(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-11
(45)【発行日】2024-09-20
(54)【発明の名称】改良された撮像方法
(51)【国際特許分類】
A61B 6/40 20240101AFI20240912BHJP
A61B 6/06 20060101ALI20240912BHJP
A61B 6/08 20060101ALI20240912BHJP
A61B 6/10 20060101ALI20240912BHJP
G16H 30/20 20180101ALI20240912BHJP
【FI】
A61B6/40 500G
A61B6/06 553
A61B6/08 510
A61B6/10 503
G16H30/20
(21)【出願番号】P 2021529246
(86)(22)【出願日】2019-08-01
(86)【国際出願番号】 US2019044727
(87)【国際公開番号】W WO2020028704
(87)【国際公開日】2020-02-06
【審査請求日】2021-12-02
【審判番号】
【審判請求日】2023-01-20
(32)【優先日】2018-08-01
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2019-03-13
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】521148603
【氏名又は名称】オクソス メディカル,インコーポレイテッド
(74)【代理人】
【識別番号】110002516
【氏名又は名称】弁理士法人白坂
(72)【発明者】
【氏名】ラフ,エヴァン
(72)【発明者】
【氏名】ベネット,ポール
(72)【発明者】
【氏名】ヴィシュヴァカルマ,ドルヴァ
(72)【発明者】
【氏名】コロヴィチ,グレゴリー
【合議体】
【審判長】榎本 吉孝
【審判官】樋口 宗彦
【審判官】▲高▼見 重雄
(56)【参考文献】
【文献】特開2017-127388(JP,A)
【文献】特開2011-92612(JP,A)
【文献】米国特許出願公開第2016/0220223(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B6/00-6/58
(57)【特許請求の範囲】
【請求項1】
エネルギーが画像データを生成するように構成された撮像センサと、前記撮像センサの
センサトレイのキャビティに設けられた複数の位置追跡要素と、エネルギーを放出するように構成され前記複数の位置追跡要素を追跡する位置追跡カメラを備える放出装置と、を備える撮像システムにおける物体を非侵襲的に撮像する方法であって、
前記複数の位置追跡要素がそれぞれ固有の信号を生成し、前記複数の位置追跡要素は前記
センサトレイの前記撮像センサの作業領域の境界の所定の位置に固定され、前記境界の各部分が前記複数の位置追跡要素のうちの1つに対応する前記信号を
前記位置追跡カメラによって識別可能であるように、前記複数の位置追跡要素
と放出装置との間における前記複数の位置追跡要素に対する前記放出装置の相対的な位置
に前記位置追跡カメラ
を追跡
させて前記放出装置を移動させる工程と、
前記撮像センサによって受け取られるように、前記物体上に露光パターンを形成するために、前記放出装置の放出窓を通してエネルギーを放出する工程と、
前記複数の位置追跡要素に対する前記放出装置の位置および配向を継続的に決定する工程と、
前記撮像センサへの前記露光パターンを制限するために、前記放出装置の前記位置および前記配向の変化に応答して、前記放出窓の大きさおよび前記放出装置に対する前記放出窓の回転を連続的に調整する工程と、
を含む、物体を非侵襲的に撮像する方法。
【請求項2】
前記放出装置の前記位置および前記配向を用いて前記画像データを調整する工程をさらに含む、請求項1に記載の方法。
【請求項3】
前記放出装置の前記位置を決定する工程は、前記位置を決定するために前記放出装置上の前記
位置追跡カメラで前記複数の位置追跡要素を検知する工程を含む、請求項1に記載の方法。
【請求項4】
前記放出装置の前記配向を決定する工程は、前記放出装置内の前記
位置追跡カメラを使用して前記放出装置の前記配向を検知する工程を含む、請求項3に記載の方法。
【請求項5】
前記放出窓の前記大きさおよび前記放出装置に対する前記放出窓の前記回転を連続的に調整する工程は、前記放出窓の前記大きさをスケーリング調整する工程と、前記撮像センサ上の前記露光パターンの面積を最大化するように前記放出窓の前記回転を調整する工程とを含む、請求項1に記載の方法。
【請求項6】
前記エネルギーを放出する工程が、X線エネルギーを放出する工程を含む、請求項1に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、一般に、X線および透視画像撮影のための改良された方法およびシステム、特に、対象物のデジタル画像または熱画像を撮像するために操作可能なハンドヘルドX線エミッタ、対象物の静的X線画像および動的透視画像を撮像するために操作可能なステージ、X線放出の追跡および位置決めのためのシステム、X線放出のフィールドを自動的に制限するための装置、および使用方法を組み込んだ汎用性の高いマルチモード撮像システムに関するものである。また、本発明は、透視撮影およびレントゲン撮影のための正しい技術要因を事前に自動的に決定するための自動システムを含む。センサ駆動、反復、ネットワーク化された継続的に改善された演算アプローチを利用することで、より迅速に、かつより正確な画像を操作者の入力なしでキャプチャすることができ、同時に患者、操作者、スタッフに対する被曝量を低減することができる。
【背景技術】
【0002】
現在の整形外科手術用透視鏡装置は、放射線源をイメージインテンシファイアに固定された大型の「Cアーム」で固定している。これらの大型で携帯性の低い機械の操作は困難であり、かつ時間がかかる。達成可能な視野に合わせて被写体の位置を頻繁に変更する必要があるが、これは手順の敏感な段階で問題になり得る。このように、Cアームは、背骨およびより大きな関節の外科的治療に対して人間工学的に適しているが、手/手首/腕および足/足首/下肢四肢の外科手術に関しては、既存のユニットは、関連する解剖学的組織がより小さく、外科医がより移動可能である場合には、重くて煩雑である。既存の透視機も高価であり、かつ大量の放射線を放出する。多くの場合、これらのより大きな放射線量は、例えば四肢などのよりデリケートな処置には必要なく、不必要に患者および外科医をこれらのより高い線量にさらす。
【0003】
今日の外科環境では、関連する外科解剖学や病理学を文書化するために、デジタル写真や動画がしばしば必要とされている。熱画像法は、特に四肢の外科医にとっても有用なツールとなり得る。熱画像法は、四肢または指への血液供給が脅かされているかどうか、および再灌流処置が必要かどうかを判断することを支援するために使用されてもよい。熱画像法を追加することで、術中の意思決定の指針となる迅速かつシンプルなツールが提供される。しかしながら、既存の透視画像撮影装置はX線画像のみを撮影するため、デジタル画像撮影装置および/または熱画像撮影装置を切り替える必要があり、これにより手術の完了に遅れが生じる可能性がある。さらに、多くの状況では、デジタルカメラまたはサーマルカメラは無菌装置ではないため、外科医は、外科領域を侵害し、写真を撮ってからスクラブをして戻るか、またはアシスタントに写真を撮らせることを余儀なくされ、これらは、画像の相関関係についての混乱を引き起こす可能性がある。
【0004】
歴史的には、X線画像はイメージインテンシファイア装置を用いて撮像されてきた。その設計および構造のため、これらの装置のアクティブ領域は伝統的に円形である。製造プロセスのため、デジタル部品を利用する現代のX線検知器のアクティブ領域は、典型的には矩形状になっている。
使用者および被写体に対して安全な作動環境を提供するためには、X線放出が確実にX線検知器のアクティブ領域のみを照らすようにすることが必要である。この安全条件を達成するために、X線ビームの経路に直接、ビームの大きさおよび形状を制限する装置が配置されている。この装置はコリメータと呼ばれている。
【0005】
X線源とX線検知器との間の配向および距離が固定されているほとんどの固定位置X線システムには、校正プロセスの間に一般的にサイズ調整されて配置される静的コリメータが設けられる。この校正処理は滅多に行われず、通常は年に一度の頻度で行われる。
【0006】
X線源の配向は固定されているが、X線検知器とX線源との間の距離が可変であるほとんどの動的位置X線システムでは、検知器とX線源との間の距離が変化すると、その開口の大きさを調整することができるコリメータが設けられるであろう。
【0007】
新しい自由に配置できるX線システムは、操作者が任意の方向に線源および検知器を配置できるようにするためのセンサの配列を使用する。コリメーションの観点からは、従来のコリメータ設計では対応できなかった新たな課題が生じる。
【0008】
操作者が任意の位置で線源を配向することができるようにしながら、X線検知器の完全な矩形の視野を照らすためには、動的なローリングコリメータを利用する必要がある。センサアレイを利用して、装置は、線源内のコリメータの大きさおよび角度のずれを調整することで、アライメント位置に関係なく検知器への正方形の投影を調整することができる。
【0009】
そのため、外科医が装置を再配置することなくX線を撮像できるような小型軽量のシステムおよび方法が求められている。
【0010】
また、X線または透視撮像の品質を向上させる必要性もあり、その品質は被写体の多くの物理的属性に関係している。これらの要素は、放射線源の放射特性を制御する一連の技術要因(例:電力、電流、時間)を規定している。これらの要因を組み合わせて設定することにより、解釈者が被験者に過剰な放射線を浴びせることなく、必要な視覚要素を視認することができるようにすることは、装置の操作者の責任である。
【0011】
これらの技術要因の設定は複雑になり得る。従来の透視装置では、これらの技術を手動で設定する操作者の負担を軽減するために、自動化処理を実施していた。典型的なアプローチは、ソフトウェアまたはハードウェアの線量検知器をプレート上に使用して、放射線を加えながら徐々に充填していく。このアプローチにはいくつかの課題がある。
【0012】
既存のアプローチの大きな問題点は動きである。放射線が長時間にわたって被曝者に浴びせられているため、被曝者、操作者、機械、被曝者内部の血管など、あらゆる動きがあると、画像を著しく劣化させるモーションアーチファクトが発生する。
【0013】
また、従来のシステムでは、露光前に透過率の要件がわからないため、線源が所定の電力レベル(kV)で放射線を放出するため、画像を描画するのに十分な透過率が得られないことが多い。このように画像を表示することができないため、患者、操作者、スタッフは、臨床的な目的を持たずに過剰な放射線を浴びることになる。
【0014】
被曝計算に必要な物理的要素の数を直接測定できる複雑なセンサアレイを有する新世代のシステムの能力を適用し、最適な放射線画像を得られるように医療従事者を支援する学習アルゴリズムを適用するためにこれらの改良されたシステムを使用する必要性が残っている。
【発明の概要】
【発明が解決しようとする課題】
【0015】
改良されたシステムおよび被写体の全スペクトルにわたるセンサ、およびロバストな機械学習技術を利用することにより、患者が放射線エネルギーに曝露される前に必要な技術を演算することが可能であり、これにより、モーションアーチファクトを除去し、放射線画像の優れたキャプチャを生成することができ、すべての被曝線量を低減することができる。
【課題を解決するための手段】
【0016】
本発明は、改善された汎用性の高いマルチモード放射線撮影システムおよび方法に関するものであり、これにより、外科医が干渉を受けることなく患者に手術を行うことができ、装置、被検者または外科医を再配置することなく、静的および動的なX線および他の静止画像およびビデオ画像を撮影することができる。
【0017】
X線エミッタおよび検知器の両者が記載されている。新規なエミッタの一変形例は、エミッタの携帯可能な制御を可能にする。このようなエミッタは、軽量化が可能であり、非常に操縦性に優れている。変形例には、ハンドヘルドユニットである携帯型エミッタが含まれる。これに代えて、携帯型エミッタは、ユーザがエミッタを常に保持することを防止するために、自動化/制御可能であるか、または単にエミッタの重量を負担するような取付構造体に固定することができる。さらなる変形例では、エミッタは、必要に応じて改良された携帯性を可能にし、所望に応じて取付構造体に結合することができるように、取付構造体と解放可能に結合可能であるように構成することができる。エミッタは、診断、外科的介入、および非外科的介入を支援する目的で、患者の視覚画像、熱画像、および赤外線画像を生成するためのデジタルカメラのような少なくとも1つの追加の画像モダリティとともに、X線エミッタの両者を含むことができる。明らかに、本明細書に記載されたシステムおよび方法は、非侵襲的な撮像が望ましい非医療用途に使用することができる。
【0018】
人間工学に基づいた制御により、画像の取得がより簡単かつ迅速になり、内蔵ディスプレイにより使いやすい制御機能が促進される。この装置は、被写体からの距離を検知し、X線管が安全な距離にない場合、すなわち患者に近過ぎる場合には、放射線の活性化および放出を遮断するであろう。最短距離はソフトウェアで定義することができ、用途やその他の要因に基づいて調整することができる。慣性計測ユニット(IMU)と様々なタイミング要素の実装および使用により、システムは自動的かつインテリジェントにその電力状態を管理する。
【0019】
X線エミッタは、利用可能な任意のX線検知器と組み合わせて使用することができる。1つの選択肢として、エミッタを適切に配置された検知器プレートを含む固定具に取り付ける方法があり、これは、従来のCアームに類似するが、はるかに小型で、より多くの能力を有する。代替の変形例が本明細書に記載されており、詳細に開示されている明瞭なX線キャプチャステージを有するエミッタの使用を含み、このエミッタは、露光、品質、および安全性を最大化するために、自動的にエミッタと枢動させ、配向し、およびそれ自身を整列させる。
【0020】
本発明のX線ステージは、X線センサ、X線センサ位置決めシステム、エミッタ追跡システム、遮蔽システム、および制御部を含む開放空洞を有する、手術の開始時に位置決めされた静的に固定されたプラットフォームから構成される。任意により、システムは、キャプチャされた画像をレビューするために、外部ディスプレイモニタまたは他の任意の方法を利用することができる。
【0021】
記載された改良されたシステムの変形例は、医療検査および非医療検査のために対象物を検査するための非侵襲的な撮像システムを含み得る。このような非侵襲的撮像システムは、エネルギーを放出するように構成された放出装置と、放出装置および撮像センサが動作上整列した位置にある場合であって、エネルギーの受取時に撮像信号を生成するように構成された撮像センサと、対象物を位置決めするための外面を有するとともに外面に隣接して配置された少なくとも1つの位置決め機構を備えるプラットフォームと、外面に隣接して撮像センサの移動を可能にするように撮像センサに結合された少なくとも1つの位置決め機構と、プラットフォームに対して固定された少なくとも1つの位置追跡要素と、制御システムとを備える。放出装置は、プラットフォームの外面に対して移動可能であり、制御システムは、少なくとも1つの位置追跡要素と撮像センサとの間の第1の座標測定値を決定するように構成され、制御システムは、放出装置と少なくとも1つの位置追跡要素との間の第2の座標測定値を決定するように構成され、制御システムは、第1の座標測定値および第2の座標測定値を用いて、放出装置の移動中または移動後に、撮像センサを整列した位置に移動させる位置決め機構の作動を制御する。
【0022】
本明細書に記載の改良の変形例はまた、対象物を非侵襲的に撮像するための改良された方法を含む。例えば、そのような方法は、放出装置を対象物に対して相対的な位置に移動させる工程と、少なくとも1つの位置追跡要素に対する放出装置の位置を決定する工程と、撮像センサを放出装置との作動可能なアライメントに調整するモータシステムに放出装置の位置を中継する工程と、撮像センサが放出装置との作動可能なアライメントにあるときに放出装置からエネルギーを放出する工程と、撮像センサから画像信号をディスプレイに送信する工程とを含むことができる。
【0023】
方法の別の一態様では、放出装置を対象物に対して相対的な位置に移動させることにより、対象物を非侵襲的に撮像する工程と、エネルギーが画像データを生成するように構成された撮像センサによって受け取られるように、放出装置から対象物にエネルギーを放出する工程と、撮像センサに対して相対的な固定位置に配置された少なくとも1つの位置追跡要素に対する放出装置の位置および配向を決定する工程と、放出装置の位置および配向を使用して画像データを調整する工程と、画像データをディスプレイに送信する工程とを含み得る。
【0024】
システムの変形例は、対象物の位置決めを可能にする平面を有するプラットフォームを含み得る。これに代えて、プラットフォームは、自由空間に位置する対象物の部分が、対象物の周囲の全体または実質的な周囲のいずれかにおいて見たり、検査したりすることができるように、自由空間の上に対象物を固定することを可能にする支持フレームを含むことができる。
【0025】
本明細書に記載されたシステム、装置、および方法では、エミッタおよびセンサをアライメントまたは作動可能なアライメントに配置するが、アライメントの程度は、アライメントを規定する任意の業界仕様を含むことができる。例えば、医療用途のために、本明細書に記載されたシステムおよび方法のアライメントは、健康および人間のサービスのアメリカ食品医薬品局(FOOD AND DRUG ADMINISTRATION DEPARTMENT OF HEALTH AND HUMAN SERVICES)に適用される連邦規則のU.S.C.F.R.(例えば、参照により本明細書に組み込まれる21 C.F.R. part 1020)に準拠するために必要とされるアライメントの程度を含むことができる。受像器(センサ)の平面内のX線フィールドの長さおよび幅のいずれも、線源から受像器までの距離(SID)の3パーセントを超えてはならず、過剰な長さおよび過剰な幅の合計は、SIDの4パーセントを超えてはならず、アライメントの誤差は、受像器の可視領域の中心を通過するX線フィールドの長さおよび幅の寸法に沿って決定されなければならない。他の適用、または代替の管轄区域では、本明細書で議論されるアライメントは、それぞれの要件を満たすために変化し得る。これに代えて、システム、装置、および方法の変形例は、エミッタと受容体との間のほぼ直交する位置関係を得るような測定を含むことができる。
【0026】
アライメントと同様に、エミッタと受容体との間の最小または最大の距離は、業界標準によって確立することができる。一実施例では、上記のFDA規則を使用して、45cm未満の最大線源-イメージ受容体間距離と、線源-肌間距離を19cm未満に制限するための手段とが提供される。
【0027】
使用時には、ステージはX線放出の位置および角度を正確に追跡し、正確かつ高品質なX線画像をキャプチャするために、埋め込みセンサを正確に位置決めし、チルトさせる。このステージは、使用する電力がより少なく済み、放出のスキューや遠近を補正し、被験者をその場に留めることができ、外科医のワークフローを中断することなく継続することができる。
【0028】
「臨床」の実施形態では、X線キャプチャステージは静的に位置決めされており、エミッタは、放出がキャプチャステージのアクティブ領域によってポジティブに捕捉され得る場合にのみ確実に発射されるように位置決めを使用している。また、このポジティブキャプチャの獲得がなくなった場合には、直ちに発射が終了する。
【0029】
対象物の放射線画像を撮影するための改善されたシステムの別の変形例は、放出装置の起動時に複数の出力パラメータの下でエネルギーを放出するように構成された放出装置と、
撮像センサへのエネルギーの曝露時に放射線撮像信号を生成するように構成された撮像センサと、
放出装置または撮像センサに結合された複数のセンサからなる位置追跡システムであって、放出装置と撮像センサとの間の配向を追跡するように構成された位置追跡システムと、
対象物の画像を撮影するように構成されたカメラと、
制御部と、を備え、制御部は、
撮像センサに対する放出装置の配向を追跡する際に位置追跡システムの少なくとも1つのセンサパラメータを決定し、撮像センサに対する放出装置の少なくとも1つのセンサパラメータが少なくとも1つ以上の動作安全パラメータを満たしていることを確認し、
対象物の画像を分析して、以前に得られた画像からなるコンピュータビジョン分類器データベースを使用して対象物に分類を割り当て、
少なくとも1つのセンサパラメータ、対象物の分類、およびセンサパラメータを含む以前に得られたデータの推定器データベースを用いて、少なくとも1つの推論された動作パラメータを推定し、
複数の出力パラメータのうちの少なくとも1つの出力パラメータを少なくとも1つの推論された動作パラメータに設定し、放出装置からのエネルギーの放出を開始し、
エネルギーの曝露から撮像センサによって生成された放射線撮像信号を用いて放射線画像を処理し、
放射線画像をディスプレイに送信するように構成される。
【0030】
制御部は、放射線画像を調整するためのシステムとの少なくとも1つのユーザ相互作用を記録するようにさらに構成することができる。
【0031】
一態様では、少なくとも1つのユーザ相互作用は、明るさ、シャープネス、コントラスト、位置、ズーム、回転、およびそれらの任意の組み合わせからなる群から選択される放射線画像に対する調整を含む。システムとのユーザ相互作用は、放射線画像の操作を含み得る。
【0032】
システムの変形例は、放射線画像を調整するためにシステムとのユーザ相互作用の持続時間を記録するように構成された制御部を含む。
【0033】
少なくとも1つ以上の動作安全パラメータは、線源から対象物までの距離、線源から検知器までの距離、入射角、線源からセンサまでのアライメント、および放出装置の温度からなる群から選択されるパラメータを含み得る。
【0034】
制御部は、少なくとも1つ以上の動作安全パラメータを使用して、少なくとも1つの推論された動作パラメータを推定するようにさらに構成され得る。
【0035】
別の態様では、制御部は、位置追跡システムを使用して、撮像装置と撮像センサとの間のアライメントをさらに決定する。
【0036】
対象物が患者の身体部分を含み、制御部が、CPTコードを使用して少なくとも1つの推論された動作パラメータを決定するようにさらに構成されているシステムの変形例が使用可能である。
【0037】
システムの別の態様では、制御部は、生体認証データを使用して、追加的に少なくとも1つの推論された動作パラメータを決定するようにさらに構成されている。
【0038】
本明細書に記載のシステムは、1つ以上のデータ記憶装置をさらに含むことができる。このようなデータ記憶装置は、基準画像のデータベースを含むことができ、制御部は、基準画像のデータベースを使用して対象物の画像を解析するように構成されている。さらなる別の態様では、データ記憶装置は、放射線パラメータを複数の過去のセンサデータおよび複数の過去の分類データに関連付ける少なくとも1つの統計モデルを含み、制御部は、統計モデルを使用して少なくとも1つの推論された動作パラメータを追加的に決定するように構成されている。
【0039】
本開示はまた、対象物の放射線撮像のための方法を含み、そのような方法は、放出装置、撮像センサ、少なくとも1つのセンサからなる位置追跡システム、およびカメラを備える放射線撮像システムを提供する工程を含む。放出装置は、放出装置の起動時に複数の出力パラメータの下でエネルギーを放出するように構成され、
撮像センサは、撮像センサへのエネルギーの曝露時に放射線撮像信号を生成するように構成され、
位置追跡システムおよび少なくとも1つのセンサは、放出装置と撮像センサとの間の配向を追跡するように構成され、
カメラは、対象物の画像を撮影するように構成される。
方法は、
撮像センサに対する放出装置の配向を追跡する際に、少なくとも1つのセンサパラメータを決定する工程と、
少なくとも1つのセンサパラメータが少なくとも1つ以上の動作安全パラメータを満たしていることを確認する工程と、
以前に取得された画像からなるコンピュータビジョン分類器データベースを使用して対象物の画像を分析することにより対象物に分類を割り当てる工程と、
少なくとも1つのセンサパラメータ、対象物の分類、およびセンサパラメータを含む以前に取得されたデータの推定器データベースを使用して少なくとも1つの推論された動作パラメータを推定する工程と、
複数の出力パラメータのうちの少なくとも1つの出力パラメータを少なくとも1つの推論された動作パラメータに設定する工程と、
放出装置からのエネルギーの放出を開始する工程と、
エネルギーの曝露から撮像センサにより生成された放射線撮像信号を使用して放射線画像を処理する工程と、
放射線画像をディスプレイに送信する工程と、
を含む。
【0040】
別の態様では、本開示の方法は、複数の放射線撮像システムのうちのいずれかの自動露光設定を決定する方法を含み、各放射線撮像システムは、カメラ、放出装置、撮像センサ、1つ以上のセンサ、および放出装置と撮像センサとの間の配向を追跡するために1つ以上のセンサを使用するように構成された制御部を含む。方法は、
センサデータ、相互作用データ、手術データおよびそれらの任意の組み合わせからなる群から選択されたデータを含むグローバル測定データベースをコンパイルする工程であって、データは複数の放射線撮像システムのいずれかから経時的に収集され、センサデータは1つ以上のセンサからの直接測定値を含み、相互作用データは放射線画像を調整するために複数の放射線撮像システムのいずれかと相互作用を行う操作者の相互作用を含み、手術データは複数の放射線撮像システムのいずれかによって検査された任意の患者の手術の詳細を含む、グローバル測定データベースをコンパイルする工程と、
複数の放射線撮像システムのいずれかからの生の撮像データを含む撮像保存データベースをコンパイルする工程と、
グローバル測定データからのセンサデータ、相互作用データ、手術データと前回の推定器データとの間の統計的関係を分析する工程であって、前回の推定器データは、前回の捕捉されたセンサデータ、前回の捕捉された相互作用データ、および前回の捕捉された手術データを含み、統計的関係を分析すると、修正された推定器データが生成される、統計的関係を分析する工程と、
改訂されたコンピュータビジョン分類器データを生成するために、生のキャプチャデータ、手術データ、および現在のコンピュータビジョン分類器データを分析する工程と、
改訂された推定器データおよび改訂されたコンピュータビジョン分類器データをアクティブ放射線撮像システムに送信する工程と、
を含み、これにより、アクティブ放射線撮像システムは、
i)前記改訂されたコンピュータビジョン分類器データを使用して、前記アクティブ放射線撮像システムのカメラから撮影された被検者の画像を解析して、前記画像に分類を割り当てることと、
ii)前記センサデータ、前記分類および前記改訂された推定器データを使用して、前記アクティブ放射線撮像システムの少なくとも1つの推論された動作パラメータを推定することと、を有効化される。
【0041】
方法の一変形例では、撮像保存データベースをコンパイルする工程は、生の撮像データを生成する特定の放射線撮像システムに関する情報をさらに含む。
【0042】
方法の別の変形例では、相互作用データは、明るさ、シャープネス、コントラスト、位置、ズーム、回転、およびそれらの任意の組み合わせからなる群から選択される放射線画像に対する調整を含む。相互作用データは、放射線画像を調整するために、複数の放射線撮像システムのいずれかとユーザとの相互作用の持続時間を含み得る。手術データは、1つ以上のCPTコードからなる。
【0043】
方法の別の変形例では、改訂された推定器データおよび改訂されたコンピュータビジョン分類データをアクティブ放射線撮像システムに送信する工程は、改訂された推定器データおよび改訂されたコンピュータビジョン分類データをアクティブ放射線撮像システムと通信している記憶装置上に格納する工程を含む。
【0044】
本出願は、2016年9月15日に出願された米国仮特許出願第62/394,909号の優先権を主張する2017年9月15日に出願された米国特許出願第15/706,018号の利益を主張する2017年9月26日に出願された米国特許出願第15/716,099号;2016年9月15日に出願された米国仮特許出願第62/394,956号;2017年3月14日に出願された米国仮特許出願第62/471,191号;および2017年5月11日に出願された米国仮特許出願第62/504,876号に関するものであり、各出願の全内容が参照により本明細書に組み込まれている。本出願はまた、2017年9月15日に出願されたPCT出願PCT/US2017/051774を参照により組み込む。
【図面の簡単な説明】
【0045】
【
図1A】四肢症例の標準的な手術におけるX線撮像システムの使用のための手術室レイアウトの一例を示す図である。
【
図1B】患者の領域へのアクセスを改善する特殊な手術台を備えた画像処理システムを使用するための手術室レイアウトの代替例を示す図である。
【
図1C】患者の領域へのアクセスを改善する特殊な手術台を備えた画像処理システムを使用するための手術室レイアウトの代替例を示す図である。
【
図2】本発明によるX線エミッタの簡略化された概略図である。
【
図3】エミッタで使用するための一実施形態による制御パネルを示す図である。
【
図4】X線エミッタの安全ロックアウトの手順を示す図である。
【
図5】エミッタ電力管理のための代表的なシーケンス図を示す。
【
図6】ユーザの要求に応じて、デバイスが並行して撮像するプロセスを例示する図である。
【
図7】キャプチャステージの好ましい実施形態の全体的な構成要素を示す図である。
【
図8A】センサ位置決めシステムを示す斜視図である。
【
図8B】赤外線(IR)位置決めタイルを例示する図である。
【
図9】センサトレイを上から見たときのx,yの動きを示す図である。
【
図10A】バンド操作によるキャプチャステージを示す斜視図である。
【
図10B】重要な構成要素の識別を伴うバンド操作ステージを示す概略図である。
【
図11B】センサのパンニング動作を示す側面図である。
【
図12A】エミッタが画像ステージプラットフォーム上に設けられる必要がない配置を示す図である。
【
図12B】センサがテーブルの平面の上を移動して横方向のビューを撮像するように構成され得る撮像システムのさらなる配置を例示する図である。
【
図13】3次元空間内での相対位置計算を可能にする、5点から赤外線を放出する赤外線放出装置を示す図である。
【
図14】エミッタの配置に基づくキャプチャステージの安全ロックアウトを例示する図である。
【
図15】透視画像の撮像を例示するための図である。
【
図16】最も幅広なコーンを形成する開口部を備えるX線放出装置を示す図である。
【
図17】狭小なコーンを形成する開口部を有するX線放出装置を示す図である。
【
図18】開口部およびコーンを調整するために操作可能な制御部を示す図である。
【
図19】相対距離を例示するラベルを付した図である。
【
図20】放出装置が撮像センサのプロファイルを超えるエネルギープロファイルをキャストする状況を示している。
【
図21A】放出プロファイルが、エミッタがセンサと操作的に整列しないようにセンサを越えて延びている状況を示す図である。
【
図21B】放出プロファイルが、撮像センサの境界内に残るようにスケーリングされ、センサと操作的に整列している状況を示す図である。
【
図22A】撮像センサの境界内に留まるようにスケーリングおよび/または回転された調整された放出プロファイルを生成するための調整可能なコリメータの効果の一例を示す図である。
【
図22B】撮像センサの境界内に留まるようにスケーリングおよび/または回転された調整された放出プロファイルを生成するための調整可能なコリメータの効果の一例を示す図である。
【
図23】放出装置内で、または放出装置と組み合わせて使用することができる調整可能なコリメータの変形例を示す図である。
【
図24A】調整可能なコリメータの一例を示す分解図である。
【
図24B】
図24Aの調整可能なコリメータの構成要素の一部を例示する正面図である。
【
図24C】
図24Aの調整可能なコリメータの構成要素の一部を例示する背面図である。
【
図25A】調整可能なコリメータを有するエミッタの一例を示す図である。
【
図25B】調整可能なコリメータを有するエミッタの一例を示す図である。
【
図26A】本明細書で論じられたコリメータのバリデーション方法の一例を示す図である。
【
図26B】本明細書で論じられたコリメータのバリデーション方法の一例を示す図である。
【
図26C】本明細書で論じられたコリメータのバリデーション方法の一例を示す図である。
【
図26D】本明細書で論じられたコリメータのバリデーション方法の一例を示す図である。
【
図26E】本明細書で論じられたコリメータのバリデーション方法の一例を示す図である。
【
図26F】本明細書で論じられたコリメータのバリデーション方法の一例を示す図である。
【
図26G】本明細書で論じられたコリメータのバリデーション方法の一例を示す図である。
【
図26H】本明細書で論じられたコリメータのバリデーション方法の一例を示す図である。
【
図26I】本明細書で論じられたコリメータのバリデーション方法の一例を示す図である。
【
図26J】本明細書で論じられたコリメータのバリデーション方法の一例を示す図である。
【
図27】従来の自動露光処理の一例を示す図である。
【
図28A】放射線画像のための露光設定の決定のための機械学習を提供するために、1つ以上のデータベースに依存する改良されたシステムを例示する図である。
【
図28B】本明細書に記載されたシステムからのフィードバックを使用して自動露光プロセスおよびデータベースを改善するプロセスを例示する図である。
【発明を実施するための形態】
【0046】
図1Aは、四肢症例の標準的な手術における撮像システムの使用のための手術室レイアウトの一例を示す図である。本実施例では、外科医102は患者の左手を手術している。患者104は、仰臥位で左上肢をハンドテーブル105の上に外転された配置で、準備されるとともにドレープをかけられた状態で横たわっている。外科医は患者の側部に隣接して座し、外科助手106は患者の頭部に隣接してハンドテーブルを挟んで座す。手術器具および用具は、外科助手のすぐ後ろのバックテーブル108上に並べられている。
【0047】
一態様では、撮像システムは、X線撮像を使用する。このように、本発明に従った滅菌されたX線エミッタ110は、使用のために外科用ハンドテーブル105上に置かれる。モニタ112は、X線、透視画像、熱画像およびデジタル画像をX線撮像システムから外科医が見るためのスクリーンに無線で転送することができるように、ハンドテーブルのすぐ隣のスタンドに配置される。エミッタ110により、外科医は片手でこれを保持するとともにその他方の手でドリルのような別の器具を操作することができる。本発明に従った検知器ステージは、保存および/または装置112のような外部モニタ上での閲覧のために放射線画像を収集するために、テーブル105上またはテーブル105内に配置されてもよい。本明細書で議論されるように、エミッタは、ハンドヘルドであってもよいし、自動化/制御可能であるか、または単にエミッタの重量を支持してユーザがエミッタを常に保持することを防止するような取付構造に固定してもよい。
【0048】
図1Bは、専用の手術台300で使用するための、センサ706およびエミッタ710を含むシステムのさらなる変形例を例示する。図示のように、手術台300は、臓器の一部が自由空間に懸垂されているので、患者の臓器の周囲へのアクセスを増加させながら、患者を安定させる構造体302を含む。この変形例では、センサ706(後述する)を含むシェル707が第1のブームまたはアーム716に結合されている。アーム/ブーム716により、センサ706は移動可能である。代替的な変形例では、ブーム716は、センサ706が制御可能なブーム716に直接結合されるように自動化され得る。同様に、エミッタ710は、壁、天井、または携帯可能なフレーム構造体に固定可能な第2のアームまたはブーム714に結合されている。
図1Cは、エミッタ710が操作者または医療従事者によって所望の位置に配置され得るように、患者104の身体部分に隣接するセンサ706およびブーム716の配置を例示している。システムの変形例では、ブームまたはアームにより、また、ヒートシンク、電源などの装置の構成要素を収容することができ、エミッタがより小型で操縦しやすくなる。加えて、いずれかのブームは、医師が手順を実行するのを支援するための機能を備えるように構成することができる。例えば、ブームは、医師がセンサ706およびエミッタ710のうちの少なくともいずれか一方を位置決めし、続いて、関連付けられるブームを所定の位置にロックすることができるように、ロックシステムを組み込むことができる。加えて、または組み合わせて、ブームは、処置を実行する際に、ブームが医師の邪魔にならないように、手術空間から離れて予め定められた位置に自動的に後退することができるような、記憶位置決めを組み込むことができる。加えて、記憶位置は、システムが手術空間から遠ざかるに先だって、構成要素をその最後の位置に自動的に再配置することができるように、エミッタまたはセンサの「最後の位置」を含むことができる。
【0049】
図2は、本発明によるX線エミッタを示す簡略化された概略図である。装置の一般的な構成としては、手で扱いやすく、軽量であり、携帯性に優れていることが挙げられる。好ましくは、装置は、外科医の手に人間工学的に適合するように丸みを帯びた輪郭のあるハンドルを有し、透視、デジタル画像および熱画像を四肢および外科領域により良く指向させる。
図2の図面は、特定の装飾的な外観を描写することを意図したものではないことに注意されたい。
【0050】
エミッタ110の背面には、透視モード、デジタル画像モード、または赤外線熱画像モードの少なくとも3つの異なる動作モードを作動させることができるように制御パネルが設けられている。一旦起動されると、各モードはトリガ202によって装置の前面で制御される。トリガを1回押すと、装置が起動して1枚の画像(すなわち、1枚のX線またはデジタル画像)を撮影する。異なる動作モードで作動されてもよい。一例として、トリガ12を押し下げると、ライブ透視、デジタルビデオ、または赤外線熱画像が作動してもよい。
図2はまた、エミッタ110が電源221に結合されているように図示している。電源は、エミッタ110から離れて、またはエミッタ110内に配置されたバッテリ221であってもよい。これに代えて、または組み合わせて、エミッタ110と電源221との間に配線を介して電源221を結合することができる。さらなる変形例では、バッテリ221は、エミッタ110内に配置され、内部バッテリ221が電力を供給するために使用されている状態で、エミッタ110を外部電源から一時的に切り離すことができるように遠隔電源221に加えて使用されることができる。
【0051】
図3は、エミッタと組み合わせて使用される一実施形態による制御パネルを例示する。制御パネルは、排出ハンドルの後部に設けられ、システムの様々な入力および出力を制御する。制御パネルはユーザが簡単にアクセスできるようになっており、エミッタの操作を容易にするように人間工学に基づいて設計されている。制御パネルは、大型で鮮明なスクリーン204(すなわち、LCDまたはOLED)と、ユニットの左側に配置された制御ボタン302と、ユニットの右側に配置された制御ボタン304と、中央に配置されたクリック可能なトグルボタン206とから構成されている。
【0052】
表示画面204は、画像、並びに透視設定、デジタルカメラ設定、赤外線設定を制御するためのデジタル制御パネルが表示される。制御パネルは、タッチスクリーンを含んでもよい。トグルボタン206は、透視モードおよび赤外線モードでは電源入力を制御し、画像モードではデジタルズームを制御する。好ましいエミッタ構造体は、ダイナミックX線コリメートコーン210、デジタルカメラレンズ212、赤外線カメラ214、および距離センサ216を収容する。デジタルカメラおよび赤外線カメラは、好ましくは、電荷結合素子(CCD)技術を使用する。距離センサは、赤外線、音響、または近接および距離測定の当業者に周知の他の操作技術であってもよい。センサ216は、患者からの距離を連続的に検知し、X線管が近すぎる場合、例えば、患者から直接19cm未満の場合には、放射線の活性化および放出をブロックする。加えて、システムは、医師またはシステムのユーザが、センサが許容可能な距離内にあること、または発射準備ができていることを判断できるようにするために、任意の数の聴覚、視覚、または触覚のインジケータを含むことができる。さらなる変形例では、聴覚インジケータ、視覚インジケータ、および/または触覚インジケータは、ユーザが検査対象物から焦点を外すことなく、システムの作動状態を識別できるように配置される。一実施例では、可視インジケータ(例えば、1つ以上のLED)がエミッタ上に配置されており、これは、システムの距離、位置合わせ、または他の作動状態に関する明確に区別可能なフィードバックを提供する。
【0053】
ハンドル200は、高電圧電源218、外部充電ポート220、およびバッテリドッキングステーション222を収容可能な装置の底部に向かって先端ほど細くテーパ状になっている。X線モードまたは透視モードでトリガ202が作動すると、電源218からの高電圧が、高電圧コネクタアセンブリ228を介してX線生成ユニット230に供給される。電源218によって生成された電力は、X線生成ユニット230によって使用可能な適切な入力電圧に変換される。この電力は、1kV乃至120kVまでの範囲にあるが、一般的には、臨床応用に関連して30kV乃至90kVまでの範囲にある。
【0054】
X線生成ユニット230は、瞬時の応用に必要な小型化のためにカスタム設計されているが、既存の高電圧エミッタをベースとしている。適切な厚みの電気絶縁材料が高圧電源218、コネクタアセンブリ228、およびX線生成ユニット230を包囲し、放射損失を防止し、良好なビーム品質を維持する。3つの構成要素218、228、230はすべて、システム内の高電圧リークおよび低電圧構成要素との可能性のある干渉を最小限にするために、互いに対してすぐに隣接して配置されている。代替的な実施形態では、構成要素218、228、230は、外部制御部(図示しない)に配置されてもよい。
【0055】
シリコーンゴムおよびエポキシの好適な層状の組み合わせは、放射線損失を遮蔽し、X線管の動作によって発生する高温を散逸させるために、X線生成ユニット230を(X線がコリメータに放出される場合を除いて)カプセル化する。放射線は、X線管によって生成され、装置の頭部のコリメートコーン210を介して送信される。ピークキロボルト(kV)、アンペア(mA)、デジタル輝度などの透視設定は、首部の背面にあるデジタル制御パネルで制御される。
【0056】
デジタルカメラレンズ212および赤外線サーマルカメラ214は、コリメートコーン210にすぐに隣接しており、これらの構成要素も絶縁体で遮蔽されている。デジタルカメラ214は、制御パネルを用いてデジタルモードにすることで制御される。画像は、装置ハンドルに配置されたトリガ202を介して生成される。
【0057】
同様に、赤外線サーマルカメラ214は、制御パネルを用いて装置を赤外線モードにすることで制御される。トリガを押し続けることにより、ライブで赤外線サーモグラフィが生成される。デジタルX線、従来のデジタル可視画像および熱画像は、
図1に示す外部スクリーン112に転送されて表示されてもよい。以下に説明するエミッタと検知器との間の協力のレベルに応じて、X線画像は、閲覧のために外部モニタに直接転送されてもよい。メモリ233は、収集された任意のタイプの画像を格納するために使用されてもよく、そのような画像は、係属中の米国特許出願第15/466,216号明細書に従って、捕捉時に暗号化されてもよく、同文献はその内容の全体が参照により本明細書に組み込まれる。オーディオピックアップ235は、手順のメモリアル化または他の目的のために提供されてもよく、記録はまた、メモリ233に格納されてもよく、任意に暗号化された形態でもよい。
【0058】
本装置は、外部充電ポート220を備えた外部プラグ電源から給電される。デジタル表示、制御インターフェース、およびトリガは、低電圧電力増幅器システム234によって給電された制御システムマイクロプロセッサ電子制御部232を介して制御される。低電圧増幅システム234およびマイクロプロセッサ制御システム232もまた、干渉をさらに最小限にするために、高電圧電源から離れた箇所に好都合に配置されている。
【0059】
以下の表は、
図3の制御パネルの複数のボタンおよびトグルスイッチを使用してエミッタに関連付けられた様々な制御モードを一覧表にしたものである。
【0060】
【表1】
実務上も認定上も様々な理由から、被写体とX線発生装置との間の距離を最小限に保持することが重要である。この距離は、多くの要因によって変化し、また、エミッタのソフトウェアで設定することができる。
図4は、装置がX線エミッタの安全ロックアウト手順を管理する処理を示す。安全ロックアウトの判定プロセスは以下の通りである。
【0061】
ステップ402 ユーザは、X線モード中にトリガを押圧することで、X線放出プロセスを開始する。これは、透視画像であっても静止画であってもいずれでもよい。
【0062】
ステップ404 エミッタの距離設定データベースから距離設定を取得する。
【0063】
ステップ405 距離測定部が作動して、エミッタの端部とエミッタの真正面にある被写体との間の距離を撮像する。
【0064】
ステップ406 距離設定および距離測定はエミッタのECU演算ユニットに中継される。
【0065】
ステップ408 ステップ408において、ECU演算ユニットは、距離測定、距離設定、および内部ジェネレータオフセットを使用して、エミッタが発射すべきかどうかを決定する。
【0066】
ステップ410 発射・警報の判定はステップ410でECUにより判定され、ハードウェアユニットに中継される。
【0067】
ステップ412 ステップ412で、被写体がエミッタに近過ぎるとECUが判断すると、ユニットは警告手順を起動し、LCDパネル上にメッセージを表示し、ロックアウト警告灯を作動させる。
【0068】
ステップ414 ステップ414で、被写体が安全な距離にあるとECUが判断した場合、エミッタは、すべての内部構成要素および外部構成要素に信号を送って、X線の生成および放出プロセスを開始する。
【0069】
装置は3次元空間内を自由に移動できるため、X線エミッタからの投影コーンの大きさは、対象までの距離に応じて変化する。このように、本発明によれば、ステージ上に配置されたセンサからのX線放出装置の距離に基づいて、コーンサイズを管理制御することができる。
【0070】
図16は、アノード1602およびカソード1604を含む、適用可能なX線源の簡略化された説明図である。アノードは、典型的には、タングステンまたはモリブデンの対象1606を含む。アノードおよびカソードを横断する高電圧は、対象でX線を発生させ、これは、筐体1612内の開口1610を通って出射するコーン1608を形成する。
【0071】
本発明の一態様は、開口およびセンサの方向に配置された伸縮チャンバを含む。X線源から出力開口までの距離は、ネジ式の内部マウントに沿って外部チャンバを回転させることにより、増減させることができる。
図17に示すように、開口をソースに近付けると広角になり、ソースから遠ざけると角が小さくなる。
【0072】
図18を参照して、ハンドヘルドエミッタ内の制御部1802は、伸縮開口を制御する。以下のプロセスに基づいて、制御部1802は、ネジ山シャフト1804を回転させ、その結果、ネジ山は、伸縮チャンバ1614内の溝1806と係合し、開口1610がX線源に向けられ、また、遠ざけられる。
【0073】
図19を参照して、制御方法は以下の通りである。まず、装置のX線原点とX線センサとの間の距離を計算する。距離がX線放出の許容範囲外であれば、X線は放出されない。ただし、X線原点とセンサ(d
s)との距離が許容範囲内であれば、開口は自動的に所定の位置に移動する。そして、X線原点から開口(da)までの距離が算出され、制御部は開口チャンバを適正な距離に回転させる。
【0074】
Rsがセンサに接触するときのX線放出の半径を表すとすると、センサプレートの正規化ベクトルと分散コーンとの間の角度は、θ=tan-1(Rs/ds)として表すことができる。X線を正確に分散させて放出するためには、開口が放出源から位置する必要がある距離は、da=Ra/tan(θ)として計算することができ、Raは開口の半径を示す。制御部は、続いてX線放出装置に、角度θのコーンをセンサに投影するX線を放出させる。
【0075】
図16乃至19を参照して説明した伸縮コーン調整機構が好ましいが、当該技術分野の当業者であれば、これに代えてより従来の調整可能な開口(すなわち、並進可能なX線吸収ブレードまたは遮断ブレードによる)が使用されてもよいことを理解するであろう。上記で使用したのと同じ計算が、本実施形態にも適用可能であり、すなわち、距離がX線放出の許容範囲外であれば、X線は放出されない。逆に、X線原点とセンサ(d
s)との間の距離が許容範囲内であれば、光源の発射を促進するために、開口は自動的に開閉されるであろう。
【0076】
市場によって安全性の要件は異なる。加えて、被験者(高齢者、小児、その他の健康なヒト)に応じて、放出に関連付けられた安全上の問題が確実にないようにするためにロックアウトを調整することができる。この装置はまた、好ましくは、慣性測定ユニット(IMU)、距離センサユニット、および操作者が開始したコマンド入力を利用して電力をインテリジェントに節約する機能を含む。ユニットの電力ステージの様々な持続時間はユーザが設定可能であるため、ユーザの特定のスタイルおよび調子(cadence)に合わせて装置を調整することができる。
【0077】
本明細書に記載されたシステムおよび方法はまた、誤差補正および/または位置決めを改善するために複数のセンサを使用することができる。例えば、エミッタおよび検知器/センサが所定の位置にあり、システムがプラットフォーム上の1つ以上のセンサのトラッキングを失った場合、通常、トラッキングの喪失は出力画像のFPSを低下させる可能性がある。この状況に対処するために、エミッタは、特に必要な場合に介在フレームを調整するためにエミッタの動きを追跡することができる1つ以上の慣性測定ユニットを含むことができる。そして、IMUを使用して、出力のFPSを上げるために、介在フレームを調整する。いくつかの変形例では、十分な精度のIMUにより、プラットフォーム上の複数のセンサに代えて、またはこれらに加えてIMUを使用することができる。
【0078】
【0079】
ポイント502 ユーザは、エミッタ上の物理ボタン(すなわち、
図2の208)を押すことにより、装置上の電源シーケンスを開始する。これにより、装置の電子機器が作動し、装置がオンモードになる。
【0080】
ポイント504 装置のピックアップがエミッタ内のIMUで検知され、迅速に電力レベルをSTANDBYに引き上げる。このSTANDBY状態は、すべての電源システムを初期化し、電源の電荷を中レベルに引き上げる。
【0081】
ポイント505 ユーザが装置をダウンさせるか、エミッタを動かすか、または制御パネルや制御コンピュータでの開始により、その他の操作をしない場合、装置は自動的にパワーダウンして、t0の時間後にオフ段階になる。
【0082】
ポイント506 ユーザは、制御パネル自体の設定を変更したり、搭載されている距離センサで検知された被写体の範囲内に装置を至らしめることにより、装置を手に取り、装置を作動させたことになる。これにより、電源システムをフル充電して装置を放射可能な状態にすることで、装置の電力レベルをさらに上昇させ、装置をREADYモードにすることができる。
【0083】
ポイント507 ユニットを積極的に作動させることなくt1の持続時間が経過した後に、エミッタはそれ自体をSTANDBYレベルまでパワーダウンさせる。
【0084】
ポイント510 ユーザは、エミッタ上のトリガ202を押し下げることにより、X線撮影を開始する。他のすべての安全チェックがクリアされていると仮定すると、これはさらに電源を作動させ、511の状態になるまで被写体に向かってX線光子の流れを放出し、その時点で放出が完了する。しかしながら、ユーザは、装置がREADYモードに戻ると、ポイント510’、511’でX線光子を無期限に放出し続けることができる。
【0085】
ポイント511 エミッタが発射されていない間の持続時間t2の後に、装置は自動的にポイント520でSTANDBYレベルまでそれ自体パワーダウンする。
【0086】
ポイント508、522、524で示されるように、装置は、電源状態を維持または変更するために正の作動なしに様々な持続時間が経過すると、装置をオン段階から最終的にオフ段階に移行させるために、上記のタイミングに従う。これらのステップを利用することで、装置は、ユーザからの操作なしでREADY状態を維持しながら、電力を節減することができる。
【0087】
図6は、ユーザの要求に応じて、装置が並行して画像を撮影する処理を説明するための図である。エミッタの制御画面上の設定を使用して、または制御部内の同時撮像を指定することにより、エミッタは、X線、従来のデジタル画像および/または熱画像の任意の組み合わせを撮像するためのプロセスを開始する。撮像する処理は以下の通りである。
【0088】
ステップ602 ユーザは、エミッタのトリガを引くことにより、装置上のキャプチャシーケンスを開始する。これは、センサのグループ化が有効になっている場合には、キャプチャプロセスと並行イメージングプロセスを開始する。
【0089】
ステップ604 エミッタは直ちにX線STANDBYモードに入り、X線発生器を発射する準備をする。
【0090】
ステップ604’ 同時に、有効にすると、従来のカメラコンポーネントは目的の被写体に焦点を合わせる。これは、好ましくは、トリガが押されるとすぐに発生する。
【0091】
ステップ604” 同時に、有効にすると、サーマルカメラの電源が入り、起動シーケンスが開始される。これはまた、好ましくは、トリガが押されるとすぐに発生する。
【0092】
ステップ606
図4に示すように、X線システムはその安全チェックを開始する。
【0093】
ステップ608 デジタル撮像カメラは、従来の被写体の画像を撮影する。好ましくは、画像は、外部モニタ上に表示するための制御部に自動的に転送される。
【0094】
ステップ610 サーマルカメラは、被写体の熱画像を撮影する。好ましくは、画像は、外部モニタ上に表示するための制御部に自動的に転送される。
【0095】
ステップ620 好ましい実施形態では、ステップ608および610の両者が完了し、ステップ606からのすべての安全チェックが確認された後、X線ユニットは放出を発射し、センサ内にX線画像を生成する。好ましくは、画像は、外部モニタ上に表示するための制御部に自動的に転送される。このように、X線システムは、操作上の干渉を最小限に抑えるために、他のすべてのシステムが実行された後にのみ、充電、安全性の確認、およびX線の排出を行る。
【0096】
X線検知器の実装
本明細書に記載されたエミッタは、X線検知器と組み合わせて使用して、X線画像を収集する必要がある。エミッタは、検知器の技術に制限されず、膜であっても、利用可能ないかなるフラットパネル検知器とも組み合わせて使用できる。しかしながら、エミッタの完全な携帯性を考慮すると、エミッタが検知器に対して確実に適切に配向され、疑似のまたは望ましくないX線の放出を避けながら、明確な画像を収集するための手順を取る必要がある。1つの選択肢として、エミッタを適切に配置された検知器プレートを含む固定具に取り付ける方法があり、これは、伝統的なCアームに類似するが、はるかに小型で、より多くの能力を有する。しかしながら、好ましい選択肢は、エミッタを、以下に説明するX線キャプチャステージと組み合わせて使用することにあり、そのうちの1つは、露光品質および安全性を最大化するために、エミッタと自動的に枢動、角度調整および位置合わせを行う埋め込みセンサを含む。
【0097】
好ましいX線キャプチャステージは、X線センサ、X線センサ位置決めシステム、エミッタ追跡システム、遮蔽システム、および制御部を含む内部空洞を有する、手術の開始時に位置決めされる静的に固定されたプラットフォームを含む。X線キャプチャステージは、本明細書に記載された携帯型のハンドヘルドユニットを含む個別のエミッタ装置からのX線放出を受容するように構成されている。好ましくは、X線キャプチャステージはまた、捕捉されたX線または透視画像のレビューを外部ディスプレイモニタ上または外部ストレージを含む捕捉された画像のための他の任意の構造体上でレビューすることを可能にする無線(または有線)通信機能を組み込んでいる。
【0098】
大まかに2つのキャプチャステージの実施形態がある。臨床的な実施形態では、ステージは放出を追跡し、それが一直線上にない場合は、単にX線発射をロックアウトする。トラッキングステージの実施形態はまた、アライメントに従って放出を許可またはロックアウトするのみならず、正確かつ高品質のX線画像を捕捉するために、埋め込みセンサを位置決めし、傾斜させて、X線放出の位置および角度を正確に追跡する。この構成により、使用する電力がより少なく済み、放出のスキューまたは遠近法が補正され、被写体を所定の位置に留めることができるため、外科医のワークフローを中断することなく継続し、機器、被写体、または外科医の位置を再配置することなくX線を捕捉することができる。
【0099】
図7は、埋め込みセンサ706を含む中空洞を有するプラットフォーム702を含む、X線キャプチャステージの好ましい実施形態のを示す簡略図である。一実施形態では、ステージは脚部703を有し、テーブルとして使用されてもよい。別の構成では、ステージは袋に包囲され、患者の下に配置されてもよい。このように、プラットフォーム702は、無菌ドレープに包囲され、外科的処置は、
図1のテーブル105のようなプラットフォーム上で実行され得る。
【0100】
キャプチャステージは、個別のX線放出装置710と協働する。X線放出装置には、上記で詳細に説明したハンドヘルドユニット以外にも、壁掛け式、補強材式、床置き式など、様々な構成および実施形態がある。エミッタの電子システムが、枢動、配向または整列のために提供するために、操作可能なX線ステージ中央制御部のインターフェースと通信できる限り、どのような実施形態でも、操作可能なX線ステージと互換性がある。
【0101】
プラットフォーム702は、中央制御部704と電気的に通信している。制御部704に電子的に接続されたディスプレイモニタ712は、画像の表示およびシステム全体の制御の提供の両者のために使用されてもよい。一般に、ユーザはエミッタ710と相互に作用するが、場合によっては、画像を操作したり、特定の捕捉シナリオを設定したり、パラメータを制御したり、他の設定を調整したりするために、ユーザは中央制御部704と直接相互に作用してもよい。システムは、また、タブレット、携帯電話、または中央制御装置に電子的に接続された他の表示装置を表示目的で使用してもよい。中央制御装置704およびディスプレイは、ラップトップコンピュータまたは他のモバイルコンピューティング装置のような単一の装置に結合されてもよい。任意に、中央制御装置は、教育または他の目的のために、複数の表示装置に電子的に接続することができる。
【0102】
図8Aは、本発明によるX線キャプチャステージを示す斜視図である。ステージがなす1つの特定の構成は、本発明の全体的なサイズは、他の外科的用途に適合するように変更することができるが、約20インチ×30インチ(約50.8cm×約76.2cm)である中空の、シールされた、シェルである。シェルは、X線エミッタからのX線放出を捕捉するために作動するX線検知センサ706を収容するキャビティ800を形成する。適切なX線センサは、様々な市販メーカから入手可能である。センサ706は、キャビティ内でセンサをパンおよび傾斜させるために使用される電動移動システムに取り付けられている。この電動システムにより、最高の画質およびキャプチャービューが得られるように確実にセンサを正確に配置することができる。
【0103】
X線センサ706は、好ましくは、キャビティ800内で制御された動きの下で移動する可動トレイ802に取り付けられる。トレイおよびセンサは、後述するように、X-Y方向に移動することができ、両軸に沿って傾斜することができる。
図9は、キャプチャステージを上から見た図である。トレイ802内のセンサ706は、一連の電動レール720、722上に並進するように取り付けられており、これにより、センサはシェル内のX軸およびY軸に沿って任意の箇所に位置することができる。XおよびYトラックの少なくとも1つは、例えば、ネジロッドであってもよく、それぞれ、X寸法およびY寸法でトレイ802を正確に横方向に移動させるためのモータによって駆動される。さらなる代替として、
図10Aのバンド1002、1004を用いて、トレイのX-Y移動を制御してもよい。このようなバンドは、ロッド1006、1008によって正確に制御され、トレイ支持体1110、1112がトレイ808を翻訳することを引き起こす。
図9に4つのトレイ支持体902、904が描かれているが、
図10Aに示すように、単一の支持体1110、1112がこれに代えて使用されてもよいことに留意されたい。
【0104】
図10Bは、重要な構成要素の識別を伴うバンド操作ステージを示す概略図である。X線検知器1030が示され、検知器担体1032が描かれている。この特定の実施形態では、H型ベルト1040によって駆動される。小オフセット軸受1042および大オフセット軸受1044が設けられる。ベルトはモータ1050,1052によって駆動される。ステージハウジング1060が示されており、ケーブル1062を介して電源がもたらされる。検知器傾斜モータ1070,1072が示されている。
図8Bを参照して説明したIR位置決めタイル850およびIRエミッタ852が示されている。本明細書に記載される典型的なIRエミッタは、エミッタの位置の決定を支援するためにエミッタによって受信された信号またはエネルギーを能動的に放出するので、アクティブビーコンである。これに代えて、または組み合わせて、本明細書に記載された方法、システム、および装置のさらなる変形例は、エミッタの配向を決定することを支援するための受動的なマーキングまたは物体を含むことができる。システム、装置、および方法は、特定のパターン(例えば、QRシンボルまたは時計、テーブル、固定具などの外科領域内の所定のユニークな物体)を単に記録するカメラまたはエミッタを含むことができる。システムは、これらのパターンを、IRビーコンに代えて、またはIRビーコンと組み合わせて使用し、エミッタの位置を決定するためにコンピュータに依存する。後者の場合、エミッタの位置はコンピュータ等の処理装置によって算出される。
【0105】
すべてのステージの実施形態では、プラットフォームまたはシェルの上部カバー1018(
図10A)は、放射性材料で覆われている。しかしながら、プラットフォームの下部基部1020(
図10A)は、好ましくは、鉛のようなX線吸収材料で被覆されている。この被覆は、余分なX線がフィールドを透過し、エミッタの操作者に吸収されることを防止する。また、このX線吸収アンダー被覆は、余分なX線放出が床から跳ね返って施設全体に散乱することを防止する。プラットフォームの側面も同様に放射線不透過性を備える材料で構成されてもよい。
【0106】
図11A,
図11Bは、パン・チルト機構を示す図である。
図11Aでは、センサトレイ802はキャビティ内に配置され、センサ706はY軸を中心として傾斜している。
図11Bでは、センサトレイ802は、X軸およびY軸の両方に沿って傾斜している。このパンニングおよびチルトにより、放出装置のオフセット角度によって生じる歪みを最小限に抑えながら、センサを正確に配置してX線画像を撮影することができる。すなわち、キャプチャステージおよびX線エミッタは、スキューを最小限にし、X線および透視画像の両者のキャプチャを最大化するように調整されている。ステージ内でセンサを移動させることにより、ユーザは被写体の位置を変えることなく、鮮明で使用可能なX線画像や透視画像を得ることができる。
【0107】
放出装置がステージから物理的に切り離されているハンドヘルド型エミッタの場合、品質および安全性の理由から、センサをエミッタに対して相対的に配置することが重要である。この目標を達成するために、さまざまなテクニックを使用することができる。
図8および
図10に示すように、複数の位置追跡具830は、トレイの端部または角部に取り付けられてもよい。これらの道具は四隅で使用することができるが、正確な三角測量に必要なのは1つのみである。これらの実施形態は、超音波音の発生に基づくものであってもよいし、赤外線の発光に基づくものであってもよい。これらの実施形態では、プラットフォーム内で発生した音響信号または赤外線信号は、エミッタ装置によって検知され、これによってセンサは、捕捉を最大化するために並進および傾斜する。さらなる実施形態では、トレイおよびX線センサを配向するために、外科用ナビゲーションで使用されるタイプの磁気位置および方位センサと検知器とを利用してもよい。
【0108】
エミッタ830は、ハンドヘルドユニット710上の点810からステージに取り付けられた3つ(またはそれ以上)の固定点830までの距離を測定するために使用される。これらの距離は、
図8AではD
1、D
2、D
3として描かれている。これらの距離に基づいて、システムは、センサ706上の中心点801と、ソースからプラットフォームへの放出の角度(θ
5)を正確に特定するために、追跡方法を採用する。このトラッキングシステムの例示的な実施形態は、プラットフォームおよびハンドヘルドユニット内の赤外線センサの組み合わせ、および角度θ
5を検知するためのステージおよびハンドヘルドユニット内のジャイロスコープを含むであろう。
【0109】
検知器の位置決めには、複数のセンサを併用する。ユーザがハンドヘルドユニットを手に取ると、システムは準備完了状態になる。テーブルの角部にある赤外線ビーコンが照明する。ハンドヘルドユニットに搭載された位置追跡カメラは、140度の視野内で撮影された赤外線スペクトルの解析を直ちに開始する。カメラは赤外線のパターンを探している。各角部830は、ハンドヘルドユニットの赤外線カメラがステージのどの角部を見ているかを判定する特定のパターンを有している。
【0110】
図8Bを参照して、IR位置決めエミッタタイル850は、手術台または臨床台の各角部に着座する。図は、4つのユニークなタイルの例である。マウントされた位置決めビーコンを使用する場合、パターンが異なる。これらのタイルは、特定のパターンに配置された多数の赤外線エミッタ852、通常は5個の個別エミッタを含む。各タイルには、5つのIRエミッタの異なるパターンが含まれている。オペレータがX線エミッタをステージの周囲に移動させると、IR位置決めカメラがタイルからの赤外線放射をキャプチャして分析する。各タイルには固有のパターンがあるため、カメラはテーブルとの関係でその正確な位置を判定することができる。加えて、各タイルには複数のライトがユニークなパターンで配置されているため、XYZ空間内のタイルから正確な位置を特定することができる。
【0111】
任意により、またはこのユニークなIRレイアウトに加えて、IRエミッタは、シンコペーション方式で点滅することができる。点滅の周波数を変調することで、各タイルに独自性のあるシグネチャを追加することができ、タイル数の多いシナリオでパターンを繰り返すことができる。このユニークな配置のため、システムが完全に機能できるようにするためには、ユニットの単一の角部、すなわち単一の位置決めビーコンのみがエミッタに見えるようにする必要がある。すなわち、パターンの配置により、カメラは各角部に対して空間内の位置を三角測量することができる。三角測量データとエミッタ上のIMUユニットからの配向データとを利用して、システムは、エミッタの中心点を判定することができる。ステージは、ステージのその領域に中心点を移動させ、検知器を可能な限り放出に対して直交するように傾斜させる。センサが所定の位置に移動している間、エミッタ上のコリメータがビームの出力を調整し、検知器パネルのみを確実に照明するようにする。
【0112】
センサ830の組み合わせからの位置情報は、制御部704(
図7)を介してルーティングされ、生のセンサデータをプラットフォーム上の目的点に補間する。続いて、プラットフォームは、センサトレイ802を所定の位置に移動させる。プラットフォームはその後センサを正しい配向(θ
5)に傾斜させ、できるだけ多くのスキューを取り除く。別の言い方をすれば、エミッタ710内のX線源が軸線803を中心として放射線を放出すると仮定すると、軸線803は、スキューを最小化するためにセンサの平面が軸線201に対して可能な限り直交するように、センサの中心点801に可能な限り近い位置に配置されることが目標である。
【0113】
トレイおよびセンサのX、Y、パン、チルトの位置決めは、システムのプラットフォーム部分の位置エミッタを使用しないで達成されてもよい。
図12Aおよび
図13は、テーブルに埋め込まれた位置エミッタを有することの依存性が取り除かれる位置計算の代替的システムおよび方法を示す。これに代えて、外部位置エミッタに基づいて、キャプチャステージおよびX線検知センサに対するX線エミッタの位置を算出してもよい。上述したように、エミッタは、当業者が自由空間内でエミッタを移動させることができるように、純粋に手で持つことができる。これに代えて、エミッタは、医師がエミッタを継続的に保持することを必要とせずに、エミッタを対象物に対して所定の位置に保持する支持構造体とともに(またはこれと結合可能に)移動可能であってもよい。
【0114】
本実施形態に従ったX線放出装置の位置を決定する工程は、以下の通りである。
【0115】
外部位置放出装置(複数可)は、固定位置に設置されるとともに一連の赤外線エミッタを含む。この放出装置は、立方体オブジェクト1202の5面から赤外線パターンを放出し、その結果、赤外線エネルギーがわずかに異なる源から放出される。
【0116】
ステージは、赤外線パターンを検知し、ステージから3次元空間内の各赤外線エミッタの中心までの相対位置を算出する。この位置は、sがステージ、eが赤外線発光素子、iが赤外線発光素子のインデックス(複数の赤外線発光素子を利用している場合)で、[xsi,ysi,zsi]=[-xei,-yei,-zei]と考えられる。
【0117】
X線放出装置は、赤外線信号パターンを継続的に検知し、空間内の各赤外線エミッタの中心に対する放出装置の相対位置を決定する。この相対位置は、各エミッタ用の放出位置制御部に中継される。この位置は、hがX線発光素子、eが赤外線発光素子、iが赤外線発光素子のインデックスで、[xhi,yhi,zhi]=[-xei,-yei,-zei]と考えてもよい。
【0118】
放出位置制御部は、X線放出装置の相対位置([xhi,yhi,zhi])を受信するであろう。これらの相対位置を用いて、放出位置制御部は、ステージ(
図13)に対するX線放出装置の相対位置を算出し、[xhi-xsi,yhi-ysi,zhi-zsi]となる。この操作は、赤外線発光素子(i)ごとに行われ、これを用いて誤差の範囲を推論することができる。
【0119】
ステージは、原出願時に示したように他のデータとともに位置を適用した後に、X線センサプレートを正しい位置に移動および回転させてX線画像を撮影する。
【0120】
図12Bは、エミッタ710が、本明細書で議論されるように移動するように構成されているが横方向の撮像を可能にするためにも移動することができるセンサ/検知器706にエネルギーを印加することができる変形例を示す。図示された変形例では、センサ/検知器706は、患者104の横方向のビューを捕捉するために、テーブル105の中心X軸線の外側に移動する。しかしながら、センサ706のバリエーションは、テーブルが非平面であり、患者が配置されている平面の上でセンサ706を受承するように構成されている構造体を含むことができる。
図12Bはまた、複数の検知器706が本明細書で説明したように使用される追加の概念を示す。このような変形例では、センサ706は、本明細書に記載されているように移動されるが、最良の動作アライメントを有するセンサが、信号を生成するために使用されるであろう。
【0121】
安全ロックアウトの手順
エミッタからの放出を特定の目標距離に制限することが重要であるのと同様に、実用的な理由および認証の両者の様々な理由から、エミッタがキャプチャステージで適切に配向されている場合にのみ、X線放出装置を発射することが重要である。X線放出装置がステージに配向されていない状態で光子を放出することを防止することで、システムの安全性が向上し、エミッタの性能が向上する。
図14は、装置がエミッタの安全ロックアウトを管理し、X線画像を捕捉する処理を示す図であり、
図14において、符号に対応する符号が付されている。
【0122】
ステップ1 ユーザは、放出装置110を介して信号を送ることにより、典型的にはトリガを押すことにより、捕捉プロセスを開始する。エミッタは、捕捉要求、距離測定値(d1、d2、...)、およびエミッタの角度を含むデータパケット(D)を制御部に送信する。
【0123】
ステップ2a 制御部は、エミッタが安全な配向にあることを検証する。
【0124】
ステップ2b 制御部がエミッタが安全で有効な配向にないことを発見した場合、制御部はエミッタにエラーメッセージを送信する。これにより、エミッタが発射されるのを防止し、また、問題があることをユーザに知らせることができる。
【0125】
ステップ3 ステージは、エミッタの位置に応じてセンサを位置決めする。ステージはセンサを傾けて、鮮明な画像を捕捉するために正しい配向になるようにする。配向は、可能な限り放出の相補角に近いものになる。
【0126】
ステップ4 続いてステージは、位置が確立された後に、制御部に確認メッセージを送信する。
【0127】
ステップ5 制御部は開始メッセージをエミッタに転送する。続いて、エミッタは、任意の追加の安全作業または準備作業を実行するであろう。エミッタが発射しても安全な環境であると判断した場合に、エミッタは続いて、X線を発射するであろう。
【0128】
ステップ6a エミッタは、要求された時間だけステージでX線光子のパルスを発射する。
【0129】
ステップ6b X線光子ストリームの放出の間、エミッタは常に中央制御部に位置および角度の更新をストリームする。
【0130】
ステップ6c 制御部はこれらの位置更新を記録するとともにステージに中継する。
【0131】
ステップ6d このステージでは、センサの位置および角度を迅速かつ常に更新し、X線画像を光学的に安定化させるであろう。
【0132】
ステップ7 センサは、エミッタからのX線光子の放出を捕捉するとともに画像を構築する。
【0133】
ステップ8 X線放出が完了すると、センサは制御部にデータを中継する。
【0134】
ステップ9 制御部は、続いて周知の様々な光学的向上技術を用いてセンサから画像を鮮明化する。該当する場合、制御部は、エミッタからの蓄積された移動データを活用して、出力をさらに向上させる。
【0135】
上記の処理により、エミッタは、他の任意の目標とは対照的に、センサおよびステージに向けられた放出を確実に行うことができる。センサを放出目標の下に移動させることで、ユーザは、被写体の位置を変えることなく、被写体の正確な所望の部分の解像度の高い柔軟な画像を生成することができる。
【0136】
図15は、装置が透視画像を撮像する処理を説明するための図である。透視画像を撮像するための処理は、静止したX線画像を撮像することと非常によく類似しているが、透視プロセスは、動画像を生成するために、複数の放出および画像の撮像を繰り返すであろう。また、
図15において、符号に対応する符号を用いて、透視画像の撮像と同様に安全な放出を確保するための処理を行う。
【0137】
ステップ1 ユーザは、通常はトリガを押すことにより放出ハンドルを介して信号を送ることで、キャプチャ処理を開始する。エミッタは、捕捉要求、距離測定値(d1、d2、...)、およびエミッタの角度を含むデータパケット(D)を制御部に送信する。
【0138】
ステップ2a 制御部は、エミッタが安全な配向にあることを検証する。
【0139】
ステップ2b 制御部がエミッタが安全で有効な配向にないことを発見した場合、制御部はエミッタにエラーメッセージを送信する。これにより、エミッタが発射されるのを防止し、また、問題があることをユーザに知らせることができる。
【0140】
ステップ3 ステージは、エミッタの位置に応じてセンサを位置決めする。ステージはセンサを傾けて、鮮明な画像を捕捉するために正しい配向になるようにする。配向は、可能な限り放出の相補角に近いものになる。
【0141】
ステップ4 続いて、ステージは位置決め後に、制御部に確認メッセージを送信する。
【0142】
ステップ5 制御部は開始メッセージをエミッタに転送する。続いて、エミッタは、任意の追加の安全作業または準備作業を実行するであろう。
【0143】
透視モードでは、エミッタ装置が追加の透視フレームを要求し続ける間、エミッタは以下のステップを繰り返すであろう。
【0144】
ステップ6a エミッタは、要求された時間だけステージでX線光子のパルスを発射する。
【0145】
ステップ6b X線光子ストリームの放出の間、エミッタは常に中央制御部に位置および角度の更新をストリームする。透視処理の間のいずれかの時点で、手術ステージが放出がステージに配向されていないことを検知した場合に、手術ステージは、放出装置に終了信号を送信し、ステップ9に直接スキップする。
【0146】
ステップ6c 制御部はこれらの位置更新を記録するとともにステージに中継する。
【0147】
ステップ6d ステージは、X線画像を光学的に安定化させるために、センサの位置および角度を迅速かつ連続的に更新する。
【0148】
ステップ7 センサは、エミッタからのX線光子の放出を捕捉するとともに画像を構築する。
【0149】
ステップ8 センサは直ちに画像を制御部に転送する。このとき、簡単な鮮明化処理が実行され、外部視聴装置に画像が表示される。この透視フレームはメモリに保存される。
【0150】
この処理を常に繰り返すことで、外部ディスプレイ上に動画像が生成される。この処理は、ユーザが放出装置のトリガを解除するまで繰り返されるであろう。
【0151】
ステップ9 ユーザが放出装置のトリガを解放すると、制御部は、周知の様々な向上技術を用いて、センサから保存されたフレームを「鮮明化」する。該当する場合、制御部は、エミッタからの蓄積された移動データを利用して、出力をさらに向上させる。制御部は、続いて透視フレームを1つの動画に合成して繰り返し再生するであろう。
【0152】
以上の処理により、ユーザは被写体の透視画像をリアルタイムで見ることができる。撮像が完了した後に画像を保存するとともに再処理することで、高品質な1つの透視映像を生成し、後で表示して確認することができる。
【0153】
自己適応型コリメータ
上述したように、本開示のシステムは、放出装置を物体に対して相対的な位置に移動させ、少なくとも1つの位置追跡要素が、放出装置と物体との間の距離を測定し、距離が予め定められた距離よりも小さくなるまでエネルギーの放出を防止し、システムは、少なくとも1つの位置追跡要素に対する放出装置の相対的な位置を決定することを可能にする。本明細書に記載されたシステムの変形例は、センサの作業面上の放出のプロファイルまたは境界を最適化する自己調整コリメータを使用することができる。本明細書に記載された他の変形例と同様に、これらのシステムは、放出装置の位置を、撮像センサを放出装置との操作可能なアライメントに調整するモータシステムに中継することができ、ここで、放出装置の位置を中継することは、放出装置の配向データを提供することと、複数の追跡要素のそれぞれからの距離を決定することとの両者のために放出装置を使用することを含む。しかしながら、自己調整コリメータを使用することにより、撮像センサ上の放出プロファイルを自動的に最大化することができる。
【0154】
図20は、調整可能なコリメータの利点を説明するために、内部に撮像センサ(図示しない)を配置されたテーブル114に向けられたX線エミッタ110の表現を示す。撮像センサの作業領域116の境界は、X線放出の露光時に画像を生成する領域を例示するために示されている。図示のように、X線エミッタ110からのX線放出120のプロファイルは、X線エミッタをセンサとの操作可能な位置合わせから外すように、撮像センサの作業領域116の境界を越えて延びている。このような場合、本明細書に記載されているようなシステムは、X線エミッタ110の発射または初期化を許可しない。
図20の説明図は、システムが作動可能な位置合わせから外れているという概念を説明するためのものである。本明細書に記載されているように、撮像センサは、放出プロファイル120と整列するようにセンサを移動させるために、モータシステムに結合することができる。これに代えて、テーブル(または操作面)114は、非可動センサまたはセンサの作業領域116に対するエミッタ110の位置および距離を測定を可能にする複数の位置追跡要素(
図20には図示しない)を含むことができる。
【0155】
図21Aは、放出プロファイル120が、エミッタがセンサ116と作動的に整列しないようにセンサ116を越えて延びている状況を表している。図示の目的のために、
図21Aおよび
図21Bに示すセンサ116は静止しており、追跡要素118により、システムはセンサ116に対するエミッタ(図示しない)の相対的な位置、配置、および距離を測定することができる。また、放出プロファイル120は、放出装置によって提供される放出の境界を表すものとして図示されている。図示の目的のために、図示されたプロファイル120は、エミッタの軸線がセンサ116に対して直交する場合に生じるであろうプロファイルである。
【0156】
本明細書に記載されているように、システムが
図21Aで示された状態で操作可能な位置合わせを確立できない場合、操作者はエミッタの位置を調整するように促される。いくつかの変形例では、システムは、非アライメントの可聴または視覚的インジケータのようなフィードバックを提供することができる。
図21Bは、放出プロファイル120がセンサ116の境界内にあるようなエミッタの再配置後の状況を示す。しかしながら、図示のように、この放出プロファイル120は、センサ116の寸法に対して最大化されていない。センサに対する放出プロファイル120の最大化の失敗により、より小さいプロファイルに調整するために、操作者は被写体の追加の放射線画像を撮影することが必要とされ得る。
【0157】
図22Aは、調整可能なコリメータの効果を説明するための図である。繰り返すが、説明のために、図示の放出プロファイルは、センサに直交するエミッタによる照明を表している。
図22Aは、プロファイル120によって拘束される放出領域の一部がセンサ116の外側に当たるならば、通常、撮像センサ116との操作的な整合性から外れていると考えられるであろう、調整されていない放出プロファイル120を示している。しかしながら、本明細書に記載されたシステムの一態様では、エミッタに固定された構成要素(上述したように)の他、位置追跡要素118にも依存して、エミッタの配向、およびエミッタとセンサ116との間の距離などの位置情報を決定することになる。システムは、位置情報を使用して、調整された放出プロファイル122を生成するために、エミッタ上のコリメータを回転させ、かつ/またはエミッタによる放出をスケーリングするように調整するであろう。この変形例では、図示のように、調整された放出プロファイル122は、サイズが縮小され(矢印126で示される)、さらに回転され(矢印124で示される)、放出プロファイル120を、撮像センサへの露光を最大化する調整された放出プロファイル122にスケーリングする。調整された放出プロファイルは、必要に応じて拡大縮小したり、回転させたりすることができることに留意する。さらに、システムの変動は、センサ118に対するエミッタのリアルタイムの動きの間に調整されたプロファイルを生成するであろう。
【0158】
図22Bは、調整された放出プロファイル122とともに、未調整放の出プロファイル120を図示しており、両者の場合において、プロファイルは、放出経路の軸線がセンサ116に対して直交しないか、法線ではないために、二等辺形台形形状に類似している。しかしながら、この変形例では、システムは、位置情報を使用して、イメージセンサ116上の露光領域を最大化する調整プロファイル122を生成する。
【0159】
本明細書に開示された変形例は、追跡要素118の他、放出ユニット内のセンサ(本明細書に記載されているように)にも依存している。調整された放出プロファイルを生成するシステムの変形例はまた、放出装置と撮像センサとの間の相対運動を決定するために、外部カメラ、センサ、または機械的支持体から得られる位置データと組み合わせて使用することができる。
【0160】
図23は、放出装置(
図23に示さない)において、または放出装置と組み合わせて使用することができる調整可能なコリメータ130の変形例を示す。図示のように、調整可能なコリメータ130は、(
図20乃至22Bで議論されているように)撮像センサ上に調整された放出プロファイルを生成するために、開口または放出窓132を回転および/またはスケーリングすることができる。調整可能なコリメータ130のこの変形例では、開口132の配向を調整するために移動および回転可能な複数のブレードまたはリーフ134が使用される。ブレード134により、エネルギーが開口または放出窓132を通過することが制限されるように、放出されたエネルギーの通過が防止される。
【0161】
ブレードの移動および回転は、任意の数のモータまたは駆動部によって駆動することができる。図示の変形例では、調節可能なコリメータ130は、近位側旋回ベアリング152に結合された第1の駆動部138と、遠位側旋回ベアリングに結合された第2の駆動部136とを有するモータアセンブリを含む。駆動部136,138は、開口132のサイズ調整と同様に、ブレード134の回転を調整する。例えば、モータ136,138の反対方向への回転により、旋回ベアリングの反対方向への回転が引き起こされ、開口132を開閉させるためのブレード134の動きが生じる。図示の例では、第1の駆動部138が時計回り方向に移動し、第2の駆動部136が反時計回り方向に移動すると、ブレード134は、開口132の大きさを減少させるように互いに向かって移動するであろう。同様に、第1の駆動部138が反時計回り方向に移動し、第2の駆動部136が時計回り方向に移動すると、ブレード134は、開口132の大きさを増大させるように互いに離間するように移動するであろう。駆動部138,136が同一方向に移動すると、これにより、近位側旋回ベアリング150および遠位側旋回ベアリング152が同一方向に回転し、これによりブレードが回転し、これにより開口134が回転する。
【0162】
調整可能なコリメータ130は、すべてのブレード134が開口の大きさを調整するために移動するので、ほぼ正方形に近い形状を有する開口132を維持する。装置の追加の変形例は、ブレードの角度方向をさらに制御するための任意の数の追加のモータまたはアクチュエータを含むことができる。この場合、開口134は、正方形の形状に限定されず、二等辺形の台形の形状を想定することができる。このような特徴は、撮像センサに対する放出エネルギーの軸線の配向にかかわらず、正方形の放出プロファイル(
図22Aに示すようなもの)を維持することを支援することができる。
【0163】
また、
図23に示す調整可能なコリメータ230の変形例は、モータ136,138によって駆動される歯車144の運動をブレードの回転および移動に変換する駆動機構(例えば、ベアリング、プーリ144、ベルト146など)を収容する筐体またはハウジング140を含む。さらに、調整可能なコリメータ230は、システムが開口の大きさおよび回転方向に関する情報を維持することを可能にする任意の数の位置追跡システムを含むであろう。例えば、任意の従来の光源、センサ、マスク、およびフォトセンサ(例えば、フォトダイオード)を使用することができる光学式エンコーダシステムの一部として、第1の可動ディスク(またはエンコーダホイール)142が示されている。
【0164】
図24Aは、ブレード134によって形成された開口132を回転させてスケーリング調整するために使用される機構の変形例を説明するための、調整可能なコリメータ130の一例を示す分解図である。図示のように、モータ136および138に結合されたプーリ144は、カム/ピンアセンブリ148に結合されたベルト146を回転させる。ブレード134は、カム/ピンアセンブリ148内に収容されているが、図示の目的のために、カム/ピンアセンブリ148は、ブレードなしで示されている。アセンブリ148は、それぞれがベルトシステム146を介して対応するモータ136,138に結合されたカムホイール150および近位側旋回ベアリング152から構成される。ブレード134は、旋回ベアリング150,152の回転により上述したように開口132のスケーリングが生じるように、旋回ベアリング150,152のアセンブリ148内の1つ以上のピン154に結合されている。このスケーリングは、ブレード142への接近またはブレード142からの離間の移動によって生じる。開口132の回転は、旋回ベアリング150,152の同一方向への回転によって生じる。
【0165】
図24Bは、調整可能なコリメータ130のいくつかの構成要素を示す正面図である(図示のために、いくつかの構成要素は除去されている)。図示のように、開口134は、ブレード134によって囲まれた領域によって規定されている。各ブレードは、一端でピン154に結合されている。ブレード134の反対側の端部は、スロット156内にベアリング158を含む。モータ138の作動により、ブレード134がピン154を中心として枢動している間、スロット156内のベアリング158は移動され、これにより、ブレードは、開口132において(回転方向に応じて)互いに接近するか、または(回転方向に応じて)遠く離間するように移動し、開口132のスケーリングを生じる。開口132の回転は、モータ136がカムホイール150(
図24Aに示す)を回転させると生じる。上述したように、開口132の回転は、旋回ベアリング150,152を同一方向に回転させることを必要とする。
【0166】
図24Cは、調整可能なコリメータ130のうちのいくつかの構成要素を示す背面図である(図示のために、いくつかの構成要素は除去されている)。図示のように、コリメータ130は、ブレード134の動きを追跡するために任意の従来の光源、センサ、マスク、フォトセンサ(例えば、フォトダイオード)を使用することができる光学式エンコーダシステムの一部として示される第2の可動ディスク(またはエンコーダホイール)160を含む。
【0167】
図25Aおよび
図25Bは、上述したような調整可能なコリメータ130を有するエミッタ164の一例を示す。図示のように、調整可能なコリメータは、システムの位置追跡要素からのエミッタの距離および配向に関する情報に基づいて、開口132を回転させるとともにスケーリング調整することができる。開口132のスケーリングおよび回転は、自動的に行われてもよいし、要求に応じて行われてもよい。
図25Aおよび
図25Bは、ケーブル166を有するエミッタの変形例を示す。他の変形例では、エミッタおよび調整可能なコリメータは、本明細書に記載されているように、完全に携帯可能なエミッタに使用することができる。
【0168】
図24Cの光学式エンコーダ160は、患者の安全を確保するためにリーフまたはブレードの位置決めを確実に行う。また、エンコーダ160は、故障状態を生じさせる可能性のある任意の数の条件を判定することを支援することができる。例えば、エンコーダは、次のような状態を検知することができるが、これらに限定されない。状態とはすなわち、駆動ベルトがギア上の歯をスキップする、駆動ベルトが破損または張力を失う、モータの故障、リングギアの破損、リーフピンの破損など。このような故障状態を検知することにより、患者または操作者が過剰な放射線に曝されることを回避するために、放出源がトリガされることを防止することができる。
【0169】
図26A乃至26Jは、本明細書で論じたコリメータの変形例による方法の一例を示す図である。回転するコリメータは、装置の機械的動作およびアライメントを検証するために実行される2つのプロセスを有している。X線管からの電離放射線の放出のため、操作者が追加の放射線にさらされる前に、物理的な損傷を発見し、使用前に装置の機械的機能を検証することが不可欠である。この装置の自由に移動できる、縛られていない設計により、コリメータに追加の課題が生じ、課題とはすなわち、X線検知器の任意のアライメントに車輪の位置の指標を付けることである。コリメータは、装置の最小/最大開口位置および0°位置を決定するためのホーミング処理を実行する。ホーミング処理は、コリメータの絞り制御に必要なゼロ配向基準を確立する。リーフ検知処理は、開口の大きさ調整の全範囲を検証することにより、装置の物理的な動作を検証する。
【0170】
図26Aは、コリメータ装置のリーフのランダムな位置を示す図である。この位置は、前の操作の後、前の手順または他のシナリオからの装置の配向であろう。装置は、ホーミング処理の後まで、開口や配向を知ることができない。この装置は、リーフの位置を監視するための(1)(2)(3)光学センサと、一対のベルト(10)(11)で接続された遠位側旋回リング(12)および近位側旋回リング(13)を駆動するための(4)(5)モータとから構成されている。4つのコリメーションリーフ(6)(7)(8)(9)は、一対で旋回リングに接続されている。
【0171】
光学式センサ(1)(2)(3)は、センサの真正面にあるリーフ材の有無を検知することで動作する。センサの正面にリーフ材がない場合は、センサが開いていると考えられる。リーフ材の存在が検知された場合には閉鎖されていると判断される。
【0172】
ホーミングの手順:
ステップ1:開放位置-ホーミング手順は、装置の電源が入っているとき、装置がアイドル状態にあるとき、または装置がドリフトを検知したときにいつでも実行される。装置は、装置がリンクによって遠位側リング内の動きを検知するまで、近位側リングを回転させることによって開始される。
図26Bは、ホームキーウェイ(14)の視認性によって図示されたこのシナリオの非決定位置を示す。このアライメントにより、光センサ1は、キーウェイがセンサの真正面にあるときに開状態を検知することができる。これはコリメータの全開位置である。
【0173】
ステップ2:0度位置、最大絞り-
図26Cは、0度位置、最大絞り位置を示している。一旦全開位置が判定されると、装置は近位側リングおよび遠位側リングを同時に回転させ、これによりリーフアセンブリを回転させるであろう。システムは、センサレジスタが開く(15)まで光センサ1の状態を監視するであろう。この開放信号は、キーウェイが全開位置のセンサの位置に回転したことを示している。その後、システムはこれを全開の0度の位置として登録した。
【0174】
ステップ3:0度位置、最小開口-デバイスはその後、近位側スルーリング内の動きを検知するまで遠位側スルーリングを回転させるであろう。この動きが検知されると、システムは、次に、
図26Dに示すように、0度の最小開口位置を登録するであろう。
【0175】
これらの位置は、現在の運用セッションに登録される。モータの位置が記録された状態で、装置は、他の任意の必要な位置へのモータおよびスルーリングの相対的な動きを計算することができる。
【0176】
損傷検知手順:
上述のように、完全に動作し、損傷のないコリメータは、コリメーションシステムの安全性および性能に不可欠である。さらに、装置を介して放出される前に、損傷や流れ(drift)を検知することが重要である。性能を保証するために、装置は各リーフの位置決め状態を連続して確認するであろう。
【0177】
最低でも各リーフの1回の確認は必要であるが、この処理の安全性を考慮して、例示的な装置では3つの位置の確認を使用している。光センサアレイ(1)(2)(3)は、個別のリーフの性能を検証するために使用されるが、任意の数のセンサが処理を実行するために使用され得る。確認の順番は変わり得る。一旦最初のリーフ(16)の3段階の処理が完了すると、処理は、リーフ2(17)、リーフ3(18)、リーフ4(19)を検証するように進められるであろう。この処理は、リーフの数に関わらず適用される。
【0178】
ステップ1:最大開口の検証-ホーミング処理が完了した後しばらくして、装置は、完全に開いた開口を形成するために必要に応じて近位側リングおよび遠位側リングの両者を移動させることによって、リーフアセンブリを
図26Eに示す光学センサ1の閉鎖位置(20)に回転させるであろう。その後、装置は、
図26Fに示すように開口を縮小するためにリングを移動させることにより、直ちに光学センサ1の開放位置に移動するであろう。装置の計算された動きが光学センサ1(21)の物理的フィードバックと一致する場合、装置はリーフ1(16)の最大開口位置を検証したことになる。
【0179】
ステップ2:中間開口の検証-ホーミング処理が完了した後しばらくして、装置は、中間まで開いた開口を形成するために必要に応じて近位側リングおよび遠位側リングの両者を移動させることによって、リーフアセンブリを
図26Gに示す光学センサ2の閉鎖位置(22)に回転させるであろう。その後、装置は、
図26Hに示すように開口を縮小するためにリングを移動させることにより、直ちに光学センサ2の開放位置に移動するであろう。装置の計算された動きが光学センサ2(23)の物理的フィードバックと一致する場合、装置はリーフ1(16)の最大開口位置を検証したことになる。
【0180】
ステップ3:最小開口の検証-ホーミング処理が完了した後しばらくして、装置は、最小開口を形成するために必要に応じて近位側リングおよび遠位側リングの両者を移動させることによって、リーフアセンブリを
図26Iに示す光学センサ3の閉鎖位置(24)に回転させるであろう。その後、装置は、
図26Jに示すように開口を縮小するためにリングを移動させることにより、直ちに光学センサ3の開放位置に移動するであろう。装置の計算された動きが光学センサ3(25)の物理的フィードバックと一致する場合、装置はリーフ1(16)の最大開口位置を検証したことになる。
【0181】
一旦リーフ1に対してステップ3が完了すると、装置は各リーフに対して手順を繰り返し、各リーフが期待した位置に確実にあるようにするであろう。
【0182】
図27並びに
図28Aおよび
図28Bは、本明細書に記載されているようなセンサ構成を有する放射線システムが、X線または透視撮像の品質を向上させることができる別の態様を示している。
【0183】
X線または透視撮像の品質は、被写体の物理的属性の数に関係している。これらの要素は、放射線源/エミッタの放射特性を制御する一連の技術的要因(例:電力、電流、時間など)を規定している。これらの要因を、放射線画像を閲覧する個人が、被験者に過剰な放射線を浴びせることなく、必要な視覚的要素を識別できるような組み合わせで設定することは、装置操作者の責任である。
【0184】
これらの技術要素の設定は複雑になり得る。従来の透視装置では、これらの技術を主導で設定する操作者の負担を軽減するために、自動化処理を実施していた。典型的なアプローチは、ソフトウェアまたはハードウェアの線量検知器をプレート上に使用して、放射線を加えながら徐々に充填していく。この従来のアプローチには、いくつかの課題がある。
【0185】
従来のアプローチの大きな課題としては、動きがある。放射線は長時間にわたって被験者を被曝しているため、被験者、操作者、機械、被験者の体内の血管などに、あらゆる動きが発生し、画像を著しく劣化させるモーションアーチファクトが生じる。
【0186】
もう1つの課題は、露光前に透過要件がわからないことであり、したがって、線源は所定の電力レベル(kV)で放射線を放出する際に、画像をレンダリングするのに十分な透過が得られないことがよくある。このように画像をレンダリングできないことにより、患者、操作者、およびスタッフは、有用な放射線画像を得ることなく放射線にさらされることになる。このような場合、これらのヒトは臨床上の目的を果たさない過剰な放射線にさらされることになる。
【0187】
本明細書に記載されたシステムを含むがこれらに限定されない透視装置の分野における革新は、露光計算に必要な物理的要素の数を直接測定することが可能な複雑なセンサアレイを有する新世代の機械を創出する。
【0188】
これらのセンサを装置および被写体の全範囲にわたって利用し、堅牢な機械学習技術を活用することで、露光前に必要な技術を計算し、モーションアーチファクトを排除し、優れたキャプチャを作成することが可能になるが、その一方で、すべての線量を低減することができる。
【0189】
以下の説明は、本発明が理解されるように、本発明の例示的な詳細を提供するものである。これらの詳細を採用することなく、本発明を実施するために、小さな工学的調整を採用することができた。本発明は、外科目的のためのX線撮像における用途に関して記載されているが、一般的な医学的撮像、獣医学的撮像、および骨密度測定を含むがこれらに限定されない他の医学的用途で使用することができる。本発明は、産業用撮像、金属疲労検査、溶接検査、セキュリティ検査などの非医療用途に使用することができる。
【0190】
図27は、従来のX線自動露光処理方法の一例を示す図である。医師または操作者は、X線の撮影を要求することにより、露光を開始する(ステップ1)。X線装置は、続いて撮像センサプレート上で受け取られた放射線の量を追跡しながら、検知器を評価するであろう(ステップ2)。X線装置の内部測定により、このエネルギーが画像を生成するのに十分な露光量であるかどうかが判断されるであろう(ステップ3)。適切な量の放射線が収集されたと装置が判断した場合(ステップ4a)、露光が完了したと判断し、X線を表示するであろう。ユーザがX線をキャンセルするか、または線量が蓄積されている時間が長すぎた場合、機械は露光をキャンセルするであろう(ステップ4b)。あるいはこれに代えて(ステップ4c)、画像が生成されるか、時間切れになるか、またはユーザが露光をキャンセルするまで、装置は放射線を放出し続け、評価ステップに戻るであろう。
【0191】
従来の処理はいくつかの短所を有するが、2つの最大の短所は、画像が表示される保証がないまま露光が開始されることと、露光を評価するのにかかる時間が最終的な画像に動きのアーチファクトを導入し、使い物にならないX線を生成してしまうことにある。いずれの場合も、患者、操作者、スタッフが不要な放射線を浴びることになり、安全性に大きな影響を与える。
【0192】
図28Aおよび
図27Bは、
図27で説明した従来の方法よりも改善されたアプローチを例示する。改良されたアプローチは、操作者、スタッフ、および患者を不必要なまたは過剰な放射線に曝すことなく、確実かつ効果的な放射線画像を生成するための最適な技術的要因を決定することができる。包括的なセンサアレイを有する放射線撮像装置と、機械学習技術の企業規模のアプリケーションとを利用することにより、システム20は、任意の放射線が放出される前に、技術を計算するとともに洗練させることができる。これにより、操作者は、装置の位置合わせを正確に行うことができ、装置が解剖学的組織を撮像することができるかどうかを理解することができる。
【0193】
図28Bは、
図28Aの撮像処理で使用するために統計データをコンパイルする方法の一例を示す。実際には、多数の統計モデルが中央サーバ(
図28Bに示す)からシステム20に送信される。これらのモデルは、コンピュータビジョン分類器(1a)および推定器更新(1b)と呼ばれ、操作者が露光を要求する前に使用できるように機械にローカルに保存されている。
【0194】
図28Aに目を向けると、処理は、操作者がキャプチャを開始する(2)ことから開始することができる。操作者は、続いて装置の位置決めシステムを使用してエミッタと解剖学的組織との位置合わせを行い(3)、安全チェックを完了した後、自動技術検知(上述したように)を実行する。X線システムの正確な地形に応じて、CPTコード情報(4a)および/または生体情報(4b)は、操作者によって入力されるか、または自動手段によって他のシステムから抽出されてもよい。
【0195】
システムがX線または透視撮像のためにエネルギーを放出する準備をしている間、2つの同時測定収集が行われる、すなわちオンデバイスセンサ収集(5a)およびコンピュータビジョン分類(5b)である。
【0196】
センサ収集は、装置上のアレイを使用して、線源から皮膚までの距離(SSD)、線源から検知器までの距離(SDD)、入射角、周囲環境、X線管および装置の温度などを含むがこれらに限定されない複数の入力パラメータを収集する。これらのパラメータはすべて推論実行関数(6)に供給される。
【0197】
コンピュータビジョン分類器は、装置に搭載された撮像カメラを利用して、被写体の解剖学的組織の画像を撮影する。これらの画像は、中央サーバから提供された撮影画像と装置にローカルに保存されているCVクラシファイアデータを用いて、CV解析機能に渡される。これらの処理は、キャプチャのその被写体について決定を行い、その推薦を推論実行エンジンに渡す。
【0198】
一旦入力が装置の様々なサブシステムから収集されると、それらの値は、中央サーバによって提供される推定器アップデートとともに、装置の推論実行エンジンに対して実行される(6a)。この関数ファミリーの出力は、決定されたX線技術である時間、kV、ビーム電流である(7)。
【0199】
演算された値に装置出力が設定され、所定の設定のために放射線が放射され(8)、画像が撮影されて処理され(9)、画像がユーザに表示される(10)。
【0200】
X線が操作者に表示されるとすぐに、システムは、相互作用監視システムにおいて操作者の相互作用の監視を直ちに開始する(11)。このシステムでは、操作者が画像に対して行うすべての相互作用、例えば明るさ、シャープネス、コントラスト、位置、ズーム、回転などの変化を含む相互作用を記録する。操作者がX線または透視撮像の検査に費やした時間も記録される。
【0201】
ステップ12a乃至12dにおいて、システムは、キャプチャデータを中央処理システムに提出するであろう。提出されたデータには、キャプチャの4つの主要な要素が含まれており、これらはすなわち(12a)SSD、温度などの直接測定情報、(12b)明るさの変化や、キャプチャの検査に費やした時間などの相互作用ヒューリスティック、(12c)生体情報、関連付けられるCPTコードの他、コンピュータビジョンのキャプチャとその結果の分類出力など、手術の詳細が含まれ、(12d)検知器からの生のキャプチャデータの他、機械の詳細やソフトウェアのバージョンなどのキャプチャに関連付けられる情報が含まれる。
【0202】
このキャプチャ情報は、将来の処理のために、対応するデータベース13a、13bに中央処理システム上に格納される。
【0203】
予定された時刻になると、中央処理システムは、洗練された回帰分析を用いて、推定器ラベルを訓練するであろう(14)。普遍的に捕捉されたX線の大断面にわたるセンサデータ、捕捉データ、および手術データ間の統計的関係の他、前回の推定器生成の結果を検討することにより(14a)、システムはより正確なラベルにデータを適合させることができる。訓練ステップの出力は、新しい推定器である(17)。
【0204】
ラベル訓練ステップ(14)と同様に、X線および透視撮像データ、手術詳細データ、および分類器データは、分類器精緻化処理を用いて訓練されるであろう(15)。この処理では、膨大な数の入力X線からの大きな捕捉断面積を利用して、より精度の高い分類器を生成する(16)。
【0205】
現場のX線装置の地形に応じて、中央処理システムは、新しい推定器(18)および分類器(19)をできるだけ早く装置に送信するであろう。そして、これらの更新を装置のローカルストレージ(1a)、(1b)にロードし、新しいアルゴリズムを適用して、精度をさらに向上させるとともに自動露光の線量を低減する。
【0206】
上記の説明は、本発明の理解を提供するために本発明の例示的な詳細を提供するが、本発明の趣旨または範囲から逸脱することなく本発明を実施するために、ルーチンの工学的調整を採用してもよい。さらに、本発明は、外科目的のためのX線撮像における用途について記載されているが、一般的な医用撮像、獣医学的測定および骨密度測定などの他の医療用途で使用することができる。また、本システムおよび方法は、産業用撮像、金属疲労検査、溶接検査、セキュリティ検査などの非医療用途にも使用することができる。