IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東北電力株式会社の特許一覧 ▶ 株式会社アイチコーポレーションの特許一覧

<>
  • 特許-高所作業車の安全装置 図1
  • 特許-高所作業車の安全装置 図2
  • 特許-高所作業車の安全装置 図3
  • 特許-高所作業車の安全装置 図4
  • 特許-高所作業車の安全装置 図5
  • 特許-高所作業車の安全装置 図6
  • 特許-高所作業車の安全装置 図7
  • 特許-高所作業車の安全装置 図8
  • 特許-高所作業車の安全装置 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-11
(45)【発行日】2024-09-20
(54)【発明の名称】高所作業車の安全装置
(51)【国際特許分類】
   B66F 9/24 20060101AFI20240912BHJP
   B66F 11/04 20060101ALI20240912BHJP
【FI】
B66F9/24 F
B66F11/04
【請求項の数】 3
(21)【出願番号】P 2020149617
(22)【出願日】2020-09-07
(65)【公開番号】P2022044140
(43)【公開日】2022-03-17
【審査請求日】2023-08-29
(73)【特許権者】
【識別番号】000222037
【氏名又は名称】東北電力株式会社
(73)【特許権者】
【識別番号】000116644
【氏名又は名称】株式会社アイチコーポレーション
(74)【代理人】
【識別番号】100115808
【弁理士】
【氏名又は名称】加藤 真司
(74)【代理人】
【識別番号】100113549
【弁理士】
【氏名又は名称】鈴木 守
(74)【代理人】
【識別番号】100092897
【弁理士】
【氏名又は名称】大西 正悟
(74)【代理人】
【識別番号】100157417
【弁理士】
【氏名又は名称】並木 敏章
(74)【代理人】
【識別番号】100218095
【弁理士】
【氏名又は名称】山崎 一夫
(72)【発明者】
【氏名】宮古 尚
(72)【発明者】
【氏名】大葉 孝明
【審査官】八板 直人
(56)【参考文献】
【文献】特開平11-157798(JP,A)
【文献】実開平04-006206(JP,U)
【文献】米国特許出願公開第2004/0000530(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B66F 9/00-11/04
(57)【特許請求の範囲】
【請求項1】
車体に少なくとも起伏動自在に設けられたブームと、
前記ブームの先端部に設けられた作業台と、
前記車体と前記ブームとの間に配設されて前記ブームを起伏動させる起伏シリンダと、
前記起伏シリンダに作用する軸力を検出する軸力検出手段と、
前記軸力検出手段により検出される前記軸力に基づいて、前記車体に作用する前記ブームの起伏軸回りの実モーメントを検出する実モーメント検出手段と、
前記ブームの先端部に設けられ、架設された電線を支持する電線支持部材と、
前記電線支持部材により前記電線が支持されている状態において当該電線から作用する水平方向の荷重を検出する水平荷重検出手段と、
前記水平荷重検出手段により検出された前記水平方向の荷重によって前記車体に作用する前記起伏軸回りの水平荷重モーメントを算出する水平荷重モーメント算出手段と、
前記実モーメント検出手段により検出された実モーメントに前記水平荷重モーメント算出手段により算出された水平荷重モーメントを合成することで当該実モーメントから前記水平方向の荷重の影響を除いた補正モーメントを算出するモーメント補正手段とを備えることを特徴とする高所作業車の安全装置。
【請求項2】
前記実モーメント検出手段により検出された実モーメントを予め設定された規制モーメントと比較し、前記実モーメントが前記規制モーメントを超過したときに前記ブームの作動を規制する規制手段を備え、
前記規制手段は、前記水平荷重検出手段により前記水平方向の荷重が検出されている場合、前記モーメント補正手段により算出された補正モーメントを前記規制モーメントと比較して、前記補正モーメントが前記規制モーメントを超過したときに前記ブームの作動を規制することを特徴とする請求項1に記載の高所作業車の安全装置。
【請求項3】
前記実モーメント検出手段により検出された実モーメントから前記作業台の積載荷重を算出する積載荷重算出手段と、
前記ブームの先端部もしくは前記作業台の位置を検出する位置検出手段と、
前記積載荷重算出手段により算出された積載荷重に応じて設定される許容作業範囲と前記位置検出手段により検出される前記ブームの先端部もしくは前記作業台の位置とを比較し、前記ブームの先端部もしくは前記作業台の位置が前記許容作業範囲を超過したときに前記ブームの作動を規制する規制手段とを備え、
前記積載荷重算出手段は、前記水平荷重検出手段により前記水平方向の荷重が検出されている場合、前記モーメント補正手段により算出された補正モーメントから前記作業台の積載荷重を算出することを特徴とする請求項1に記載の高所作業車の安全装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電線を支持する仮支持装置を備えた高所作業車の安全装置に関する。
【背景技術】
【0002】
電柱の建替え作業や、電柱上にて電線等を支持している碍子等の交換作業を行う場合には、電柱上に支持されている電線を該電柱の代わりに支持させるため、ブームの先端に仮支持装置を備えた高所作業車が利用されている(例えば、特許文献1を参照)。この仮支持装置は、ブームの先端に少なくとも起伏動自在に取り付けられたサブブームと、サブブームの先端に該サブブームと平行に取り付けられて電線を仮支持する仮支持具とを有して構成されている。
【0003】
また、このような高所作業車においては、ブームから車体に作用するブームモーメントが過大となって車体が不安定となることを防止する安全装置が設けられている。この安全装置の一例としては、ブームモーメントが大きくなって所定の規制値に達した場合に、該ブームモーメントが増大する方向へのブームの作動を規制するモーメントリミッタ制御が知られている(例えば、特許文献2を参照)。車体に作用するブームモーメントは、例えば、ブームを上下に起伏動させる起伏シリンダの軸力の大きさに基づいて換算される。そのため、起伏シリンダの基端部には、起伏シリンダに作用する軸力を検出する軸力検出器が設けられており、その検出情報はブームの作動を制御するコントローラに入力される。そして、コントローラでは、軸力検出器により検出される起伏シリンダの軸力に基づいてブームから車体に作用するブームモーメント(実モーメント)を算出し、ブームの作動を規制するか否かを判断するようになっている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2016‐116331号公報
【文献】特開2001‐354396号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、このような高所作業車において、仮支持装置により電線を支持した状態で、ブームを作動させて、この電線を所望の移設場所に移動させたり、作業の支障とならない場所に移動させたりすると、電柱間に架設された該電線の張力(反力)や自重によって仮支持装置に水平方向の荷重(以下、本文中では「水平荷重」と呼称する)が作用して、ブームモーメント(軸力に基づき換算される実モーメント)に影響を与えることとなる。
【0006】
例えば、或る状態からブームを倒伏作動させた場合には、ブームの起伏角度の減少とともに作業半径が拡大して、本来であれば車体に作用する実モーメントが増加するはずであるが、電線を仮支持した状態では、このブームの倒伏作動に伴い電線からの反力(水平荷重)がブームを起仰させる方向に作用するため、その分だけ起伏シリンダにかかる軸力が低下して、実モーメントが減少してしまう結果となる。そのため、ブームの作業半径が所定の作業半径に達したとしても(ブームの先端部が許容作業範囲を逸脱したとしても)、実モーメントが規制値を超過しない限りはブームの作動が規制されず、ブームを継続して倒伏作動させることが可能となる。しかしながら、この状態において仮支持装置から電線を外した場合、それまで仮支持装置に働いていた水平荷重(軸力を低下させていた水平荷重)が作用しなくなることで、実モーメントが急激に増大し、この実モーメントが規制モーメントに達することによって、車体が不安定となったりブームが破損したりするおそれ
があり、作業の安全性が低下するという問題があった。
【0007】
一方、或る状態からブームを起仰作動させた場合には、ブームの起伏角度の増加とともに作業半径が縮小して、本来であれば車体に作用する実モーメントが減少するはずであるが、電線を仮支持した状態では、このブームの起仰作動に伴い電線からの反力(水平荷重)がブームを倒伏させる方向に作用するため、その分だけ起伏シリンダにかかる軸力が上昇して、実モーメントが増加する結果となる(実モーメントが規制モーメントを超えてしまうおそれがある)。そのため、ブームの作業半径が所定の作業半径に達していなくても(ブームの先端部が許容作業範囲を逸脱していなくても)、電線からの反力(水平荷重)が大きい場合には、実モーメントが規制モーメントを超過して、ブームの作動が規制されてしまう場合がある。このブームの作動規制は、ブームモーメントが増加する方向への作動(起伏作動、伸長作動、所定方向への旋回作動)を規制するものであるため、ブームを元の姿勢に戻すことができず(ブームを倒伏作動させることができず)、使い勝手が悪く作業性を低下させる原因ともなっていた。
【0008】
本発明は、このような課題に鑑みてなされたものであり、安全性向上および作業性向上を両立させることのできる高所作業車の安全装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記課題を解決するため、本発明に係る高所作業車の安全装置は、車体に少なくとも起伏動自在に設けられたブームと、前記ブームの先端部に設けられた作業台と、前記車体と前記ブームとの間に配設されて前記ブームを起伏動させる起伏シリンダと、前記起伏シリンダに作用する軸力を検出する軸力検出手段と、前記軸力検出手段により検出される前記軸力に基づいて、前記車体に作用する前記ブームの起伏軸回りの実モーメントを検出する実モーメント検出手段と、前記ブームの先端部に設けられ、架設された電線を支持する電線支持部材と、前記電線支持部材により前記電線が支持されている状態において当該電線から作用する水平方向の荷重を検出する水平荷重検出手段と、前記水平荷重検出手段により検出された前記水平方向の荷重によって前記車体に作用する前記起伏軸回りの水平荷重モーメントを算出する水平荷重モーメント算出手段と、前記実モーメント検出手段により検出された実モーメントに前記水平荷重モーメント算出手段により算出された水平荷重モーメントを合成することで当該実モーメントから前記水平方向の荷重の影響を除いた補正モーメントを算出するモーメント補正手段とを備えることを特徴とする。
【0010】
なお、上記構成の高所作業車の安全装置において、前記実モーメント検出手段により検出された実モーメントを予め設定された規制モーメントと比較し、前記実モーメントが前記規制モーメントを超過したときに前記ブームの作動を規制する規制手段を備え、前記規制手段は、前記水平荷重検出手段により前記水平方向の荷重が検出されている場合、前記モーメント補正手段により算出された補正モーメントを前記規制モーメントと比較して、前記補正モーメントが前記規制モーメントを超過したときに前記ブームの作動を規制することが好ましい。
【0011】
また、上記構成の高所作業車の安全装置において、前記実モーメント検出手段により検出された実モーメントから前記作業台の積載荷重を算出する積載荷重算出手段と、前記ブームの先端部もしくは前記作業台の位置を検出する位置検出手段と、前記積載荷重算出手段により算出された積載荷重に応じて設定される許容作業範囲と前記位置検出手段により検出される前記ブームの先端部もしくは前記作業台の位置とを比較し、前記ブームの先端部もしくは前記作業台の位置が前記許容作業範囲を超過したときに前記ブームの作動を規制する規制手段とを備え、前記積載荷重算出手段は、前記水平荷重検出手段により前記水平方向の荷重が検出されている場合、前記モーメント補正手段により算出された補正モーメントから前記作業台の積載荷重を算出する構成としてもよい。
【発明の効果】
【0012】
本発明に係る高所作業車の安全装置によれば、電線支持部材に作用する水平荷重の影響
を排除した補正モーメントを算出して、この補正モーメントに基づきブームの作動制御を行うことで、水平荷重の作用方向および大きさの如何に拘わらず、実際のブームの作動姿勢(作業半径)に応じた作動制御を行うことができるため、ブームの先端部(作業台)が許容作業範囲を逸脱しても作動規制が掛からなかったり、本来安全な許容作業範囲内であるにも拘わらず作動規制が掛かったりすることで生じる不具合を未然に防止することができるようになり、その結果、作業の安全性および使い勝手を向上させることが可能となる。
【図面の簡単な説明】
【0013】
図1】本実施形態に係る安全装置を備えた高所作業車の側面図である。
図2】上記高所作業車の作業台及びサブブーム装置を示す図であり、(A)は側面図、(B)は斜視図である。
図3】上記サブブーム装置の仮支持具を示す図である、
図4】上記安全装置の機能ブロック図である。
図5】上記高所作業車に備えられた安全装置の機能を説明するための図である。
図6】上記仮支持具に作用する水平荷重のうち起伏面内に作用する荷重成分を説明するための図である。
図7】ブームを倒伏作動させたときのモーメントと水平荷重の関係を示す図である。
図8】ブームを起仰作動させたときのモーメントと水平荷重の関係を示す図である。
図9】上記実施形態の変形例に係る安全装置の機能ブロック図である。
【発明を実施するための形態】
【0014】
以下、図面を参照して本発明の好ましい実施形態について説明する。本実施形態に係る高所作業車1を図1に示しており、まず、この図を参照して高所作業車1の全体構成について説明する。
【0015】
高所作業車1は、図1に示すように、車体2の前部に運転キャブ7を有し、車体2の前後に配設された左右一対の前輪5f及び後輪5rにより走行可能なトラック車両をベースに構成されている。車体2は、前輪5fおよび後輪5rが配設されたシャシフレームと、このシャシフレーム上に取り付けられたサブフレームとからなる車体フレームを備えて構成されている。
【0016】
車体2の前後左右には、高所作業時に車体2を持ち上げ支持するジャッキ装置が設けられている。ジャッキ装置は、前輪5fの後方に配設された左右一対のフロントジャッキ10fと、後輪5rの後方に配設された左右一対のリアジャッキ10rとを有して構成される。各ジャッキ10f,10rは、その内部に設けられたジャッキシリンダ11を駆動させて下方に伸長させることで車体2を持ち上げ支持し、これにより車両全体を安定させた状態とする。車体2の後端部には、各ジャッキ10f,10rや後述するブーム30等の作動操作を行うための下部操作装置27が設けられている。
【0017】
車体2における運転キャブ7後方の架装領域には、旋回モータ24により駆動されて上下軸回りに水平旋回動自在に構成された旋回台20が設けられている。この旋回台20から上方に延びた支柱21には、ブーム30の基端部がフートピン22を介して上下方向に揺動自在(起伏自在)に取り付けられている。また、車体2の架装領域の左右には、作業工具や作業機材などを収納するための工具箱26が設けられている。
【0018】
ブーム30は、旋回台20側から順に、基端ブーム30a、中間ブーム30b及び先端ブーム30cが入れ子式に組み合わされた構成を有しており、その内部に設けられた伸縮
シリンダ31の伸縮駆動により、ブーム30を軸方向(長手方向)に伸縮動させることができる。また、基端ブーム30aと支柱21との間には起伏シリンダ23が跨設されており、この起伏シリンダ23を伸縮駆動させることにより、ブーム30全体を上下面(垂直面)内で起伏動させることができる。なお、本実施形態では、詳細後述するが、この起伏シリンダ23に作用する軸力を検出して、この検出した軸力に基づきブーム30から車体2に作用する実モーメント(ブーム30の起伏面内においてフートピン22回りに作用する実モーメント)を検出し、これをブーム30の作動制御(モーメントリミッタ制御)に利用している。
【0019】
先端ブーム30cの先端部には、図2(A)および(B)に示すように、揺動ピン33により垂直ポスト32が上下方向に揺動自在に取り付けられている。垂直ポスト32は、先端ブーム30cの先端部との間に跨設された上部レベリングシリンダ(図示せず)と、基端ブーム30aと支柱21との間に跨設された下部レベリングシリンダ25とにより、ブーム30の起伏角度に拘わらず常に垂直姿勢が保持されるように揺動制御(レベリング制御)される。
【0020】
垂直ポスト32の上部には、作業台ブラケット38が垂直ポスト32に対して旋回可能(水平旋回可能)に取り付けられ、この作業台ブラケット38の側部に作業台昇降装置36を介して上方が開口した箱状の作業台40が取り付けられている。垂直ポスト32の上部と作業台ブラケット38とは、カバー35によりその周りを覆われている。カバー35の内部には首振りモータ34が設けられており、首振りモータ34を駆動させることにより図示しないウォームギヤ及びホイールギヤ等からなる回転伝達機構を介して作業台ブラケット38及び作業台40を、垂直ポスト32まわりに水平旋回(首振り作動)させることができるように構成されている。
【0021】
前述したように、垂直ポスト32は常に垂直姿勢が保持されるようにレベリング制御されているため、作業台40の床面はブーム30の起伏角度に拘わらず常に水平に保持されるようになっている。作業台昇降装置36は、昇降シリンダ(図示せず)を有して構成されており、この昇降シリンダを駆動することにより作業台ブラケット38に対して作業台40を昇降移動させるように構成されている。
【0022】
作業台40には、これに搭乗した作業者が操作する操作レバーや操作スイッチ、操作ダイヤル等の各操作手段を備えた上部操作装置45が設けられている。そのため、作業台40に搭乗した作業者は、上部操作装置45を操作することにより、旋回台20の旋回作動(旋回モータ24の回転作動)、ブーム30の起伏作動(起伏シリンダ23の伸縮作動)、ブーム30の伸縮作動(伸縮シリンダ31の伸縮作動)、作業台40の首振り作動(首振りモータ34の回転作動)などの各作動操作を行うことができる。
【0023】
車体2に設けられた高所作業装置等(上述の旋回台20、ブーム30、作業台40等)の作動機構は、上部操作装置45や下部操作装置27からの操作信号を受けて、ジャッキシリンダ11、旋回モータ24、伸縮シリンダ31、起伏シリンダ23、首振りモータ34及び作業台昇降装置36の昇降シリンダ等(以下、まとめて「油圧アクチュエータ55」と称する)を制御するコントローラ60(図4を参照)と、上述した油圧アクチュエータ55を作動させるために作動油を供給する油圧ユニット50(図4を参照)と、高所作業装置等を駆動するための架装部バッテリ59(図4を参照)とから構成される。
【0024】
油圧ユニット50は、油圧ポンプ51と、油圧ポンプ51を駆動させるポンプ駆動モータ52と、油圧ポンプ51から各油圧アクチュエータ55に供給する作動油の供給方向及び供給量を制御する制御バルブ53とを有して構成される。ポンプ駆動モータ52は、架装部バッテリ59からインバータ54を介して供給される電力により回転駆動される。制
御バルブ53は、コントローラ60からの制御信号(上部操作装置45及び下部操作装置27からの操作信号に応じた制御信号)に応じて油圧ポンプ51から各油圧アクチュエータ55に供給される作動油の供給方向及び供給量を制御し、各油圧アクチュエータ55の作動方向及び作動速度を制御する(ジャッキ装置及び高所作業装置の作動方向及び作動速度を制御する)。
【0025】
また、図2(A)に示すように、垂直ポスト32の上端部には、サブブーム装置70が設けられている。サブブーム装置70は、垂直ポスト32の上端部に水平旋回可能に設けられた旋回体71と、旋回体71の上部に上下方向へ揺動自在に取り付けられたサブブーム支持部材72と、サブブーム支持部材72の上部に着脱可能に取り付けられる長尺状のサブブーム74とを有して構成されている。サブブーム74は、例えば高所作業車1の移動時などには、サブブーム支持部材72から取り外されて、図1に示すように基端ブーム30aに取り付けられる。
【0026】
旋回体71は、垂直ポスト32の上端部に旋回可能に取り付けられた旋回部材71aと、旋回部材71aの周りを覆うカバー71bとを有して構成される。旋回部材71aは、内部に設けられたウインチ旋回モータ(図示せず)を駆動させることにより作業台40(作業台ブラケット38)の旋回軸Aと同軸上で旋回可能に設けられている。旋回部材71aの上部には、水平方向に延びる揺動ピン72aが設けられており、この揺動ピン72aを中心として上下方向に揺動自在にサブブーム支持部材72が取り付けられている。
【0027】
サブブーム支持部材72は、旋回体71のカバー71bの内部に設けられたサブブーム起伏シリンダ(図示せず)を駆動させることにより、旋回部材71aに対して揺動ピン72aを中心に上下方向に揺動可能に構成されている。サブブーム支持部材72の上部には、揺動ピン72aと直交する方向に延びるサブブーム装着孔(図示せず)が形成されており、このサブブーム装着孔にサブブーム74が挿入されて固定ピン77によりサブブーム支持部材72に固定保持される。なお、サブブーム74は、固定ピン77の差し込み位置を変えることにより、サブブーム支持部材72から図2(A)における作業台40側へ延びる長さを調節可能になっている。なお、本実施形態では、サブブーム74の長さ(サブブーム支持部材72からの突出量)が2mに調節されている。
【0028】
サブブーム支持部材72の上端部には、サブブーム74の先端部に設けられたシーブ部材74a(案内滑車)に掛け回されるウインチロープ(図示せず)の繰り出し及び巻き取り作動を行うウインチ機構75が設けられている。ウインチ機構75は、内蔵されたウインチ駆動モータ(図示せず)を駆動させることによりウインチロープの繰り出し及び巻き取り作動を行うように構成されている。
【0029】
上述した不図示のウインチ旋回モータ、サブブーム起伏シリンダ、ウインチ駆動モータは、上述の油圧アクチュエータ50と同様に、上部操作装置45からの操作信号を受けたコントローラ50により制御バルブ53の作動が制御され、この制御バルブ53により油圧ポンプ51から供給される作動油の供給方向および供給量が制御されることで、各油圧アクチュエータ55の作動方向及び作動速度が制御されるようになっている。以下では、油圧アクチュエータ55には、ウインチ旋回モータ、サブブーム起伏シリンダ、ウインチ駆動モータも含まれるものとする。
【0030】
次に、本実施形態の仮支持装置100について図3を参照して説明する。仮支持装置100は、上述のサブブーム装置70と、このサブブーム装置70に着脱自在に取り付けられる仮支持具110とを備えて構成される。
【0031】
仮支持具110は、上述のシーブ部材74aの代わりに、サブブーム74の先端部に取
り付けられるものである。仮支持装置100は、電柱間に架設された電線を仮支持する複数の電線支持部120と、これらの電線支持部120が取り付けられる支持アーム(仮腕木)130と、架設された電線から仮支持具110に付与される水平方向及び垂直方向の荷重を検出する荷重検出部140と、荷重検出部140をサブブーム74の先端部に取り付けるためのブラケット78とを有して構成される。
【0032】
支持アーム130は、断面が略正方形をなす長尺棒状の中空部材からなり、その長手方向に3つの電線支持部120が所定の間隔を置いて取り付けられている。電線支持部120は、締付ボルトを用いて支持アーム130に取り付けられる取付部121と、取付部121に固定された樹脂製のガイシ(碍子)部材122と、ガイシ部材122の先端部に設けられた支持部123とを有して構成されている。支持部123は、上下左右にそれぞれ対向して設けられた4つのローラ部材124を有し、これら4つのローラ部材124によって形成される矩形状の間隙部に電線を挿通させて支持するように構成されている。また、支持部123の上部に位置するローラ部材124は揺動開閉可能になっており、この上部のローラ部材124を揺動開放することで、上述した矩形状の間隙部の内部に電線を挿入することができる。また、この揺動開放したローラ部材124を、再び閉じることにより、上述した矩形状の間隙部の内部に電線を挿通させて支持することができる。また、支持アーム130には、該支持アーム130を荷重検出部140に連結するための固定部材131が取り付けられている。
【0033】
荷重検出部140は、図4に示すように、水平荷重検出器141と、垂直荷重検出器142とを備えて構成される。水平荷重検出器141は、仮支持具110に付与される水平方向の荷重(水平荷重)を検出する。垂直荷重検出器142は、仮支持具110に付与される垂直方向の荷重(垂直荷重)を検出する。各荷重検出器141,142は、例えば、歪ゲージを有したロードセルからなり、外部からの荷重によって生じた電気抵抗の変化を電圧の変化に置き換えた電気信号(検出信号)を出力する。
【0034】
このように構成された仮支持装置100を使用して、電柱間に架設された3本の電線の仮支持を行う場合には、まず、3つの電線支持部120における支持部123の先端側のローラ部材124を開放させた状態で、ブーム30の起伏角度及び伸縮量(長さ)を調節する。次に、作業台40を上方へ移動させて電線支持部120の支持部123を電線に接近させて、支持部123内の間隙部に電線を挿入させて、作業者がホットスティック(活線作業用の絶縁工具)を用いて、支持部123の先端側のローラ部材124を閉じる。そして、電柱から電線を取り外した後、上部操作装置45を操作してブーム30の作動制御を行い、仮支持装置100により3本の電線を上方に押し上げて仮支持する。このようにして3本の電線を仮支持することで、電柱の立て替え作業や、電柱に設けられている碍子等の交換作業を行うことができる。
【0035】
このような仮支持装置100によれば、電柱間に張架された電線を仮支持することができるのであるが、この電線の仮支持作業においては、ブーム30を作動させて、この仮支持した電線を所定の移設場所に移動させたり、作業の邪魔にならない場所に移動させたりする場合があり、そのときに電線による反力や自重などの負荷荷重が仮支持具110に作用する。この負荷荷重は、斜め下方向に作用する荷重であるが(図7図8を参照)、該負荷荷重のうちの水平方向の荷重成分(水平荷重)は、ブーム30を支えるモーメント(起伏シリンダ23に作用する軸力)に影響を与え、該水平荷重の作用方向やブーム30の作動姿勢に応じてモーメントが一時的に増加したり減少したりし、場合によっては作業の安全性や使い勝手を低下させる原因ともなる。そこで、高所作業車1に備えられた安全装置では、電線による水平荷重の影響を除いたモーメント(補正モーメント)を検出して、この補正モーメントに基づくモーメントリミッタ制御を行うように構成されている。
【0036】
次に、高所作業車1に備えられた安全装置(転倒防止装置)について図4図5を参照して説明する。本実施形態に係る安全装置は、各種のセンサ類と、コントローラ60とを備えて構成されている。
【0037】
センサ類は、水平荷重検出器141、ブーム起伏角度検出器151、ブーム長さ検出器152、ブーム旋回角度検出器153、軸力検出器154、サブブーム起伏角度検出器155、ウインチ旋回角度検出器156などからなる。これらの検出器141,151~156はコントローラ60と電気的に接続されており、各検出器141,156の検出情報(検出信号)はコントローラ60に入力されるようになっている。
【0038】
ブーム起伏角度検出器151は、ブーム30の基端部に設けられて、ブーム30の起伏角度θを検出する。ブーム長さ検出器152は、ブーム30内に設けられて、ブーム30の長さ(伸縮量)Lを検出する。ブーム旋回角度検出器153は、車体2に設けられて、ブーム30(旋回台20)の旋回角度φを検出する。軸力検出器154は、起伏シリンダ23の下端部に設けられて、起伏シリンダ23に作用する軸力(軸方向荷重)Pを検出する。サブブーム起伏角度検出器155は、サブブーム74の基端部に設けられて、サブブーム74の起伏角度θを検出する。ウインチ旋回角度検出器156は、垂直ポスト32に設けられて、垂直ポスト32(ブーム30の先端部)に対するサブブーム74の旋回角度Ψを検出する。
【0039】
コントローラ60は、作動制御部61と、実モーメント算出部62と、水平荷重算出部63と、仮支持点高さ算出部64と、水平荷重モーメント算出部65と、モーメント補正部66と、比較部67と、規制部68とを有している。なお、コントローラ60の各手段61~68は、該コントローラ60に設けられたCPU、ROM、RAM、電子回路等のハードウェア及び制御プログラム等のソフトウェアにより構成されるものを機能的に表現したものである。
【0040】
作動制御部61は、上部操作装置45または下部操作装置27からの操作信号に基づいて、制御バルブ53を電磁駆動して、各油圧アクチュエータ55を作動させることで、ブーム30やジャッキ10f,10rなどの作動を制御する。
【0041】
実モーメント算出部62は、軸力検出器154により検出された起伏シリンダ23の軸力P、ブーム起伏角度検出器151により検出されたブーム30の起伏角度θなどの検出情報に基づき、ブーム30のフートピン22回り(起伏軸回り)に作用する実モーメントMaを算出する。この実モーメントMaは、起伏シリンダ23に作用する軸力Pをフートピン22回りに作用するモーメントとして換算したものである。つまり、実モーメントMaは、ブーム30、作業台40および仮支持装置100等の自重、作業台40にかかる積載荷重、外部からの負荷荷重(水平荷重Fx、垂直荷重Fz)などによって車体2に作用する実モーメントMaを起伏シリンダ23にかかる軸力Pにより換算したものである。
【0042】
水平荷重算出部63は、水平荷重検出器141から出力された電気信号に基づき、仮支持具110に作用する水平荷重Fxを算出する。水平荷重Fxには、ブーム30に対する作用方向に応じて正負の符号(+/-)が付加される。本実施形態では、ブーム30の作業半径を拡大させる方向に作用する水平荷重Fxを「正の水平荷重(+Fx)」、ブーム30の作業半径を縮小させる方向に作用する水平荷重Fxを「負の水平荷重(-Fx)」と定義する。この水平荷重Fxの正負の符号は、水平荷重検出器(ロードセル)141による検出情報と、ウインチ旋回角度検出器156による検出情報との相互関係により二段階で判定される。
【0043】
まず、水平荷重検出器141の検出信号(電気信号)には、仮支持具110に対する水
平荷重Fxの作用方向に応じて、正負の符号が含まれている。本実施形態では、サブブーム74の起伏面内において仮支持具110に対して外向きに働く水平荷重Fx(サブブーム74を倒伏させる方向に作用する水平荷重Fx)には正の符号(+)、サブブーム74の起伏面内において仮支持具110に対して内向きに働く水平荷重Fx(サブブーム74を起仰させる方向に作用する水平荷重Fx)には負の符号(-)が付加される。具体的に、図5(A)および図5(D)に示す状態では、いずれも水平荷重Fxが外向きに働いているため、該水平荷重Fxの符号として正の符号が付与される。一方、図5(B)および図5(C)に示す状態では、いずれも水平荷重Fxが内向きに働いているため、該水平荷重Fxの符号として負の符号が付与される。
【0044】
次に、ウインチ旋回角度検出器156により検出されたサブブーム74の旋回角度Ψに応じて、水平荷重Fxの正負の符号を反転する。サブブーム74の旋回角度Ψとは、平面視において、サブブーム74の軸線がブーム30の軸線と一致する姿勢(図2のサブブーム74の姿勢)を「0度」として、該サブブーム74を時計方向又は反時計方向に水平旋回させたときに該サブブーム74の軸線とブーム30の軸線とのなす角度(差角)である(図6を参照)。本実施形態では、サブブーム74の旋回角度Ψが90度よりも小さい場合は正の符号を付加し(符号を維持し)、サブブーム74の旋回角度Ψが90度よりも大きい場合は負の符号を付加する(符号を反転する)。具体的に、図5(A)に示す状態では、サブブーム74の旋回角度Ψが90度よりも小さいため、水平荷重Fxの持つ正の符号が維持される(結果、「正の水平荷重(+Fx)」であると判定される)。図5(B)に示す状態では、サブブーム74の旋回角度Ψが90度よりも大きいため、水平荷重Fxの持つ負の符号が反転されて正の符号に変換される(結果、「正の水平荷重(+Fx)」であると判定される)。図5(C)に示す状態では、サブブーム74の旋回角度Ψが90度よりも小さいため、水平荷重Fxの持つ負の符号が維持される(結果、「負の水平荷重(-Fx)」であると判定される)。図5(D)に示す状態では、サブブーム74の旋回角度Ψが90度よりも大きいため、水平荷重Fxの持つ正の符号が反転されて負の符号に変換される(結果、「負の水平荷重(-Fx)」であると判定される)。こうして得られた水平荷重Fxのデータは、正負の符号を付与した値としてコントローラ60のメモリに一時記憶される。
【0045】
仮支持点高さ算出部65は、ブーム起伏角度検出器151により検出されたブーム30の起伏角度θ、ブーム長さ検出器152により検出されたブーム30の長さL、サブブーム起伏角度検出器155により検出されたサブブーム74の起伏角度θ、既知のサブブーム74の長さ(固定値:例えば2m)などから、フートピン22の中心軸から仮支持具110の水平荷重作用点までの高さ(「仮支持点高さ」と呼称する)Hを算出する。なお、サブブーム74の起伏角度θは、一般には45度~90度の範囲で設定され、且つ、仮支持点高さHの全体に対する影響が小さいため、サブブーム起伏角度検出器155により検出された検出情報を使用せず、予め定められた固定値(例えば上記角度範囲の中央値など)を使用してもよい。
【0046】
水平荷重モーメント算出部65は、水平荷重算出部63により算出された水平荷重Fxと、仮支持点高さ算出部64により算出された仮支持点高さHと、ウインチ旋回角度検出器156により検出されたサブブーム74の旋回角度Ψとに基づいて、水平荷重Fxにより生じるフートピン22回りのモーメント(「水平荷重モーメント」と呼称する)ΔMを算出する。具体的には、水平荷重モーメントΔMは、下記の演算式(1)により求められる。
ΔM=±Fx×H×|cosΨ| ・・・(1)
ここで、演算式(1)において「|cosΨ|」を乗算する理由は、起伏シリンダ23の軸力Pには、ブーム30の起伏面と直交する方向の荷重は反映されず、ブーム30の起伏面内での荷重のみが反映されるため(つまり、ブーム30の起伏面内で引張荷重として作
用する水平荷重Fxは軸力Pに反映されるが、ブーム30の起伏面と直交する方向への横曲げ荷重として作用する水平荷重Fxは軸力Pには反映されないため)、上記の実モーメントMa(軸力Pにより換算したモーメント)から水平荷重Fxによるモーメント成分を排除するには、水平荷重Fxのうちの起伏面内の荷重成分(起伏面内水平荷重Fk=Fx×|cosΨ|)のみを抜き出して演算する必要があるからである(図6を参照)。なお、この演算式(1)において、水平荷重Fxに付与される符号は、水平荷重算出部63により判定された符号(メモリに記憶された符号)が用いられる。つまり、水平荷重Fxの符号として正の符号が付与されている場合には、上記の演算式(1)に「+Fx」を適用し、水平荷重Fxの符号として負の符号が付与されている場合には、上記の演算式(1)に「-Fx」を適用する。具体的には、図5(A)および図5(B)に示すように、水平荷重Fxの符号として正の符号が付与されている場合には、水平荷重モーメントΔMは正の値となる(ΔM>0)。一方、図5(C)および図5(D)に示すように、水平荷重Fxの符号として負の符号が付与されている場合には、水平荷重モーメントΔMは負の値となる(ΔM<0)。
【0047】
モーメント補正部66は、実モーメント算出部62により算出された実モーメントMaに、水平荷重モーメント算出部65により算出された水平荷重モーメントΔMを合成することで、実モーメントMaから水平荷重Fxの影響を除いた補正後のモーメント(「補正モーメント」と呼称する)Mbを算出する。つまり、仮支持装置100に水平荷重Fxが作用している場合には、この水平荷重Fxによるモーメント成分が実モーメントMaの一部として含まれることにより、このモーメント成分の分だけ、実モーメントMaが実際のブーム30の作業姿勢(作業範囲)に対して大きく作用したり小さく作用したりして、実際のブーム30の作業姿勢(作業範囲)と実モーメントMaとの間に不整合が生じてしまう。このような不具合を是正すべく、実モーメントMaから水平荷重モーメントΔMを差し引きすることで、実モーメントMaから水平荷重Fxの影響を排除できるようになっている。具体的には、補正モーメントMbは、下記の演算式(2)により求められる。
Mb=Ma-ΔM ・・・(2)
具体的には、図5(A)および図5(B)に示すように、水平荷重Fxがブーム30を倒伏させる方向(作業半径を拡大させる方向)に作用する場合(ΔM>0)には、補正モーメントMbは実モーメントMaよりも水平荷重モーメントΔMの分だけ減少する(Mb<Ma)。つまり、軸力Pが水平荷重Fxの影響で一時的に増加した分だけ、その水平荷重Fxによるモーメント成分を実モーメントMaから減算して、無負荷状態(水平荷重Fxのない状態)でのモーメントと等価の関係にある補正モーメントMb(Mb<Ma)を導出する。一方、図5(C)および図5(D)に示すように、水平荷重Fxがブーム30を起仰させる方向(作業半径を縮小させる方向)に作用する場合(ΔM<0)には、補正モーメントMbは実モーメントMaよりも水平荷重モーメントΔMの分だけ増加する(Mb>Ma)。つまり、軸力Pが水平荷重Fxの影響で一時的に減少した分だけ、その水平荷重Fxによるモーメント成分を実モーメントMaに加算して、無負荷状態(水平荷重Fxのない状態)でのモーメントと等価の関係にある補正モーメントMb(Mb>Ma)を導出する。
【0048】
比較部67は、モーメント補正部66により算出された補正モーメントMbと、予め設定された規制モーメントMcとを比較して、補正モーメントMbが規制モーメントMcを超過したときに規制信号を出力する。なお、規制モーメントMcは、ブーム30の旋回角度φや、ジャッキ10f,10rの張出量等によって決定される。また、比較部67は、水平荷重算出部63により算出された水平荷重Fxと、予め定められた規制荷重とを比較して、水平荷重Fxが規制荷重を超過したときに停止信号を出力する。
【0049】
規制部68は、比較部57から規制信号を入力すると、各操作装置27,45からの操作信号の如何に拘わらず、ブーム30の作動のうち、ブーム30に作用する転倒モーメン
トが増加する方向の作動(倒伏動、伸長動、所定方向への旋回動)を規制する。また、規制部68は、比較部57から停止信号を入力すると、ブーム30の作動を一旦停止させる。なお、規制部68が比較部57からの規制信号又は停止信号を入力した場合には、このようなブーム30の作動規制に加えて、例えば、警報音、警報ランプ、警報表示などによる警報作動を発するように構成してもよい(作業者に注意を促すようにしてもよい)。
【0050】
次に、本実施形態に係る安全装置の特徴的な作用について、図7図8を追加参照しながら説明する。ここで、前述したとおり、電線の仮支持作業においては、ブーム30を作動させて、この仮支持した電線を所定の移設場所に移動させたり、作業の邪魔にならない場所に移動させたりすると、電線による反力や自重などの負荷荷重が仮支持具110に作用するが、この負荷荷重は、図7図8に示すように、斜め下方向に作用する荷重となり、この負荷荷重のうちの水平方向の荷重成分が水平荷重Fxとなる。なお、図7図8には、参考のため、同じブーム姿勢における水平荷重Fxが作用していない状態での実モーメントを「実モーメントMa′」として図示している。
【0051】
まず、図7を参照して、電線を仮支持した状態でブーム30を倒伏作動させた場合の制御について説明する。或る状態からブーム30を倒伏作動させた場合には、ブーム30の起伏角度θの減少とともに作業半径が拡大して、本来であれば車体2に作用する実モーメントが増加するはずであるが、電線を仮支持した状態では、このブーム30の倒伏作動に伴い電線からの反力(水平荷重Fx)がブーム30を起仰させる方向に作用するため、その分だけ起伏シリンダ23にかかる軸力Pが低下して、実モーメントMaが減少してしまう結果となる。そのため、従来の安全装置では、ブーム30の作業半径が所定の作業半径に達したとしても(ブーム30の先端部が許容作業範囲を逸脱したとしても)、実モーメントMaが規制モーメントMcを超過しない限りはブーム30の作動が規制されず、ブーム30を継続して倒伏作動させることが可能となる。しかしながら、この状態において仮支持装置100から電線を外した場合、それまで仮支持装置100に働いていた水平荷重Fx(軸力Pを低下させていた水平荷重Fx)が作用しなくなることで、実モーメントMaが急激に増大し、この実モーメントMaが規制モーメントMcに達することによって、車体2が不安定となったりブーム30が破損したりするおそれがあり、作業の安全性が低下するという問題があった。
【0052】
これに対して、本実施形態の安全装置では、軸力Pにかかる水平荷重Fxの影響を排除すべく、実モーメントMaを水平荷重Fxによるモーメント(水平荷重モーメントΔM)の分だけ補正して、この補正モーメントMbを規制モーメントMcと比較する制御を行うことで、同じブーム姿勢で電線を移動しなかった場合(図中の実モーメントMa′を参照)と同様に、ブーム30の作業半径が所定の作業半径に達したところで、該補正モーメントMbが規制モーメントMcを超えて、ブーム30の作動が規制されることになるため、作業の安全性を確保することが可能となる。
【0053】
なお、本実施形態では、ブーム30の作業半径が所定の作業半径に達していなくても(補正モーメントMbが規制モーメントMcよりも小さくても)、ブーム30の倒伏作動により仮支持装置100に作用する水平荷重Fxが増加して規制荷重を超えた場合には、電線の破断や仮支持装置100の破損等を未然に防止するため、ブーム30の倒伏作動が停止されるようになっている。
【0054】
続いて、図8を参照して、電線を仮支持した状態でブーム30を起仰作動させた場合の制御について説明する。或る状態からブーム30を起仰作動させた場合には、ブーム30の起伏角度θの増加とともに作業半径が縮小して、本来であれば車体2に作用する実モーメントMaが減少するはずであるが、電線を仮支持した状態では、このブーム30の起仰作動に伴い電線からの反力(水平荷重Fx)がブーム30を倒伏させる方向に作用する
ため、その分だけ起伏シリンダ23にかかる軸力Pが上昇して、実モーメントMaが増加する結果となる(実モーメントMaが規制モーメントMcを超えてしまうおそれがある)。そのため、従来の安全装置では、ブーム30の作業半径が所定の作業半径に達していなくても(ブーム30の先端部が許容作業範囲を逸脱していなくても)、電線からの反力(水平荷重Fx)が大きい場合には、実モーメントMaが規制モーメントMcを超過して、ブーム30の作動が規制されてしまう場合がある。このブーム30の作動規制は、ブームモーメントが増加する方向への作動(起伏作動、伸長作動、所定方向への旋回作動)を規制するものであるため、ブーム30を元の姿勢に戻すことができず(ブーム30を倒伏作動させることができず)、使い勝手が悪く作業性を低下させる原因ともなっていた。
【0055】
これに対して、本実施形態の安全装置では、軸力Pにかかる水平荷重Fxの影響を排除すべく、実モーメントMaを水平荷重Fxによるモーメント(水平荷重モーメントΔM)の分だけ補正して、この補正モーメントMbを規制モーメントMcと比較する制御を行うことで、同じブーム姿勢で電線を移動しなかった場合(図中の実モーメントMa′を参照)と同様に、ブーム30の作業半径が所定の作業半径に収まっていれば(ブーム30の先端部が許容作業範囲を逸脱していなければ)、補正モーメントMbが規制モーメントMcを超過することがなく、ブーム30の作動は規制されない。このとき、ブーム30の起仰作動により仮支持装置100に作用する水平荷重Fxが増加して規制荷重を超えた場合には、電線および仮支持装置100の破損や、実モーメントMaの増大により車体2が不安定となるのを防止するため、ブーム30の作動が強制的に一旦停止されるが、補正モーメントMbが規制モーメントMcを超過していない限り(ブーム30の作業半径が所定の作業半径を逸脱していなければ)、ブーム30の作動規制は働かず、ブーム30を倒伏作動させて元の姿勢(水平荷重Fxを低減させる姿勢)に戻すことができるので、作業の安全性を確保しつつも使い勝手を向上させることができる。
【0056】
以上、本実施形態に係る高所作業車1の安全装置によれば、仮支持装置100に作用する水平荷重Fxの影響を排除した補正モーメントMbを算出して、この補正モーメントMbに基づきブーム30の作動制御(モーメントリミッタ制御)を行うことで、水平荷重Fxの作用方向および大きさの如何に拘わらず、実際のブーム30の作動姿勢(作業半径)に応じた作動制御を行うことができるため、ブーム30の先端部(作業台40)が許容作業範囲を逸脱しても作動規制が掛からなかったり、本来安全な許容作業範囲内であるにも拘わらず作動規制が掛かったりすることで生じる不具合を未然に防止することができるようになり、その結果、仮支持作業の安全性および使い勝手を向上させることが可能となる。
【0057】
次に、本実施形態の変形例に係る安全装置について説明する。ここで、上記実施形態に係る安全装置では、補正モーメントMbと規制モーメントMcとを比較して、補正モーメントMbが規制モーメントMcを超過したときに、ブーム30の作動を規制する構成(モーメントリミッタ制御)であったが、本変形例に係る安全装置では、検出した実モーメントMaから作業台40の積載荷重を算定し、ブーム30の先端部(作業台40)がこの積載荷重に応じて定められる許容作業範囲を逸脱したときに、ブーム30の作動を規制する構成(作業範囲規制制御)となっている。ここで、本変形例の安全装置においても、水平荷重Fxが実モーメントMaの検出に影響を及ぼし、積載荷重の算出に誤差を生じさせるおそれがあるため、水平荷重Fxの影響を排除した補正モーメントMbを使用して積載荷重を算出するようになっている。なお、以下の説明では、上記実施形態と同一の構成(又は同一の機能を有する構成)には同一の番号を用いて、主として上記実施形態と相違する部分を中心に説明する。
【0058】
本変形例の安全装置において、コントローラ60は、作動制御部61と、実モーメント算出部62と、水平荷重算出部63と、仮支持点高さ算出部64と、水平荷重モーメント
算出部65と、モーメント補正部66と、位置検出部167と、積載荷重算出部168と、作業範囲記憶部169と、規制部170とを有している。
【0059】
位置検出部167は、ブーム起伏角度検出器151により検出されたブーム30の起伏角度θと、ブーム長さ検出器152により検出されたブーム30の長さLと、ブーム旋回角度検出器153により検出されたブーム30の旋回角度φとに基づき、車体2を基準とするブーム20の先端部(作業台40を含むものでもよい)の位置を検出する。また、位置検出部167は、ブーム起伏角度検出器151により検出されたブーム30の起伏角度θと、ブーム長さ検出器152により検出されたブーム30の長さLとに基づいて、ブーム30の作業半径Rを算出する。なお、作業半径とは、フートピン22を通る鉛直線上からブーム30の先端部(作業台40)までの水平距離である。
【0060】
積載荷重算出部168は、モーメント補正部66により算出された補正モーメントMbと、作業台40に積載荷重(垂直方向の荷重)が作用していない無積載状態でのブーム30のフートピン22回りのモーメントMdと、位置検出部167により算出されたブーム30の作業半径Rとに基づき、作業台40の積載荷重Wを算出する。積載荷重Wは、例えば作業台40に搭乗した作業者の体重や作業台40に搭載した工具や資材等の重量の総重量であり、作業台40に掛かる垂直方向の荷重である。なお、この積載荷重算出部168には、上記の無積載状態のモーメントMdとして、ブーム30の作動姿勢に応じたモーメントの値(ブーム30や作業台40などの重量とその作動姿勢とにより算出されるモーメントの値)が予め設定されており、現在のブーム30の作動姿勢に応じたモーメントの値が読み出されるようになっている。具体的には、積載荷重Wは、下記の演算式(3)により求められる。
W=(Mb-Md)/R ・・・(3)
このように補正モーメントMbから作業台40に掛かる積載荷重Wを逆算することで、水平荷重Fxによる影響(誤差)を排除した適正な積載荷重Wを算出することができる。
【0061】
作業範囲記憶部169には、車体2を転倒させることなくブーム30の先端部(作業台40)を移動させることのできる領域として許容作業範囲のデータ群が記憶されている。
【0062】
規制部170は、作業範囲記憶部169に記憶された許容作業範囲のデータ群の中から、作業台40の積載荷重Wに応じた許容作業範囲のデータを読み出し、この許容作業範囲と、位置検出部167により検出されたブーム30の先端部(作業台40)の位置とを比較して、ブーム30の先端部(作業台40)が許容作業範囲の外縁(限界線)に到達していると判断した場合には、ブーム30の作動を規制する(ブーム30の先端部を許容作業範囲の外側に移動させるような油圧アクチュエータ55の作動を規制する)。なお、上記では説明を簡略化したが、実際には、作業台40の積載荷重Wのみでなく、ブーム30の旋回角度φおよびジャッキ10f,10rの張出量(車幅方向の張出量)に応じた許容作業範囲のデータが読み出される。
【0063】
以上、本変形例の安全装置によれば、上記実施形態の安全装置と同一の作用効果を奏することができ、安全性向上および作業性向上を両立させることが可能となる。
【0064】
なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば適宜改良可能である。
【0065】
上記実施形態では、垂直ポスト32に仮支持装置100が取り付けられているが、この構成に限定されるものではなく、ブーム30の先端部であれば仮支持装置100の取付位置は適宜変更可能であり、例えば、作業台40上に仮支持装置100を取り付けてもよい。
【0066】
また、上記実施形態では、支持アーム130に対して3つの電線支持部120を設けた構成について説明したが、1つ若しくは2つの電線支持部120又は4つ以上の電線支持部120を設けた構成であってもよい。
【0067】
また、上記実施形態では、水平荷重モーメントΔMを上記演算式(ΔM=±Fx×H×|cosΨ|)により算出しているが、この構成に限定されるものではなく、例えば、他の演算式(ΔM=±Fx×H×cosΨ)により算出するようにしてもよい。この演算式を利用する場合には、「cosΨ」にサブブーム74の旋回角度Ψの情報だけでなく、正負の符号の情報が含まれるため(0°≦Ψ<90°の場合はcosΨ>0により「正の符号」を付加でき、90°<Ψ≦180°の場合にはcosΨ<0により「負の符号」を付与できるため)、前述した水平荷重算出部63による二段階の符号付けを簡略化することができる(サブブーム74の旋回角度Ψによる符号付けを該演算式に持たせることができる)。
【0068】
また、上記実施形態では、本発明に係る高所作業車として、電気駆動型(バッテリ駆動型)の高所作業車を例示して説明したが、これに限定されるものではなく、エンジンの動力をPTO機構(パワーテイクオフ機構)によって取り出して油圧ポンプを駆動するPTO駆動型の高所作業車や、その両者を具備して動力源を選択的に切り替えるハイブリッド型の高所作業車であってもよい。
【符号の説明】
【0069】
1 高所作業車
2 車体
20 旋回台
27 下部操作装置
30 ブーム
40 作業台
45 上部操作装置
50 油圧ユニット
55 油圧アクチュエータ
60 コントローラ
61 作動制御部
62 実モーメント算出部(実モーメント検出手段)
63 水平荷重算出部(水平荷重検出手段)
64 仮支持点高さ算出部
65 水平荷重モーメント算出部(水平荷重モーメント算出手段)
66 モーメント補正部(モーメント補正手段)
67 比較部
68 規制部(規制手段)
74 サブブーム
100 仮支持装置
110 仮支持具(電線支持部材)
140 荷重検出部
141 水平荷重検出器(水平荷重検出手段)
142 垂直荷重検出器
154 軸力検出器(実モーメント検出手段)
156 ウインチ旋回角度検出器
167 位置検出部(位置検出手段)
168 積載荷重算出部(積載荷重算出手段)
169 作業範囲記憶部
170 規制部(規制手段)
図1
図2
図3
図4
図5
図6
図7
図8
図9