特許分類】
G01S 7/4863 20200101AFI20240912BHJP
G01S 17/894 20200101ALI20240912BHJP
G01C 3/06 20060101ALN20240912BHJP
H04N 7/18 20060101ALN20240912BHJP
H04N 25/76 20230101ALN20240912BHJP
【FI】
G01S7/4863
G01S17/894
G01C3/06 120Q
G01C3/06 140
H04N7/18 C
H04N25/76
(21)【出願番号】P 2022510481
(86)(22)【出願日】2021-03-22
(86)【国際出願番号】 JP2021011713
(87)【国際公開番号】W WO2021193532
(87)【国際公開日】2021-09-30
【審査請求日】2024-02-13
(31)【優先権主張番号】P 2020050759
(32)【優先日】2020-03-23
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】304023318
【氏名又は名称】国立大学法人静岡大学
(74)【代理人】
【識別番号】100088155
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100124800
【氏名又は名称】諏澤 勇司
(74)【代理人】
【識別番号】100170818
【氏名又は名称】小松 秀輝
(72)【発明者】
【氏名】川人 祥二
【審査官】九鬼 一慶
(56)【参考文献】
【文献】特開2003-247809(JP,A)
【文献】特開2014-059301(JP,A)
【文献】特開平08-248133(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48 - 7/51
G01S 17/00 -17/95
G01C 3/06
H04N 7/18
H04N 25/76
(57)【特許請求の範囲】
【請求項1】
パルス光を発生させる光源と、
前記パルス光を、周期的なフレーム期間内で繰り返し発生させるように前記光源を制御する光源制御部と、
N行M列(N及びMは2以上の整数)に配置され、受けた光に対応する電荷を生成する複数の画素回路部を含む画素アレイと、
前記画素アレイの周辺に配置されて、前記画素アレイの動作を制御する制御信号を前記画素アレイに提供する周辺回路と、を備え、
前記画素回路部は、
光を電荷に変換する光電変換領域、前記光電変換領域に近接して互いに離間して設けられると共に前記光電変換領域が発生した前記電荷を蓄積するキャパシタンス成分を有する第1~第X(Xは2以上の整数)の電荷読出領域、前記光電変換領域に近接して設けられると共に前記光電変換領域で発生した前記電荷を前記電荷読出領域を経由することなく排出するための電荷排出領域、前記光電変換領域と前記第1~第Xの電荷読出領域とに対応してそれぞれ設けられ、前記光電変換領域と前記第1~第Xの電荷読出領域との間における電荷転送のための転送制御パルスを印加するための第1~第Xの制御電極、及び前記光電変換領域から前記電荷排出領域への直接の電荷転送のための前記転送制御パルスを印加するための第X+1の制御電極を有し、
前記光源制御部は、前記画素アレイにおける有感領域に前記パルス光に基づく戻り光が入射するように前記パルス光を発生させる動作を、前記有感領域を移動させながら繰り返し行い、
前記周辺回路は、転送制御パルスが印加されるように、前記制御信号を前記画素アレイに提供し、
前記転送制御パルスは、前記有感領域を構成する前記画素回路部において前記光電変換領域で発生した電荷を前記電荷読出領域に移動させると共に、前記有感領域に含まれない不感領域を構成する前記画素回路部において前記光電変換領域で発生した電荷を前記電荷排出領域に移動させる、距離画像取得装置。
【請求項2】
前記光源制御部は、
第j行目(jは1以上N以下の整数)に含まれるすべての前記画素回路部の前記有感領域を露光するように、前記光源から前記パルス光を出射させる動作を行い、
前記周辺回路は、
第j行目に含まれるすべての前記画素回路部の前記第1~第Xの制御電極に対して、前記光電変換領域から前記電荷読出領域への前記電荷の移動を許可する前記転送制御パルスが印加されるように、前記制御信号を前記画素アレイに提供する動作と、
前記不感領域に含まれるすべての前記画素回路部の前記第X+1の制御電極に対して、前記光電変換領域から前記電荷排出領域への前記電荷の移動を許可する前記転送制御パルスが印加されるように、前記制御信号を前記画素アレイに提供する動作と、を行う、請求項1に記載の距離画像取得装置。
【請求項3】
前記光源制御部は、
第j行目(jは1以上N以下の整数)に含まれる一部の前記画素回路部の前記有感領域を露光するように、前記光源から前記パルス光を出射させる動作を行い、
前記周辺回路は、
第j行目に含まれる前記画素回路部の一部に含まれる前記第1~第Xの制御電極に対して、前記光電変換領域から前記電荷読出領域への前記電荷の移動を許可する前記転送制御パルスが印加されるように、前記制御信号を前記画素アレイに提供する動作と、
前記不感領域に含まれる前記画素回路部の前記第X+1の制御電極のすべてに対して、前記光電変換領域から前記電荷排出領域への前記電荷の移動を許可する前記転送制御パルスが印加されるように、前記制御信号を前記画素アレイに提供する動作と、を行う、請求項1に記載の距離画像取得装置。
【請求項9】
前記画素回路部は、
入射パルス光を電荷に変換する機能を有する光電変換領域と、
前記光電変換領域から前記電荷を受けて、前記電荷に基づく電圧を出力する読出回路と、を有し、
前記画素回路部は、複数のn型MOSトランジスタを含んで構成され、
前記画素回路部は、p型MOSトランジスタは含まない、請求項1~8の何れか一項に記載の距離画像取得装置。
【請求項10】
前記光源制御部は、
画素アレイを複数の領域に分割した分割画素アレイ領域において、
第j行目(jは1以上N/R以下の整数(Rは行方向のアレイ分割数))に含まれる一部の前記画素回路部の前記有感領域を露光するように、前記光源から前記パルス光を出射させる動作を行い、
前記光源は、全ての前記分割画素アレイ領域に含まれる前記有感領域を同時に露光するように照射が分割され、
前記周辺回路は、
全ての前記分割画素アレイ領域の第j行目に含まれる前記画素回路部の一部に含まれる前記第1~第Xの制御電極に対して、前記光電変換領域から前記電荷読出領域への前記電荷の移動を許可する前記転送制御パルスが印加されるように、前記制御信号を前記画素アレイに提供する動作と、
全ての前記分割画素アレイ領域の前記不感領域に含まれる前記画素回路部の前記第X+1の制御電極のすべてに対して、前記光電変換領域から前記電荷排出領域への前記電荷の移動を許可する前記転送制御パルスが印加されるように、前記制御信号を前記画素アレイに提供する動作と、を行う、請求項3に記載の距離画像取得装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画素ごとに距離情報を含む距離画像を取得する距離画像取得装置に関する。
【背景技術】
【0002】
従来から、光の飛行時間を用いて距離情報を含む画像信号を生成するセンサ装置が用いられている。光の飛行時間を利用して距離情報を得る方式は、いわゆるTOF(Time Of Flight)方式と呼ばれている。特許文献1には、TOF法に基づくセンサ装置が開示されている。このセンサ装置は、電荷振り分け方式と称される方式を採用する。電荷振り分け方式は、光の入射に応じて発生した電荷をゲートのオン/オフによって2つの電荷蓄積部に振り分ける。そして、それぞれの電荷蓄積部に蓄積された電荷の比率に基づいて、対象物までの距離を得る。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
距離画像取得装置は、露光動作と、読出動作と、を繰り返す。露光動作は、対象物に光を照射すると共に対象物からの戻り光に起因する電荷を蓄積する。読出動作は、蓄積された電荷に対応する電圧を読み出す。ここで、露光動作から次の露光動作までの時間間隔が長くなると、露光動作によって得られる測定対象物の状態と、測定対象物の実際の状態との間にずれが生じる。測定対象物の状態とは、測定対象物までの距離である。特に、測定対象物が高速移動するときに、このずれが顕著になる。
【0005】
そこで、本発明は、測定対象物の状態を良好に計測可能な距離画像取得装置を提供する。
【課題を解決するための手段】
【0006】
本発明の一形態である距離画像取得装置は、パルス光を発生させる光源と、パルス光を、周期的なフレーム期間内で繰り返し発生させるように光源を制御する光源制御部と、N行M列(N及びMは2以上の整数)に配置され、受けた光に対応する電荷を生成する複数の画素回路部を含む画素アレイと、画素アレイの周辺に配置されて、画素アレイの動作を制御する制御信号を画素アレイに提供する周辺回路と、を備える。画素回路部は、光を電荷に変換する光電変換領域、光電変換領域に近接して互いに離間して設けられた第1~第X(Xは2以上の整数)の電荷読出領域、光電変換領域で発生した電荷を排出するための電荷排出領域、光電変換領域と第1~第Xの電荷読出領域とに対応してそれぞれ設けられ、光電変換領域と第1~第Xの電荷読出領域との間における電荷転送のための転送制御パルスを印加するための第1~第Xの制御電極、及び光電変換領域と電荷排出領域との間における電荷転送のための転送制御パルスを印加するための第X+1の制御電極を有し、光源制御部は、画素アレイにおける有感領域にパルス光に基づく戻り光が入射するようにパルス光を発生させる動作を、有感領域を移動させながら繰り返し行い、周辺回路は、有感領域に含まれない不感領域を構成する画素回路部の第X+1の制御電極に対して、光電変換領域から電荷排出領域への電荷の移動を許可する転送制御パルスが印加されるように、制御信号を画素アレイに提供する。
【0007】
この距離画像取得装置は、光源制御部が有感領域に戻り光が入射するようにパルス光を発生させたとき、不感領域には光電変換領域で発生した電荷を電荷排出領域に移動させる転送制御パルスを提供する。この動作によれば、戻り光が入射しない不感領域において、ノイズとなり得る電荷の蓄積が抑制される。その結果、不感領域が有感領域に切り替わるとき、戻り光に基づく電荷の蓄積の準備が整った状態が形成されている。つまり、不感領域から有感領域に素早く切り替えることができる。従って、パルス光を照射すると共に当該パルス光に起因する戻り光を受光する動作を、有感領域を移動させながら高速に繰り返すことが可能になる。照射動作及び受光動作の高速化及び繰り返しは、換言すると、いわゆる距離測定におけるフレーム期間内の光電荷の時間的オーバーサンプリング及び積算と同義である。従って、オーバーサンプリング及び積算によるローパスフィルタ効果によって、測定対象物が高速移動する場合であってもエリアシングの影響を受けることなく、良好な計測結果を得ることができる。
【0008】
一形態の距離画像取得装置において、光源制御部は、第j行目(jは1以上N以下の整数)に含まれるすべての画素回路部の有感領域を露光するように、光源からパルス光を出射させる動作を行い、周辺回路は、第j行目に含まれるすべての画素回路部の第1~第Xの制御電極に対して、光電変換領域から電荷読出領域への電荷の移動を許可する転送制御パルスが印加されるように、制御信号を画素アレイに提供する動作と、不感領域に含まれるすべての画素回路部の第X+1の制御電極に対して、光電変換領域から電荷排出領域への電荷の移動を許可する転送制御パルスが印加されるように、制御信号を画素アレイに提供する動作と、を行ってもよい。この動作によれば、第j行目に含まれる画素回路部を一括して、光電変換領域から電荷読出領域への電荷の移動を許可する状態に設定することが可能になる。さらに、第j行目に含まれない画素回路部を一括して、光電変換領域から電荷排出領域への電荷の移動を許可する状態に設定することができる。
【0009】
一形態の距離画像取得装置において、光源制御部は、第j行目(jは1以上N以下の整数)に含まれる一部の画素回路部の有感領域を露光するように、光源からパルス光を出射させる動作を行い、周辺回路は、第j行目に含まれる画素回路部の一部に含まれる第1~第Xの制御電極に対して、光電変換領域から電荷読出領域への電荷の移動を許可する転送制御パルスが印加されるように、制御信号を画素アレイに提供する動作と、不感領域に含まれる画素回路部の第X+1の制御電極のすべてに対して、光電変換領域から電荷排出領域への電荷の移動を許可する転送制御パルスが印加されるように、制御信号を画素アレイに提供する動作と、を行ってもよい。この動作によれば、画素アレイに含まれる所望の領域を有感領域とすることが可能になる。従って、画素アレイにおける有感領域をより緻密に設定することができる。
【0010】
一形態の距離画像取得装置は、転送制御パルスが、有感領域を構成する画素回路部において光電変換領域で発生した電荷を電荷読出領域に移動させると共に、不感領域を構成する画素回路部において光電変換領域で発生した電荷を電荷排出領域に移動させ、周辺回路及び光源制御部は、複数の有感領域に対する露光動作を複数回行った後に、電荷読出領域に蓄積された電荷に基づく電圧を出力させる読出動作を行ってもよい。この動作によれば、画素アレイの全体において複数回の露光動作を行った後に、画素アレイの全体から信号を読み出すことができる。
【0011】
一形態の距離画像取得装置は、転送制御パルスが、有感領域を構成する画素回路部において光電変換領域で発生した電荷を電荷読出領域に移動させると共に、不感領域を構成する画素回路部において光電変換領域で発生した電荷を電荷排出領域に移動させ、周辺回路及び光源制御部は、選択された有感領域に対する露光動作と、選択された有感領域を構成する画素回路部に対して電荷読出領域に蓄積された電荷に基づく電圧を出力させる読出動作と、を選択する有感領域を変更しながら繰り返し行ってもよい。この動作によれば、選択された有感領域ごとに露光動作と読出動作とを交互に行うことができる。
【0012】
一形態の距離画像取得装置は、転送制御パルスが、有感領域を構成する画素回路部において光電変換領域で発生した電荷を電荷読出領域に移動させると共に、不感領域を構成する画素回路部において光電変換領域で発生した電荷を電荷排出領域に移動させ、周辺回路及び光源制御部は、有感領域に対する露光動作と、電荷読出領域に蓄積された電荷に基づく電圧を出力させる読出動作と、を並行して行ってもよい。この動作によれば、ある領域における露光動作と別の領域における読出動作とが並行して行われる。従って、距離画像センサの動作をさらに高速化させることができる。
【0013】
一形態の距離画像取得装置の露光動作では、光源制御部が有感領域に対してパルス光を1回だけ発生させてもよい。この動作によっても、距離画像センサの動作をさらに高速化させることができる。
【0014】
一形態の距離画像取得装置の露光動作では、光源制御部が有感領域に対してパルス光を複数回発生させてもよい。この動作によっても、距離画像センサの動作をさらに高速化させることができる。
【0015】
一形態の距離画像取得装置の画素回路部は、入射パルス光を電荷に変換する機能を有する光電変換領域と、光電変換領域から電荷を受けて、電荷に基づく電圧を出力する読出回路と、を有してもよい。画素回路部は、複数のn型MOSトランジスタを含んで構成され、画素回路部は、p型MOSトランジスタは含まない。
【0016】
一形態の距離画像取得装置の光源制御部は、画素アレイを複数の領域に分割した分割画素アレイ領域において、第j行目(jは1以上N/R以下の整数(Rは行方向のアレイ分割数))に含まれる一部の画素回路部の有感領域を露光するように、光源からパルス光を出射させる動作を行ってもよい。光源は、全ての分割画素アレイ領域に含まれる有感領域を同時に露光するように照射が分割されてもよい。周辺回路は、全ての分割画素アレイ領域の第j行目に含まれる画素回路部の一部に含まれる第1~第Xの制御電極に対して、光電変換領域から電荷読出領域への電荷の移動を許可する転送制御パルスが印加されるように、制御信号を画素アレイに提供する動作と、全ての分割画素アレイ領域の不感領域に含まれる画素回路部の第X+1の制御電極のすべてに対して、光電変換領域から電荷排出領域への電荷の移動を許可する転送制御パルスが印加されるように、制御信号を画素アレイに提供する動作と、を行ってもよい。
【発明の効果】
【0017】
本発明によれば、測定対象物の状態を良好に計測可能な距離画像取得装置が提供される。
【図面の簡単な説明】
【0018】
【
図1】
図1は、光源の照射領域を説明するための図である。
【
図2】
図2は、画素アレイと周辺回路との接続構成を示す図である。
【
図3】
図3は、第1実施形態にかかる距離画像センサ10の概略構成を示すブロック図である。
【
図4】
図4は、
図1の距離画像センサ10を用いた距離計算の原理を説明するためのタイミングチャートである。
【
図5】
図5は、
図1の距離画像センサ10の詳細構成を示すブロック図である。
【
図6】
図6は、
図5のNOR型ドライバ回路41
1の詳細な回路構成を示す図である。
【
図7】
図7は、
図5のNOR型ドライバ回路41
1,41
2,41
3,41
4及びNAND型ドライバ回路41
5と画素回路13の合成キャパシタンスC
Gとの接続状態を示す回路図である。
【
図9】
図9は、光源の動作と画素アレイの動作とを示すタイミングチャートである。
【
図10】
図10は、光源の動作と画素アレイの動作とを説明するための図である。
【
図11】
図11は、第2実施形態にかかる距離画像センサの詳細構成を示すブロック図である。
【
図12】
図12は、距離画像センサ10Aにおいて生成される制御パルスG
1p,G
1nの反転信号の波形及びNOR型ドライバ回路41
1の出力信号G
1outの波形を示す図である。
【
図13】
図13は、一般的なCMOSインバータ回路を用いた場合の入力制御パルスV
INに対する貫通電流Iの時間波形を示す図である。
【
図14】
図14は、一般的なCMOSインバータ回路における入力制御パルスV
INと貫通電流Iとの関係を示すグラフである。
【
図15】
図15は、第3実施形態にかかる距離画像センサの詳細構成を示すブロック図である。
【
図16】
図16は、距離画像センサ10Bにより生成される転送制御パルスG
1out,G
2outの波形の一例を示す図である。
【
図17】
図17は、画素回路13の信号電荷処理領域17における各領域の配置例を示す平面図である。
【
図18】
図18は、画素回路13の信号電荷処理領域17における電位分布を示す図である。
【
図19】
図19は、第4実施形態にかかる距離画像センサの詳細構成を示すブロック図である。
【
図20】
図20は、第5実施形態にかかる距離画像センサの詳細構成を示すブロック図である。
【
図21】
図21は、第6実施形態にかかる距離画像センサの詳細構成を示すブロック図である。
【
図22】
図22は、第7実施形態の光源の照射領域を説明するための図である。
【
図23】
図23は、第7実施形態の画素アレイと周辺回路との接続構成を示す図である。
【
図24】
図24は、第7実施形態にかかる距離画像センサの詳細構成を示すブロック図である。
【
図25】
図25は、第8実施形態にかかる距離画像センサの概略構成を示すブロック図である。
【
図26】
図26は、第8実施形態にかかる距離画像センサの詳細構成を示すブロック図である。
【
図27】
図27は、第8実施形態にかかる距離画像センサが有する駆動回路の詳細構成を示す回路図である。
【
図28】
図28は、行スキャンパターン発生回路の詳細構成を示す回路図である。
【
図29】
図29は、
図28に示す行スキャンパターン発生回路に関するタイミングチャートである。
【
図30】
図30は、第8実施形態にかかる距離画像センサが有する画素回路の詳細構成を示す図である。
【
図32】
図32は、第9実施形態にかかる距離画像センサの詳細構成を示すブロック図である。
【
図33】
図33は、第9実施形態の距離画像センサが有する画素切替回路の詳細構成を示す回路図である。
【
図34】
図34は、第9実施形態にかかる距離画像センサが有する画素回路の詳細構成を示す図である。
【
図35】
図35は、第10実施形態にかかる距離画像センサの詳細構成を示すブロック図である。
【
図36】
図36は、第10実施形態にかかる距離画像センサが有する駆動回路の詳細構成を示す回路図である。
【
図37】
図37は、第10実施形態にかかる距離画像センサが有する画素回路の詳細構成を示す図である。
【
図38】
図38は、第1変形例としての光源の動作と画素アレイの動作とを示すタイミングチャートである。
【
図39】
図39は、第2変形例としての光源の動作と画素アレイの動作とを示すタイミングチャートである。
【
図40】
図40は、第3変形例としての光源の動作と画素アレイの動作とを示すタイミングチャートである。
【
図41】
図41は、第4変形例としての光源の動作と画素アレイの動作とを示すタイミングチャートである。
【
図42】
図42は、第5変形例にかかる距離画像センサが有する画素回路の詳細構成を示す図である。
【
図44】
図44(a)は、第6変形例にかかるNOR型ドライバ回路を示す図である。
図44(b)は、第7変形例にかかるNOR型ドライバ回路を示す図である。
【
図45】
図45(a)は、第8変形例にかかるNOR型ドライバ回路を示す図である。
図45(b)は、第9変形例にかかるNOR型ドライバ回路を示す図である。
【
図46】
図46(a)は、第10変形例にかかるNAND型ドライバ回路を示す図である。
図46(b)は、第11変形例にかかるNAND型ドライバ回路を示す図である。
【
図47】
図47(a)は、第12変形例にかかるNAND型ドライバ回路を示す図である。
図47(b)は、第13変形例にかかるNAND型ドライバ回路を示す図である。
【
図48】
図48は、第14変形例の距離画像取得装置が備える画素回路を示す図である。
【
図49】
図49は、画素回路13
1に入力される制御パルスを示す図である。
【
図50】
図50は、第14変形例の距離画像取得装置が備える別の画素回路を示す図である。
【
図51】
図51は、第15変形例の距離画像取得装置が備える画素回路を示す図である。
【
図52】
図52は、第15変形例の距離画像取得装置が備える別の画素回路を示す図である。
【
図53】
図53は、第15変形例の距離画像取得装置の動作を示すタイミングチャートである。
【
図54】
図54(a)は、第11実施形態の第1の動作態様における有感ピクセル領域と不感ピクセル領域とを示す図である。
図54(b)は、第2の動作態様における有感ピクセル領域と不感ピクセル領域とを示す図である。
図54(c)は、第3の動作態様における有感ピクセル領域と不感ピクセル領域とを示す図である。
【
図55】
図55は、第11実施形態の光源の動作と画素アレイの動作とを示すタイミングチャートである。
【
図56】
図56は、第16変形例の画素アレイと周辺回路との接続構成を示す図である。
【発明を実施するための形態】
【0019】
以下、添付図面を参照しながら本発明を実施するための形態を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
【0020】
[第1実施形態]
まず、
図1を参照して、第1実施形態にかかる距離画像取得装置1の機能及び構成の概略を説明する。距離画像取得装置1は、ラインスキャン光源を有し、有感/不感ピクセルスキャン機能を奏する。これらの構成要素と機能とによって、距離画像取得装置1は、飛行時間法に基づく距離画像を生成する。距離画像は、画素(ピクセル)毎に距離情報を含む。
【0021】
距離画像取得装置1は、光源11と、距離画像センサ10と、を有する。
【0022】
光源11は、飛行時間(TOF:Time Of Flight)方式による距離計測を行うために、対象物Sに照射するパルス光LPを発生させる装置である。光源11は、例えば、発光ダイオードあるいはレーザダイオード等の半導体発光素子とその半導体発光素子を駆動する駆動回路とによって構成される。光源11としては、近赤外領域、可視光領域等の波長領域の光を発生させる素子を用いることができる。
【0023】
光源11は、ラインスキャン光源である。光源11は、周期性を有すると共にライン(線状)または幅を有する帯状のパルス光LPを測定対象領域Aに投影する。パルス光LPは、照射領域Rの延びる方向(X方向)と交差する方向(Y方向)に沿って、測定対象領域Aを一次元的に走査する。
【0024】
より詳細には、光源11は、対象物Sを含む測定対象領域Aに向けてパルス光LPを照射する。光源11が出射するパルス光LPは、二次元状の広がりを有する。しかし、その縦横比は比較的大きい。例えば、照射領域Rの縦(Y方向)対して、照射領域Rの横(X方向)が極めて大きい。つまり、光源11は、実質的に一次元(線状)の光を照射するライン光源であってもよい。そうすると、パルス光LPは、測定対象領域Aの一部に照射されることになる。そこで、光源11は、測定対象領域Aにおいてパルス光LPの照射位置を時間ごとに変更する。このように、照射位置を変更しながらパルス光LPを照射する動作を、スキャンまたは走査と称する。パルス光LPは、対象物Sにおいて反射する。反射した光は、距離画像センサ10に入射する。つまり、反射した光は、入射パルス光LR(戻り光)である。
【0025】
図2に示すように、距離画像センサ10は、測定対象領域Aからの反射光を受ける二次元の画素アレイ14を有するイメージセンサである。画素アレイ14は、当該入射パルス光L
Rを受ける二次元状に配置された複数の画素回路13を有する。画素回路13の詳細な構成は、のちの段落において詳細に説明する。
【0026】
つまり、距離画像センサ10は、複数の画素回路(複数の画素回路部)13を備える。複数の画素回路13は、二次元方向(例えば、列方向および行方向)に二次元アレイ状に配列されてイメージセンサを構成し、対象物Sによってパルス光LPが反射されて生じた入射パルス光LRを光電変換することにより検出信号を生成する。また、この距離画像センサ10は、距離画像の生成のために、光源11と演算回路12とともに使用される。
【0027】
なお、以下の説明において、個々の構成要素を区別する必要がある場合に、「画素回路131,132,133,134,135」等の添え字を付した参照番号を用いる。一方、個々の構成要素を区別する必要がない場合には、「画素回路13」との添え字を付さない参照番号を用いる。
【0028】
距離画像センサ10は、光源11からのパルス光LPの走査に同期して、パルス光LPに起因する入射パルス光LRが入射する画素領域の走査を行う。この動作は、演算回路12及び周辺回路31から提供される制御パルスによって制御される。
【0029】
演算回路12は、CPU、RAM、ROM、及び入出力装置等を含むワンチップマイクロコンピュータ等の専用の集積回路によって構成されてもよいし、パーソナルコンピュータ等の汎用コンピュータによって構成されてもよい。
【0030】
演算回路12は、距離画像センサ10及び光源11に電気的に接続され、複数の画素回路13によって生成された検出信号を用いて、対象物Sに関する距離情報を画素ごとに演算し、画素ごとの距離情報が反映された二次元画像情報を含む距離画像を生成及び出力する。この機能は、演算回路12の信号処理部12cによって行われる。また、演算回路12は、光源11によるパルス光LPの照射タイミングを制御する光源制御部12aも有する。さらに、演算回路12は、画素回路13を駆動するための画素制御部12bも有する。
【0031】
演算回路12は、周辺回路31に接続される。演算回路12は、周辺回路31に対して制御信号を与える。
【0032】
周辺回路31は、制御信号を画素アレイ14に提供する。制御信号は、制御パルスG1~G4、GD、論理パルスESR(j)、これらの反転信号の少なくとも一つを含む。さらに、制御信号は、制御パルスG1~G4、GD、論理パルスESR(j)、これらの反転信号から選択されるパルスによって生成される転送制御パルスG1out~G4out,GDoutを含む。周辺回路31は、分配回路33と、画素切替回路34と、読出制御回路27と、を有する。分配回路33及び画素切替回路34は、画素回路13の感度を複数の行の単位(一行以上)で有感/不感に設定する。読出制御回路27は、数行の単位(一行以上)で、信号を読み出す走査回路である。なお、「画素の感度」、「画素を有感にする」、「画素を不感にする」の意味は、のちの説明において詳細に説明する。
【0033】
分配回路33は、画素アレイ14に電気的に接続され、複数の画素回路13に対して制御パルスG1~G4、GDを提供する。画素切替回路34は、画素アレイ14に電気的に接続され、複数の画素回路13に対して論理パルスを提供する。分配回路33及び画素切替回路34は、画素回路13の感度を1行以上の複数の行単位で有感または不感に設定する。つまり、分配回路33及び画素切替回路34は、ピクセルの有感・不感走査回路である。分配回路33及び画素切替回路34は、光源制御部12aと協働して、照射領域Rと、有感ピクセル領域AE(有感領域)及び不感ピクセル領域AN(不感領域)と、を位置的及び時間的に同期させる。この制御は、1回のフレーム内において複数回実行する。
【0034】
読出制御回路27は、画素アレイ14に電気的に接続され、複数の画素回路13に対して読出動作のための制御パルスを提供する。読出制御回路27は、後述する有感ピクセル領域AEの範囲に等しい1行以上の行単位で画素回路13から信号を読み出すための制御パルスを提供する。つまり、読出制御回路27は、読出走査回路である。
【0035】
以下、画素回路13及び演算回路12の構成について、
図3を参照しながら詳細に説明する。
【0036】
まず、画素回路13の構成について説明する。画素回路13は、半導体素子によって構成され、入射パルス光LRを電荷に変換する機能を有する光電変換領域21と、光電変換領域21に近接し、かつ互いに離間して設けられた第1~第4の電荷読出領域221~224及び電荷排出領域23と、第1~第4の電荷読出領域221~224及び電荷排出領域23のそれぞれに対応して設けられ、光電変換領域21からそれぞれの領域との間における電荷転送のための転送制御パルスを印加するための第1~第4の制御電極251~254及び第5の制御電極25Dと、第1~第4の電荷読出領域221~224のそれぞれから検出信号を読み出すための電圧検出手段261~264と、を含む。電圧検出手段261~264は、例えば、ソースフォロワアンプを含む増幅器である。電圧検出手段261~264は、演算回路12からの制御によって、選択的にそれぞれの電荷読出領域221~224の基準電位を基準にした電圧を検出及び増幅する。電圧検出手段261~264は、増幅した電圧を検出信号として演算回路12に出力する。
【0037】
ここで、画素回路13は、画素の感度を無くすことによって画素回路13を光に対して不感にする構成を有する。ここでいう光とは、パルス光LPに起因する入射パルス光LRやパルス光LPに起因しない背景光などを含む。「画素の感度を無くす」及び「入射パルス光LRに対して不感」とは、光電変換領域21において生じた電荷が電荷読出領域221~224に読み出されることがない状態をいう。換言すると、「画素の感度を無くす」及び「入射パルス光LRに対して不感」とは、光電変換領域21において生じた電荷を電荷排出領域23に移動させる状態をいう。そして、「画素の感度を無くす」構成及び「入射パルス光LRに対して不感」にする構成とは、ドレインである電荷排出領域23及びドレインゲートである制御電極25Dである。
【0038】
画素回路13は、例えば、シリコン基板等のp型半導体基板上に形成される。すなわち、光電変換領域21は、p型半導体基板上に順に形成された、p型の半導体からなる活性領域形成層、n型の表面埋込領域、p型のピニング層、及び絶縁膜からなる画素形成領域の中央部に設けられる。そして、光電変換領域21に近接するように互いに離間した位置に活性領域形成層よりも高不純物濃度のn型の電荷読出領域221~224及び電荷排出領域23が形成される。絶縁膜上の光電変換領域21から電荷読出領域221~224及び電荷排出領域23のそれぞれに至る電荷移動経路上のそれぞれには、制御電極251~254,25Dが設けられる。ここで、制御電極251~254,25Dは、それぞれ、電荷移動経路上に設けられてもよい。制御電極251~254,25Dは、電荷移動経路を両側から挟むように複数の電極部に分離して設けられてもよい。
【0039】
上記構成の画素回路13においては、後述する演算回路12から制御電極251~254,25Dに対して、互いに位相の異なる転送制御パルスが印加される。これにより、表面埋込領域の空乏化電位が順次変化する。その結果、電荷移動経路のいずれかに電荷が輸送されるような電位勾配が順次形成される。その結果、光電変換領域21の表面埋込領域で発生した多数キャリア(電荷)は、電荷読出領域221~224及び電荷排出領域23のいずれかに移動する。
【0040】
次に、演算回路12の機能構成について説明する。
【0041】
演算回路12は、光源11によるパルス光LPの発光タイミング、パルス光LPの強度、及びパルス光LPのパルス幅を制御する。具体的には、所定の持続時間T0のパルス光LPを、あらかじめ設定された距離計算の繰り返し期間である1フレームの期間内で繰り返し発生させるように制御する(光源制御部12a)。また、演算回路12は、制御電極251~254,25Dのそれぞれに、異なる位相の転送制御パルスを印加する機能を有する(画素制御部12b)。すなわち、1フレーム期間内のパルス光LPのそれぞれの発生タイミングに対応して、距離画像センサ10の周辺回路31を経由して、制御電極251~254に順次位相をずらした転送制御パルスを印加する。さらに演算回路12は、距離画像センサ10の周辺回路31を経由して、これらの転送制御パルスの印加タイミングの前において、光電変換領域21で発生した電荷を電荷排出領域23に排出させるための転送制御パルスを制御電極25Dに印加する。
【0042】
演算回路12の光源制御部12aは、光源11を制御して、測定対象領域Aの一部に対してパルス光LPを照射させる。つまり、パルス光LPは、測定対象領域Aの全領域に対して一括して照射されない。本実施形態において、パルス光LPの照射領域Rは、測定対象領域Aの幅方向Xに延びる矩形形状の領域である。照射領域Rの幅は、測定対象領域Aの幅と一致してよい。そして、照射領域Rは、測定対象領域Aの高さ方向(Y方向)に並ぶように設定される。
【0043】
演算回路12は、光源11から出射するパルス光LPの照射領域Rの位置を制御する。演算回路12は、光源11を制御して、ある領域を照射領域Rとして設定し、当該領域にパルス光LPを照射する。演算回路12は、照射領域Rが下方に順次移動するように、光源11を制御してパルス光LPを照射する。
【0044】
パルス光LPを照射する順番は、上記の態様に限定されない。上記のように、上から下に順に照射する態様に代えて、下から上に順に照射する順番でもよい。また、上から下に照射する態様において、ひとつおきに照射する態様でもよい。
【0045】
演算回路12は、画素回路13ごとの距離の計算を複数のフレームごとに繰り返し実行し、その結果得られた距離情報を含む距離画像を繰り返し生成する(信号処理部12c)。すなわち、演算回路12は、画素回路13の電圧検出手段261~264から出力された検出信号を基に、距離情報を算出する。そして、演算回路12は、各画素回路13に対応する距離情報を含む距離画像を生成して外部装置に出力する。出力先の外部装置としては、例えば、表示装置、通信インターフェース装置等の出力デバイスが挙げられる。
【0046】
図4は、演算回路12による距離計算の原理を説明するためのタイミングチャートである。
図4には、演算回路12によって制御される各種信号のタイミング及び画素回路13の各領域に電荷が蓄積されるタイミングを示す。
図4は上から順番に、パルス光L
Pの発光タイミング、制御電極25
1~25
4,25
Dに印加される転送制御パルスの印加タイミング、第1~第4の電荷読出領域22
1~22
4における電荷蓄積タイミングを示す。このように、パルス光L
Pの持続時間T
0の発光タイミングに対応して、制御電極25
1~25
4,25
Dに互いに重ならないように続けて持続時間T
0の転送制御パルスが印加される。
【0047】
このような機能により、入射パルス光LRが光電変換されることにより光電変換領域21で発生した電荷が、入射パルス光LRのパルス光LPに対する遅れ時間TDに対応した比率で、2つの電荷読出領域222,223、あるいは2つの電荷読出領域223,224に分配される。ここでは、パルス光LPの持続時間T0の発光タイミングと、制御電極251の転送制御パルスの印加タイミングとの関係を設定する。その結果、電荷読出領域221には、制御電極251の転送制御パルスで規定される時間ウィンドウで背景光及び暗電流等のノイズに起因する電荷量NBの電荷のみが輸送される。これに対して、入射パルス光LRの到達タイミングが制御電極252,253の2つの転送制御パルスで規定される2つの時間ウィンドウにまたがった場合には、電荷読出領域222には電荷量NBに遅れ時間TDに対応して分配された電荷量Nsm1が加算された電荷が輸送される。一方、電荷読出領域223には、電荷量NBに遅れ時間TDに対応して分配された電荷量Nsm2が加算された電荷が輸送される。その一方で、入射パルス光LRの到達タイミングが制御電極253,254の2つの転送制御パルスで規定される2つの時間ウィンドウにまたがった場合には、電荷読出領域223には電荷量NBに遅れ時間TDに対応して分配された電荷量Nsm1が加算された電荷が輸送される。一方、電荷読出領域224には、電荷量NBに遅れ時間TDに対応して分配された電荷量Nsm2が加算された電荷が輸送される。
【0048】
上記のような現象を利用して、演算回路12においては、複数のフレームに対応して、電荷量NBを除いた電荷量Nsm1の蓄積量と電荷量NBを除いた電荷量Nsm2の蓄積量との比率を計算する。その結果、遅れ時間TDに対応した対象物Sの距離を計算することができる。
【0049】
以下、距離画像センサ10の構成の詳細についてさらに説明する。
【0050】
図5は、距離画像センサ10の詳細構成を示すブロック図である。なお、
図5においては、距離画像センサ10の一部の画素回路13を示しており、要部についてはその回路構成を図示している。距離画像センサ10は、二次元アレイ状に配列された複数の画素回路13に加え、それらの画素回路13の周辺部に配置された周辺回路31を含む。この周辺回路31は、画素回路13と同一の半導体基板上の複数の画素回路13の配置エリアの周辺部に設けられる。
【0051】
周辺回路31は、演算回路12から印加された制御電極25
1,25
2,25
3,25
4,25
D用の制御パルスG
1,G
2,G
3,G
4,G
Dを分配する分配回路33と、分配回路33から出力されたそれぞれの制御パルスG
1,G
2,G
3,G
4,G
Dを反転及び整形して出力するインバータ回路35
1,35
2,35
3,35
4,35
5と、を含む。インバータ回路35
1,35
2,35
3,35
4,35
5は、インバータ回路ユニット38を構成する。1組のインバータ回路35
1,35
2,35
3,35
4,35
5は、それぞれ、各画素回路13に含まれる制御電極25
1,25
2,25
3,25
4,25
Dの個数に対応する個数で行方向(
図5の横方向)に隣接する画素回路13を含む画素回路群15ごとに、行方向に繰り返し設けられる。そして、制御電極25
1,25
2,25
3,25
4,25
Dの個数に対応する個数のインバータ回路35
1,35
2,35
3,35
4,35
5は、それぞれ、画素回路群15における隣接する別々の2つの画素回路13の間の周辺部に位置するように、行方向(X方向)に並んで配置される。
【0052】
これらのインバータ回路351,352,353,354,355は、それぞれ、相補的に動作するトランジスタ対であるp型MOS(Metal Oxide Semiconductor)トランジスタ(p型MOSトランジスタ)37とn型MOSトランジスタ(n型MOSトランジスタ)39とが直列に接続されて構成されるCMOS(Complementary MOS)インバータ回路である。詳細には、p型MOSトランジスタ37のドレインとn型MOSトランジスタ39のドレインとが互いに接続される。p型MOSトランジスタ37のソースがハイ電位線VDHに接続される。n型MOSトランジスタ39のソースがロー電位線VDLに接続される。p型MOSトランジスタ37のゲートとn型MOSトランジスタ39のゲートとが入力端子として、分配回路33の制御パルスG1,G2,G3,G4,GDのそれぞれの出力に共通に接続される。そして、p型MOSトランジスタ37のドレインとn型MOSトランジスタ39のドレインとの接続点が、それぞれのインバータ回路351,352,353,354,355の出力端子として、画素回路群15に接続される。これにより、それぞれのインバータ回路351,352,353,354,355から画素回路群15に制御パルスG1,G2,G3,G4,GDの反転信号が出力される。
【0053】
さらに、周辺回路31は、画素切替回路34を含む。画素切替回路34は、画素回路13の有感及び不感を相互に切り替える。ここで、画素回路13が有感であるとは、電荷読出領域221~224に電荷を蓄積可能な状態をいう。より詳細には、有感とは、光電変換領域21から電荷読出領域221~224のいずれかに電荷を転送可能な状態である。換言すると、有感とは、光電変換領域21からドレインである電荷排出領域23に電荷を転送しない状態である。画素回路13が不感であるとは、電荷読出領域221~224に電荷を蓄積しない状態をいう。より詳細には、不感とは、光電変換領域21から電荷読出領域22のいずれにも電荷を転送しない状態である。換言すると、不感とは、光電変換領域21からドレインである電荷排出領域23に電荷を転送する状態である。
【0054】
画素切替回路34は、論理パルスESR(j)と、論理パルスESR(j)の反転信号と、を出力する。論理パルスESR(j)の反転信号は、光電変換領域21から電荷読出領域221~224のいずれかへの電荷転送の許可/禁止を切り替える。論理パルスESR(j)は、光電変換領域21から電荷排出領域23への電荷転送の許可/禁止を切り替える。以下、光電変換領域21から電荷読出領域221~224のいずれかへの電荷転送を許可する論理パルスESR(j)の反転信号を、論理パルスESR(j)の反転信号<H>として記す。光電変換領域21から電荷読出領域221~224への電荷転送を禁止する論理パルスESR(j)の反転信号を、論理パルスESR(j)の反転信号<L>として記す。同様に、光電変換領域21から電荷排出領域23への電荷転送を許可する論理パルスESR(j)を、論理パルスESR(j)<H>として記す。光電変換領域21から電荷排出領域23への電荷転送を禁止する論理パルスESR(j)を、論理パルスESR(j)<L>として記す。なお、かっこ内に記す「H」及び「L」との文字は、単に説明の便宜上のものである。
【0055】
画素切替回路34は、ピクセル駆動パルスである論理パルスESR(j)の反転信号及び論理パルスESR(j)を水平方向(X方向)から画素回路13に与える。つまり、画素切替回路34は、論理パルスESR(j)の反転信号及び論理パルスESR(j)を水平方向に延びる配線48G,48Dを介して画素回路13に与える。その結果、画素切替回路34は、行ごとに画素回路13を一括して有感に設定する。また、画素切替回路34は、行ごとに画素回路13を一括して不感に設定する。より詳細には、所定の行に含まれる画素回路13を一括して有感に設定するとき、画素切替回路34は、配線48Gに論理パルスESR(j)の反転信号<H>を出力すると共に配線48Dに論理パルスESR(j)<L>を出力する。また、所定の行に含まれる画素回路13を一括して不感に設定するとき、画素切替回路34は、配線48Gに論理パルスESR(j)の反転信号<L>を出力すると共に配線48Dに論理パルスESR(j)<H>を出力する。
【0056】
いま、画素アレイ14は、N行M列に二次元配置された複数の画素回路13を有する。例えば、画素切替回路34は、第j行及び第j+1行に含まれるすべての画素回路13を有感に設定する。有感に設定される画素回路13を有する領域を、有感ピクセル領域AEと呼ぶ。つまり、有感ピクセル領域AEは、戻り光である入射パルス光LRを受ける有感領域である。上記の制御と並行して、画素切替回路34は、第1~(j-1)行及び第(j+2)~第N行に含まれるすべての画素回路13を不感に設定する。不感に設定される画素回路13を有する領域を、不感ピクセル領域ANと呼ぶ。つまり、不感ピクセル領域ANは、入射する光に応じた電荷を蓄積しない不感領域である。画素切替回路34は、互いに隣接する2行に含まれる画素回路13を有感に設定すると共に、その他の行に含まれる画素回路13を不感に設定する。有感ピクセル領域AEを構成する行の数は、2に限定されない。有感ピクセル領域AEを構成する行の数は、1であってもよいし、3以上であってもよい。
【0057】
有感ピクセル領域AEは、照射領域Rと対応する。演算回路12がある照射領域Rにパルス光LPを照射するとき、演算回路12は当該照射領域Rにあらかじめ関連付けられた画素アレイ14における領域を有感ピクセル領域AEに設定する。
【0058】
画素回路群15を構成する各画素回路13は、光電変換領域21と、電荷読出領域22
1~22
4と、電荷排出領域23と、電圧検出手段26
1~26
4と、制御電極25
1~25
4,25
D(
図5)を含む信号電荷処理領域17と、その信号電荷処理領域17の近傍に配置されたNOR型ドライバ回路41
1,41
2,41
3,41
4と、NAND型ドライバ回路41
5と、をそれぞれ含む。1つの画素回路群15を構成する別々の画素回路13に含まれるNOR型ドライバ回路41
1,41
2,41
3,41
4は、各画素回路13に含まれる制御電極25
1,25
2,25
3,25
4の個数に対応する個数で、画素回路群15ごとに行方向に繰り返し設けられる。言い換えれば、制御電極25
1,25
2,25
3,25
4,25
Dの個数に対応する個数のNOR型ドライバ回路41
1,41
2,41
3,41
4は、それぞれ、周辺回路31のインバータ回路35
1,35
2,35
3,35
4に対応して、行方向に並んで配置される。同様に、1つの画素回路群15を構成する別々の画素回路13に含まれるNAND型ドライバ回路41
5は、各画素回路13に含まれる制御電極25
Dの個数に対応する個数で、画素回路群15ごとに行方向に繰り返し設けられる。言い換えれば、制御電極25
Dの個数に対応する個数のNAND型ドライバ回路41
5は、それぞれ、周辺回路31のインバータ回路35
5に対応して配置される。
【0059】
NOR型ドライバ回路411,412,413,414及びNAND型ドライバ回路415は、CMOSドライバ回路である。画素回路131~134は、それぞれNOR型ドライバ回路411~414を有する。NOR型ドライバ回路411~414は、それぞれ、p型MOSトランジスタ431,432,433,434とp型MOSトランジスタ,442,443,444とn型MOSトランジスタ451,452,453,454とを有する。画素回路135は、NAND型ドライバ回路415を有する。NAND型ドライバ回路415は、p型MOSトランジスタ435とn型MOSトランジスタ46とn型MOSトランジスタ455とを有する。つまり、NAND型ドライバ回路415は、p型MOSトランジスタ441等に代えて、n型MOSトランジスタ46を有する点でNOR型ドライバ回路411~414と相違する。
【0060】
詳細には、NOR型ドライバ回路411~414は、以下の構成を有する。
【0061】
p型MOSトランジスタ431~434のソースは、ハイ電位線VDHに接続される。p型MOSトランジスタ431~434のゲートは、入力端子である。p型MOSトランジスタ431~434のゲートは、インバータ回路351~354の出力に配線471~474を介して接続される。p型MOSトランジスタ431~434のドレインは、p型MOSトランジスタ441~444のソースに接続される。
【0062】
p型MOSトランジスタ441~444のソースは、p型MOSトランジスタ431~434のドレインに接続される。p型MOSトランジスタ441~444のゲートは、入力端子である。p型MOSトランジスタ441~444のゲートは、配線48Gを介して画素切替回路34に接続される。p型MOSトランジスタ441~444のドレインとn型MOSトランジスタ451~454のドレインとが互いに接続される。さらに、p型MOSトランジスタ441~444のドレイン及びn型MOSトランジスタ451~454のドレインは、制御電極251~254に接続される。n型MOSトランジスタ451~454のソースは、p型MOSトランジスタ441~444のドレインに接続される。n型MOSトランジスタ451~454のゲートは、入力端子である。n型MOSトランジスタ451~454のゲートは、インバータ回路351~355の出力に配線471~474を介して接続される。つまり、p型MOSトランジスタ431~434のゲートとn型MOSトランジスタ451~454のゲートとは互いに共通である。n型MOSトランジスタ451~454のソースは、ロー電位線VDLに接続される。
【0063】
さらに、NAND型ドライバ回路415は、以下の構成を有する。
【0064】
p型MOSトランジスタ435のソースは、ハイ電位線VDHに接続される。p型MOSトランジスタ435のゲートは、入力端子である。p型MOSトランジスタ435のゲートは、インバータ回路355の出力に配線475を介して接続される。p型MOSトランジスタ435のドレインとn型MOSトランジスタ46のドレインとが互いに接続される。n型MOSトランジスタ46のソースは、p型MOSトランジスタ435のドレインに接続される。n型MOSトランジスタ46のゲートは、入力端子である。n型MOSトランジスタ46のゲートは、配線48Dを介して画素切替回路34に接続される。n型MOSトランジスタ46のソースは、n型MOSトランジスタ455のドレインに接続される。n型MOSトランジスタ455のソースは、n型MOSトランジスタ46のドレインに接続される。n型MOSトランジスタ455のゲートは、入力端子である。n型MOSトランジスタ455のゲートは、インバータ回路355の出力に配線475を介して接続される。つまり、p型MOSトランジスタ435のゲートとn型MOSトランジスタ455のゲートとは互いに共通である。n型MOSトランジスタ455のソースは、ロー電位線VDLに接続される。
【0065】
上記の接続構成より、それぞれのNOR型ドライバ回路411,412,413,414及びNAND型ドライバ回路415から制御電極251,252,253,254,25Dに転送制御パルスG1out~G4out,GDoutが出力可能とされる。転送制御パルスG1out,G2out,G3out,G4out,GDoutは、論理パルスESR(j)の反転信号及び論理パルスESR(j)によって画素回路13を有感とする信号と不感とする信号とに制御される。
【0066】
周辺回路31と画素回路13との接続構成を詳細に説明する。画素回路群15に含まれるNOR型ドライバ回路411,412,413,414及びNAND型ドライバ回路415の入力端子と、インバータ回路351,352,353,354,355の出力端子と、は、画素回路群15内の隣接する2つの画素回路13間で画素回路13に近接して伸びる配線471,472,473,474,475を経由して接続される。すなわち、NOR型ドライバ回路411,412,413,414及びNAND型ドライバ回路415の入力と、インバータ回路351,352,353,354,355の出力と、を接続する配線471,472,473,474,475は、画素回路群15の互いに隣接する2つの画素回路13間の間隙部において1本ずつ設けられる。さらに、画素回路群15ごとに設けられるNOR型ドライバ回路411の出力端子は、その画素回路群15に含まれるすべての画素回路13の制御電極251に、そのNOR型ドライバ回路411が設けられる画素回路13内の配線49と、画素回路群15に含まれるすべての画素回路13に跨って延びる配線51とを経由して、接続される。同様に、NOR型ドライバ回路412,413,414及びNAND型ドライバ回路415の出力端子のそれぞれは、画素回路群15に含まれるすべての画素回路13のそれぞれの制御電極252,253,254,25Dに、2つの配線を経由して接続される。
【0067】
上記構成のインバータ回路351とNOR型ドライバ回路411とにより、画素回路群15を構成する画素回路13の制御電極251に転送制御パルスG1outを印加する第1の制御電極ドライバ回路が構成される。同様に、インバータ回路352,353,354,355とNOR型ドライバ回路412,413,414及びNAND型ドライバ回路415とのそれぞれにより、画素回路群15を構成する画素回路13の制御電極252,253,254,25Dに転送制御パルスG2out,G3out,G4out,GDoutを印加する第2~第5の制御電極ドライバ回路が構成される。
【0068】
さらに、周辺回路31の画素切替回路34には、配線48
G、48
Dが接続される。配線48
G、48
Dは、行方向に延びる。
図5において、行方向とは紙面に対して横方向をいう。換言すると、配線48
G、48
Dは、画素回路13
1~13
5が並ぶ方向に沿って延びる。そして、配線48
Gは、行方向に配置された画素回路13
1~13
4に接続される。また、配線48
Dは、画素回路13
5に接続される。
【0069】
図6には、NOR型ドライバ回路41
1の詳細な回路構成を示している。NOR型ドライバ回路41
1は、p型MOSトランジスタ43
1のソースとn型MOSトランジスタ45
1のソースとの間に形成されたキャパシタンス成分53を含む。このキャパシタンス成分53は、例えば、画素回路13と同一の半導体基板に形成するMOSトランジスタによって実現することができる。キャパシタンス成分53は、その一端がロー電位である基板電位に接続され、他端がハイ電位に接続される。このキャパシタンス成分53は、NOR型ドライバ回路41
1の出力に接続される画素回路13の制御電極25
1の合成キャパシタンスC
G以上のキャパシタンスを有する。キャパシタンス成分53は、好ましくは4倍以上のキャパシタンスを有する。同様に、NOR型ドライバ回路41
2,41
3,41
4及びNAND型ドライバ回路41
5もキャパシタンス成分53を含む。これらのNOR型ドライバ回路41
2,41
3,41
4及びNAND型ドライバ回路41
5のキャパシタンス成分53は、NOR型ドライバ回路41
2,41
3,41
4及びNAND型ドライバ回路41
5の出力に接続される画素回路13のそれぞれの制御電極25
2,25
3,25
4,25
Dの合成キャパシタンスC
G以上のキャパシタンスを有する。キャパシタンス成分53のキャパシタンスは、好ましくは合成キャパシタンスC
Gの4倍以上である。
【0070】
図7には、NOR型ドライバ回路41
1,41
2,41
3,41
4の動作時のNOR型ドライバ回路41
1,41
2,41
3,41
4と画素回路13の合成キャパシタンスC
Gとの接続状態を示す。(a)部は、転送制御パルスG
1out,G
2out,G
3out,G
4outのオン(ハイ電位)時の接続状態を示す。(b)部は、転送制御パルスG
1out,G
2out,G
3out,G
4outのオフ(ロー電位)時の接続状態を示す。NAND型ドライバ回路41
5に対しても同様である。このように、転送制御パルスG
1out,G
2out,G
3out,G
4out,G
Doutのオン時には、キャパシタンス成分53が合成キャパシタンスC
Gの両端に接続される。その結果、転送制御パルスG
1out,G
2out,G
3out,G
4out,G
Doutのオフ時にキャパシタンス成分53にチャージされていた電荷が制御電極25
1,25
2,25
3,25
4,25
Dに向けて供給される。従って、制御電極25
1,25
2,25
3,25
4,25
Dの電位を素早く立ち上げることができる。特に、キャパシタンス成分53のキャパシタンスを合成キャパシタンスC
G以上とすることで、転送制御パルスG
1out,G
2out,G
3out,G
4out,G
Doutのハイ電位に立ち上げるのに必要な50%の電荷をキャパシタンス成分53から供給することができる。その結果、電源に負担をかけることなく高速な駆動が可能となる。さらに、キャパシタンス成分53のキャパシタンスを合成キャパシタンスC
Gの4倍以上とすれば、転送制御パルスG
1out,G
2out,G
3out,G
4out,G
outDのハイ電位に立ち上げるのに必要な80%の電荷をキャパシタンス成分53から供給することができる。その結果、電源に負担をかけることなくさらなる高速な駆動が可能となる。一方、転送制御パルスG
1out,G
2out,G
3out,G
4out,G
Doutのオフ時には、合成キャパシタンスC
Gの両端が短絡される。その結果、制御電極25
1,25
2,25
3,25
4,25
Dの電位を素早く立ち下げることができる。
【0071】
図8は、画素回路13が有する読出回路80
1,80
2,80
3,80
4の構成を示す。
【0072】
読出回路801~804は、キャパシタンス成分811~814と、MOSトランジスタ821~824と、増幅回路831~834と、を有する。読出回路801~804の入力は、それぞれ光電変換領域21に接続される。読出回路801~804の出力は、配線28を介して演算回路12に接続される。
【0073】
キャパシタンス成分81
1~81
4は、光電変換領域21が発生した電荷を蓄積する。キャパシタンス成分81
1~81
4は、
図3に示す電荷読出領域22
1~22
4に対応する。キャパシタンス成分81
1~81
4の一端は、制御電極25
1~25
4、MOSトランジスタ82
1~82
4及び増幅回路83
1~83
4に接続される。キャパシタンス成分81
1~81
4の他端は、基準電位に接続される。
【0074】
MOSトランジスタ821~824は、キャパシタンス成分811~814に残る電荷を排出する。MOSトランジスタ821~824のソースは、キャパシタンス成分811~814の一端に接続される。MOSトランジスタ821~824のゲートは、読出制御回路27に接続され、読出制御回路27からリセットパルスRTを受ける。MOSトランジスタ821~824のドレインは、リセット電位線VDRに接続される。
【0075】
増幅回路83
1~83
4は、キャパシタンス成分81
1~81
4に蓄積された電荷に応じた電圧V
O1~V
O4を発生させ、当該電圧V
O1~V
O4を配線28に出力する。増幅回路83
1~83
4は、
図3に示す電圧検出手段26
1~26
4に対応する。増幅回路83
1~83
4の入力は、キャパシタンス成分81
1~81
4の一端に接続される。増幅回路83
1~83
4の出力は、配線28に接続される。さらに、増幅回路83
1~83
4は、読出制御回路27に接続され、読出制御回路27から読出制御パルスSLを受ける。増幅回路83
1~83
4が出力した電圧V
O1~V
O4は、配線28を介して演算回路12に提供される。
【0076】
[第1実施形態/動作]
次に、距離画像センサ10の動作について説明する。距離画像センサ10は、画素回路13の内部にドライバ回路(NOR型ドライバ回路411~414及びNAND型ドライバ回路415)を有する。距離画像センサ10は、制御パルスG1~G4,GDを垂直方向から与える。距離画像センサ10は、有感/不感を切り替える論理パルスESR(j)の反転信号及び論理パルスESR(j)を水平方向から与える。距離画像センサ10は、画素回路13の内部において制御パルスGDと論理パルスESR(j)との論理演算を行い、転送制御パルスGDoutを生成する。そして、距離画像センサ10は、転送制御パルスGDoutを用いてドレインゲートである制御電極25Dのゲーティングを行う。
【0077】
以下、光源11の動作と、画素回路13の有感動作/不感動作との関係について詳細に述べる。
【0078】
図9は、光源11の動作を示すタイミングチャートと論理パルスE
SR(j)のタイミングチャートとを示す。また、
図10は、アレイ分割領域L
1,L
2,L
3と、有感ピクセル領域AEと、不感ピクセル領域ANと、を模式的に示す。アレイ分割領域L
1~L
3とは、入射パルス光L
Rが入射すると予想される領域である。有感ピクセル領域AEとは、入射パルス光L
Rに応じて生じた電荷を電荷読出領域22
1~22
4のいずれかに蓄積可能な領域である。不感ピクセル領域ANとは、入射パルス光L
Rに応じて生じた電荷を電荷排出領域23に排出する領域である。つまり、不感ピクセル領域ANに入射した光は、出力として得られない。
【0079】
図10に示すように、第1実施形態では、画素アレイ14を縦方向に3個の領域に分割する。いま、画素アレイ14がN行であるとする。そうすると、第1のアレイ分割領域L
1は、第1行目から第(N/3)行目までである。第2のアレイ分割領域L
2は、第(N/3+1)行目から第(2N/3)行目までである。第3のアレイ分割領域L
3は、第(2N/3+1)行目から第N行目までである。
【0080】
例えば、
図10の(a)部において、複数の正方形は、ひとつの画素回路13を示す。細いハッチングを付した領域は、有感ピクセル領域AEであることを示す。白抜きの領域は、不感ピクセル領域ANであることを示す。一点鎖線で囲まれた3個の領域は、それぞれアレイ分割領域L
1~L
3を示す。一点鎖線で囲まれた領域において荒いハッチングが付された領域は、当該領域に測定対象領域Aから入射パルス光L
Rが入射されていることを示す。
【0081】
このように照射領域Rを測定対象領域Aの一部とすることにより、距離画像センサ10は、背景光に対するノイズ耐性を高めることができる。いま、光源11が照射するパルス光L
Pの光量(p
0)が一定であると仮定する。そうすると、パルス光L
Pを測定対象領域Aの一部である照射領域Rに限定して照射すると、単位面積あたりの光量が見かけ上高まる。例えば、
図10のように測定対象領域Aを3分割した場合には、照射領域Rにおける光量は、測定対象領域Aの全面に照射した場合の光量に対して3倍になる(
図9の符号3p
0参照)。その結果、背景光の光量に対してパルス光L
Pの光量を大きくすることができる。従って、距離画像センサ10は、背景光に対するノイズ耐性を高めることができる。
【0082】
なお、光源11から測定対象領域Aへ向けたパルス光LPの出射方向と、測定対象領域Aから戻る入射パルス光LRが入射する領域との関係は、任意の手法によって関連付けてよい。例えば、測定対象領域Aを縦方向に3分割したときにおいて、最も上の領域に光源11がパルス光LPを照射した場合には、画素アレイ14のアレイ分割領域L1に入射パルス光LRが入射するとしてよい。
【0083】
距離画像センサ10は、ひとつのフレームである期間PFにおいて、1回の露光期間である期間PEと、1回の読出期間である期間PRを有する。また、距離画像センサ10は、ひとつのフレームの期間PFにおいて、複数回の露光動作を行う。さらに、距離画像センサ10は、1つの有感期間中に1回の露光動作を行う。距離画像センサ10の動作は、上記の動作に限定されない。その他の動作例については、変形例1~5として後述する。
【0084】
露光期間(期間PE)において、複数回の露光動作を繰り返す。
【0085】
まず、期間PE1において、画素切替回路34は、以下のような論理パルスESR(j)を出力する。
論理パルスESR(1)~ESR(N/3):HIGH。
論理パルスESR(N/3+1)~ESR(2N/3):LOW。
論理パルスESR(2N/3+1)~ESR(N):LOW。
【0086】
期間PE
1は、期間P
1aと、期間P
1aの後である期間P
1bと、を有する。期間P
1a(
図10の(a)部参照)において、光源11は、アレイ分割領域L
1に入射パルス光L
Rが入射するようにパルス光L
Pを照射する。例えば、パルス光L
Pのデューティー比は、50%以下としてもよい。その後、期間P
1b(
図10の(b)部参照)において、光源11はパルス光L
Pの照射を停止する。
【0087】
次に、期間PE2において、画素切替回路34は、以下のような論理パルスESR(j)を出力する。
論理パルスESR(1)~ESR(N/3):LOW。
論理パルスESR(N/3+1)~ESR(2N/3):HIGH。
論理パルスESR(2N/3+1)~ESR(N):LOW。
【0088】
期間PE
2は、期間P
2aと、期間P
2aの後である期間P
2bと、を有する。期間P
2a(
図10の(c)部参照)において、光源11は、アレイ分割領域L
2に入射パルス光L
Rが入射するようにパルス光L
Pを照射する。その後、期間P
2b(
図10の(d)部参照)において、光源11はパルス光L
Pの照射を停止する。
【0089】
次に、期間PE3において、画素切替回路34は、以下のような論理パルスESR(j)を出力する。
論理パルスESR(1)~ESR(N/3):LOW。
論理パルスESR(N/3+1)~ESR(2N/3):LOW。
論理パルスESR(2N/3+1)~ESR(N):HIGH。
【0090】
期間PE
3は、期間P
3aと、期間P
3aの後である期間P
3bと、を有する。期間PE
3a(
図10の(e)部参照)において、光源11は、アレイ分割領域L
3に入射パルス光L
Rが入射するようにパルス光L
Pを照射する。その後、期間P
3b(
図10の(f)部参照)において、光源11はパルス光L
Pの照射を停止する。
【0091】
以下、期間PE1~PE3の動作をあらかじめ定めた回数だけ繰り返す。この期間PE1~PE3の動作を繰り返す期間は、露光期間としての期間PEである。そして、期間PEの後に読出期間としての期間PRが設定される。これらの期間PE及び期間PRは、ひとつのフレーム(あるいはサブフレーム)を構成する。この期間PRにおいて、すべての行から信号が読み出される。期間PRでは、光源11からパルス光LPは照射されない。また、期間PRにおいて、画素切替回路34は、以下のような論理パルスESR(j)を出力する。
論理パルスESR(1)~ESR(N/3):LOW。
論理パルスESR(N/3+1)~ESR(2N/3):LOW。
論理パルスESR(2N/3+1)~ESR(N):LOW。
【0092】
[第1実施形態/作用効果]
距離画像センサ10は、以下に説明するいくつかの作用効果により、背景光に対する強い耐性と、撮像対象の動きに起因するアーティファクトに対する強い耐性と、を有する。
【0093】
距離画像センサ10は、光源制御部12aが有感ピクセル領域AEに入射パルス光LRが入射するようにパルス光LPを発生させたとき、不感ピクセル領域ANには光電変換領域21で発生した電荷を電荷排出領域23に移動させる論理パルスESR(j)を提供する。この動作によれば、入射パルス光LRが入射しない不感ピクセル領域ANにおいて、光電変換領域21におけるノイズとなり得る電荷の蓄積が抑制される。その結果、不感ピクセル領域ANが有感ピクセル領域AEに切り替わるとき、入射パルス光LRに基づく電荷の生成の準備が整った状態が形成されている。つまり、不感ピクセル領域ANから有感ピクセル領域AEに素早く切り替えることができる。従って、パルス光LPを照射すると共に当該パルス光LPに起因する入射パルス光LRを受光する動作を、有感ピクセル領域AEを移動させながら高速に繰り返すことが可能になる。照射動作及び受光動作の高速化及び繰り返しは、換言すると、いわゆる距離測定におけるフレーム期間内の光電荷の時間的オーバーサンプリング及び積算と同義である。従って、オーバーサンプリング及び積算によるローパスフィルタ効果によって、測定対象物が高速移動する場合であっても良好な計測結果を得ることができる。
【0094】
つまり、距離画像センサ10は、光源11から出射される線状のパルス光LPの走査と、当該走査に対応するように位置及び時間を同期させた露光動作及び読出動作を行う。
【0095】
第1実施形態の距離画像センサ10において、光源制御部12aは、第j行目に含まれる画素回路13のすべてが有感ピクセル領域AEに含まれるように、光源11からパルス光LPを出射させる動作を行う。周辺回路31は、第j行目に含まれる画素回路13のすべてに対して、光電変換領域21から電荷読出領域221~224への電荷の移動を許可するように画素回路13を動作させる制御パルスG1~G4,GD、論理パルスESR(j)の反転信号及び論理パルスESR(j)を画素アレイ14に提供する動作と、有感ピクセル領域AEに含まれない画素回路13のすべてに対して、光電変換領域21から電荷排出領域23への電荷の移動を許可するように画素回路13を動作させる制御パルスG1~G4,GD、論理パルスESR(j)の反転信号及び論理パルスESR(j)を画素アレイ14に提供する動作と、を行う。この動作によれば、第j行目に含まれる画素回路13を一括して、光電変換領域21から電荷読出領域221~224への電荷の移動を許可する状態(有感状態)に設定することが可能になる。さらに、第j行目に含まれない画素回路13を一括して、光電変換領域21から電荷排出領域23への電荷の移動を許可する状態(不感状態)に設定することができる。従って、オーバーサンプリング及び積算動作をさせることができる。
【0096】
第1実施形態の距離画像センサ10は、周辺回路31が、制御パルスG1~G4,GD、論理パルスESR(j)の反転信号及び論理パルスESR(j)を画素アレイ14に出力した状態で、光源制御部12aがパルス光LPを発生させる露光動作と、周辺回路31が、光電変換領域21で発生した電荷に基づく電圧を出力させる読出動作と、を行う。制御パルスG1~G4,GD、論理パルスESR(j)の反転信号及び論理パルスESR(j)は、有感ピクセル領域AEを構成する画素回路13において光電変換領域21で発生した電荷を電荷読出領域221~224に移動させると共に、不感ピクセル領域ANを構成する画素回路13において光電変換領域21で発生した電荷を電荷排出領域23に移動させる。周辺回路31及び光源制御部12aは、複数の有感ピクセル領域AEに対する露光動作を複数回行った後に、読出動作を行う。つまり、すべての画素回路13に対する露光動作の後に、すべての画素回路13から一括して信号を読み出す。この動作によれば、画素アレイ14の全体において複数回の露光動作の後に、画素アレイ14の全体から信号を読み出すことができる。
【0097】
第1実施形態の距離画像センサ10の露光動作では、周辺回路31が制御パルスG1~G4,GD及び論理パルスESR(j)を提供した状態で、光源制御部12aがパルス光LPを1回だけ発生させる。この動作によっても、距離画像センサ10の動作をさらに高速化させることができる。
【0098】
さらに、距離画像センサ10によれば、周辺回路31に設けられた分配回路33によって制御パルスG1,G2,G3,G4,GDが分配される。その制御パルスG1,G2,G3,G4,GDに基づく転送制御パルスは、画素回路群15のうちの1つの画素回路13内に設けられたNOR型ドライバ回路411,412,413,414及びNAND型ドライバ回路415によって構成される第1~第5の制御電極ドライバ回路によって、画素回路群15を構成するすべての画素回路13の制御電極251,252,253,254,25Dに印加される。これにより、各画素回路13において、光電変換領域21と電荷読出領域221,222,223,224及び電荷排出領域23との間の電荷転送のタイミングが制御される。このような第1~第5の制御電極ドライバ回路により制御パルスG1,G2,G3,G4,GDが中継される構成により、ピクセル数が多くなっても転送制御パルスの波形のなまりを低減でき、ピクセルを高速に駆動して距離分解能の高い距離画像の生成が可能とされる。それとともに、第1~第5の制御電極ドライバ回路のそれぞれを、制御電極の数と同一数の画素回路13を含む画素回路群15で共用する構成により、ピクセルサイズを小さく保ちつつ転送制御パルスの波形のなまりを低減できる。
【0099】
特に、本実施形態では、NOR型ドライバ回路411,412,413,414及びNAND型ドライバ回路415が画素回路群15の別々の画素回路13内に設けられる。分配回路33とNOR型ドライバ回路411,412,413,414及びNAND型ドライバ回路415とは、それぞれ、別々の2つの画素回路13間の間隙部に伸びる配線471~475を介して接続される。このような構成により、分配回路33と第1~第5の制御電極ドライバ回路とのそれぞれを電気的に接続する複数の配線471~475を分離することができる。その結果、異なる制御パルスG1,G2,G3,G4,GDの間のクロストークを防止して安定したピクセルの駆動が実現できる。結果として距離分解能の高い距離画像の生成が可能となる。
【0100】
つまり、画素回路13は、その内部にドライバ回路を有している。したがって、有感/不感のためのゲーティングは、画素回路13内の論理演算により行われる。
【0101】
また、本実施形態では、NOR型ドライバ回路411,412,413,414及びNAND型ドライバ回路415のそれぞれは、キャパシタンス成分53を含む。このような構成により、ピクセルの高速な駆動が実現される。キャパシタンス成分53の存在により、画素回路13を駆動する際の制御電極251,252,253,254,25Dのキャパシタンス成分の充放電に伴って電源に生じる電流を低減できる。その結果、電源電圧が瞬時的にドロップする事態も防止でき、ピクセル(画素回路13)の高速な駆動が可能となる。
【0102】
[第2実施形態]
次に、第2実施形態にかかる距離画像取得装置1Aを構成する距離画像センサ10Aの構成について、第1実施形態との相違点を中心に説明する。
【0103】
図11は、距離画像センサ10Aの概略構成を示すブロック図である。
図11に示す距離画像センサ10Aは、第1実施形態にかかる距離画像センサ10と比較して、分配回路33Aの機能と、周辺回路31Aにおけるインバータ回路の構成と、周辺回路31Aと画素回路13Aとの間の接続構成が異なる。
【0104】
周辺回路31Aは、分配回路33Aとインバータ回路ユニット38Aと画素切替回路34Aとを有する。画素切替回路34Aは、第1実施形態の画素切替回路34と同様の構成と機能とを奏するため、説明は省略する。
【0105】
すなわち、分配回路33Aは、制御パルスG1を、それぞれ、2つの制御パルスG1p,G1nに分配して行方向に繰り返し生成する。同様に、分配回路33Aは、制御パルスG2,G3,G4,GDを分配することにより、2つの制御パルスG2p,G2nと、2つの制御パルスG3p,G3nと、2つの制御パルスG4p,G4nと、2つの制御パルスGDp,GDnと、を繰り返し生成する。これらの2つの制御パルスG1p,G1nは、制御パルスG1のオンオフに同期して、互いのオン期間が一致しないように生成される。具体的には、制御パルスG1pのオン期間が制御パルスG1nのオン期間内に収まるように生成される。同じように、2つの制御パルスG2p,G2n、2つの制御パルスG3p,G3n、2つの制御パルスG4p,G4n、及び2つの制御パルスGDp,GDnは、制御パルスG2,G3,G4,GDのオンオフに同期して、互いのオン期間が一致しないように生成される。
【0106】
周辺回路31Aには、第1実施形態におけるインバータ回路351,352,353,354,355と同様な構成のインバータ回路611,612,613,614,615、及びインバータ回路631,632,633,634,635が含まれている。これらインバータ回路611,612,613,614,615、及びインバータ回路631,632,633,634,635は、インバータ回路ユニット38Aを構成する。1組のインバータ回路611,612,613,614,615、及び1組のインバータ回路631,632,633,634,635は、それぞれ、制御電極251,252,253,254,25Dの個数に対応する個数で画素回路群15Aごとに繰り返し設けられる。そして、2つのインバータ回路611,631は、画素回路13A1内のNOR型ドライバ回路41A1に対応して、画素回路群15Aにおける隣接する2つの画素回路13A間の周辺部に配置される。同様に、2つのインバータ回路612,632、2つのインバータ回路613,633、2つのインバータ回路614,634、2つのインバータ回路615,635のそれぞれは、画素回路13A2,13A3,13A4,13A5内のNOR型ドライバ回路41A2,41A3,41A4及びNAND型ドライバ回路41A5に対応して、隣接する2つの画素回路13A間の周辺部に配置される。これらのインバータ回路611,612,613,614,615のそれぞれの入力端子には、分配回路33Aから制御パルスG1p,G2p,G3p,G4p,GDpが入力される。これらのインバータ回路631,632,633,634,635のそれぞれの入力端子には、分配回路33Aから制御パルスG1n,G2n,G3n,G4n,GDnが入力される。
【0107】
周辺回路31Aと画素回路13Aとの接続構成を詳細に説明すると、NOR型ドライバ回路41A1,41A2,41A3,41A4及びNAND型ドライバ回路41A5のp型MOSトランジスタ431~435のゲート(制御端子)とインバータ回路611,612,613,614,615の出力端子とは、隣接する2つの画素回路13A間に伸びる配線47a1~47a5を経由して接続される。また、NOR型ドライバ回路41A1,41A2,41A3,41A4及びNAND型ドライバ回路41A5のn型MOSトランジスタ451~455のゲート(制御端子)とインバータ回路631,632,633,634,635の出力端子とは、隣接する2つの画素回路13A間に伸びる配線47b1~47b5を経由して接続される。つまり、周辺回路31Aと画素回路13Aとの間を接続する配線は、画素回路群15Aに含まれる2つの画素回路13A間の間隙部において2本ずつ設けられる。このような接続構成により、NOR型ドライバ回路41A1,41A2,41A3,41A4及びNAND型ドライバ回路41A5の2つのゲートには、別々の配線47a1~47a5,47b1~47b5を経由して、制御パルスG1p,G2p,G3p,G4p,GDpの反転信号、あるいは、制御パルスG1n,G2n,G3n,G4n,GDnの反転信号が供給される。
【0108】
上記構成のインバータ回路611,631とNOR型ドライバ回路41A1により、画素回路群15Aを構成する画素回路13Aの制御電極251に転送制御パルスG1outを印加する第1の制御電極ドライバ回路が構成される。同様に、インバータ回路612~615,632~635と、NOR型ドライバ回路41A2~41A4及びNAND型ドライバ回路41A5と、より、画素回路13Aの制御電極252~254,25Dに転送制御パルスG2out~G4out,GDoutを印加する第2~第5の制御電極ドライバ回路が構成される。
【0109】
図12には、本実施形態の距離画像センサ10Aにおいて生成される制御パルスG
1p,G
1nの反転信号の波形及びNOR型ドライバ回路41A
1の転送制御パルスG
1outの波形の一例を示す。このように、分配回路33Aの働きにより、インバータ回路61
1から出力される制御パルスG
1pの反転信号のロー電位の期間、すなわち、p型MOSトランジスタ43
1のオン期間T
PONが、インバータ回路63
1から出力される制御パルスG
1nの反転信号のハイ電位の期間、すなわち、n型MOSトランジスタ45
1のオン期間T
NONと重複しないように、制御パルスG
1p及び制御パルスG
1nが生成される。そして、NOR型ドライバ回路41A
1により、制御パルスG
1pの反転信号がオフされたタイミングでハイ電位に遷移し、制御パルスG
1nの反転信号がオンされたタイミングでロー電位に遷移する転送制御パルスG
1outが生成される。同様にして、各画素回路13Aに設けられたNOR型ドライバ回路41A
2~41A
4及びNAND型ドライバ回路41A
5においても、p型MOSトランジスタ43のオン期間がn型MOSトランジスタ45のオン期間と重複しないように、制御パルスG
2p~G
4p及び制御パルスG
2n~G
4nが生成される。
【0110】
[第2実施形態/作用効果]
第2実施形態の距離画像取得装置1Aも、第1実施形態の距離画像取得装置1と同様の効果を奏することができる。つまり、距離画像取得装置1Aは、オーバーサンプリング及び積算によって、測定対象物が高速移動する場合であっても良好な計測結果を得ることができる。
【0111】
第2実施形態の距離画像取得装置1Aは、第1実施形態の距離画像取得装置1と同様に、所定の行に含まれる画素回路13A1~13A5を一括して有感ピクセル領域AEに設定することが可能である。さらに、距離画像取得装置1Aは、所定の行に含まれない画素回路13A1~13A5を一括して、不感ピクセル領域ANに設定することが可能である。従って、第2実施形態の距離画像取得装置1Aも、オーバーサンプリング及び積算動作をさせることができる。
【0112】
第2実施形態の距離画像取得装置1Aも、第1実施形態の距離画像取得装置1と同様に、第1~第5の制御電極ドライバ回路により制御パルスG1p~G4p,G1n~G4n,GDp,GDnが中継される構成と、第1~第5の制御電極ドライバ回路のそれぞれを、制御電極251~254,25Dの数と同一数の画素回路13A1~13A5を有する画素回路群15Aで共用する構成と、により、ピクセルサイズを小さく保ちつつ転送制御パルスG1out~G4out,GDoutの波形のなまりを低減できる。
【0113】
第2実施形態の距離画像取得装置1Aも、第1実施形態の距離画像取得装置1と同様に、分配回路33Aと第1~第5の制御電極ドライバ回路とのそれぞれを電気的に接続する複数の配線47a1~47a5,47b1~47b5を分離して配置する。その結果、異なる制御パルスG1p~G4p,G1n~G4n,GDp,GDnの間のクロストークを防止して安定したピクセルの駆動が実現でき、結果として距離分解能の高い距離画像の生成が可能となる。
【0114】
さらに、第2実施形態の距離画像センサ10Aは、第1実施形態の距離画像センサ10とは異なる以下のような効果を奏することもできる。
【0115】
本実施形態の距離画像センサ10Aにおいては、NOR型ドライバ回路41A1~41A4及びNAND型ドライバ回路41A5内の2つのトランジスタ431~435,451~455のゲートに別々の配線47a1~47a5,47b1~47b5を経由して制御パルスG1p~G4p,G1n~G4n,GDp,GDnの反転信号が供給される。このような構成により、画素回路13A1~13A5に供給される制御パルスG1p~G4p,G1n~G4n,GDp,GDnの反転信号になまりが生じた場合であってもNOR型ドライバ回路41A1~41A4及びNAND型ドライバ回路41A5を流れる貫通電流の発生を防止できる。NOR型ドライバ回路41A1~41A4及びNAND型ドライバ回路41A5での貫通電流の発生は、ピクセル数が多くなった場合に距離画像センサ10Aに接続される電源を流れる電流の増加を招く。従って、電源電圧の瞬時的なドロップを引き起こす場合がある。その結果、画素回路13A1~13A5内の制御電極ドライバ回路が正常に動作せず、制御電極ドライバ回路の応答速度が遅くなる結果、高速なピクセルの駆動が困難となる。
【0116】
図13は、一般的なCMOSインバータ回路における入力制御パルスV
INと貫通電流Iとの関係を示すグラフである。
図14は、一般的なCMOSインバータ回路を用いた場合の入力制御パルスV
INに対する貫通電流Iの時間波形を示す図である。このように、一般的なCMOSインバータでは、入力制御パルスV
INがハイ電位(V
DD)とロー電位(0V)の間の中間電位において貫通電流Iが急激に増加する。そのため、理想的な矩形波の波形WF1を入力制御パルスとして入力した場合には入力制御パルスのレベルの遷移タイミングで一瞬だけ貫通電流Iが生じる。一方、矩形波がなまった波形WF2を入力制御パルスとして入力した場合には、中間電位の期間が長くなるために貫通電流Iがより長期間にわたって継続的に生じる。そのため、一般的なCMOSインバータ回路を制御電極ドライバ回路として用いた場合は、入力制御パルスのなまりが大きくなるに従って制御電極ドライバ回路を流れる貫通電流の積分値が次第に増加する。一方、距離画像センサ10Aによれば、制御電極ドライバ回路における貫通電流が十分に低減でき、高速なピクセルの駆動が可能となる。その結果、距離分解能の高い距離画像の生成が可能となる。
【0117】
特に、本実施形態では、分配回路33Aが、各NOR型ドライバ回路41A1~41A4及びNAND型ドライバ回路41A5を構成する2つのトランジスタ431~435,451~455のゲートに互いにオン期間が重複しないような制御パルスG1p~G4p,G1n~G4n,GDp,GDnの反転信号を供給するように機能している。これにより、NOR型ドライバ回路41A1~41A4及びNAND型ドライバ回路41A5を含む第1~第5の制御電極ドライバ回路における貫通電流が確実に防止でき、高速なピクセルの駆動が可能となる。
【0118】
[第3実施形態]
次に、第3実施形態にかかる距離画像取得装置1Bが有する距離画像センサ10Bの構成について、第2実施形態の距離画像センサ10Aに対する相違点を中心に説明する。
【0119】
図15は、距離画像センサ10Bの概略構成を示すブロック図である。
図15に示す距離画像センサ10Bは、第2実施形態にかかる距離画像センサ10Aと比較して、分配回路33Bの機能と、周辺回路31B及び画素回路13Bにおけるインバータ回路及びドライバ回路の構成が異なる。
【0120】
周辺回路31Bは、分配回路33Bとインバータ回路ユニット38Bと画素切替回路34Bとを有する。画素切替回路34Bは、第1実施形態の画素切替回路34と同様の構成と機能とを奏するため、説明は省略する。
【0121】
分配回路33Bは、制御パルスG1,G2,G3,G4,GDを分配することにより、制御パルスG1p~G4p,GDpの反転信号と、制御パルスG1n~G4n,GDnと、を行方向に沿って繰り返し生成する。
【0122】
また、周辺回路31Bのインバータ回路ユニット38Bは、インバータ回路631,632,633,634,635と、p型MOSトランジスタ711~715と、を有する。つまり、インバータ回路ユニット38Bは、インバータ回路611~615に代えて、p型MOSトランジスタ711~715を有する。p型MOSトランジスタ711~715のゲートのそれぞれには分配回路33Bから制御パルスG1p~G4p,GDpの反転信号が入力される。p型MOSトランジスタ711~715のソースがハイ電位線VDHに接続される。
【0123】
画素回路群15Bを構成する各画素回路13B内には、NOR型ドライバ回路411~414及びNAND型ドライバ回路415に代えて、NOR型ドライバ回路41B1~41B4及びNAND型ドライバ回路41B5がそれぞれ設けられる。NOR型ドライバ回路41B1~41B4及びNAND型ドライバ回路41B5は、CMOSドライバ回路である。詳細には、NOR型ドライバ回路41B1~41B4は、p型MOSトランジスタ441~444とn型MOSトランジスタ451~454とを有する。一方、NAND型ドライバ回路41B5は、n型MOSトランジスタ46とn型MOSトランジスタ455とを有する。つまり、NAND型ドライバ回路41B5は、p型MOSトランジスタ441に代えてn型MOSトランジスタ46を有する点で、NOR型ドライバ回路41B1と相違する。
【0124】
詳細には、NOR型ドライバ回路41B1~41B4は、以下の構成を有する。
【0125】
p型MOSトランジスタ441~444のソースは、配線47a1~47a4を介してp型MOSトランジスタ711~714のドレインに接続される。p型MOSトランジスタ441~444のソースには、制御パルスG1p~G4pの反転信号が入力される。p型MOSトランジスタ441~444のゲートは、配線48Gを介して画素切替回路34Bに接続される。p型MOSトランジスタ441~444のゲートは、論理パルスESR(j)の反転信号を受ける。p型MOSトランジスタ441~444のドレインとn型MOSトランジスタ451~454のドレインとが互いに接続される。n型MOSトランジスタ451~454のゲートは、配線47b1~47b4を介してインバータ回路631~634の出力端に接続される。n型MOSトランジスタ451~454のゲートには、制御パルスG1n~G4nの反転信号が入力される。n型MOSトランジスタ451~454のソースは、ロー電位線VDLに接続される。
【0126】
詳細には、NAND型ドライバ回路41B5は、以下の構成を有する。n型MOSトランジスタ46のドレインは、配線47a5を介してp型MOSトランジスタ715のドレインに接続される。n型MOSトランジスタ46のドレインには、制御パルスGDpの反転信号が入力される。n型MOSトランジスタ46のゲートは、配線48Dを介して画素切替回路34Bに接続される。n型MOSトランジスタ46のゲートには、論理パルスESR(j)が入力される。n型MOSトランジスタ46のソースは、n型MOSトランジスタ455のドレインに接続される。n型MOSトランジスタ455のゲートは、配線47b5を介してインバータ回路635の出力に接続される。n型MOSトランジスタ455のゲートには、制御パルスGDnの反転信号が入力される。n型MOSトランジスタ455のソースは、ロー電位線VDLに接続される。
【0127】
上記のように、p型MOSトランジスタ711~714とp型MOSトランジスタ441~444とが直列に接続された構成により、画素回路群15Bに含まれる画素回路13B1~13B5の制御電極251~254に印加する転送制御パルスを生成するNOR型ドライバ回路(制御電極ドライバ回路)が構成される。また、p型MOSトランジスタ715とn型MOSトランジスタ46とが直列に接続された構成により、画素回路群15B内の制御電極25Dに印加する転送制御パルスを生成するNAND型ドライバ回路(制御電極ドライバ回路)が構成される。
【0128】
[第3実施形態/作用効果]
第3実施形態の距離画像取得装置1Bも、第2実施形態の距離画像取得装置1Aと同様の効果を奏することができる。つまり、距離画像取得装置1Bは、オーバーサンプリング及び積算によって、測定対象物が高速移動する場合であっても良好な計測結果を得ることができる。
【0129】
第3実施形態の距離画像取得装置1Bは、第2実施形態の距離画像取得装置1Aと同様に、所定の行に含まれる画素回路13B1~13B5を一括して有感ピクセル領域AEに設定することが可能である。さらに、所定の行に含まれない画素回路13B1~13B5を一括して、不感ピクセル領域ANに設定することが可能である。従って、第3実施形態の距離画像取得装置1Bも、オーバーサンプリング及び積算動作をさせることができる。
【0130】
第3実施形態の距離画像取得装置1Bも、第2実施形態の距離画像取得装置1Aと同様に、第1~第5の制御電極ドライバ回路により制御パルスG1p~G4p,G1n~G4n,GDp,SDnが中継される構成と、第1~第5の制御電極ドライバ回路のそれぞれを、制御電極251~254,25Dの数と同一数の画素回路13B1~13B5を有する画素回路群15Bで共用する構成と、により、ピクセルサイズを小さく保ちつつ転送制御パルスG1out~G4out,GDoutの波形のなまりを低減できる。
【0131】
第3実施形態の距離画像取得装置1Bも、第2実施形態の距離画像取得装置1Aと同様に、分配回路33Bと第1~第5の制御電極ドライバ回路とのそれぞれを電気的に接続する複数の配線47a1~47a5,47b1~47b5を分離して配置する構成により、異なる制御パルスG1p~G4p,G1n~G4n,GDp,GDnの間のクロストークを防止して安定したピクセルの駆動が実現できる。その結果として、距離分解能の高い距離画像の生成が可能となる。
【0132】
第3実施形態の距離画像取得装置1Bも、第2実施形態の距離画像取得装置1Aと同様に、各NOR型ドライバ回路41B1~41B4及びNAND型ドライバ回路41B5に互いにオン期間が重複しないような制御パルスを供給する回路構成を有する。つまり、配線47a1~47a5,47b1~47b5を有する。この構成によれば、NOR型ドライバ回路41B1~41B4及びNAND型ドライバ回路41B5を有する第1~第5の制御電極ドライバ回路における貫通電流が確実に防止でき、高速なピクセルの駆動が可能となる。
【0133】
さらに、第3実施形態の距離画像センサ10Bは、第2実施形態の距離画像センサ10Aとは異なる以下のような効果を奏することもできる。
【0134】
本実施形態の制御電極ドライバ回路の構成により、NOR型ドライバ回路を構成する一方のトランジスタであるp型MOSトランジスタ711~714のドレインは配線47a1~47a4を介してp型MOSトランジスタ441~444のソースに接続され、さらにp型MOSトランジスタ441~444のソース-ドレイン間のpチャネルを介してp型MOSトランジスタ441~444のドレインが制御電極251~254に接続される。一方で、NOR型ドライバ回路を構成する他方のトランジスタであるn型MOSトランジスタ451~454のドレインは各画素回路13B内で制御電極251~254に接続される。そのため、制御電極251~254に印加される転送制御パルスG1out~G4outにおいて、立ち上がりはなだらかな状態であるが、立ち下がりは急峻な状態を生じさせることができる。
【0135】
図16は、本実施形態の距離画像センサ10Bにより生成される転送制御パルスG
1out,G
2outの波形の一例を示す。
図17は、画素回路13Bの信号電荷処理領域17Bにおける各領域の配置例を示す平面図である。
図18は、画素回路13Bの信号電荷処理領域17Bにおける電位分布を示す図である。
図18は、
図17に示す一点鎖線CLに沿った電位分布を示している。
【0136】
図17に示す信号電荷処理領域17Bにおいては、中央に光電変換領域21が設けられ、光電変換領域21の周りの信号電荷処理領域17Bの四隅に電荷読出領域22
1~22
4が配置され、電荷読出領域22
1~22
4のうちの2つの領域間に電荷排出領域23が配置される。さらに、光電変換領域21とそれぞれの電荷読出領域22
1~22
4との間の電荷移動経路を両側から挟むように制御電極25
1~25
4が設けられ、光電変換領域21と電荷排出領域23との間の電荷移動経路を両側から挟むように制御電極25
Dが設けられる。
図18には、制御電極25
1にロー電位を印加し、制御電極25
2にハイ電位を印加した場合の電荷移動経路における電位分布を実線で示す。また、制御電極25
1にハイ電位を印加し、制御電極25
2にロー電位を印加した場合の電荷移動経路における電位分布を点線で示している。このような電位形成特性により、
図16に示すように転送制御パルスG
1outを急峻に立ち下げることにより、電荷読出領域22
1への電荷の移動を瞬時に止めることができ、その後に転送制御パルスG
2outを緩やかに立ち上げても転送制御パルスG
2outを立ち下げるまでの期間において光電変換領域21で発生した電荷を漏れなく電荷読出領域22
2へ移動させることができる。
【0137】
本実施形態の距離画像センサ10Bによれば、周辺回路31Bにインバータ回路を構成する一方のp型MOSトランジスタが備えられ、画素回路13B内にNOR型ドライバ回路あるいはNAND型ドライバ回路を構成する他方のn型MOSトランジスタが備えられている。このような構成により、画素回路13B内のトランジスタ数を低減することによりピクセルサイズを小さく保つことができる。さらに、高速なピクセルの駆動が可能となる。
【0138】
特に、本実施形態では、画素回路13Bにn型MOSトランジスタを備えることにより、制御電極251~254,25Dに印加される転送制御パルスG1out~G4out,GDoutの立ち下がりを急峻にすることができ、転送制御パルスG1out~G4out,GDoutのパルス幅を短くしても安定して電荷読出領域221~224への電荷の移動が可能となる。その結果、高速なピクセルの駆動が実現できる。
【0139】
[第4実施形態]
次に、第4実施形態にかかる距離画像取得装置1Cが有する距離画像センサ10Cの構成について、第1実施形態との相違点を中心に説明する。
【0140】
図19は、距離画像センサ10Cの概略構成を示すブロック図である。
図19に示す距離画像センサ10Cは、第1実施形態にかかる距離画像センサ10と比較して、画素回路13Cが有するインバータ回路41C
1~41C
4の構成が異なる。
【0141】
周辺回路31Cは、分配回路33Cとインバータ回路ユニット38Cと画素切替回路34Cとを有する。分配回路33Cの構成及び機能は、第1実施形態の分配回路33の構成及び機能と同じである。同様にインバータ回路ユニット38Cの構成及び機能は、第1実施形態のインバータ回路ユニット38の構成及び機能と同じである。一方、画素切替回路34Cは、論理パルスESR(j)のみを出力し、論理パルスESR(j)の反転信号を出力しない点で、第1実施形態の画素切替回路34と相違する。
【0142】
画素回路群15Cを構成する各画素回路13C内には、NOR型ドライバ回路411~414に代えて、インバータ回路41C1~41C4がそれぞれ設けられる。インバータ回路41C1~41C4は、CMOSインバータ回路である。詳細には、インバータ回路41C1~41C4は、p型MOSトランジスタ431~434とn型MOSトランジスタ451~454とを有する。一方、NAND型ドライバ回路41C5は、p型MOSトランジスタ435と、n型MOSトランジスタ46Aとn型MOSトランジスタ455とを有する。つまり、NAND型ドライバ回路41C5は、n型MOSトランジスタ46Aを有する点で、インバータ回路41C1と相違する。
【0143】
詳細には、インバータ回路41C1~41C4は、以下の構成を有する。
【0144】
p型MOSトランジスタ431~434のソースは、ハイ電位線VDHに接続される。p型MOSトランジスタ431~434のゲートは、配線471~474を介してインバータ回路351~354の出力に接続される。また、p型MOSトランジスタ431~434のゲートは、n型MOSトランジスタ451~454のゲートにも接続される。p型MOSトランジスタ431~434のゲートには、制御パルスG1~G4の反転信号が入力される。p型MOSトランジスタ431~434のドレインとn型MOSトランジスタ451~454のドレインとが互いに接続される。n型MOSトランジスタ451~454のゲートは、配線471~474を介してインバータ回路351~354の出力に接続される。n型MOSトランジスタ451~454のゲートには、制御パルスG1~G4の反転信号が入力される。n型MOSトランジスタ451~454のソースは、ロー電位線VDLに接続される。
【0145】
さらに、NAND型ドライバ回路41C5は、以下の構成を有する。
【0146】
p型MOSトランジスタ435のソースは、ハイ電位線VDHに接続される。p型MOSトランジスタ435のゲートは、入力端子である。p型MOSトランジスタ435のゲートは、インバータ回路355の出力に配線475を介して接続される。p型MOSトランジスタ435のドレインとn型MOSトランジスタ46Aのドレインとが互いに接続される。n型MOSトランジスタ46Aのゲートは、入力端子である。n型MOSトランジスタ46Aのゲートは、配線48Dを介して画素切替回路34Cに接続される。n型MOSトランジスタ46Aのソースは、n型MOSトランジスタ455のドレインに接続される。n型MOSトランジスタ455のソースは、n型MOSトランジスタ46のドレインに接続される。n型MOSトランジスタ455のゲートは、入力端子である。n型MOSトランジスタ455のゲートは、インバータ回路355の出力に配線475を介して接続される。n型MOSトランジスタ455のソースは、ロー電位線VDLに接続される。
【0147】
[第4実施形態/作用効果]
第4実施形態の距離画像取得装置1Cも、第1実施形態の距離画像取得装置1と同様の効果を奏することができる。つまり、距離画像取得装置1Cは、オーバーサンプリング及び積算によって、測定対象物が高速移動する場合であっても良好な計測結果を得ることができる。
【0148】
第4実施形態の距離画像取得装置1Cは、第1実施形態の距離画像取得装置1と同様に、所定の行に含まれる画素回路13C1~13C5を一括して有感ピクセル領域AEに設定することが可能である。さらに、所定の行に含まれない画素回路13C1~13C5を一括して、不感ピクセル領域ANに設定することが可能である。従って、第4実施形態の距離画像取得装置1Cも、オーバーサンプリング及び積算動作をさせることができる。
【0149】
第4実施形態の距離画像取得装置1Cも、第1実施形態の距離画像取得装置1と同様に、第1~第5の制御電極ドライバ回路により制御パルスG1~G4,GDが中継される構成と、第1~第5の制御電極ドライバ回路のそれぞれを、制御電極251~254,25Dの数と同一数の画素回路13C1~13C5を有する画素回路群15Cで共用する構成と、により、ピクセルサイズを小さく保ちつつ転送制御パルスG1out~G4out,GDoutの波形のなまりを低減できる。
【0150】
第4実施形態の距離画像取得装置1Cも、第1実施形態の距離画像取得装置1と同様に、分配回路33Cと第1~第5の制御電極ドライバ回路とのそれぞれを電気的に接続する複数の配線471~475を分離して配置する構成により、異なる制御パルスG1~G4,GDの反転信号間のクロストークを防止して安定したピクセルの駆動が実現できる。結果として距離分解能の高い距離画像の生成が可能となる。
【0151】
さらに、第4実施形態の距離画像取得装置1Cは、第1実施形態の距離画像取得装置1とは異なる以下のような効果を奏することもできる。
【0152】
距離画像センサ10Cは、電荷排出領域23を有効または無効に制御する論理パルスESR(j)のための配線48Dを有する。つまり、第1実施形態の距離画像センサ10のように、電荷読出領域221~224を有効または無効に制御する論理パルスESR(j)の反転信号のための配線を有しない。従って、回路構成を簡易にすることができる。
【0153】
[第5実施形態]
次に、第5実施形態にかかる距離画像取得装置1Dが有する距離画像センサ10Dの構成について、第2実施形態との相違点を中心に説明する。
【0154】
図20は、距離画像センサ10Dの概略構成を示すブロック図である。
図20に示す距離画像センサ10Dは、第2実施形態にかかる距離画像センサ10Aと比較して、画素回路13Dが有するインバータ回路41D
1~41D
4の構成が異なる。
【0155】
周辺回路31Dは、分配回路33Dとインバータ回路ユニット38Dと画素切替回路34Dとを有する。分配回路33Dの構成及び機能は、第2実施形態の分配回路33Aの構成及び機能と同じである。同様に、インバータ回路ユニット38Dの構成及び機能は、第2実施形態のインバータ回路ユニット38Aの構成及び機能と同じである。一方、画素切替回路34Dは、論理パルスESR(j)のみを出力し、論理パルスESR(j)の反転信号を出力しない点で、第2実施形態の画素切替回路34Aと相違する。
【0156】
画素回路群15Dを構成する各画素回路13D1~13D5内には、NOR型ドライバ回路41A1~41A4に代えて、インバータ回路41D1~41D4がそれぞれ設けられる。インバータ回路41D1~41D4の構成及び機能は、第4実施形態のインバータ回路41C1~41C4と同様である。一方、インバータ回路41D1~41D4は、インバータ回路41D1~41D4を構成するp型MOSトランジスタ431~434及びn型MOSトランジスタ451~454のそれぞれのゲートの接続構成が第4実施形態のインバータ回路41C1~41C4と相違する。
【0157】
詳細には、p型MOSトランジスタ431~435のゲートは、配線47a1~47a5を介してインバータ回路611~615の出力に接続される。p型MOSトランジスタ431~435のゲートには、制御パルスG1p~G4p,GDpの反転信号が入力される。n型MOSトランジスタ451~455のゲートは、配線47b1~47b5を介してインバータ回路631~635の出力に接続される。n型MOSトランジスタ451~455のゲートには、制御パルスG1n~G4n,GDnの反転信号が入力される。
【0158】
[第5実施形態/作用効果]
第5施形態の距離画像取得装置1Dも、第2実施形態の距離画像取得装置1Aと同様の効果を奏することができる。つまり、距離画像取得装置1Dは、オーバーサンプリング及び積算によって、測定対象物が高速移動する場合であっても良好な計測結果を得ることができる。
【0159】
第5実施形態の距離画像取得装置1Dは、第2実施形態の距離画像取得装置1Aと同様に、所定の行に含まれる画素回路13D1~13D5を一括して有感ピクセル領域AEに設定することが可能である。さらに、所定の行に含まれない画素回路13D1~13D5を一括して、不感ピクセル領域ANに設定することが可能である。従って、第5実施形態の距離画像取得装置1Dも、オーバーサンプリング及び積算動作をさせることができる。
【0160】
第5実施形態の距離画像取得装置1Dも、第2実施形態の距離画像取得装置1Aと同様に、第1~第5の制御電極ドライバ回路により制御パルスG1p~G4p,G1n~G4n,GDp,GDnが中継される構成と、第1~第5の制御電極ドライバ回路のそれぞれを、制御電極251~254,25Dの数と同一数の画素回路13D1~13D5を有する画素回路群15Dで共用する構成と、により、ピクセルサイズを小さく保ちつつ転送制御パルスG1out~G4out,GDoutの波形のなまりを低減できる。
【0161】
第5実施形態の距離画像取得装置1Dも、第2実施形態の距離画像取得装置1Aと同様に、分配回路33Dと第1~第5の制御電極ドライバ回路とのそれぞれを電気的に接続する複数の配線47a1~47a5,47b1~47b5を分離して配置する構成により、異なる制御パルスG1p~G4p,G1n~G4n,GDp,GDnの間のクロストークを防止して安定したピクセルの駆動が実現できる。結果として距離分解能の高い距離画像の生成が可能となる。
【0162】
第5実施形態の距離画像取得装置1Dも、第2実施形態の距離画像取得装置1Aと同様に、各インバータ回路41D1~41D4及びNAND型ドライバ回路41D5を構成する2つのトランジスタ431~435,451~455のゲートに互いにオン期間が重複しないような制御パルスを供給する回路構成を有する。つまり、距離画像取得装置1Dは、配線47a1~47a5,47b1~47b5を有する。この構成によれば、インバータ回路41D1~41D4及びNAND型ドライバ回路41D5を有する第1~第5の制御電極ドライバ回路における貫通電流が確実に防止できる。その結果、高速なピクセルの駆動が可能となる。
【0163】
さらに、第5実施形態の距離画像取得装置1Dは、第2実施形態の距離画像取得装置1Aとは異なる以下のような効果を奏することもできる。
【0164】
第5実施形態の距離画像取得装置1Dは、第2実施形態の距離画像取得装置1Aと同様に、制御電極ドライバ回路における貫通電流が十分に低減でき、高速なピクセルの駆動が可能となる。その結果、距離分解能の高い距離画像の生成が可能となる。
【0165】
距離画像取得装置1Dは、電荷排出領域23を有効または無効に制御する論理パルスESR(j)のための配線48Dを有する。つまり、第2実施形態の距離画像取得装置1Aのように、電荷読出領域221~224を制御する論理パルスESR(j)の反転信号のための配線を有しない。従って、回路構成を簡易にすることができる。
【0166】
[第6実施形態]
次に、第6実施形態にかかる距離画像取得装置1Eが有する距離画像センサ10Eの構成について、第3実施形態との相違点を中心に説明する。
【0167】
図21は、距離画像センサ10Eの概略構成を示すブロック図である。距離画像センサ10Eは、いわゆる貫通電流を低減するための素子構造を有する。
図21に示す距離画像センサ10Eは、第3実施形態にかかる距離画像センサ10Bと比較して、画素回路13Eが有する制御回路の構成が異なる。
【0168】
周辺回路31Eは、分配回路33Eとインバータ回路ユニット38Eと画素切替回路34Eとを有する。分配回路33Eの構成及び機能は、第3実施形態の分配回路33Bの構成及び機能と同じである。同様に、インバータ回路ユニット38Eの構成及び機能は、第3実施形態のインバータ回路ユニット38Bの構成及び機能と同じである。一方、画素切替回路34Eは、論理パルスESR(j)のみを出力し、論理パルスESR(j)の反転信号を出力しない点で、第3実施形態の画素切替回路34Bと相違する。
【0169】
画素回路群15Eを構成する各画素回路13E1~13E4内には、NAND型ドライバ回路41B1~41B4に代えて、NAND型ドライバ回路41E1~41E4が設けられる。NAND型ドライバ回路41E1~41E4は、それぞれn型MOSトランジスタ451~454を含む。つまり、画素回路13E1~13E4に設けられる制御回路は、p型MOSトランジスタ431~434が設けられていない点で、NAND型ドライバ回路41B1~41B4と相違する。一方、画素回路13E5に設けられるNAND型ドライバ回路41E5の構成及び機能は、NAND型ドライバ回路41B5の構成及び機能と同じである。
【0170】
[第6実施形態/作用効果]
第6実施形態の距離画像取得装置1Eも、第3実施形態の距離画像取得装置1Bと同様の効果を奏することができる。つまり、距離画像センサ10Eは、オーバーサンプリング及び積算によって、測定対象物が高速移動する場合であっても良好な計測結果を得ることができる。
【0171】
第6実施形態の距離画像取得装置1Eは、第3実施形態の距離画像取得装置1Bと同様に、所定の行に含まれる画素回路13E1~13E5を一括して有感ピクセル領域AEに設定することが可能である。さらに、所定の行に含まれない画素回路13E1~13E5を一括して、不感ピクセル領域ANに設定することが可能である。従って、第6実施形態の距離画像取得装置1Eも、オーバーサンプリング及び積算動作をさせることができる。
【0172】
第6実施形態の距離画像取得装置1Eも、第3実施形態の距離画像取得装置1Bと同様に、第1~第5の制御電極ドライバ回路により制御パルスG1p~G4p,G1n~G4n,GDp,GDnが中継される構成と、第1~第5の制御電極ドライバ回路のそれぞれを、制御電極251~254,25Dの数と同一数の画素回路13E1~13E5を有する画素回路群15Eで共用する構成と、により、ピクセルサイズを小さく保ちつつ転送制御パルスG1out~G4out,GDoutの波形のなまりを低減できる。
【0173】
第6実施形態の距離画像取得装置1Eも、第3実施形態の距離画像取得装置1Bと同様に、分配回路33Eと第1~第5の制御電極ドライバ回路とのそれぞれを電気的に接続する複数の配線47a1~47a5,47b1~47b5を分離して配置する構成により、異なる制御パルスG1p~G4p,G1n~G4n,GDp,GDnの間のクロストークを防止して安定したピクセルの駆動が実現できる。結果として距離分解能の高い距離画像の生成が可能となる。
【0174】
第6実施形態の距離画像取得装置1Eも、第2実施形態の距離画像取得装置1Aと同様に、各インバータ回路41E1~41E4及びNAND型ドライバ回路41E5をオン期間が重複しないような制御パルスを供給する回路構成を有する。つまり、配線47a1~47a5,47b1~47b5を有する。インバータ回路41E1~41E4及びNAND型ドライバ回路41E5を有する第1~第5の制御電極ドライバ回路における貫通電流が確実に防止でき、高速なピクセルの駆動が可能となる。
【0175】
さらに、第6実施形態の距離画像取得装置1Eは、第2実施形態の距離画像取得装置1Aとは異なる以下のような効果を奏することもできる。
【0176】
第6実施形態の距離画像取得装置1Eによれば、第3実施形態の距離画像取得装置1Bと同様の効果を奏することができる。要するに、第6実施形態の距離画像取得装置1Eは、周辺回路31Eにインバータ回路あるいはNAND型ドライバ回路を構成する一方のp型MOSトランジスタを有する。さらに、距離画像取得装置1Eは、画素回路13E1~13E5内にインバータ回路あるいはNAND型ドライバ回路を構成する他方のn型MOSトランジスタを有する。このような構成により、画素回路13E内のトランジスタ数を低減される。その結果、ピクセルサイズを小さく保つことができると共に、高速なピクセルの駆動が可能となる。
【0177】
[第7実施形態]
次に、第7実施形態の距離画像取得装置1Fについて説明する。第1実施形態の距離画像取得装置1は、測定対象領域Aの全幅をカバーするようにパルス光L
Pを照射した。一方、
図22に示すように第7実施形態の距離画像取得装置1Fは、測定対象領域Aの幅方向における一部にパルス光L
Pを照射する。
【0178】
上述した第1実施形態の距離画像取得装置1は、
図10等に示すように行ごとに有感ピクセル領域AEと不感ピクセル領域ANとを切り替えた。第7実施形態の距離画像取得装置1Fは、行ごとに画素回路13Fの動作を有感又は不感に設定する動作に加えて、さらに、列ブロックごとに有感又は不感に設定する動作を行う。これらの動作によると、
図23に示すように、画素アレイ14Fにおいて特定の領域を有感ピクセル領域AEに設定し、その他の領域を不感ピクセル領域ANに設定することができる。そして、有感ピクセル領域AEは、
図23における左から右に順に列ブロックごとに移動したのちに、次の行へ移動する。
【0179】
距離画像センサ10Fは、画素アレイ14Fと、演算回路12と、周辺回路31Fと、を有する。周辺回路31Fは、分配回路33Fと、画素切替回路(列)54Fと、論理演算回路55Fと、画素切替回路(行)56Fと、を有する。
【0180】
図24は、距離画像センサ10Fの具体的な回路構成を示す図である。距離画像センサ10Fは、4個の電荷読出領域22
1~22
4を有する画素回路13Fを有し、画素回路13Fの有感/不感を切り替える周辺回路31Fを有する。特に周辺回路31Fは、行ごとではなく、ブロック単位で画素回路13Fの有感/不感を切り替える。
【0181】
分配回路33Fは、第1実施形態の分配回路33と同様の構成と機能とを有する。分配回路33Fは、演算回路12から制御パルスG1~G4,GDを受ける。分配回路33Fは、論理演算回路55Fの論理演算ユニット57FUごとに制御パルスG1~G4,GDを提供する。
【0182】
画素切替回路(列)54Fの入力は、演算回路12に接続されている。画素切替回路(列)54Fは、演算回路12から制御パルスSPIN,SLCK,SENB,SDENBを受ける。画素切替回路(列)54Fの出力は、論理演算回路55Fに接続されている。画素切替回路(列)54Fは、論理演算回路55Fに論理パルス(列)ESC(i-4:i)を提供する。
【0183】
論理演算回路55Fの入力は、分配回路33F及び画素切替回路(列)54Fに接続されている。論理演算回路55Fは、分配回路33Fから論理演算ユニット57FUごとに制御パルスG1~G4,GDを受ける。論理演算回路55Fは、画素切替回路(列)54Fから論理演算ユニット57FUごとに論理パルス(列)ESC(i-4:i)を受ける。ある論理演算回路55Fは、例えば、制御パルスG1~G4,GD及び論理パルス(列)ESC(i-4:i)の論理演算を行う。その論理演算の結果、論理演算回路55Fは、制御パルス(列)G1(i-4:i)~G4(i-4:i),GD(i-4:i)の反転信号を出力する。論理演算回路55Fの出力は、画素アレイ14Fに接続されている。論理演算回路55Fは、画素アレイ14Fの列ごとに制御パルスG1(i-4:i)~G4(i-4:i),GD(i-4:i)の反転信号を提供する。
【0184】
論理演算回路55Fの回路構成についてさらに詳細に説明する。
【0185】
論理演算回路55Fは、インバータ回路351~355と、ANDゲート581~584と、インバータ回路59と、ORゲート585と、を有する。5個のインバータ回路351~355、4個のANDゲート581~584、1個のインバータ回路59及び1個のORゲート585は、一組の論理演算ユニット57FUを構成する。ひとつの論理演算ユニット57FUは、ひとつの画素回路群15Fに対応する。
【0186】
ANDゲート581~584の入力は、分配回路33Fと画素切替回路(列)54Fとに接続される。ANDゲート581~584の第1の入力は、分配回路33Fから制御パルスG1~G4を受ける。ANDゲート581~584の第2の入力は、画素切替回路(列)54Fから論理パルス(列)ESC(i-4:i)を受ける。つまり、ANDゲート581~584の第2の入力は、互いに接続されている。ANDゲート581~584の出力は、インバータ回路351~354に接続される。ANDゲート581~584は、インバータ回路351~354に制御パルスG1(i-4:i)~G4(i-4:i)を提供する。
【0187】
インバータ回路59の入力は、画素切替回路(列)54Fに接続される。つまり、インバータ回路59の入力は、ANDゲート581~584の第2の入力と共通である。インバータ回路59は画素切替回路(列)54Fから論理パルス(列)ESC(i-4:i)を受ける。インバータ回路59の出力は、ORゲート585に接続されている。インバータ回路59は、ORゲート585に論理パルス(列)ESC(i-4:i)の反転信号を提供する。
【0188】
ORゲート585の入力は、分配回路33Fとインバータ回路59とに接続される。ORゲート585の第1の入力は、分配回路33Fから制御パルスGDを受ける。ORゲート585の第2の入力は、インバータ回路59から論理パルス(列)ESC(i-4:i)の反転信号を受ける。ORゲート585の出力は、インバータ回路355に接続される。ORゲート585は、制御パルスGDと論理パルス(列)ESC(i-4:i)の反転信号との論理和信号である制御パルスGD(i-4:i)をインバータ回路355に提供する。
【0189】
上記の分配回路33F、画素切替回路(列)54F及び論理演算回路55Fによれば、論理演算ユニット57FUごとに互いに異なる論理パルスESC(i-4:i)を提供することができる。
【0190】
画素切替回路(行)56Fの入力は、演算回路12に接続される。画素切替回路(行)56Fは、演算回路12から制御パルスSPIN,SLCK,SENB,SDENBを受ける。画素切替回路(行)56Fは、制御パルスSPIN,SLCK,SENB,SDENBを利用して論理パルス(行)ESR(j)を生成する。画素切替回路(行)56Fの出力は、画素アレイ14Fに接続される。画素切替回路(行)56Fは、画素アレイ14Fの第j行に論理パルス(行)ESR(j)を提供する。
【0191】
上記の画素切替回路(行)56Fによれば、ひとつの行ごと、または複数の行ごとに互いに異なる論理パルス(行)ESR(j)を提供することができる。
【0192】
その結果、画素回路13Fの有感/不感は、基本的に画素切替回路(行)56Fの論理パルス(行)E
SR(j)によって切り替えられる。例えば、ある画素回路13Fに、画素回路13Fを有感とする制御パルスG
1(i-4:i)が入力されても、画素回路13Fを不感とする論理パルス(行)E
SR(j)入力されれば、その画素回路13Fは不感である。この関係によれば、
図23に示すように画素アレイ14Fの一部の領域だけ有感ピクセル領域AEとし、その他の領域を不感ピクセル領域ANとすることができる。つまり、画素回路13Fを有感とする制御パルスG
1(i-4:i)~G
4(i-4:i)(つまり論理パルス(列)E
SC(i-4:i))と、画素回路13Fを有感とする論理パルス(行)E
SR(j)と、が入力された画素回路13Fのみが有感となる。
【0193】
[第7実施形態/作用効果]
第7実施形態の距離画像取得装置1Fも、第1実施形態の距離画像取得装置1と同様の効果を奏することができる。つまり、距離画像取得装置1Fは、オーバーサンプリング及び積算によって、測定対象物が高速移動する場合であっても良好な計測結果を得ることができる。
【0194】
第7実施形態の距離画像取得装置1Fは、第1実施形態の距離画像取得装置1と同様に、所定の行に含まれる画素回路13Fを一括して有感ピクセル領域AEに設定することが可能である。さらに、所定の行に含まれない画素回路13Fを一括して、不感ピクセル領域ANに設定することが可能である。従って、第7実施形態の距離画像取得装置1Fも、オーバーサンプリング及び積算動作をさせることができる。
【0195】
第7実施形態の距離画像取得装置1Fも、第1実施形態の距離画像取得装置1と同様に、第1~第5の制御電極ドライバ回路により制御パルスG1~G4,GDが中継される構成と、第1~第5の制御電極ドライバ回路のそれぞれを、制御電極251~254,25Dの数と同一数の画素回路13Fを有する画素回路群15Fで共用する構成と、により、ピクセルサイズを小さく保ちつつ転送制御パルスG1out(i-4:i)~G4out(i-4:i),GDout(i-4:i)の反転信号の波形のなまりを低減できる。
【0196】
さらに、第7実施形態の距離画像取得装置1Fは、第1実施形態の距離画像取得装置1とは異なる以下のような効果を奏することもできる。
【0197】
第7実施形態の距離画像取得装置1Fにおいて、光源制御部12aは、第j行目に含まれる画素回路13Fの一部が有感ピクセル領域AEに含まれるように、光源11からパルス光LPを出射させる動作と、第j行目に含まれる画素回路13Fの一部に対して、光電変換領域21から電荷読出領域221~224への電荷の移動を許可するように画素回路13Fを動作させる制御パルスを画素アレイ14Fに提供する動作と、有感ピクセル領域AEに含まれない不感ピクセル領域ANに含まれる画素回路13Fのすべてに対して光電変換領域21から電荷排出領域23への電荷の移動を許可するように画素回路13Fを動作させる制御パルスを画素アレイ14Fに提供する動作と、を行う。この動作によれば、画素アレイ14Fに含まれる所望の領域を有感ピクセル領域AEとすることが可能になる。従って、画素アレイ14Fにおける有感ピクセル領域AEをより緻密に設定することができる。
【0198】
[第8実施形態]
次に、第8実施形態の距離画像取得装置1Gが有する距離画像センサ10Gの構成について、第1実施形態との相違点を中心に説明する。距離画像センサ10Gは、ドレインの制御によって画素回路13Gの有感/不感を制御する画素構成と画素制御を採用する。距離画像センサ10Gは、転送制御パルスG1out(j)~G3out(j),GDout(j)を水平方向から提供する方式を採用する。距離画像センサ10Gは、周辺に配置された行選択部が行う有感/不感を操作するための信号に基づくゲーティングによって、動作する。
【0199】
図25は、距離画像センサ10Gの概略構成を示すブロック図である。距離画像センサ10Gは、第1実施形態にかかる距離画像センサ10と比較して、周辺回路31Gの構成が異なる。また、距離画像センサ10Gは、距離画像センサ10と比較して、画素回路13Gの素子構成及び回路構成が異なる。例えば、画素回路13は、4個の制御電極25
1~25
4と、4個の電荷読出領域22
1~22
4を有していた。つまり、画素回路13は、いわゆる4タップ型の構成であった。一方、画素回路13Gは、3個の制御電極25
1~25
3と、3個の電荷読出領域22T
1~22T
3と、有する。つまり、画素回路13Gは、いわゆる3タップ型の構成である。
【0200】
画素回路13Gは、光電変換領域21と、電荷読出領域22T1~22T3と、電荷排出領域23Tと、電圧検出手段26T1~26T3と、制御電極251~253,25Dと、を有する。
【0201】
図26は、画素回路13Gと周辺回路31Gとの接続構成を示す図である。距離画像センサ10Gは、複数の画素回路13Gと、周辺回路31Gと、配線部74Gと、を有する。画素回路13Gは、信号電荷処理領域17Tを有する。画素回路13Gは、画素回路13が有するNOR型ドライバ回路41
1~41
4に相当する構成を有しない。また、画素回路13Gは、画素回路13が有するNAND型ドライバ回路41
5に相当する構成要素も有しない。
【0202】
配線部74Gは、周辺回路31Gを画素回路13Gに接続する。配線部74Gは、横方向に延びる複数の配線741~744を有する。配線741は、周辺回路31Gを画素回路13Gの制御電極251に接続する。配線742は、周辺回路31Gを画素回路13Gの制御電極252に接続する。配線743は、周辺回路31Gを画素回路13Gの制御電極253に接続する。配線744は、周辺回路31Gを画素回路13Gの制御電極25Dに接続する。
【0203】
配線741~744は、画素アレイ14Gの幅全体にわたって延びている。配線741~744のそれぞれには、複数の支線が接続される。例えば、画素アレイ14Gが幅方向においてY個の画素回路13Gを有する場合には、配線741にはY本の支線が接続される。これらの支線の一端は、配線741~744に接続される。支線の他端は、制御電極251~253,25Dに接続される。
【0204】
この構成によれば、第j行に含まれる画素回路13Gのすべてを一括して制御することができる。ここでいう制御とは、画素回路13Gの有感及び不感を切り替える制御である。例えば、第j行の画素回路13Gのすべてを有感に設定する場合には、配線744を介して制御電極25Dに転送制御パルスGDout(j)<L>を提供する。また、第j行の画素回路13Gのすべてを不感に設定する場合には、配線744を介して制御電極25Dに転送制御パルスGDout(j)<H>を提供する。
【0205】
図27は、周辺回路31Gの回路構成を示す図である。周辺回路31Gは、駆動回路34Gを含む。駆動回路34Gの入力は、演算回路12に接続される。駆動回路34Gの入力は、演算回路12から制御パルスS
PIN,S
LCK,S
ENB,S
DENB及び制御パルスG
1,G
2,G
3,G
Dを受ける。駆動回路34Gは、制御パルスS
PIN,S
LCK,S
ENB,S
DENB及び制御パルスG
1,G
2,G
3,G
Dに基づいて、転送制御パルスG
1out(j)~G
3out(j),G
Dout(j)を生成する。駆動回路34Gの出力は、配線部74Gを介して画素回路13Gに接続される。駆動回路34Gの出力は、画素回路13Gに転送制御パルスG
1out(j)~G
3out(j)と転送制御パルスG
Dout(j)を提供する。
【0206】
駆動回路34Gは、行スキャンパターン発生回路42Gと、論理演算回路44Gと、を有する。行スキャンパターン発生回路42Gは、配線部72Gを介して演算回路12に接続される。行スキャンパターン発生回路42Gは、演算回路12から制御パルスSPIN,SLCK,SENB,SDENBを受ける。行スキャンパターン発生回路42Gは、制御パルスSPIN,SLCK,SENB,SDENBに基づいて、論理パルスESR(j)を生成する。
【0207】
図28は、行スキャンパターン発生回路42Gの回路図である。行スキャンパターン発生回路42Gは、制御パルスS
PIN,S
LCK,S
ENB,S
DENBに基づいて論理パルスEを生成する。行スキャンパターン発生回路42Gは、論理パルスE
SR(1)~E
SR(N)を生成可能な回路構成であればよく、
図28に示す回路構成に限定されない。
【0208】
行スキャンパターン発生回路42Gは、複数のDフリップフロップ881~88N,891~89Nと、ORゲート901~90Nと、を有する。Dフリップフロップ881の入力(D)は、演算回路12に接続される。Dフリップフロップ881の入力(D)は、制御パルスSPINを受ける。Dフリップフロップ882~88Nの入力(D)は、Dフリップフロップ881~88N-1の出力(Q)に接続される。Dフリップフロップ881~88Nの別の入力は、制御パルスSLCKを受ける。Dフリップフロップ881~88Nの出力(Q)は、制御パルスQ1~QNを出力する。Dフリップフロップ881~88N-1の出力(Q)は、Dフリップフロップ882~88Nの入力(D)に接続される。また、Dフリップフロップ881~88Nの出力(Q)は、Dフリップフロップ891~89Nの入力(D)に接続される。Dフリップフロップ891~89Nの入力(D)は、Dフリップフロップ881~88Nの出力(Q)に接続される。Dフリップフロップ891~89Nの入力(D)は、制御パルスQ1~QNを受ける。Dフリップフロップ891~89Nの入力(CK)は、制御パルスSENBを受ける。Dフリップフロップ891~89Nの出力(Q)は、ORゲート901~90Nの入力に接続される。ORゲート901~90Nの入力は、制御パルスQ1~QN,SDENBを受ける。ORゲート901~90Nの出力は、論理パルスESR(1)~ESR(N)を出力する。
【0209】
図29は、行スキャンパターン発生回路42Gの動作例を示すタイミングチャートである。
図29に示すタイミングチャートは、行スキャンパターン発生回路42Gの動作の一例を示すものである。
図29に示すタイミングチャートは、2行づつ走査する論理パルスE
SR(j)出力する。
図29では、6行目までの画素アレイ14Gに対応するチャートを示す。
【0210】
まず、タイミングT1において、Dフリップフロップ881は、制御パルスSPIN<H>を受ける。
【0211】
次に、タイミングT2において、Dフリップフロップ881~88Nは、制御パルスSLCK<H>を受ける。その結果、Dフリップフロップ881は、制御パルスQ1<H>を出力する。Dフリップフロップ882~88Nは、制御パルスQ2<L>~QN<L>を出力する。その後、Dフリップフロップ881~88Nは、制御パルスSLCK<L>を受ける。
【0212】
次に、タイミングT3において、Dフリップフロップ881は、制御パルスSPIN<L>を受ける。また、Dフリップフロップ881~88Nは、再び、制御パルスSLCK<H>を受ける。その結果、Dフリップフロップ881,882は、制御パルスQ1<H>,Q2<H>を出力する。Dフリップフロップ883~88Nは、制御パルスQ3<L>~QN<L>を出力する。所定期間の経過後、Dフリップフロップ881~88Nは、制御パルスSLCK<L>を受ける。
【0213】
次に、タイミングT4において、Dフリップフロップ891~89Nは、制御パルスSENB<H>を受ける。その結果、ORゲート901,902は、論理パルスESR(1)<H>,ESR(2)<H>を出力する。ORゲート903~90Nは、論理パルスESR(3)<L>~ESR(N)<L>を出力する。これらの論理パルスESR(1)~ESR(N)が出力されるとき、1行目(j=1)と2行目(j=2)の画素回路13Gは、有感状態である。一方、その他の行(j=3~N)の画素回路13Gは、不感状態である。所定期間の後に、Dフリップフロップ891~89Nは、制御パルスSENB<L>を受ける。
【0214】
次に、タイミングT5において、Dフリップフロップ881~88Nは、制御パルスSENB<L>を受ける。Dフリップフロップ881,882は、制御パルスQ1<H>,Q2<H>を出力し続ける。一方、Dフリップフロップ883~88Nは、制御パルスQ3<L>~QN<L>を出力し続ける。
【0215】
次に、タイミングT6において、Dフリップフロップ881~88Nは、再び、制御パルスSLCK<H>を受ける。その結果、Dフリップフロップ882,883は、制御パルスQ2<H>,Q3<H>を出力する。一方、Dフリップフロップ881,884~88Nは、制御パルスQ1<L>,Q4<L>~QN<L>を出力する。所定期間の経過後、Dフリップフロップ881~88Nは、制御パルスSLCK<L>を受ける。
【0216】
次に、タイミングT7において、Dフリップフロップ881~88Nは、再び、制御パルスSLCK<H>を受ける。その結果、Dフリップフロップ883,884は、制御パルスQ3<H>,Q4<H>を出力する。一方、Dフリップフロップ881,882,885~88Nは、制御パルスQ1<L>,Q2<L>,Q5<L>~QN<L>を出力する。所定期間の経過後、Dフリップフロップ881~88Nは、制御パルスSLCK<L>を受ける。
【0217】
次に、タイミングT8において、Dフリップフロップ891~89Nは、制御パルスSENB<H>を受ける。その結果、ORゲート903,904は、論理パルスESR(3)<H>,ESR(4)<H>を出力する。ORゲート901,902,905~90Nは、論理パルスESR(1)<L>,ESR(2)<L>,ESR(5)<L>~ESR(N)<L>を出力する。これらの論理パルスESR(1)~ESR(N)が出力されるとき、1行目(j=1)と2行目(j=2)の画素回路13Gは、有感状態から不感状態に切り替わる。3行目(j=3)と4行目(j=4)の画素回路13Gは、不感状態から有感状態に切り替わる。その他の行(j=1,2,5~N)の画素回路13Gは、不感状態を継続する。所定期間の後に、Dフリップフロップ891~89Nは、制御パルスSENB<L>を受ける。
【0218】
以下、同様の動作を繰り返す。そうすると、行スキャンパターン発生回路42Gは、j行及びj+1行に含まれる画素回路13Gを有感とする論理パルスESR(j)<H>,ESR(j+1)<H>を出力する。また、行スキャンパターン発生回路42Gは、その他の行(1~j-1,j+2~N)を不感とする論理パルスESR(1)~ESR(j-1),ESR(j+2)~ESR(N)を出力する。
【0219】
上記のタイミングチャートは、2行づつ走査する場合の例示であった。行スキャンパターン発生回路42Gは、制御パルスSPIN,SLCK,SENBを変更することにより、所望の行数ごとに走査する論理パルスESR(j)を出力可能である。具体的には、n行づつ走査する場合には、n個のクロックパルスを有する制御パルスSLCKと、n個のクロック分のパルス幅を有する制御パルスSPINを行スキャンパターン発生回路42Gに入力すればよい。
【0220】
再び
図27を参照する。論理演算回路44Gの入力は、配線部73Gを介して演算回路12に接続される。論理演算回路44Gの別の入力は、行スキャンパターン発生回路42Gにも接続される。論理演算回路44Gの出力は、配線部74Gを介して複数の画素回路13Gに接続される。論理演算回路44Gは、演算回路12から制御パルスG
1~G
3,G
Dを受けると共に、行スキャンパターン発生回路42Gから論理パルスE
SR(j)を受ける。論理演算回路44Gは、制御パルスG
1~G
3,G
D及び論理パルスE
SR(j)に基づいて、転送制御パルスG
1out(j)~G
3out(j),G
Dout(j)を生成する。論理演算回路44Gは、画素回路13Gに転送制御パルスG
1out(j)~G
3out(j),G
Dout(j)を提供する。
【0221】
論理演算回路44Gは、制御パルスG1~G3,GDと論理パルスESR(j)との論理演算を行う。論理演算の結果、転送制御パルスG1out(j)~G3out(j),GDout(j)が生成される。
【0222】
論理演算回路44Gは、ANDゲート841~843と、バッファ回路851~853,85Dと、インバータ回路86と、ORゲート87と、を有する。バッファ回路851~853,85Dは、第j行目に含まれる画素回路13Gに提供する転送制御パルスG1out(j)~G3out(j),GDout(j)を出力する。論理演算回路44Gは、ANDゲート841~843,84D、バッファ回路851~853,85D、インバータ回路86及びORゲート87の組を画素回路13Gの行の数だけ有する。
【0223】
ANDゲート841~843の入力には、演算回路12及び行スキャンパターン発生回路42Gが接続される。ANDゲート841~843は、配線部73Gから制御パルスG1~G3を受けると共に、行スキャンパターン発生回路42Gから論理パルスESR(j)を受ける。
【0224】
ANDゲート841~843の出力は、バッファ回路851~853に接続される。ANDゲート841~843は、制御パルスG1~G3及び論理パルスESR(j)に基づいて生成した制御パルスG1(j)~G3(j)を出力する。
【0225】
バッファ回路851~853の入力は、ANDゲート841~843の出力に接続される。バッファ回路851~853の出力は、配線741~743に接続される。バッファ回路851~853は、制御パルスG1(j)~G3(j)を整形して転送制御パルスG1out(i)~G3out(i)として配線741~743に出力する。
【0226】
インバータ回路86の入力は、行スキャンパターン発生回路42Gに接続される。インバータ回路86は、行スキャンパターン発生回路42Gから論理パルスESR(j)を受ける。インバータ回路86の出力は、ORゲート87の入力に接続される。インバータ回路86は、ORゲート87の入力に論理パルスESR(j)の反転信号を提供する。ORゲート87の入力には、インバータ回路86の出力と、配線73GDとが接続される。ORゲート87は、インバータ回路86から論理パルスESR(j)の反転信号を受けると共に配線73GDから制御パルスGDを受ける。ORゲート87の出力には、バッファ回路85Dが接続される。
【0227】
ORゲート87は、バッファ回路85Dに制御パルスGD(j)を提供する。バッファ回路85Dの入力には、ORゲート87の出力が接続される。バッファ回路85Dは、ORゲート87から制御パルスGD(j)を受ける。バッファ回路85Dの出力は、配線744に接続される。バッファ回路85Dは、制御パルスGD(j)を整形して転送制御パルスGDout(i)として配線744に出力する。
【0228】
[第8実施形態/素子構成]
図30は、画素回路13Gの構成を示す。画素回路13Gは、光電変換領域21と、読出回路80T
1~80T
3と、を有する。光電変換領域21は、光を受けて電荷を発生させる。読出回路80T
1~80T
3は、配線部75を介して当該電荷に対応する電圧V
O1~V
O3を演算回路12に出力する。
【0229】
光電変換領域21は、フォトダイオードPDと、電荷転送部52Tと、を有する。光電変換領域21は、本件発明者らが開発したラテラル電界制御電荷変調素子(LEFM : Lateral Electric Field control charge Modulator)の原理に基づく構造を有する。ラテラル電界制御電荷変調素子は、電荷輸送路の電界制御を、その側面に設けた複数のゲートによる横方向電界により行い、高速な電子の輸送制御を行う。
【0230】
フォトダイオードPDは、開口部APを介して受けた光に応じた電荷を発生させる。当該電荷は、電荷転送部52Tに提供される。フォトダイオードPDは、例えば870ナノメートルの波長を有する光に応じて電荷を生成する。なお、フォトダイオードPDは、検出の対象となる波長の光に対応して電荷を生成できればよい。
【0231】
電荷転送部52Tは、フォトダイオードPDから提供された電荷を受ける。電荷転送部52Tは、読出回路80T1~80T3のいずれかひとつに選択的に電荷を提供する。電荷転送部52Tは、半導体領域65a,65b,65cと、電荷排出領域23Tと、電荷読出領域22T1~22T3と、制御電極251~253,25Da,25Dbと、を有する。
【0232】
半導体領域65a,65b,65cは、フォトダイオードPDにおいて生じた電荷を収集する。半導体領域65a,65b,65cは、電荷排出領域23T及び電荷読出領域22T1~22T3のいずれかに電荷を輸送する電荷移動経路101を構成する。
【0233】
電荷排出領域23Tは、光電変換領域21から電荷読出領域22T1~22T3へ向かう電荷の電荷移動経路101に配置される。電荷排出領域23Tは、制御電極25Da及び電荷排出領域23Taと、制御電極25Db及び電荷排出領域23Tbと、を有する。一対の制御電極25Da,25Dbは、電荷移動経路101を挟むように配置される。換言すると、制御電極25Daと、制御電極25Dbとの間には、電荷移動経路101が存在する。電荷排出領域23Taは、制御電極25Daに接するように配置される。電荷排出領域23Tbは、制御電極25Dbに接するように配置される。このような制御電極25Da,25Dbの配置によれば、制御電極25Da,25Dbに与える電圧(転送制御パルスGDout(j))に応じて、電荷移動経路101における電位分布を制御できる。
【0234】
図31は、
図30に示す電荷移動経路101を含む一点鎖線CL
31における電位分布を示す。縦軸は電荷移動経路101上の位置を示す。横軸は、電位を示す。さらに、グラフC31aは、
図30におけるフォトダイオードPDの領域に対応する。グラフC31b,C31cは、
図30における制御電極25
Da,25
Dbに挟まれた領域と、その下流側の領域とに対応する。グラフC31dは、制御電極25
2及び電荷読出領域22T
2に対応する。
【0235】
図30に示すように、電荷が発生するフォトダイオードPDから電荷読出領域22T
1~22T
3に至る電荷の移動経路上には、ドレイン領域(制御電極25
Da,25
Db)に挟まれた領域が存在する。そして、ドレイン領域に挟まれた領域における電位は、制御電極25
Da,25
Dbに提供される転送制御パルスG
Dout(j)によって制御される。
【0236】
例えば、制御電極25Da,25Dbに転送制御パルスGDout(j)<H>が提供されたとき、電位はグラフC31bに示すものとなる。この場合には、電荷は、フォトダイオードPD(グラフC31a)から電荷読出領域22T1~22T3に向かって移動する途中で、ドレイン領域に挟まれた領域(グラフC31b)に捉えられ、さらに、電荷排出領域23Ta,23Tbに排出される。つまり、電荷は、フォトダイオードPDから電荷読出領域22T1~22T3に到達できない。グラフC33bに示す電位の分布を、電位の窪みと呼ぶこともある。画素回路13Gがこのような電位分布を有するとき、画素回路13Gは不感である。
【0237】
これに対して、制御電極25Da,25Dbに転送制御パルスGDout(j)<L>が提供されたとき、電位はグラフC31cに示すものとなる。この場合には、電荷は、フォトダイオードPD(グラフC31a)から電荷読出領域22T1~22T3に向かって移動する途中で、ドレイン領域に挟まれた領域(グラフC31b)に捉えられることがない。つまり、電荷は、フォトダイオードPDから電荷読出領域22T1~22T3に到達できる。画素回路13Gがこのような電位分布を有するとき、画素回路13Gは有感であるといえる。
【0238】
つまり、画素回路13Gの有感/不感は、制御電極251~253に提供される転送制御パルスG1out(j)~G3out(j)によって制御されない。画素回路13Gの有感/不感は、制御電極25Da,25Dbに提供される転送制御パルスGDout(j)によって決まる。例えば、制御電極251に電荷を転送させる転送制御パルスG1out(j)<H>が提供されていても、制御電極25Da,25Dbに電荷を転送させる転送制御パルスGDout(j)<H>が提供されている場合には、その画素回路13Gは不感である。なぜならば、電荷排出領域23Tが光電変換領域21と電荷読出領域22T1との間に設けられているからである。これらの配置によれば、制御電極25Da,25Dbに電荷を転送させる転送制御パルスGDout(j)<H>が提供されている場合には、光電変換領域21において生成した電荷は、電荷読出領域22T1に到達する前に、電荷排出領域23Tに捉えられる。
【0239】
制御電極25Da,25Dbには、配線744が接続される。制御電極25Da,25Dbは、配線744から転送制御パルスGDout(j)を受ける。制御電極25Da,25Dbは、転送制御パルスGDout(j)に応じて、半導体領域65b,65cから電荷排出領域23Tへの電荷の許可と禁止とを切り替える。制御電極25Da,25Dbが転送制御パルスGDout(j)<H>を受けたとき、半導体領域65b,65cから電荷排出領域23Ta,23Tbへの電荷の転送が許可される。制御電極25Da,25Dbが転送制御パルスGDout(j)<L>を受けたとき、半導体領域65b,65cから電荷排出領域23Ta,23Tbへの電荷の転送が禁止される。
【0240】
電荷排出領域23Tは、ハイ電位線VDHに接続される。フォトダイオードPDが光を受けている期間は、電荷が発生し続ける。一方、電荷読出領域22T1~22T3において、電荷に対する所定の処理が行われている間には、電荷読出領域22T1~22T3への電荷の転送が禁止される。そこで、電荷読出領域22T1~22T3への電荷の転送が禁止される期間に発生した電荷を、電荷排出領域23Tが受け入れる。換言すると、電荷排出領域23Tが電荷を受け入れている期間は、電荷読出領域22T1~22T3に電荷が蓄積されない。
【0241】
電荷読出領域22T1~22T3は、制御電極251~253を介して半導体領域65cに接続される。制御電極251~253は、配線741~743にそれぞれ接続される。制御電極251~253は、配線741~743から転送制御パルスG1out(j)~G3out(j)を受ける。制御電極251~253は、転送制御パルスG1out(j)~G3out(j)に応じて、半導体領域65cから電荷読出領域22T1~22T3のいずれかひとつへ電荷を転送する。
【0242】
例えば、制御電極251が転送制御パルスG1out(j)<H>を受けると共に、制御電極252,253が転送制御パルスG2out(j)<L>,G3out(j)<L>を受けたとき、半導体領域65cから電荷読出領域22T1へ電荷が転送される。制御電極252が転送制御パルスG2out(j)<H>を受けると共に、制御電極251,253が転送制御パルスG1out(j)<L>,G3out(j)<L>を受けたとき、半導体領域65cから電荷読出領域22T2へ電荷が転送される。制御電極253が転送制御パルスG3out(j)<H>を受けると共に、制御電極251,252が転送制御パルスG1out(j)<L>,G2out(j)<L>を受けたとき、半導体領域65cから電荷読出領域22T3へ電荷が転送される。
【0243】
電荷読出領域22T1~22T3は、読出回路80T1~80T3にそれぞれ接続される。読出回路80T1~80T3の入力は、電荷読出領域22T1~22T3にそれぞれ接続される。読出回路80T1~80T3の出力は、配線751~753にそれぞれ接続される。一方、読出回路80T1~80T3の回路構成は、互いに共通である。以下、読出回路80T1の回路構成について詳細に説明し、読出回路80T2,80T3の説明は省略する。
【0244】
読出回路80T1は、キャパシタ91と、MOSトランジスタ92と、電圧検出手段26Tと、を有する。
【0245】
キャパシタ91の一端は、電荷読出領域22T1に接続される。キャパシタ91の他端は、基準電位線に接続される。
【0246】
MOSトランジスタ92は、読出動作後に電荷読出領域22T1に残留する電荷を排出する。MOSトランジスタ92は、いわゆる電荷読出領域22T1をリセットするためのものである。MOSトランジスタ92のソースは、電荷読出領域22T1に接続される。MOSトランジスタ92のゲートは、図示しない配線を介してリセットパルスRTを受ける。MOSトランジスタ92のドレインは、リセット電位線VDRに接続される。
【0247】
電圧検出手段26Tは、MOSトランジスタ93,94を有する。MOSトランジスタ93,94は、いわゆるソースフォロワアンプを構成する。MOSトランジスタ93は、電荷読出領域22T1に蓄積された電荷に対応する電圧を出力する。MOSトランジスタ93のソースは、MOSトランジスタ94のドレインに接続される。MOSトランジスタ93のゲートは、電荷読出領域22T1に接続される。MOSトランジスタ93のドレインは、リセット電位線VDRに接続される。MOSトランジスタ94は、配線751へのMOS電圧の提供と停止と読出制御パルスSLに応じて切り替える。MOSトランジスタ94のソースは、配線751に接続される。MOSトランジスタ94のゲートは、図示しない配線を介して読出制御パルスSLを受ける。MOSトランジスタ94のドレインは、MOSトランジスタ93のソースに接続される。
【0248】
[第8実施形態/作用効果]
第8実施形態の距離画像取得装置1Gも、第1実施形態の距離画像取得装置1と同様の効果を奏することができる。つまり、距離画像取得装置1Gは、オーバーサンプリング及び積算によって、測定対象物が高速移動する場合であっても良好な計測結果を得ることができる。
【0249】
第8実施形態の距離画像取得装置1Gは、第1実施形態の距離画像取得装置1と同様に、所定の行に含まれる画素回路13Gを一括して有感ピクセル領域AEに設定することが可能である。さらに、所定の行に含まれない画素回路13Gを一括して、不感ピクセル領域ANに設定することが可能である。従って、第8実施形態の距離画像取得装置1Gも、オーバーサンプリング及び積算動作をさせることができる。
【0250】
[第9実施形態]
次に、第9実施形態の距離画像取得装置1H(
図32参照)が有する距離画像センサ10Hの構成について、第1実施形態との相違点を中心に説明する。距離画像センサ10Hも、第8実施形態の距離画像センサ10Gと同様に、ドレインの制御によって画素回路13Hの有感/不感を制御する画素構成と画素制御を採用する。つまり、距離画像センサ10Hは、ドレインゲート(制御電極25
Da,25
Db)の駆動のみによって有感/不感を制御できる。また、距離画像センサ10Hは、画素回路13Hの内部にドライバ回路を含まない。しかし、距離画像センサ10Hは、距離画像センサ10Gとは異なる画素構成を採用する。距離画像センサ10Hは、転送制御パルスG
Dout(j)のみを水平方向から与える。
【0251】
図32は、画素回路13Hと周辺回路31Hとの接続構成を示す図である。距離画像センサ10Hは、第1実施形態にかかる距離画像センサ10と比較して、周辺回路31Hの構成が異なる。また、距離画像センサ10Hは、距離画像センサ10と比較して、画素回路13Hの素子構成及び回路構成が異なる。画素回路13Hは、第8実施形態の画素回路13Gと同様のいわゆる3タップ型の構成である。
【0252】
距離画像センサ10Hは、複数の画素回路13Hと、周辺回路31Hと、配線744と、を有する。画素回路13Hは、信号電荷処理領域17Tを有する。画素回路13Hは、画素回路13Gと同様に、画素回路13が有するNOR型ドライバ回路411~414に相当する構成要素を有しない。また、画素回路13Hは、画素回路13が有するNAND型ドライバ回路415に相当する構成要素を有しない。配線744は、周辺回路31Hを画素回路13Hの制御電極25Dに接続する。
【0253】
周辺回路31Hは、分配回路33Hと、インバータ回路ユニット38Hと、画素切替回路34Hと、を有する。
【0254】
分配回路33Hの入力は、配線部73Hを介して演算回路12に接続される。分配回路33Hは、演算回路12から制御パルスG1,G2,G3を受ける。分配回路33Hの出力は、インバータ回路ユニット38Hに接続される。分配回路33Hは、分配された制御パルスG1,G2,G3の反転信号をインバータ回路ユニット38Hへ提供する。
【0255】
インバータ回路ユニット38Hは、第1実施形態のインバータ回路ユニット38と同様の回路構成と機能とを有する。つまり、インバータ回路ユニット38Hは、分配回路33Hから制御パルスG1,G2,G3の反転信号を受け、画素回路13Hへ反転及び成形された転送制御パルスG1out,G2out,G3outを提供する。
【0256】
インバータ回路ユニット38Hと画素アレイ14Hとの接続構成は、第1実施形態のインバータ回路ユニット38と画素アレイ14との接続構成と同じである。つまり、画素アレイ14Hは、横方向に並ぶ3個の画素回路13H1~13H3をひとつの組として扱われる。
【0257】
画素回路13H1~13H3における制御電極251は、配線761によって相互に接続される。そして、配線761には、インバータ回路ユニット38Hから延びる配線471が接続される。配線471は、画素回路13H1と画素回路13H2との間に設けられる。配線471と配線761との接続点は、行ごとに設けられる。同様に、画素回路13H1~13H3の制御電極252は、配線762によって相互に接続される。画素回路13H1~13H3の制御電極253は、配線763によって相互に接続される。配線762,763には、インバータ回路ユニット38Hから延びる配線472,473が接続される。配線472は、画素回路13H2と画素回路13H3との間に設けられる。配線473は、画素回路13H3と画素回路13H1との間に設けられる。
【0258】
制御電極25Dに転送制御パルスGDout(j)を提供する回路構成は、第8実施形態と同様である。つまり、横方向に延びる配線744に複数の支線が接続される。支線のそれぞれは、j行に含まれる画素回路13H1~13H3のそれぞれに接続される。従って、第9実施形態の距離画像センサ10Hも、第8実施形態の距離画像センサ10Gと同様に、行全体の画素回路13H1~13H3を一括して有感から不感に切り替えることができる。また、距離画像センサ10Hは、行全体の画素回路13H1~13H3を一括して不感から有感に切り替えることができる。
【0259】
画素切替回路34Hの入力は、配線部72Hを介して演算回路12に接続される。画素切替回路34Hは、演算回路12から制御パルスSPIN,SLCK,SENB,SDENB及び制御パルスGDを受ける。画素切替回路34Hは、制御パルスSPIN,SLCK,SENB,SDENB及び制御パルスGDに基づいて、転送制御パルスGDout(j)を生成する。そして、画素切替回路34Hは、配線744を介して画素回路13Hに接続される。画素切替回路34Hは、画素回路13Hに転送制御パルスGDout(j)を提供する。
【0260】
つまり、画素切替回路34Hは、転送制御パルスGDout(j)のみを出力し、転送制御パルスG1out(j)~G3out(j)を出力しない点で、第8実施形態の駆動回路34Gと相違する。
【0261】
図33に示すように、画素切替回路34Hは、行スキャンパターン発生回路42Hと、論理演算回路44Hと、を有する。行スキャンパターン発生回路42Hの構成及び機能は、第8実施形態の行スキャンパターン発生回路42Gと同様である。従って、行スキャンパターン発生回路42Hの詳細な説明は省略する。
【0262】
論理演算回路44Hの入力は、演算回路12及び行スキャンパターン発生回路42Hに接続される。また、論理演算回路44Hの出力は、配線744を介して複数の画素回路13Hに接続される。論理演算回路44Hは、演算回路12から制御パルスGDを受けると共に、行スキャンパターン発生回路42Hから論理パルスESR(j)を受ける。論理演算回路44Hは、制御パルスGDと論理パルスESR(j)との論理演算を行う。論理演算の結果、論理演算回路44Hは、転送制御パルスGDout(j)を生成する。論理演算回路44Hは、転送制御パルスGDout(j)を画素回路13Hに提供する。
【0263】
論理演算回路44Hは、バッファ回路85Dと、インバータ回路86と、ORゲート87と、を有する。バッファ回路85D、インバータ回路86及びORゲート87の接続構成は、第8実施形態と同様である。また、バッファ回路85D、インバータ回路86及びORゲート87の動作も、第8実施形態と同様である。
【0264】
[第9実施形態/素子構成]
図34は、画素回路13H
1の構成を示す。画素回路13H
1の構成は、画素回路13Gとおおむね同じである。画素回路13Gは、転送制御パルスG
1out(j)~G
3out(j)を受ける。一方、画素回路13H
1は、転送制御パルスG
1out~G
3outを受ける。さらに、画素回路13Gは、制御電極25
1~25
3が駆動回路34Gから転送制御パルスG
1out(j)~G
3out(j)を受ける。一方、画素回路13Hは、制御電極25
1~25
3がインバータ回路ユニット38Hから転送制御パルスG
1out~G
3outを受ける。つまり、画素回路13Hは、制御電極25
1~25
3が縦方向に延びる配線47
1~47
3から転送制御パルスG
1out~G
3outを受ける。また、画素回路13Hは、制御電極25
Da,25
Dbが横方向に延びる配線74
4から転送制御パルスG
Dout(j)を受ける。
【0265】
上記の接続構成を除き、画素回路13Hが有する光電変換領域21及び読出回路80T1~80T3の構成及び機能は、画素回路13Gと同じである。
【0266】
[第9実施形態/作用効果]
第9実施形態の距離画像取得装置1Hも、第1実施形態の距離画像取得装置1と同様の効果を奏することができる。つまり、距離画像センサ10Hは、オーバーサンプリング及び積算によって、測定対象物が高速移動する場合であっても良好な計測結果を得ることができる。
【0267】
第9実施形態の距離画像取得装置1Hは、第1実施形態の距離画像取得装置1と同様に、所定の行に含まれる画素回路13Hを一括して有感ピクセル領域AEに設定することが可能である。さらに、所定の行に含まれない画素回路13Hを一括して、不感ピクセル領域ANに設定することが可能である。従って、第9実施形態の距離画像取得装置1Hも、オーバーサンプリング及び積算動作をさせることができる。
【0268】
第9実施形態の距離画像取得装置1Hも、第1実施形態の距離画像取得装置1と同様に、分配回路33Hと画素回路13Hとを電気的に接続する複数の配線471~473を分離して配置する構成により、異なる転送制御パルスG1out~G3outの間のクロストークを防止して安定したピクセルの駆動が実現でき、結果として距離分解能の高い距離画像の生成が可能となる。
【0269】
[第10実施形態]
次に、第10実施形態の距離画像取得装置1J(
図35参照)が有する距離画像センサ10Jの構成について、第1実施形態との相違点を中心に説明する。距離画像センサ10Jも、第8実施形態の距離画像センサ10Gと同様に、ドレインの制御によって画素回路13Jの有感/不感を制御する画素構成と画素制御を採用する。しかし、距離画像センサ10Jは、距離画像センサ10Gとは異なる画素構成を採用する。具体的には、距離画像センサ10Jの画素回路13J
3は、画素内に制御電極25
Da,25
Dbのためのドライバ(NAND型ドライバ回路41
5)を有する。
【0270】
図35は、画素回路13J
1~13J
3と周辺回路31Jとの接続構成を示す図である。距離画像センサ10Jは、第1実施形態にかかる距離画像センサ10と比較して、周辺回路31Jの構成が異なる。また、距離画像センサ10Jは、距離画像センサ10と比較して、画素回路13J
1~13J
3の素子構成及び回路構成が異なる。画素回路13J
1~13J
3は、第8実施形態の画素回路13Gと同様のいわゆる3タップ型の構成である。
【0271】
距離画像センサ10Jは、複数の画素回路13J1~13J3と、周辺回路31Jと、配線744と、を有する。画素回路13J1~13J3は、信号電荷処理領域17Tを有する。画素回路13J1,13J2は、画素回路13Gと同様に、画素回路13が有するNOR型ドライバ回路411,412に相当する構成要素を有しない。一方、画素回路13J3は、NAND型ドライバ回路415を有する。NAND型ドライバ回路415は、第1実施形態の画素回路135が有するNAND型ドライバ回路415と同じ構成と機能とを有する。換言すると、第10実施形態の画素回路13J3は、第8実施形態の画素回路13Gと比較して、NAND型ドライバ回路415を有する点で相違する。
【0272】
周辺回路31Jは、分配回路33Jと、インバータ回路ユニット38Jと、画素切替回路34Jと、を有する。
【0273】
分配回路33Jの入力は、配線部73Jを介して演算回路12に接続される。分配回路33Jは、演算回路12から制御パルスG1~G3,GDを受ける。分配回路33Jの出力は、インバータ回路ユニット38Jに接続される。分配回路33Jは、分配された制御パルスG1~G3の反転信号と制御パルスGDをインバータ回路ユニット38Jへ提供する。
【0274】
インバータ回路ユニット38Jは、第9実施形態のインバータ回路ユニット38Hが有するインバータ回路351~353に加えて、さらに、インバータ回路355を有する。つまり、インバータ回路ユニット38Jは、分配回路33Jから制御パルスG1~G3の反転信号及び制御パルスGDを受ける。そして、インバータ回路ユニット38Jは、画素回路13J1~13J3へ成形された転送制御パルスG1out~G3out及び制御パルスGDの反転信号を提供する。
【0275】
インバータ回路ユニット38Jと画素アレイ14Jとの接続構成は、第9実施形態のインバータ回路ユニット38Hと画素アレイ14Hとの接続構成と同じである。一方、制御電極25Dに転送制御パルスGDout(j)を提供する回路構成は、第8実施形態及び第9実施形態と異なる。具体的には、画素回路13J3に設けられるNAND型ドライバ回路415は、制御パルスGDの反転信号と論理パルスESR(j)とを受ける。そして、NAND型ドライバ回路415は、転送制御パルスGDout(j)を出力する。
【0276】
画素回路13J1~13J3における制御電極25Dは、配線764によって相互に接続される。配線764には、NAND型ドライバ回路415の出力が接続される。従って、1個のNAND型ドライバ回路415からは、3個の画素回路13J1~13J3に転送制御パルスGDout(j)が提供される。NAND型ドライバ回路415の入力には、配線475に接続されている支線と、配線744に接続されている支線と、が接続される。配線475は、画素回路13J3と画素回路13J1との間に設けられる。配線744は、第j行目の画素回路13J1~13J3と、第j+1行目の画素回路13J1~13J3と、の間に設けられる。NAND型ドライバ回路415は、配線475から制御パルスGDの反転信号を受ける。NAND型ドライバ回路415は、配線744から論理パルスESR(j)を受ける。
【0277】
この接続構成によれば、配線475から提供された制御パルスGDの反転信号を制御電極25Dに提供するか否かを論理パルスESR(j)によって制御することができる。つまり、制御電極25Dへの転送制御パルスの提供と停止とは、横方向から与えられる論理パルスESR(j)によって制御される。その結果、第10実施形態の距離画像センサ10Jも、第8実施形態の距離画像センサ10Gと同様に、論理パルスESR(j)によって行全体の画素回路13J1~13J3を一括して有感から不感に切り替えることができる。また、距離画像センサ10Jは、論理パルスESR(j)によって行全体の画素回路13J1~13J3を一括して不感から有感に切り替えることができる。
【0278】
画素切替回路34Jは、配線部72Jを介して演算回路12に接続される。画素切替回路34Jは、演算回路12から制御パルスSPIN,SLCK,SENB,SDENBを受ける。画素切替回路34Jは、制御パルスSPIN,SLCK,SENB,SDENBに基づいて、論理パルスESR(j)を生成する。そして、画素切替回路34Jは、配線744を介して画素回路13J1~13J3に接続される。画素切替回路34Jは、画素回路13J1~13J3に論理パルスESR(j)を提供する。
【0279】
つまり、画素切替回路34Jは、論理パルスESR(j)のみを出力し、転送制御パルスG1out(j)~G3out(j),GDout(j)を出力しない点で、第8実施形態の駆動回路34Gと相違する。また、画素切替回路34Jは、転送制御パルスGDout(j)ではなく、論理パルスESR(j)を出力する点で、第9実施形態の画素切替回路34Hと相違する。
【0280】
図36に示すように、画素切替回路34Jは、行スキャンパターン発生回路42Jと、論理演算回路44Jと、を有する。行スキャンパターン発生回路42Jの構成及び機能は、第8実施形態の行スキャンパターン発生回路42Gと同様である。従って、行スキャンパターン発生回路42Jの詳細な説明は省略する。
【0281】
論理演算回路44Jは、バッファ回路95を有する。論理演算回路44Jは、行スキャンパターン発生回路42Gから受けた論理パルスESR(j)を配線744に提供する。
【0282】
[第10実施形態/素子構成]
画素回路13J
1~13J
3の回路構成を説明する。ここでは、画素回路13J
1を詳細に説明し、画素回路13J
2,13J
3の詳細な説明を省略する。
図37は、画素回路13J
1の構成を示す。画素回路13J
1は、NAND型ドライバ回路41
5を有する点で、第8実施形態の画素回路13Gと相違する。従って、画素回路13J
1は、横方向から提供される論理パルスE
SR(j)に基づいて、制御電極25
Da,25
Dbへ提供される転送制御パルスG
Dout(j)が制御される。画素回路13J
1のその他の回路構成は、第8実施形態の画素回路13Gと同じである。
【0283】
[第10実施形態/作用効果]
第10実施形態の距離画像取得装置1Jも、第1実施形態の距離画像取得装置1と同様の効果を奏することができる。つまり、距離画像センサ10Jは、オーバーサンプリング及び積算によって、測定対象物が高速移動する場合であっても良好な計測結果を得ることができる。
【0284】
第10実施形態の距離画像取得装置1Jは、第1実施形態の距離画像取得装置1と同様に、所定の行に含まれる画素回路13J1~13J3を一括して有感ピクセル領域AEに設定することが可能である。さらに、所定の行に含まれない画素回路13J1~13J3を一括して、不感ピクセル領域ANに設定することが可能である。従って、第10実施形態の距離画像取得装置1Jも、オーバーサンプリング及び積算動作をさせることができる。
【0285】
第10実施形態の距離画像取得装置1Jも、第1実施形態の距離画像取得装置1と同様に、分配回路33Jと画素回路13Jとを電気的に接続する複数の配線471~473,475を分離して配置する構成により、異なる転送制御パルスG1out~G3out及び制御パルスGDの反転信号間のクロストークを防止して安定したピクセルの駆動が実現でき、結果として距離分解能の高い距離画像の生成が可能となる。
【0286】
なお、本発明は、上述した実施形態の態様に限定されるものではない。
【0287】
距離画像取得装置の動作の変形例について、以下のように4つの例を説明する。
図38~41に示すタイミングチャートは、上述した第1実施形態から第10実施形態のいずれの距離画像センサ10~10Jにも適用することができる。また、第1実施形態の動作と、以下の第1~第4変形例の動作では、画素アレイ14を3つの領域に分割する動作を例示した。この分割数は、3つに限定されない。例えば、分割数は、2であってもよいし、4以上であってもよい。
【0288】
[第1変形例]
図38は、第1変形例の光源11の動作を示すタイミングチャートと論理パルスE
SR(j)のタイミングチャートとを示す。第1実施形態の動作は、1つの期間PF中に1回の期間PEと1回の期間PRとを含んでいた。また、期間PEと期間PRとは互いに時間的に重複することなく、期間PEと期間PRとが交互に実行された。第1変形例の動作も、上記の点において、第1実施形態の動作と同じである。一方、第1実施形態では、光源11は、1回の有感動作中に1回だけ光を照射した。第1変形例では、光源11は、1回の有感動作中に複数回の光照射を行う。
【0289】
まず、期間PE1において、画素切替回路34は、以下のような論理パルスESR(j)を出力する。
論理パルスESR(1)~ESR(N/3):HIGH。
論理パルスESR(N/3+1)~ESR(2N/3):LOW。
論理パルスESR(2N/3+1)~ESR(N):LOW。
【0290】
期間PE1は、期間PE1よりも短い期間P1cを有する。期間P1cにおいて、光源11は、アレイ分割領域L1に入射パルス光LRが入射するようにパルス光LPを複数回照射する。第1変形例では、光源11は、期間P1c中に4回のパルス光LPの照射を行う。
【0291】
次に、期間PE2において、画素切替回路34は、以下のような論理パルスESR(j)を出力する。
論理パルスESR(1)~ESR(N/3):LOW。
論理パルスESR(N/3+1)~ESR(2N/3):HIGH。
論理パルスESR(2N/3+1)~ESR(N):LOW。
【0292】
期間PE2は、期間PE2よりも短い期間P2cを有する。期間P2cにおいて、光源11は、アレイ分割領域L2に入射パルス光LRが入射するようにパルス光LPを複数回照射する。第1変形例では、光源11は、期間P2c中に4回のパルス光LPの照射を行う。
【0293】
次に、期間PE3において、画素切替回路34は、以下のような論理パルスESR(j)を出力する。
論理パルスESR(1)~ESR(N/3):LOW。
論理パルスESR(N/3+1)~ESR(2N/3):LOW。
論理パルスESR(2N/3+1)~ESR(N):HIGH。
【0294】
期間PE3は、期間PE3よりも短い期間P3cを有する。期間P3cにおいて、光源11は、アレイ分割領域L3に入射パルス光LRが入射するようにパルス光LPを複数回照射する。第1変形例では、光源11は、期間P3c中に4回のパルス光LPの照射を行う。
【0295】
以下、期間PE1~PE3の動作をあらかじめ定めた回数だけ繰り返す。この期間PE1~PE3の動作を繰り返す期間は、期間PEである。そして、期間PEの後に期間PRが設定される。期間PRにおいて、画素切替回路34は、以下のような論理パルスESR(j)を出力する。
論理パルスESR(1)~ESR(N/3):LOW。
論理パルスESR(N/3+1)~ESR(2N/3):LOW。
論理パルスESR(2N/3+1)~ESR(N):LOW。
【0296】
第1変形例の動作によれば、第1実施形態の動作と同様に、画素アレイ14の全体において複数回の露光動作の後に、画素アレイ14の全体から信号を読み出すことができる。
【0297】
第1変形例の動作では、周辺回路31の画素切替回路34が有感状態に設定する論理パルスESR(j)を画素アレイ14に提供した状態で、光源制御部12aがパルス光LPを複数回発生させる。つまり、第1変形例の動作では、ひとつのフレームにおいて、複数回の露光動作を行う。また、第1実施形態では、1つの有感期間中に複数回の露光動作を行う。この動作によっても、距離画像センサ10の動作をさらに高速化させることができる。
【0298】
[第2変形例]
図39は、第2変形例の光源11の動作を示すタイミングチャートと論理パルスE
SR(j)のタイミングチャートとを示す。第1実施形態の動作は、期間PEと期間PRとは互いに重複することなく、期間PEと期間PRとが交互に実行された。第2変形例の動作も、上記の点において、第1実施形態の動作と同じである。一方、第1実施形態の動作は、1つの期間PF中に1回の期間PEと1回の期間PRとを含んでいた。これに対して、第2変形例の動作は、1つの期間PF中に複数回の期間PE
1~PE
3と複数回の期間PR
1~PR
3とを有する。
【0299】
まず、期間PE1において、画素切替回路34は、以下のような論理パルスESR(j)を出力する。
論理パルスESR(1)~ESR(N/3):HIGH。
論理パルスESR(N/3+1)~ESR(2N/3):LOW。
論理パルスESR(2N/3+1)~ESR(N):LOW。
【0300】
期間PE1は、期間PE1よりも短い期間P1cを有する。期間P1cにおいて、光源11は、アレイ分割領域L1に入射パルス光LRが入射するようにパルス光LPを複数回照射する。第2変形例では、光源11は、期間P1c中に4回のパルス光LPの照射を行う。その結果、画素アレイ14における第1行目から第N/3行目までに含まれる画素回路13において電荷の蓄積が生じる。
【0301】
次に、期間PR1において、画素切替回路34は、すべての画素回路13を不感に設定する論理パルスESR(j)を出力する。そして、画素アレイ14における第1行目から第N/3行目までに含まれる画素回路13から信号を読み出す。なお、期間PR1は、次の期間PE2の一部に重複してもよい。具体的には、期間PR1は、期間PE2において、論理パルスESR(j)が出力された後であって、光源11からの光照射が開始されるまでの期間であれば重複が許される。
【0302】
次に、期間PE2において、画素切替回路34は、以下のような論理パルスESR(j)を出力する。
論理パルスESR(1)~ESR(N/3):LOW。
論理パルスESR(N/3+1)~ESR(2N/3):HIGH。
論理パルスESR(2N/3+1)~ESR(N):LOW。
【0303】
期間PE2は、期間PE2よりも短い期間P2cを有する。期間P2cにおいて、光源11は、アレイ分割領域L2に入射パルス光LRが入射するようにパルス光LPを複数回照射する。第2変形例では、光源11は、期間P2c中に4回のパルス光LPの照射を行う。その結果、画素アレイ14における第N/3+1行目から第2N/3行目までに含まれる画素回路13において電荷の蓄積が生じる。
【0304】
次に、期間PR2において、画素切替回路34は、すべての画素回路13を不感に設定する論理パルスESR(j)を出力する。そして、画素アレイ14における第N/3+1行目から第2N/3行目までに含まれる画素回路13から信号を読み出す。
【0305】
次に、期間PE3において、画素切替回路34は、以下のような論理パルスESR(j)を出力する。
論理パルスESR(1)~ESR(N/3):LOW。
論理パルスESR(N/3+1)~ESR(2N/3):LOW。
論理パルスESR(2N/3+1)~ESR(N):HIGH。
【0306】
期間PE3は、期間PE3よりも短い期間P3cを有する。期間P3cにおいて、光源11は、アレイ分割領域L3に入射パルス光LRが入射するようにパルス光LPを複数回照射する。第2変形例では、光源11は、期間P3c中に4回のパルス光LPの照射を行う。その結果、画素アレイ14における第2N/3+1行目から第N行目までに含まれる画素回路13において電荷の蓄積が生じる。
【0307】
次に、期間PR3において、画素切替回路34は、すべての画素回路13を不感に設定する論理パルスESR(j)を出力する。そして、画素アレイ14における第2N/3+1行目から第N行目までに含まれる画素回路13から信号を読み出す。
【0308】
以上の期間PE1~PE3及び期間PR1~PR3は、ひとつの期間PF1を構成する。そして、次のフレームである期間PF2が行われる。
【0309】
第2変形例の動作では、周辺回路31が、制御パルスG1~G4,GD及び論理パルスESR(j)を画素アレイ14に出力した状態で、光源制御部12aがパルス光LPを発生させる露光動作と、周辺回路31が、光電変換領域21で発生した電荷に基づく電圧を出力させる読出動作と、を行う。制御パルスG1~G4,GD及び論理パルスESR(j)は、有感ピクセル領域AEを構成する画素回路13において光電変換領域21で発生した電荷を電荷読出領域221~224に移動させると共に、不感ピクセル領域ANを構成する画素回路13において光電変換領域21で発生した電荷を電荷排出領域23に移動させる。周辺回路31及び光源制御部12aは、選択された有感ピクセル領域AEに対する露光動作と、選択された有感ピクセル領域AEを構成した画素回路13に対する読出動作と、を選択する有感ピクセル領域AEを変更しながら繰り返し行う。この動作によれば、選択された有感ピクセル領域AEごとに露光動作と読出動作とを交互に行うことができる。
【0310】
つまり、第2変形例の動作では、第1変形例の動作とは異なり、ひとつのフレームにおいて、露光動作と読出動作とを交互に行う。換言すると、第2変形例の動作では、1行以上の領域に対する露光動作の後に、露光動作を行った行に対して読出動作を行う。続いて、別の1行以上の領域に移行して、同様に露光動作と読出動作とを繰り返す。
【0311】
なお、読出動作では、パルス光LPの周期のうち、画素回路13のゲーティングを行っていない期間を利用して、少なくとも1行に含まれる画素回路13に対して読出動作を行ってもよい。より詳細には、パルス光LPのデューティー比が小さい場合において、その一周期のうち、画素回路13のゲーティングを行っていない期間を利用して、一行又は複数の行に含まれる画素回路13から信号を読み出してもよい。あるいは、複数のパルス光LPの投影のサイクルを利用して、1行に含まれる画素回路13から信号を読み出してもよい。つまり、露光動作のバックグラウンドにおいて、露光動作を行っていない画素回路13から信号を読み出してもよい。
【0312】
[第3変形例]
図40は、第3変形例の光源11の動作を示すタイミングチャートと論理パルスE
SR(j)のタイミングチャートとを示す。第1実施形態の動作は、期間PEと期間PRとは互いに時間的に重複することなく、期間PEと期間PRとが交互に実行された。これに対して、第3変形例の動作は、期間PEと期間PRとが互いに時間的に重複する。
【0313】
まず、期間PE1において露光動作を行う。この露光動作は、第2変形例の期間PE1における露光動作と同様である。露光動作の結果、画素アレイ14における第1行目から第N/3行目までに含まれる画素回路13において電荷の蓄積が生じる。
【0314】
次に、期間PE2において露光動作を行う。この露光動作は、第2変形例の期間PE2における露光動作と同様である。露光動作の結果、画素アレイ14における第N/3+1行目から第2N/3行目までに含まれる画素回路13において電荷の蓄積が生じる。
【0315】
この期間PE2と重複するように、期間PR1が設定される。期間PR1では、画素アレイ14における第1行目から第N/3行目までに含まれる画素回路13から信号を読み出す。期間PR1が開始されるタイミングは、期間PE2が開始されるタイミングと同じであってよい。つまり、期間PR1が開始されるタイミングは、期間PE2に関する論理パルスESR(j)の出力が開始されるタイミングと同時であってもよい。また、期間PR1が開始されるタイミングは、アレイ分割領域L2に入射パルス光LRが入射する位置への光照射が開始されるタイミングと同時であってもよい。一方、期間PR1が終了するタイミングは、期間PE2が終了するタイミングよりも前である。換言すると、期間PR1は、期間PE2よりも短い。
【0316】
次に、期間PE3において露光動作を行う。この露光動作は、第2変形例の期間PE3における露光動作と同様である。露光動作の結果、画素アレイ14における第2N/3+1行目から第N行目までに含まれる画素回路13において電荷の蓄積が生じる。
【0317】
この期間PE3と重複するように、期間PR2が設定される。期間PR2では、画素アレイ14における第N/3+1行目から第2N/3行目までに含まれる画素回路13から信号を読み出す。
【0318】
以上のように、期間PE1,PE2,PE3を含む期間PF1は、ひとつのフレームまたはサブフレームを構成する。
【0319】
そして、再び期間PE1において露光動作を行う。この期間PE1と重複するように、期間PR3が設定される。期間PR3では、画素アレイ14における第2N/3+1行目から第N行目までに含まれる画素回路13から信号を読み出す。
【0320】
第3変形例の動作において、周辺回路31及び光源制御部12aは、有感ピクセル領域AEに対する露光動作と、不感ピクセル領域ANに対する読出動作と、を並行して行う。この動作によれば、ある領域における露光動作と別の領域における読出動作とが並行して行われる。従って、距離画像センサ10の動作をさらに高速化させることができる。
【0321】
[第4変形例]
図41は、第4変形例の光源11の動作を示すタイミングチャートと論理パルスE
SR(j)のタイミングチャートとを示す。第4変形例の動作は、第3変形例と同様に期間PEと期間PRとが互いに重複する。一方、第3変形例の動作では、期間PE
1~PE
3の長さに比べて、期間PR
1~PR
3の長さが短かった。これに対して、第4変形例の動作では、期間PE
1~PE
3の長さに比べて、期間PR
1~PR
3の長さが長い点で相違する。
【0322】
まず、期間PE1において露光動作を行う。この露光動作は、第2変形例の期間PE1における露光動作と同様である。露光動作の結果、画素アレイ14における第1行目から第N/3行目までに含まれる画素回路13において電荷の蓄積が生じる。
【0323】
次に、待機期間PW1において待機動作を行う。この待機動作において、画素切替回路34は、すべての画素回路13を不感に設定するための論理パルスESR(j)を提供する。さらに、待機期間PW1において光源11は、パルス光LPの照射を行わない。
【0324】
次に、期間PE2において露光動作を行う。この露光動作は、第2変形例の期間PE2における露光動作と同様である。露光動作の結果、画素アレイ14における第N/3+1行目から第2N/3行目までに含まれる画素回路13において電荷の蓄積が生じる。
【0325】
次に、待機期間PW2において待機動作を行う。この期間PE2及び待機期間PW2と重複するように、期間PR1が設定される。期間PR1では、画素アレイ14における第1行目から第N/3行目までに含まれる画素回路13から信号を読み出す。期間PR1が開始されるタイミングは、期間PE2が開始されるタイミングと同じであってよい。一方、期間PR1が終了するタイミングは、期間PE2が終了するタイミングよりも後である。換言すると、期間PR1は、期間PE2よりも長い。
【0326】
期間PE2が終了するタイミングから期間PR1が終了するまでのタイミングまでの期間は、待機期間PW2として設定される。つまり、第4変形例の動作では、期間PE1~PE3と待機期間PW1~PW3とが交互に設定される。そして、例えば、ひとつの期間PE2とひとつの待機期間PW2とを合わせた長さは、期間PR1の長さと同じである。
【0327】
次に、期間PE3において露光動作を行う。この露光動作は、第2変形例の期間PE3における露光動作と同様である。露光動作の結果、画素アレイ14における第2N/3+1行目から第N行目までに含まれる画素回路13において電荷の蓄積が生じる。
【0328】
次に、待機期間PW3において待機動作を行う。この期間PE3及び待機期間PW3と重複するように、期間PR2が設定される。期間PR2では、画素アレイ14における第N/3+1行目から第2N/3行目までに含まれる画素回路13から信号を読み出す。
【0329】
以上のように、期間PE1,PW1,PE2,PW2,PE3,PW3を含む期間PF1は、ひとつのフレームまたはサブフレームを構成する。
【0330】
次に、再び期間PE1において露光動作を行う。露光動作の結果、画素アレイ14における第1行目から第N/3行目までに含まれる画素回路13において電荷の蓄積が生じる。
【0331】
次に、待機期間PW1において待機動作を行う。この期間PE1及び待機期間PW1と重複するように、期間PR3が設定される。期間PR3では、画素アレイ14における第2N/3+1行目から第N行目までに含まれる画素回路13から信号を読み出す。
【0332】
変形例4の動作によっても、変形例3と同様の効果を得ることができる。つまり、変形例4の動作によれば、ある領域における露光動作と別の領域における読出動作とが並行して行われる。従って、距離画像センサ10の動作をさらに高速化させることができる。
【0333】
[第5変形例]
第8実施形態の画素回路13Gでは、ラテラル電界制御電荷変調の素子構造を採用した。距離画像センサに採用する素子構造は、この素子構造に限定されない。
図42に示す第5変形例の画素回路13Kは、MOS型の転送ゲートの素子構造を採用する。このような素子構造の画素回路13Kは、例えば、第9実施形態の距離画像センサ10Hに好適に採用できる。
【0334】
第5変形例の距離画像センサ10Kは、画素回路13Kを有する。第5変形例の画素回路13Kは、第8実施形態の画素回路13Gに対して、ドレイン制御のための制御電極25DSの構造が相違する。画素回路13Gの制御電極25Da,25Dbは、電荷移動経路101を挟むように配置されていた。第5変形例の画素回路13Kの制御電極25DSは、電荷移動経路101を跨ぐように配置されている。換言すると、画素回路13Gの制御電極25Da,25Dbは、電荷移動経路101の直上には配置されておらず、これらの制御電極25Da,25Dbから横方向に漏れる電界によって電荷移動経路101における電位を制御した。一方、第5変形例の画素回路13Kの制御電極25DSは、電荷移動経路101の直上に配置されている。つまり、制御電極25DSは、制御電極251~253のように電荷移動経路101における電位を制御電極25DSがその真下に発生させる電界によって直接に制御する。
【0335】
画素回路13Kは、フォトダイオードPD、電荷転送部52S、電荷読出領域22S1,23S2,23S3及び半導体領域66a,66b,66c,66dを有する。半導体領域66aは、開口部APと重複する領域に設けられ、フォトダイオードPDを構成する。半導体領域66bは、フォトダイオードPDを構成する部分と電荷転送部52Sを構成する部分とを有する。また、半導体領域65bは、制御電極25DSの直下に形成されている。半導体領域66cは、電荷転送部52Sを構成する部分を有する。半導体領域66cは、半導体領域65bに重複すると共に制御電極25DSに重複する部分と、電荷排出領域23Sa,23Sbに重複する部分と、を有する。半導体領域66dは、電荷転送部52Sを構成する部分を有する。半導体領域66dは、半導体領域66cに重複する部分と、制御電極251~253に重複する部分と、電荷読出領域22S1,22S2,22S3に重複する部分と、を有する。
【0336】
図43は、
図42に示す電荷移動経路101を含む一点鎖線CL
43における電位分布を示す。縦軸は電荷移動経路101上の位置を示す。横軸は、電位を示す。さらに、グラフC43aは、
図42におけるフォトダイオードPDの領域に対応する。グラフC43b,C43cは、
図42における制御電極25
DSが配置された領域に対応する。グラフC43dは、制御電極25
2に対応する。
【0337】
第8実施形態の画素回路13Gは、制御電極25
Da,25
Dbに提供される転送制御パルスG
Dout(j)が横方向(例えば制御電極25
Daから制御電極25
Dbへ向かう方向)に染み出すことによって、電位の分布が変化する。これに対して、第5変形例の画素回路13Kは、制御電極25
DSに提供される転送制御パルスG
Dout(j)が、横方向への染み出しによらず、直接に電位を変化させる。その結果、
図43に示す第5変形例の画素回路13Kの電位分布は、
図31に示す第8実施形態の画素回路13Kの電位分布と比較すると、電位の窪み(グラフC43b)における電位の落ち込みが急峻である。また、
図43に示す電位分布は、
図31に示す電位分布と比較すると、電位の窪み(グラフC43b)の深さがより深い。このような電位分布によれば、不感状態としたときに、フォトダイオードPDから電荷読出領域22S
1~22S
3への電荷の移動をより確実に抑制することができる。
【0338】
[第6変形例]
図5に示すNOR型ドライバ回路41
1~41
4は、
図5とは異なる記載によって示してもよい。
図44(a)に示すNOR型ドライバ回路41F
1は、NOR型ドライバ回路41
1の別の記載例である。p型MOSトランジスタ43
1、p型MOSトランジスタ44
1及びn型MOSトランジスタ45
1は、
図44(a)に示すように論理回路201によって示してもよい。論理回路201は、3つの入力と1つの出力とを有する。第1の入力は、配線47
1に接続されている。第1の入力は、制御パルスG
1の反転信号を受ける。第2の入力は、配線48
Gに接続されている。第2の入力は、論理パルスE
SR(j)の反転信号を受ける。第3の入力は、配線47
1に接続されている。第3の入力は、制御パルスG
1の反転信号を受ける。出力は、制御電極25
1に接続されている。NOR型ドライバ回路41F
1の動作は、NOR型ドライバ回路41
1の動作と同様である。
【0339】
[第7変形例]
図11に示すNOR型ドライバ回路41A
1~41A
4は、
図11とは異なる記載によって示してもよい。
図44(b)に示すNOR型ドライバ回路41G
1は、NOR型ドライバ回路41A
1の別の記載例である。論理回路201の第1の入力は、配線47a
1に接続されている。第1の入力は、制御パルスG
1pの反転信号を受ける。第2の入力は、配線48
Gに接続されている。第2の入力は、論理パルスE
SR(j)の反転信号を受ける。第3の入力は、配線47b
1に接続されている。第3の入力は、制御パルスG
1nの反転信号を受ける。出力は、制御電極25
1に接続されている。NOR型ドライバ回路41G
1の動作は、NOR型ドライバ回路41A
1の動作と同様である。
【0340】
[第8変形例]
図5に示すNOR型ドライバ回路41
1~41
4は、付加的な要素を含んでもよい。
図45(a)は、NOR型ドライバ回路41
1の変形例であるNOR型ドライバ回路41H
1を示す。NOR型ドライバ回路41H
1は、p型MOSトランジスタ43
1、p型MOSトランジスタ44
1及びn型MOSトランジスタ45
1に加えて、さらに、n型MOSトランジスタ202
1を含む。n型MOSトランジスタ202
1は、p型MOSトランジスタ44
1~44
4のドレイン及びn型MOSトランジスタ45
1~45
4のドレインの接続点73
1と、制御電極25
1との間に接続される。より詳細には、n型MOSトランジスタ202
1のドレインは、接続点73
1と、制御電極25
1との間に接続される。n型MOSトランジスタ202
1のゲートは、配線48
Gを介して画素切替回路34に接続される。n型MOSトランジスタ202
1のゲートは、論理パルスE
SR(j)の反転信号を受ける。n型MOSトランジスタ202
1のソースは、ロー電位線V
DLに接続される。NOR型ドライバ回路41H
1によれば、制御電極25
1のフローティングを抑制できる。
【0341】
[第9変形例]
図11に示すNOR型ドライバ回路41A
1~41A
4も、第8変形例と同様に、フローティングを抑制するための回路構成を採用してよい。つまり、
図45(b)は、NOR型ドライバ回路41A
1の変形例であるNOR型ドライバ回路41K
1を示す。NOR型ドライバ回路41K
1は、p型MOSトランジスタ43
1、p型MOSトランジスタ44
1及びn型MOSトランジスタ45
1に加えて、さらに、n型MOSトランジスタ202
1を含む。
【0342】
[第10変形例]
図5に示すNAND型ドライバ回路41
5は、
図5とは異なる記載によって示してもよい。
図46(a)に示すNAND型ドライバ回路41F
5は、NAND型ドライバ回路41
5の別の記載例である。p型MOSトランジスタ43
5、n型MOSトランジスタ46及びn型MOSトランジスタ45
5は、
図46(a)に示すように論理回路204
5によって示してもよい。論理回路204
5は、3つの入力と1つの出力とを有する。第1の入力は、配線47
5に接続されている。第1の入力は、制御パルスG
Dの反転信号を受ける。第2の入力は、配線48
Dに接続されている。第2の入力は、論理パルスE
SR(j)を受ける。第3の入力は、配線47
5に接続されている。第3の入力は、制御パルスG
Dの反転信号を受ける。出力は、制御電極25
Dに接続されている。NAND型ドライバ回路41F
5の動作は、NAND型ドライバ回路41
5の動作と同様である。
【0343】
[第11変形例]
図11に示すNAND型ドライバ回路41A
5は、
図11とは異なる記載によって示してもよい。
図46(b)に示すNAND型ドライバ回路41G
5は、NAND型ドライバ回路41A
5の別の記載例である。論理回路204
5の第1の入力は、配線47a
5に接続されている。第1の入力は、制御パルスG
Dpの反転信号を受ける。第2の入力は、配線48
Dに接続されている。第2の入力は、論理パルスE
SR(j)を受ける。第3の入力は、配線47b
5に接続されている。第3の入力は、制御パルスG
Dnの反転信号を受ける。出力は、制御電極25
Dに接続されている。NAND型ドライバ回路41G
5の動作は、NAND型ドライバ回路41A
5の動作と同様である。
【0344】
[第12変形例]
図5に示すNOR型ドライバ回路41
5は、付加的な要素を含んでもよい。
図47(a)は、NAND型ドライバ回路41
5の変形例であるNAND型ドライバ回路41H
5を示す。NAND型ドライバ回路41H
5は、p型MOSトランジスタ43
5、n型MOSトランジスタ46及びn型MOSトランジスタ45
5に加えて、さらに、p型MOSトランジスタ205
5を含む。p型MOSトランジスタ205
5は、p型MOSトランジスタ43
5のドレイン及びn型MOSトランジスタ46のドレインの接続点206
5と、制御電極25
Dとの間に接続される。より詳細には、p型MOSトランジスタ205
5のドレインは、接続点206
5と、制御電極25
Dとの間に接続される。p型MOSトランジスタ205
5のゲートは、配線48
Dを介して画素切替回路34に接続される。p型MOSトランジスタ205
5のゲートは、論理パルスE
SR(j)を受ける。p型MOSトランジスタ205
5のソースは、ハイ電位線V
DHに接続される。NAND型ドライバ回路41H
5によれば、制御電極25
Dのフローティングを抑制できる。
【0345】
[第13変形例]
図11に示すNAND型ドライバ回路41A
5も、第12変形例と同様に、フローティングを抑制するための回路構成を採用してよい。つまり、
図47(b)は、NAND型ドライバ回路41A
5の変形例であるNAND型ドライバ回路41K
5を示す。NAND型ドライバ回路41K
5は、p型MOSトランジスタ43
5、n型MOSトランジスタ46及びn型MOSトランジスタ45
5に加えて、さらに、p型MOSトランジスタ205
5を含む。
【0346】
[第14変形例]
図48は、第14変形例の距離画像取得装置が備える画素回路13
1を示す。また、
図49は、画素回路13
1に入力される制御パルスG
1D,G
1U,G
1OUTを示す。
図48では、画素回路13
1のみを抽出し、画素回路13
1が有する読出回路80
1,80
2,80
3,80
4及びNOR型ドライバ回路41
1の構成を示している。
【0347】
読出回路801~804は、キャパシタンス成分811~814と、MOSトランジスタ821~824,931~934,941~944と、を有する。読出回路801~804の入力は、それぞれ光電変換領域21に接続される。読出回路801~804の出力は、配線28を介して演算回路12に接続される。
【0348】
キャパシタンス成分81
1~81
4は、光電変換領域21が発生した電荷を蓄積する。キャパシタンス成分81
1~81
4は、
図3に示す電荷読出領域22
1~22
4に対応する。キャパシタンス成分81
1~81
4の一端は、制御電極25
1~25
4、MOSトランジスタ82
1~82
4,93
1~93
4に接続される。キャパシタンス成分81
1~81
4の他端は、基準電位に接続される。
【0349】
MOSトランジスタ821~824は、電荷読出領域221~224をリセットするためのものである。MOSトランジスタ821~824のソースは、キャパシタンス成分811~814の一端に接続される。MOSトランジスタ821~824のゲートは、読出制御回路27に接続されている。MOSトランジスタ821,823のゲートは、共通のリセットパルスRT2を受ける。MOSトランジスタ822,824のゲートは、共通のリセットパルスRT1を受ける。MOSトランジスタ821~824のドレインは、リセット電位線VDRに接続される。
【0350】
MOSトランジスタ93
1~93
4,94
1~94
4は、いわゆるソースフォロワアンプを構成する。MOSトランジスタ93
1~93
4,94
1~94
4は、
図3に示す電圧検出手段26
1~26
4に対応する。MOSトランジスタ93
1~93
4,94
1~94
4は、キャパシタンス成分81
1~81
4に蓄積された電荷に応じた電圧V
O1,V
O2を発生させ、当該電圧V
O1,V
O2を配線28に出力する。
【0351】
MOSトランジスタ931~934のソースは、MOSトランジスタ941~944のドレインに接続される。MOSトランジスタ931~934のゲートは、電荷読出領域221~224であるキャパシタンス成分811~814に接続される。MOSトランジスタ931~934のドレインは、リセット電位線VDRに接続される。MOSトランジスタ941,943は、配線28へのMOS電圧の提供と停止を読出制御パルスSL2に応じて切り替える。また、MOSトランジスタ942,944は、配線28へのMOS電圧の提供と停止を読出制御パルスSL1に応じて切り替える。MOSトランジスタ941~944のドレインは、配線28に接続される。MOSトランジスタ941~944のゲートは、読出制御回路27に接続される。MOSトランジスタ941,943のゲートは、読出制御パルスSL2を受ける。MOSトランジスタ942,944のゲートは、読出制御パルスSL1を受ける。MOSトランジスタ941~944のドレインは、MOSトランジスタ931~934のソースに接続される。
【0352】
このようなMOSトランジスタ931~934,941~944によれば、読出制御パルスSL1に応じて読出回路802,804が選択される。選択された読出回路802は、配線28を介して電圧VO1を出力する。また、選択された読出回路804は、配線28を介して電圧VO2を出力する。さらに、MOSトランジスタ931~934,941~944によれば、読出制御パルスSL2に応じて読出回路801,803が選択される。選択された読出回路801は、配線28を介して電圧VO1を出力する。また、選択された読出回路803は、配線28を介して電圧VO2を出力する。
【0353】
NOR型ドライバ回路411は、キャパシタンス成分531と、MOSトランジスタ961,971,981,991と、を有する。キャパシタンス成分531の一端は、ハイ電位線VDHに接続される。キャパシタンス成分531の他端は、ロー電位線VDL及びMOSトランジスタ981,991に接続される。
【0354】
MOSトランジスタ96
1,97
1,98
1,99
1は、いずれもn型MOSトランジスタである。さらに、読出回路80
1~80
4が含むMOSトランジスタ81
1~81
4,82
1~82
4,93
1~93
4,94
1~94
4のいずれもn型MOSトランジスタである。つまり、
図48に示す画素回路13
1を構成するMOSトランジスタは、すべてn型である。このような構成によると、画素回路13
1にn型の不純物が注入されたいわゆるエヌウェル(n-well)を設ける必要がない。これにより、光電変換領域で生じた電荷の一部がn-wellに流れ込んで失われ、信号電荷として検出される電荷を減少させることがなくなる。
【0355】
MOSトランジスタ961のドレインは、ハイ電位線VDHに接続される。MOSトランジスタ961のゲートは、画素切替回路34に接続されて、画素切替回路34から論理パルスESR(j)を受ける。MOSトランジスタ961のソースは、MOSトランジスタ971に接続される。
【0356】
MOSトランジスタ971のドレインは、MOSトランジスタ961のソースに接続される。MOSトランジスタ971のゲートは、分配回路33に接続されて、分配回路33から制御パルスG1Uを受ける。MOSトランジスタ971のソースは、MOSトランジスタ981,991及び制御電極251に接続される。
MOSトランジスタ981のドレインは、MOSトランジスタ971のソース、MOSトランジスタ991のドレイン及び制御電極251に接続される。MOSトランジスタ981のゲートは、分配回路33に接続されて、分配回路33から制御パルスG1Dを受ける。MOSトランジスタ981のソースは、ロー電位線VDL、MOSトランジスタ991のソース及びキャパシタンス成分531に接続される。
【0357】
MOSトランジスタ991のドレインは、MOSトランジスタ971のソース、MOSトランジスタ981のドレイン及び制御電極251に接続される。MOSトランジスタ991のゲートは、画素切替回路34に接続されて、画素切替回路34から論理パルスESR(j)の反転信号を受ける。MOSトランジスタ991のソースは、ロー電位線VDL、MOSトランジスタ981のソース及びキャパシタンス成分531に接続される。
【0358】
図50は、第14変形例の距離画像取得装置が備える画素回路13
5を示す。画素回路13
5が有する読出回路80
1,80
2,80
3,80
4及びNAND型ドライバ回路41
5の構成を示す。読出回路80
1,80
2,80
3,80
4は、
図48に示す読出回路80
1,80
2,80
3,80
4と同じであるから、詳細な説明は省略する。
【0359】
NOR型ドライバ回路415は、キャパシタンス成分535と、MOSトランジスタ965,975,985,995と、を有する。キャパシタンス成分535の一端は、ハイ電位線VDHに接続される。キャパシタンス成分535の他端は、ロー電位線VDL及びMOSトランジスタ988に接続される。
【0360】
MOSトランジスタ96
5,97
5,98
5,99
5は、いずれもn型MOSトランジスタである。さらに、読出回路80
1~80
4が含むMOSトランジスタ81
1~81
4,82
1~82
4,93
1~93
4,94
1~94
4のいずれもn型MOSトランジスタである。つまり、
図50に示す画素回路13
5を構成するMOSトランジスタは、すべてn型である。
【0361】
MOSトランジスタ965のドレインは、ハイ電位線VDH及びMOSトランジスタ995のドレインに接続される。MOSトランジスタ965のゲートは、分配回路33に接続されて、分配回路33から制御パルスGDUを受ける。MOSトランジスタ965のソースは、MOSトランジスタ975のドレイン、MOSトランジスタ995のソース及び制御電極25Dに接続される。
MOSトランジスタ975のドレインは、MOSトランジスタ965のソース、MOSトランジスタ995のソース及び制御電極25Dに接続される。MOSトランジスタ975のゲートは、分配回路33に接続されて、分配回路33から制御パルスGDDを受ける。MOSトランジスタ975のソースは、MOSトランジスタ985に接続される。
【0362】
MOSトランジスタ985のドレインは、MOSトランジスタ975のソースに接続される。MOSトランジスタ985のゲートは、画素切替回路34に接続されて、画素切替回路34から論理パルスESR(j)を受ける。MOSトランジスタ985のソースは、ロー電位線VDL及びキャパシタンス成分535に接続される。
【0363】
MOSトランジスタ995のドレインは、ハイ電位線VDH及びMOSトランジスタ965のドレインに接続される。MOSトランジスタ995のゲートは、画素切替回路34に接続されて、画素切替回路34から論理パルスESR(j)の反転信号を受ける。MOSトランジスタ995のソースは、MOSトランジスタ965のソース、MOSトランジスタ975のドレイン及び制御電極535に接続される。
【0364】
[第15変形例]
図51は、第15変形例の距離画像取得装置が備える画素回路13
1を示す。第15変形例の距離画像取得装置の画素回路13
1は、ドライバ回路41
1を備えない。
図51に示す画素回路13
1の制御電極25
1は、分配回路33からデプレッション型MOSスイッチのみを介して、転送制御パルスG
1OUTを受ける。画素回路13
2~13
4についても同様の構成を有する。
【0365】
以下、
図51及び
図52に示す画素回路13
1,13
5について説明する。なお、
図51及び
図52に示す画素回路13
1,13
5において、読出回路80
1~80
4は、
図48に示す画素回路13
1の読出回路80
1~80
4と同じである。従って、読出回路80
1~80
4の詳細な説明は省略する。
【0366】
図51に示すように、画素回路13
1は、NOR型ドライバ回路41
1に代えて、スイッチ回路120
1を有する。スイッチ回路120
1は、キャパシタンス成分121
1と、MOSトランジスタ122
1と、を有する。キャパシタンス成分121
1の一端は、ハイ電位線V
DHに接続される。キャパシタンス成分121
1の他端は、ロー電位線V
DLに接続される。MOSトランジスタ122
1のドレインは、分配回路33に接続されて、分配回路33から転送制御パルスG
1を受ける。MOSトランジスタ122
1のゲートは、画素切替回路34に接続されて、画素切替回路34から論理パルスE
SR(j)を受ける。MOSトランジスタ122
1のソースは、制御電極25
1のゲートに接続される。
【0367】
図51に示す画素回路13
1によれば、転送制御パルスG
1の印加に対応する回路構成として、画素回路13
1は、1個のMOSトランジスタ122
1及び1個のキャパシタンス成分121
1のみを有する。その結果、画素回路13
1の回路面積を縮小することができる。
【0368】
図52は、第15変形例の距離画像取得装置が備える画素回路13
5を示す。
図52に示すように、画素回路13
5は、NANDドライバ回路41
5を備えていない。画素回路13
5の制御電極25
Dは、分配回路33から直接に転送制御パルスG
Dを受ける。画素回路135は、キャパシタンス成分121
5を有する。キャパシタンス成分121
5の一端は、ハイ電位線V
DHに接続される。キャパシタンス成分121
5の他端は、ロー電位線V
DLに接続される。
【0369】
第15変形例の距離画像取得装置は、
図53に示すタイミングチャートに従って動作する。画素回路13
1~13
5は、一連の連続制御パルスG
1~G
4のうち最後の制御パルスG
4と、次の一連の連続制御パルスG
1~G
4の先頭の制御パルスG
1と、の間に、制御電極25
Dに制御パルスG
Dを印加する。その結果、不感ピクセル領域ANの制御電極25
1~25
4に転送制御パルスG
1OUT~G
4OUTが印加されなければ、不感ピクセル領域ANの光電荷は、ドレインに排出される。従って、制御電極25
Dに対して、画素切替回路34からの論理パルスE
SR(j)は必要ない。
【0370】
[第11実施形態]
次に、第11実施形態の距離画像取得装置について説明する。第1実施形態の距離画像取得装置1は、
図2に示すように測定対象領域Aの全幅をカバーするように高さ方向の一部にパルス光L
Pを照射した。一方、第11実施形態の距離画像取得装置は、測定対象領域を高さ方向に分割する。さらに、第11実施形態の距離画像取得装置は、DOE(Diffractive Optical Element)などを用いて、分割した全ての測定対象領域の高さ方向の一部に対応するようにパルス光L
Pを測定対象領域の分割数に応じて分割する。そして、第11実施形態の距離画像取得装置は、分割した全ての測定対象領域の高さ方向の一部にパルス光L
Pを同時に照射する。以下の説明では、測定対象領域を縦方向(高さ方向)のみに分割する動作を例に説明する。しかし、距離画像取得装置は、測定対象領域を横方向(幅方向)のみに分割する動作も当然に実施可能である。さらに、距離画像取得装置は、測定対象領域を高さ方向及び横方向の両方で分割する動作も実施可能である。
【0371】
図54は、画素アレイ14Lを縦方向に3つに分割した測定対象領域に対応した分割画素アレイ領域と、分割した全ての分割画素アレイ領域におけるアレイ分割領域L
1,L
2,L
3と、有感ピクセル領域AEと、不感ピクセル領域ANと、を模式的に示す。アレイ分割領域L
1~L
3とは、入射パルス光L
Rが分割されて同時に入射すると予想される領域である。
【0372】
図54(a)は、第1の動作態様における有感ピクセル領域と不感ピクセル領域とを示す図である。
図54(b)は、第2の動作態様における有感ピクセル領域と不感ピクセル領域とを示す図である。
図54(c)は、第3の動作態様における有感ピクセル領域と不感ピクセル領域とを示す図である。
図55は、第11実施形態の距離画像取得装置が備える光源11の動作を示すタイミングチャートと制御電極25
1,25
2,25
3,25
4,25
Dに印加する転送制御パルスG
1out~G
4out,G
Dout、および、論理パルスE
SR(j)のタイミングチャートとを示す。転送制御パルスG
1out,G
2out,G
3out,G
4out,G
Doutは、論理パルスE
SR(j)及び/或いは論理パルスE
SR(j)の反転信号によって画素回路を有感とする信号と不感とする信号とに制御される。
【0373】
L1(1)、L1(2)、L1(3)、L2(1)、L2(2)、L2(3)、L3(1)、L3(2)、L3(3)の(1)、(2)、(3)は、3つに分割した測定対象領域に対応した分割画素アレイ領域を示す。L1、L2、L3は、縦方向に3つに分割した分割画素アレイ領域の中の3つのアレイ分割領域(行ブロック)L1、L2、L3を示している。L1(1)、L1(2)、L1(3)は、分割された入射パルス光LRが、第1の動作態様においてアレイ分割領域(行ブロック)L1(1)、L1(2)、L1(3)に同時に入射することを示す。光源11は、次に、第2の動作態様において入射パルス光LRをアレイ分割領域(行ブロック)L2(1)、L2(2)、L2(3)に同時に入射させる。さらに、光源11は、その次に第3の動作態様において入射パルス光LRをアレイ分割領域(行ブロック)L3(1)、L3(2)、L3(3)に同時に入射させる。
【0374】
[第16変形例]
次に、第11実施形態の第16変形例の距離画像取得装置1Mについて説明する。
【0375】
第7実施形態の距離画像取得装置1Fは、行ブロックごとに画素回路13Fの動作を有感又は不感に設定する動作に加えて、さらに、列ブロックごとに有感又は不感に設定する動作を行った。これらの動作によると、
図23に示すように、画素アレイ14Fにおいて特定の領域を有感ピクセル領域AEに設定し、その他の領域を不感ピクセル領域ANに設定することができる。有感ピクセル領域AEは、
図23における左から右に順に列ブロックごとに移動したのちに、次の行ブロックへ移動することができる。
【0376】
これに対し、第16変形例の距離画像取得装置1Mは、
図56に示すように、画素アレイ14Mを、測定対象領域の高さ方向と幅方向に相当する縦方向と横方向に3×4の領域に分割する。これらの領域は、分割した測定対象領域に対応した分割画素アレイ領域である。距離画像取得装置1Mは、全ての分割画素アレイ領域において、行ブロックごとに画素回路13Mの動作を有感又は不感に設定する動作と、列ブロックごとに有感又は不感に設定する動作と、を行う。これらの動作によると、
図56に示すように、画素アレイ14Mの分割画素アレイ領域の全てにおいて特定の領域を有感ピクセル領域AEに設定し、その他の領域を不感ピクセル領域ANに設定することができる。有感ピクセル領域AEは、全ての分割画素アレイ領域において
図56における左から右に順に列ブロックごとに移動したのちに、次の行ブロックへ移動することができる。
図56では、全ての分割画素アレイ領域は、縦方向に3つの行ブロック、横方向に2つの列ブロックを有する。
【0377】
距離画像センサ10Mは、画素アレイ14Mと、演算回路12Mと、周辺回路31Mと、を有する。周辺回路31Mは、読出制御回路27Mと、分配回路33Mと、画素切替回路(列)54Mと、論理演算回路55Mと、画素切替回路(行)56Mと、を有する。
【0378】
広い面を照射する光源の場合、ある微小な測定点に対し、多くの場所からのマルチパス光が入射する。その結果、マルチパス光の影響で距離測定の精度が制限されてしまう。DOEと狭い照射領域の走査ができる光源と、光源に同期して有感制御及び不感制御ができる距離画像取得装置1Mを用いることにより、測定点だけの反射光と離れた狭い照射領域からの微小なマルチパス成分のみの影響で、精度の高い距離測定を行うことができる。
【符号の説明】
【0379】
1…距離画像取得装置、11…光源、31…周辺回路、12a…光源制御部、13…画素回路(画素回路部)、14…画素アレイ、21…光電変換領域、22…電荷読出領域、23…電荷排出領域、27…読出制御回路、33…分配回路、34…画素切替回路、A…測定対象領域、AE…有感ピクセル領域、AN…不感ピクセル領域、251~254,25D…制御電極、LP…パルス光,LR…入射パルス光、R…照射領域、S…対象物。