(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-13
(45)【発行日】2024-09-25
(54)【発明の名称】解剖学的構造における流路の断面積決定のシステムおよび方法
(51)【国際特許分類】
A61B 34/10 20160101AFI20240917BHJP
【FI】
A61B34/10
(21)【出願番号】P 2021564310
(86)(22)【出願日】2020-04-29
(86)【国際出願番号】 US2020030557
(87)【国際公開番号】W WO2020223408
(87)【国際公開日】2020-11-05
【審査請求日】2023-04-06
(32)【優先日】2019-05-01
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】510102122
【氏名又は名称】マテリアライズ・ナムローゼ・フエンノートシャップ
【氏名又は名称原語表記】MATERIALISE NV
【住所又は居所原語表記】Technologielaan 15,B-3001 Leuven,Belgium
(74)【代理人】
【識別番号】110000338
【氏名又は名称】弁理士法人 HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】ユイスマンス,ロッテ
(72)【発明者】
【氏名】マース,ジュリー
(72)【発明者】
【氏名】シュロット,ジャネール
【審査官】近藤 裕之
(56)【参考文献】
【文献】米国特許出願公開第2016/0166332(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 34/10
(57)【特許請求の範囲】
【請求項1】
流体流れのための解剖学的構造の通路の複数の断面積に関する情報を決定する方法であって、
前記通路の三次元(「3‐D」)モデルを取得するステップと、
人工器官の描写の少なくとも一部を前記通路の前記3‐Dモデルに配置するステップと、
前記人工器官の前記描写の表面の少なくとも1つの点と、前記通路によって画定される容積内の少なくとも1つの点と、前記通路の表面上の少なくとも1つの点とを交差する開始面を決定するステップと、
前記開始面を1つ以上の軸の周りに1回以上回転させることに基づいて複数の切断面を生成するステップと、
前記複数の切断面に対応する複数の断面積を計算するステップであって、
前記複数の断面積の各々の断面積は
、前記人工器官の前記描写の前記少なくとも一部と
前記複数の切断面に対応する切断面と
交差する(1)第1の断面を、前記容積と前記対応する切断面とが交差する(2)第2の断面から差し引くことによって得られる断面の表面積として計算されるステップと、
前記複数の断面積のうちの最大または最小の断面積のうちの1つを決定するステップと、
前記最大断面積または前記最小断面積の一方を閾値と比較するステップと、
前記比較に基づいて前記人工器官の前記描写に対応する人工器官を選択的に変更するステップとを含む方法。
【請求項2】
前記解剖学的構造の前記通路は、左心室流出路(LVOT)を備え、
前記人工器官の前記描写は、人工僧帽弁の前記描写の前記3‐Dモデルを備え、
前記複数の断面積は、複数のneo‐LVOTの面積を備える請求項1に記載の方法。
【請求項3】
複数の開始面を決定するステップをさらに含み、
前記複数の切断面を生成するステップは、各々の前記開始面を1つ以上の軸の周りに1回以上回転させることに基づく、請求項1に記載の方法。
【請求項4】
前記複数の開始面を決定するステップは、第1の開始面を決定するステップと、前記人工器官の前記描写に沿った前記第1の開始面からの複数の増加量で複数の追加的な開始面を決定するステップとを含む請求項3に記載の方法。
【請求項5】
前記開始面は、前記人工器官の前記描写の少なくとも1つの点と交差する、請求項1に記載の方法。
【請求項6】
前記解剖学的構造の前記通路は、左心室流出路を備え、
前記人工器官の前記描写は、人工僧帽弁の前記描写の前記3‐Dモデルを備え、
前記開始面を決定するステップは、前記通路の大動脈弁の面を決定するステップと前記大動脈弁の前記面を前記人工器官の前記描写と交差するまで平行移動させるステップとを含む請求項5に記載の方法。
【請求項7】
前記1つ以上の軸は、前記開始面と前記人工器官の前記描写の底面との間の交線として画定される第1の軸を備える請求項1に記載の方法。
【請求項8】
前記1つ以上の軸は、前記開始面内で、回転させるための前記第1の軸に垂直な線として画定される第2の軸を備える請求項7に記載の方法。
【請求項9】
前記複数の切断面を生成するステップは、
前記人工器官の前記描写の表面上の点、前記通路の前記表面上の点、または前記容積内の点のうちの1つである前記開始面上の原点を選択するステップであって、前記1つ以上の軸は前記原点を通って画定されるステップと、
前記開始面を前記1つ以上の軸のうちの少なくとも1つの周りの増加量だけ1回以上回転させるステップであって、1回以上のそれぞれの結果は切断面に対応するステップと、を含む、請求項1に記載の方法。
【請求項10】
前記開始面を回転させることは、前記1つ以上の軸のうちの第1の軸に関する範囲に限定される、請求項9に記載の方法。
【請求項11】
前記表面は、ボトムエッジを備え、
前記範囲は、第1の面と第2の面との間として画定され、
前記第1の面は、前記第1の軸と、前記第1の軸と前記人工器官の前記描写のボトムエッジとの間の交点に対して反対側に位置する前記人工器官の前記描写のトップエッジ上の点と、を通るように画定され、
前記第2の面は、前記第1の軸を通り、前記人工器官の前記描写の前記トップエッジに接するように画定される、請求項10に記載の方法。
【請求項12】
前記複数の切断面を生成するステップは、さらに、
1つ以上の距離増加量にわたって、前記人工器官の前記描写の前記表面に沿って、前記複数の切断面のうちの1つ以上を複製して平行移動させるステップを含む、請求項9に記載の方法。
【請求項13】
流体流れのための解剖学的構造の通路の複数の断面積に関する情報を決定する方法であって、
前記通路の三次元(「3‐D」)モデルを取得するステップと、
人工器官の描写の少なくとも一部を前記通路
における第1位置にある前記3‐Dモデルに配置するステップと、
前記第1位置にある前記人工器官の前記描写の表面の少なくとも1つの点と、前記通路によって画定される容積内の少なくとも1つの点と、前記通路の表面上の少なくとも1つの点と交差する複数の面を決定するステップと、
前記複数の面に対応する複数の断面積を計算するステップであって、
前記複数の断面積の各々の断面積は
、前記第1位置にある前記人工器官の前記描写の前記少なくとも一部と
前記複数の面に対応する
面と交差する(1)第1の断面を、前記容積と前記対応する面とが交差する(2)第2の断面から差し引くことによって得られる断面の表面積として計算されるステップとを含む方法。
【請求項14】
コンピュータ実行可能命令が記憶された、一時的でないコンピュータ可読媒体であって、コンピュータ装置のプロセッサによって実行されるとき、前記コンピュータ装置に請求項1~13のいずれかに記載の方法を実行させる一時的でないコンピュータ可読媒体。
【請求項15】
請求項1~13のいずれかに記載の方法を実行するように構成されたメモリおよびプロセッサを備えるコンピュータ装置。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本出願は、2019年5月1日に出願された米国仮特許出願第62/841,651号の優先権を主張する。各出願の内容は、参照によりその全体が本明細書に組み込まれる。
〔発明の背景〕
【技術分野】
【0002】
本出願は、患者の解剖学的構造における断面積の決定に関する。いくつかの態様では、本出願が具体的には弁、動脈、静脈、管、気道などの解剖学的構造の流路に対応する容積での断面積(例えば、最小、最高、平均など)を決定することに関する。
【発明の詳細な説明】
【0003】
〔背景技術〕
ヒトの心臓は、人体全体に血液循環させるため、心臓の適切な機能に重要な、多くの作動部分を有する複雑な器官である。ヒトの心臓は一般に、右心房、右心室、左心房、および左心室の4つの中空のチャンバから構成されている。適切に心臓を機能させる解決の鍵の1つは、これらのチャンバを通る血流の調節である。これらのチャンバを通る、およびこれらのチャンバ間の血流の調節は、弁によってなされる。例えば、右心房と右心室の間には房室開口部がある。
【0004】
三尖弁は、その房室開口部に位置し、血液を右心房から右心室へ移動させる。心房側の血圧が心室側の血圧よりも大きいと三尖弁は開く。三尖弁が開くと、血液は右心房から右心室へ流れこむようになる。右心室側の血圧が高くなると、三尖弁は閉じる。三尖弁が閉じると、血液は、他の方向に逆流しなくなる。
【0005】
健康な心臓では、左心房と左心室の間でも血流が調節されている。ここで、左心房が血液で満たされ、左心房内の血圧が左心室の血圧より上のレベルまで増加すると、僧帽弁は、血液が左心房から左心室に流れることを可能にさせる。僧帽弁が開くと、血液は左心房から左心室に下向きに流れ、そして左心室で血液は、より大きな循環過程の一部として体の残りの部分に押し出される。健康な僧帽弁が閉じると、2つのチャンバの間の血流が止まり、この閉塞によって血流の逆流が妨げられる。
【0006】
残念ながら、僧帽弁は常に正常に機能するわけではない。僧帽弁が異常に機能すると、重度の健康障害が起こり得る。僧帽弁に関連する1つの異常は僧帽弁閉鎖不全(「MR」)である。僧帽弁閉鎖不全は、左心室の収縮時に僧帽弁が適切に閉じない疾患である。これにより、左心房から左心室に入った血液が、左心房に逆流するようになる。
【0007】
僧帽弁閉鎖不全は手術で治療してもよい。1つの外科的選択肢は、僧帽弁の置換を含み、ここで、僧帽弁は、バイオプロテーゼによる置換物または人工的な置換物などの人工僧帽弁と置換される。別の外科的選択肢では、僧帽弁の修復がある。僧帽弁の修復は一般に、手術の侵襲性が低いため僧帽弁の置換よりも好ましいと考えられているが、いずれの選択肢も心臓切開が必要である。僧帽弁の置換および修復の多くの候補は、心臓切開のストレスに耐えるために良い候補ではないので、経カテーテル僧帽弁置換(TMVR)の分野で研究が進行中である。TMVRを使用して、カテーテルを用いたシステムを使用して人工僧帽弁を、導入することができる。カテーテルを用いたシステムは、心臓切開外科手術の必要性を排除する。
【0008】
例えば、人工僧帽弁は、患者の胸部の小さな切開部に挿入された管を通して、心臓の底部にカテーテルを介して拍動する心臓の内側に配置されてもよい。医師は人工僧帽弁を配置するために管を使用し、人工僧帽弁を心臓の既存の僧帽弁上に載せるように配置する。カテーテルを用いた注入技術を用いると、心臓切開手術に伴う身体の外傷が最小限に抑えられ、より多くの患者が僧帽弁閉鎖不全疾患に対して効果的に治療される可能性がある。
【0009】
TMVR用の人工僧帽弁は、異なる形状およびサイズで開発されている。それゆえ、従来、手術の前に、臨床医は、人工僧帽弁のどのモデルおよびサイズが患者に最も適しているか、および人工僧帽弁がどのように患者の心臓に配置されるべきかを決定する必要がある。
【0010】
1つの可能性のある合併症は、人工僧帽弁が左心室流出路(LVOT)を部分的に塞ぎ、血液が大動脈に向かって心臓から離れるのを困難にする可能性があることである。しかしながら、心臓は複雑な三次元形状であるために、LVOTおよびLVOTの可能な閉塞の程度を決定することは、簡単な仕事ではない。
【0011】
〔発明の概要〕
特定の実施形態は、流体流れのための解剖学的構造の通路の複数の断面積に関する情報を決定する方法を提供する。この方法は、前記通路の三次元(「3‐D」)モデルを取得するステップと、人工器官の描写の少なくとも一部を前記通路の前記3‐Dモデルに配置するステップと、前記人工器官の前記描写の表面の少なくとも1つの点と、前記通路によって画定される容積内の少なくとも1つの点と、前記通路の表面上の少なくとも1つの点とを交差する開始面を決定するステップと、前記開始面を1つ以上の軸の周りに1回以上回転させることに基づいて複数の切断面を生成するステップと、前記複数の切断面に対応する複数の断面積を計算するステップであって、各々の断面積は、前記容積と、対応する切断面との交点である第1の断面積と、前記人工器官の前記描写の前記少なくとも一部と前記対応する切断面との交点である第2の断面積との差として計算されるステップと、前記複数の断面積のうちの最大または最小の断面積のうちの1つを決定するステップと、前記最大断面積または前記最小断面積の一方を閾値と比較するステップと、前記比較に基づいて前記人工器官の前記描写に対応する人工器官を選択的に変更するステップとを含む。
【0012】
特定の実施形態は、コンピュータ実行可能命令が記憶された、一時的でないコンピュータ可読媒体であって、コンピュータ装置のプロセッサによって実行されるとき、前記コンピュータ装置に上述した方法を実行させる一時的でないコンピュータ可読媒体を提供する。
【0013】
特定の実施形態は、上述の方法を実行するように構成されたメモリおよびプロセッサを備えるコンピュータ装置を提供する。
【0014】
〔図面の簡単な説明〕
図1は、心臓のデジタル2‐Dまたは3‐Dモデルの左側を示す。
【0015】
図2は、本明細書で開示される様々な実施形態を実施するのに適したコンピュータ環境の一実施例の機能構成図である。
【0016】
図3は、1つ以上の実施形態に従って使用することができるコンピュータシステムの高度なレベルのシステム図である。
【0017】
図4および
図4Aは、特定の実施形態による、容積の最小断面積を決定するための手順を示すフローチャートを示す。
【0018】
図5A~5Hは、3‐Dモデルに含まれる人工僧帽弁の描写を伴う心臓の一実施例である3‐Dモデルの図を示す。
【0019】
図6は、特定の実施形態による、複数の切断面を生成する手順を示すフローチャートである。
【0020】
〔発明を実施するための形態〕
上記のように、人工僧帽弁は、LVOTの閉塞を引き起こし得る。それによって、大動脈に向かって心臓を出る血流を減少させる。例えば、TMVRを使用するような人工僧帽弁を導入することで、元のLVOTのサイズおよび形を、neo‐LVOTと呼ばれる改造したLVOTに変更してもよい。neo‐LVOTは、LVOTへの人工僧帽弁の突起により、元のLVOTと比較して容積が減少してもよい。さらに、neo‐LVOTの断面積は、LVOTの断面積と比較して減少させてもよい。本明細書で使用されるneo‐LVOTの面積は、neo‐LVOTの断面積と呼んでもよい。
【0021】
最小断面積が、容積を通る血流のボトルネックとして作用しているので、容積(例えば、弁、静脈、動脈、LVOT、neo‐LVOTなど)を通る血流の量は、血液が容積内を流れる最小断面積に直接的に関連していてもよい。したがって、neo‐LVOTを通る血流は、LVOTのneo‐LVOTの最小面積に直接的に関連していてもよい。
【0022】
neo‐LVOTを通る十分な血流は、人工僧帽弁の挿入後に患者の生存能力を確保するために極めて重要である。十分な血流がなければ、患者は、合併症を起こす可能性があり、死に至ることさえある。したがって、シミュレートしたneo‐LVOTの面積の健全な計算は、僧帽弁置換前にneo‐LVOTを通る血流を示すことを促進することにより、僧帽弁置換における合併症の機会を減らすのに役立つ。
【0023】
本明細書の特定の実施形態では、臨床医、技術者、専門家などの人間がコンピュータ装置を使用して、またはコンピュータ装置自身が自動的に(例えば、反復的に)、患者の解剖学的構造の3‐Dデジタルモデル内の人工僧帽弁の1つ以上の異なる3‐Dデジタルモデルを、1つ以上の異なる位置に位置決めしてもよい。または臨床医、技術者、専門家などの人間は、1つ以上の治療計画をロードすることができる。それぞれの治療計画は、患者の解剖学的構造の3‐Dデジタルモデルの特定の位置に人工僧帽弁の3‐Dデジタルモデルをそれぞれ備えている。本明細書に記載される実施形態によれば、コンピュータ装置は、それぞれの人工僧帽弁のそれぞれの位置における、neo‐LVOTの最小面積を決定してもよい。次いで、人間またはコンピュータ装置は、それぞれの人工僧帽弁のそれぞれの位置において決定されたneo‐LVOTの最小面積に基づいて、neo‐LVOTを通る十分な血流(例えば、最大血流、元のLVOTと比較した血流の最小百分率など)を与える適切な人工僧帽弁のデザインおよび/または位置を自動的に選択し得る。
【0024】
したがって、本明細書の特定の実施形態は、neo‐LVOTの最小面積を決定するためのシステムおよび方法を提供する。さらに、本明細書の特定の実施形態は、決定されたneo‐LVOTの最小面積に基づいて適切な人工僧帽弁のデザインおよび/または位置を選択するためのシステムおよび方法を提供する。特定の実施形態は、neo‐LVOTの面積の分析に基づいて、注文に応じた人工僧帽弁のデザインを自動的に生成することを提供する。特定の実施形状態はneo‐LVOTの面積の分析に基づいて、人工僧帽弁のデザイン(例えば、形状を調整する、システムを固定する、位置、器官を覆う場所など)を自動的に適合させることを提供する(例えば、標準のデザインから開始し、特定の制約に従ってデザインを反復的に変更する)。
【0025】
本明細書ではneo‐LVOTのneo‐LVOTの最小面積を決定することに関して特定の実施形態を説明するが、本明細書で説明する技術を使用して、任意の適切な容積の断面積に関する情報、特に、血流、空気の流通などのための解剖学的構造の通路に関する情報を決定することができることに留意されたい。一実施例として、本明細書で説明する技術を使用して、容積の最小断面積、容積の最大断面積、容積の平均断面積などを決定してもよい。
【0026】
このような技術は、他の人工器官の設置後に他の通路の閉塞をチェックするために、そして、器官(例えば、弁、左心耳(LAA)閉塞、大動脈瘤のためのステントグラフト、脳動脈瘤器官など)の隣の漏れを探すために、さらに使用されてもよい。このような技術はまた、肺の介入を計画する際の気流を考慮するなど、血流以外の用途にも使用されてもよい。例えば、この技術は、気道、気道の病気の治療、および気道内の人工器官(例えば、ステント、移植片、弁、薬物の送入システム)の置換などのために使用されてもよい。このような技術はまた、neo‐LVOTのA2の最小距離(例えば、僧帽弁の前尖のA2部分と中隔壁との間の距離)を見つけるために使用されてもよい。
【0027】
図1は、心臓100のデジタル2‐Dまたは3‐Dモデルの左側を示す。特に、心臓100の大動脈105、左心室107、左心房109が示されている。また、左心房109と左心室107との間の心臓100の実際の僧帽弁の位置における人工僧帽弁111の配置も示されている。特定の実施形態では、人工僧帽弁111は、人工僧帽弁111のおおよその寸法に対応する形状(例えば、円筒形)、または人工僧帽弁111と同じ形状など、人工僧帽弁111の描写であることに留意されたい。大動脈105および左心室107の解剖学的構造に沿って心臓100内に僧帽弁111を配置することは、neo‐LVOTの輪郭を明瞭に示す。従来、neo‐LVOTの最小面積は、1つ以上の2D画像上の元のLVOTの容積の中心線の推定値に沿ってスプライン113(例えば、2Dスプライン)を描くことから始まる2D中心線方法を用いて、大まかに、視覚的に推定される。スプライン113の描画は、人によって手作業で行われ、中心線の不正確な推定に起因する誤差を生じやすい。次に、人は僧帽弁111の底部と交差し、スプライン113に垂直な平面115を選択し、描いてもよい。人は、平面115の位置を、視覚的に小さな断面であるように見える位置に手作業で選択してもよい。次いで、平面115に沿った僧帽弁111から左心室107および/または大動脈105の内壁までの距離を計算し、neo‐LVOTの最小面積の推定値として用いる。
【0028】
そのようなneo‐LVOTの最小面積の推定値は粗く、同じ位置に配置された同じ人工僧帽弁111を有する同じ心臓100についての推定値は、推定を行う人に応じてすこぶる変化する。特に、neo‐LVOTの最小面積の推定値が正確でない可能性があり、これが患者の心臓における人工僧帽弁111の不適切な選択および配置につながり、合併症または死亡に至る可能性さえある。
【0029】
従来の方法とは異なり、本明細書で説明されるシステムおよび方法は、neo‐LVOTの最小面積の健全でかつ正確な決定を提供する。そのようなシステムおよび方法は、neo‐LVOTを通る適切な血流を維持しながら、適切な人工僧帽弁が選択され、そして患者の解剖学的構造内に配置されることができるように、neo‐LVOTの最小面積を効率的かつ正確に計算することによって、医学および医療技術の技術分野を進歩させる。このような技術は、不適切なneo‐LVOTの計算並びに人工僧帽弁の配置およびデザインによる患者の合併症の機会を減少させることにより、医学および医療技術の技術分野を進歩させる。このような技術は、他のより複雑な技術と比較して低減されたコンピューティングサイクルを使用して容積内の最小断面積を効率的に見つける、効率的で定義されたコンピュータシステムを提供することによって、neo‐LVOTの最小面積を計算するために使用されるコンピュータ装置自体の機能をさらに進歩させる。
【0030】
本明細書で説明するシステムおよび方法は、様々な機能を提供するように構成された1つ以上のコンピュータ装置を備えるコンピュータ環境で実行してもよい。
図2は、本明細書で説明される特定の実施形態を実施するのに適したコンピュータ環境200の一実施例である。コンピュータ環境200は、ネットワーク202を含んでもよい。ネットワーク202は、様々な形態をとり得る。例えば、ネットワーク202は、手術室に設置されたローカルエリアネットワークであってもよい。ある実施形態では、ネットワーク202がインターネットのような広域ネットワークであってもよい。他の実施形態では、ネットワーク202がローカルエリアネットワークと広域ネットワークとの組み合わせであってもよい。通常、ネットワークは、安全な通信と様々なコンピュータ装置間で共有されたデータとを可能にする。これらのコンピュータ装置の中には、クライアント装置204がある。クライアント装置204は、Windows(登録商標)、Mac OS(登録商標)、Linux(登録商標)、Chrome OS(登録商標)、又は他の何らかのオペレーティングシステムのような既製のオペレーティングシステムを実行する典型的なパーソナルコンピュータ装置であってもよい。クライアント装置204は、ネットワーク202を介して、コンピュータ環境200内の様々な他の、モジュールおよび装置上に記憶された他のソフトウェアと相互にやり取りすることを可能にするために、インストールされたアプリケーションソフトウェアを有していてもよい。このアプリケーションソフトウェアは、リモートアプリケーションサービスにアクセスできるウェブブラウザの方式を採用してもよい。あるいは、アプリケーションソフトウェアがクライアント装置204のオペレーティングシステムにインストールされたクライアントアプリケーションであってもよい。クライアント装置204はまた、専用コンピュータ、特に医用画像作業用に設計された、またはより具体的にはneo‐LVOTの面積の決定のために設計されたコンピュータの方式を採用してもよい。クライアント装置204はさらに、ネットワーク202を介して通信するように構成され、さらに、ユーザが本明細書で説明される様々な方法を実行することを可能にするために1つ以上のソフトウェアモジュールを実行するように構成されたモバイル装置またはタブレットコンピュータの方式を採用してもよい。
【0031】
コンピュータ環境200は、画像データ記憶装置206をさらに含んでもよい。典型的には、画像データ記憶装置206は、走査装置222によって撮られた画像ファイルを記憶するように設計された大きなデータベースの方式を採用する。これらの画像は、DICOM画像、または他のタイプの画像であってもよい。画像データ記憶装置206は、走査装置222の一部であってもよく、あるいはクライアントコンピュータ装置204の一部であってもよい。画像データ記憶装置206はまた、例えば、医用画像データ用に最適化された専用記憶装置を有する、PACSシステムのようなサーバベースのシステムである、スタンドアロン方式のデータベース内にあってもよい。コンピュータ環境200は、また走査装置222も含むことができる。走査装置222は、典型的には患者の解剖学的構造の画像を生成するために患者を走査する医療撮像装置であってもよい。
図2に示すコンピュータ環境200では、走査装置222がCTスキャナまたはMRI装置としてもよい。しかしながら、当業者であれば、3次元解剖学的モデルを生成するために使用することができる撮像データを提供する他の走査技術を実施してもよいことを理解するであろう。
【0032】
以下に詳細に説明されるように、走査装置222は、患者の心臓の断面画像を生成するように構成されてもよい。これらの画像は、画像データ記憶装置206に記憶され、心臓の3次元モデルを生成するために利用されてもよい。その目的のために、コンピュータ環境200は、また画像処理モジュール208を含んでいてもよい。画像処理モジュール208は、画像データ記憶装置206から医療用画像データを検索し、2‐D画像データの積み重ねを使用して3次元モデルを生成するコンピュータソフトウェア、ハードウェア、または両方の組合せの方式を採用してもよい。画像処理モジュール208は、Materialise NVのMimics(登録商標)アプリケーションなどの三次元設計およびモデリングのための市販の画像処理ソフトウェアであってもよい。しかし、他の画像処理ソフトウェアを使用してもよい。ある実施形態では、画像処理モジュール208は、ネットワーク上のコンピュータ(例えば、クライアント装置204のような)によってアクセスされるウェブベースのネットワークアプリケーションを介して提供されていてもよい。あるいは、画像処理モジュール208は、クライアント装置204に直接インストールされるソフトウェアアプリケーションであってもよく、ネットワーク202を介して画像データ記憶装置206にアクセスするソフトウェアアプリケーションであってもよい。一般に、画像処理モジュール208は、画像データ記憶装置206内に記憶された画像データに対する画像処理能力を提供する、コンピュータ環境200内に配置されたソフトウェアおよび/またはハードウェアの任意の組み合わせであってもよい。
【0033】
コンピュータ環境はまた、3次元測定および分析モジュール220(「3‐D測定および分析モジュール」)を含んでいてもよい。3‐D測定および分析モジュール220は、画像処理モジュール208と相補的及び/又は一括化されたソフトウェアであってもよい。3‐D測定および分析モジュールは、neo‐LVOTの最小面積を決定するように構成されたアプリケーションであってもよい。以下でさらに詳細に説明されるように、3‐D測定および分析モジュール220は、neo‐LVOTの最小面積を決定するために、一般に患者の解剖学的構造の様々な態様の正確な測定、および人工僧帽弁のシミュレートされた位置決めを決定するために使用される。画像処理モジュール208と同様に、3‐D測定および分析モジュール220は、1つ以上のクライアント装置204によってウェブブラウザを介してアクセスされるネットワークベースのアプリケーションとしてもよい。また、例えばクライアント装置204のようなコンピュータのオペレーティングシステムにインストールされる本来のアプリケーションであってもよい。さらに他の実施形態では、3‐D測定および分析モジュール220は、クライアント/サーバに実装され実行されるネットワークアプリケーションであってもよい。特定の実施形態では、3‐D測定および分析モジュール220は、画像処理モジュール208によって生成された3次元モデル上で動作してもよい。代替的に又は追加的に、3‐D測定および分析モジュール220は、画像データ記憶装置206からのような画像データに対して動作してもよい。画像データ上で測定を行うことは、特定の実施形態において、三次元モデルを生成する工程を排除することを可能にする。しかしながら、管腔の中心線及び断面のような特徴がより正確に決定され、画像データにおけるノイズ又は他の人工産物の有害な影響が低減され得るので、3次元モデル上で測定を実行することは、より正確な結果を生成し得る。
【0034】
本発明の様々な実施形態は、汎用および/または専用目的のコンピュータ装置を使用して実施してもよい。ここで
図3を参照すると、様々な実施形態を実施するのに適したコンピュータ装置300の一実施例が示されている。コンピュータシステム300は一般に、本明細書で説明する1つ以上の実施形態の様々な態様に従って、特定の処理および命令を実行するように構成されたコンピュータハードウェアの方式を採用してもよい。コンピュータハードウェアは単一のコンピュータであってもよく、または協働するように構成された複数のコンピュータであってもよい。コンピュータ装置300は、プロセッサ303を含む。プロセッサ303は、Intel、Advanced Micro Devices、Apple、またはARMによって設計および/または供給されたものような、1つ以上の標準的なパーソナルコンピュータプロセッサであってもよい。プロセッサ303は、画像処理および/または分析のために特別に設計された、より特殊なプロセッサであってもよい。コンピュータ装置300はまた、表示装置304を含んでいてもよい。表示装置304は、周知のLCDモニタのような標準的なコンピュータモニタであってもよい。表示装置304はまた、例えばオールインワンコンピュータ装置またはタブレットコンピュータに含まれるような、コンピュータ装置の本体に統合された表示装置の方式を採用してもよい。
【0035】
コンピュータ装置300はまた、入出力装置306を含んでいてもよい。これらには、キーボード、マウス、プリンタ、およびその他のI/Oソフトウェアやハードウェアなどの標準的な周辺機器が含まれていてもよい。コンピュータ装置300はまた、メモリ308をさらに含んでいてもよい。メモリ308は、様々な方式を採用することができる。例えば、メモリ308は揮発性メモリ310を含んでもよい。揮発性メモリ310は何らかの方式のランダムアクセスメモリであってもよく、一般に、実行可能なソフトウェアモジュールをメモリにロードするように構成してもよい。その結果、ソフトウェアモジュールは、当技術分野で周知の方法でプロセッサ303によって実行されてもよい。ソフトウェアモジュールは、不揮発性メモリ313に記憶させてもよい。不揮発性メモリ313は、ハードディスクドライブ、フラッシュメモリ、ソリッドステートハードドライブ、または何らかの他の方式の不揮発性メモリを採用してもよい。不揮発性メモリ313はまた、データベースファイル等の非実行可能データを記憶するために使用されてもよい。
【0036】
コンピュータ装置300はまた、ネットワークインターフェース314を含んでもよい。ネットワークインターフェースは、ネットワークインターフェースカードと、システム300にネットワーク(例えばインターネットなど)へのアクセスを提供するように構成された通信ソフトウェアドライバおよび/またはファームウェアの方式を採用してもよい。ネットワークインターフェースカード314は、
図2に関連して上述したものように、種々の異なるタイプのネットワークにアクセスするように構成されていてもよい。例えば、ネットワークインターフェースカード314は、公的にアクセスできないプライベートネットワークにアクセスするように構成されてもよい。ネットワークインターフェースカード314はまた、EVDO、WiMax、またはLTEネットワークなどのワイヤレスデータ転送技術を使用して、無線ネットワークにアクセスするように構成されていてもよい。単一のネットワークインターフェース314が
図3に示されているが、異なるタイプのネットワークにアクセスするために、複数のネットワークインターフェースカード314が存在していてもよい。さらに、単一のネットワークインターフェースカード314が、複数の異なるタイプのネットワークへのアクセスを可能にするように構成されてもよい。
【0037】
たいてい、
図2に示されるコンピュータ環境200は、以下に説明する様々な実施形態を実行するために協働する、1つ、数個、または多くの異なるタイプのコンピュータ装置300を一般に、含んでいてもよい。例えば、画像データ記憶装置206は、PACSシステムなどのサーバベースのシステムの一部であってもよく、ネットワークインターフェース314を介して画像処理モジュール208および/または3‐D測定および分析モジュール220にアクセス可能であってもよい。当業者は、様々な異なるタイプのコンピュータ装置およびネットワーク構成が本明細書で開示される本発明のシステムおよび方法を実行するために実装され得ることを容易に理解するのであろう。
【0038】
図4および
図4Aは、特定の実施形態による、neo‐LVOTの最小面積を決定するための手順400を示すフローチャートを示す。特定の実施形態では、手順400はコンピュータで実行される手順であることに留意されたい。さらに、特定のブロックはコンピュータ装置のユーザによって自動的に、手作業で、または、コンピュータ装置のユーザからの入力に基づいて、部分的に手作業および部分的に自動で実行されてもよい。さらに、特定のブロックは任意であってもよく、説明されている方法の一部は、別個の方法として実行されてもよい。
【0039】
手順400は、ブロック402で始まり、ブロック402では患者の心臓の1つ以上の画像が取得される。画像は最初に、CTスキャナ又はMRI装置のような
図2に示す走査装置222を用いて取得されてもよい。画像を取得する際に、心臓の様々な内部構造の視認性を改善するために、造影剤を使用してもよい。走査装置222を使用して取得された画像(または複数の画像)は、画像データ記憶装置206またはコンピュータネットワーク202を介してアクセス可能な他の何らかのコンピュータメモリに記憶されてもよい。画像は、心臓の全部または少なくとも一部(例えば、少なくとも僧帽弁およびLVOT)のものであってもよい。画像は、走査装置222から、画像データ記憶装置206から、またはデータ記憶装置から画像をロードするなどの任意の他の適切な媒体から直接取得されてもよい。次に、手順はブロック404に進む。そこでは、取得された画像に基づいて血液量の3‐Dモデルが計算される。特定の実施形態において、造影剤は、血液量の3‐Dモデリングのために使用される。3‐Dモデルは、画像処理モジュール208、またはCTおよび/またはMRI画像データから3‐Dモデルを生成するように設計された他のソフトウェアおよび/またはハードウェアを使用して計算されていてもよい。血液量の3‐Dモデルは、心臓の全部または少なくとも一部(例えば、少なくとも僧帽弁およびLVOT)であってもよい。特定の実施形態では、ブロック404は選択的であり、後続のブロックは、代わりに画像に対して実行されてもよい。手順400のさらなる説明では、「3‐Dモデル」は、画像から生成された3Dモデルを指すだけでなく、画像自体を指してもよい。
【0040】
任意選択で、血液量の3‐Dモデルを使用して、心臓の解剖学的構造をブロック406で再構成して、心臓の3‐Dモデルを生成してもよい。あるいは、血液量自体の3‐Dモデルを心臓の3‐Dモデルとして使用してもよい。心臓の3‐Dモデルは、心臓の全部または少なくとも一部(例えば、少なくとも僧帽弁およびLVOT)のものであってもよい。この再構成は、画像処理モジュール208を使用して実行してもよい。
【0041】
手順は、次にステップ408に進み、ここで人工僧帽弁のデザイン(例えば、人工僧帽弁デザインの描写)が選択される。
図1について検討したように、手順400は、実際の人工僧帽弁の代わりに人工僧帽弁の描写を使用してもよい。例えば、クライアント装置204などのコンピュータ装置のユーザは、人工僧帽弁のデザインを選択してもよい。一実施例では、人工僧帽弁のデザインを選択することは以前に生成された僧帽弁のデザイン(例えば、臨床医によって以前に生成されたデザインなど)の選択を得ることを指す。別の実施例では、人工僧帽弁のデザインを選択することは、ファイルから、メモリから、または僧帽弁のデザインのデータベースから人工僧帽弁のデザインをロードすることを指す。別の実施例では、人工僧帽弁のデザインを選択することは、人工僧帽弁のデザインのデータベース(例えば、コンピュータ装置によって自動的に、またはコンピュータ装置のユーザによって)から人工僧帽弁のデザインをランダムに(疑似的ランダムに)選択することを指す。別の実施例では、人工僧帽弁のデザインを選択することは、最も一致する直径を有する僧帽弁のデザインを選択するために使用される僧帽弁の弁輪に最も適合する円の直径など、心臓または血液量の3‐Dモデルに対して行われる1つ以上の測定値に基づいて、人工僧帽弁のデザインを手動でまたは自動的に選択することを指す。別の実施例では、人工僧帽弁のデザインは、全体が参照により本明細書に組み込まれる国際公開第2015/179543号公報に記載されている手法を用いて選択されてもよい。
【0042】
続くブロック410では、僧帽弁のデザインの移植のための位置が取得される。例えば、クライアント装置204などのコンピュータ装置のユーザは、人工僧帽弁の位置を選択してもよい(例えば、ランダムに、視覚的になど)。別の実施例では、コンピュータ装置は、人工僧帽弁を自動的に(例えば、ランダムに、擬似ランダムに、最も適合するアルゴリズムに基づいて、などにより)位置決めする。別の実施例では、コンピュータ装置またはコンピュータ装置ののユーザは、例えば、臨床医によって以前に決定された人工僧帽弁の位置を自動的に取得する。ブロック412では、選択された人工僧帽弁は、選択された位置で心臓の3‐Dモデル内に配置される。例えば、クライアント装置204は、3‐Dモデル内に含まれる人工僧帽弁を重ねた心臓の3‐Dモデルを生成する。
図5A~5Hは、3‐Dモデル内に含まれる人工僧帽弁511を重ねた心臓500の3‐Dモデルの一例を示す。心臓500および人工僧帽弁511の解剖学的構造は、検討しているように、neo‐LVOTを画定する。手順400の特定の態様は、例示的な実施例として心臓500の3‐Dモデルを使用して説明される。
【0043】
ブロック414では、任意の選択で、3‐Dモデルにおける人工僧帽弁のボトムエッジが決定される。例えば、人工僧帽弁511は、ボトムエッジ520を有するように示されている。特定の態様では、ボトムエッジは、略円形又は略楕円形の曲線である。特定の実施形態において、曲線は、手動で示され得るか、または人工僧帽弁を記載するデータに押し込まれ得る。例えば、クライアント装置204などのコンピュータ装置のユーザは、人工僧帽弁のボトムエッジを示してもよい。いくつかの実施形態では、コンピュータ装置自体が画像技術または他の技術を使用して、ボトムエッジを決定してもよい。ボトムエッジは、neo‐LVOTに面する/を画定する人工僧帽弁511のエッジであってもよい。
【0044】
ブロック416では、人工僧帽弁511の表面(例えば、人工僧帽弁511のボトムエッジ)と、neo‐LVOTの少なくとも1つの点と、心臓の3Dモデルにおけるneo‐LVOTの境界を画定する患者の解剖学的構造(例えば、左心室または大動脈)上の少なくとも1つの点とを横切る開始面が決定される。開始面は、クライアント装置204などのコンピュータ装置のユーザによる手動入力を使用して、または3‐D測定および分析モジュール220を使用するなど、コンピュータ装置によって自動的に(例えば、ランダムに、または後述するように大動脈弁の面に基づいて、または患者の解剖学的構造と人工僧帽弁511との間の最短距離に対応するなどにより)決定されてもよい。開始面は、neo‐LVOT内のneo‐LVOTの面積を計算するための第1の面または開始面に相当してもよい。
【0045】
ある態様では、開始面が心臓の3‐Dモデルの大動脈弁の面を最初に決定することによって決定される。大動脈弁の面は、心臓自身の3‐Dモデル上で、及び/又は心臓の画像、例えば2D画像に基づいて、決定されてもよい。例えば、大動脈弁の面は、大動脈弁尖を通る最適面、または大動脈弁の周りの複数の点を通る面として決定されてもよい。一例では、この面は、
図5Bに示される心臓500の面522に対応してもよい。大動脈弁の面は、クライアント装置204などのコンピュータ装置のユーザによって手動で、または心臓の大動脈弁を認識するために形状認識技術を使用するなどのコンピュータ装置によって自動的に決定されてもよい。大動脈面は、心臓の3‐Dモデルに基づいて、または心臓の医療用画像に基づいて決定されてもよい。
【0046】
特定の実施形態では、開始面は、大動脈弁の面に基づいて決定されてもよい。例えば、特定の実施形態では、大動脈弁の面は、それが人工僧帽弁(例えば、人工僧帽弁のボトムエッジ)と交差するまで、人工僧帽弁に向かって平行移動されてもよい。例えば、
図5Bに示されるように、面522は、面522が(例えば、最初に交差する)ボトムエッジ520と交差するまで、軸524(例えば、LVOTまたはneo‐LVOTの中心線に対応する)に沿って平行移動されまたは移動される。
図5Bに示されている、得られた面526は、開始面として使用されてもよい。そのような平行移動は、コンピュータ装置によって自動的に実行されてもよい。
【0047】
特定の実施形態では、開始面が人工僧帽弁に接する(例えば、人工僧帽弁のボトムエッジに接する)まで、開始面は、大動脈弁の面を人工僧帽弁に向かって、平行移動することによって決定されてもよい。例えば、
図5Cに示されるように、面522がボトムエッジ520と接するまで、面522は、軸524a(例えば、LVOTまたはneo‐LVOTの中心線に対応する)に沿って平行移動されまたは移動される。
図5Cに示されている、得られた面526aは、開始面として使用されてもよい。そのような平行移動は、コンピュータ装置によって自動的に実行されてもよい。
【0048】
ブロック418では、開始面に加えて複数の切断面が生成される。例えば、複数の切断面は、人工僧帽弁511の表面(例えば、人工僧帽弁511のボトムエッジ)、neo‐LVOTの少なくとも1つの点、および心臓の3‐Dモデルにおけるneo‐LVOTの境界を画定する患者の解剖学的構造(例えば、左心室または大動脈)上の少なくとも1つの点を交差する任意の面として決定されてもよい。複数の切断面は、neo‐LVOTを幾つかの位置および角度から測定して決定されてもよい。特定の実施形態では、複数の切断面は、開始面に基づいて生成される。複数の切断面は、クライアント装置204、3‐D測定および分析モジュール220などのコンピュータ装置によって、(例えば、線/面の中央など、人工僧帽弁の曲線(例えば、ボトムエッジ)又は面に基づいて)少なくとも部分的に自動的に決定されてもよい。ユーザは本明細書で検討したように、開始面上の1つ以上の原点の選択など、何らかの入力を提供してもよい。複数の切断面は、1つ以上の原点の各々の周りの1つ以上の方向(例えば、互いに垂直な2つの異なった軸に沿った方向)における開始面の回転(および任意選択で平行移動)に対応してもよい。例えば、
図5Dおよび5Eは、開始面526に対応する複数の切断面528を示す。図示のように、開始面526及び複数の切断面528は、neo‐LVOTと交差して、neo‐LVOTの様々なneo‐LVOTの面積を、様々な面内に画定する。いくつかの実施形態では、開始面526はまた、複数の切断面528のうちの1つとみなされる。複数の切断面を生成するための方法に係る実施形態は、
図6などで、本明細書でさらに説明される。複数の切断面はneo‐LVOT内のneo‐LVOTの面積を計算するための複数の面に対応してもよい。
【0049】
ブロック420では、複数の切断面のそれぞれについて、neo‐LVOTの面積が計算される。いくつかの態様では、neo‐LVOTの面積は、クライアント装置240、3‐D測定および分析モジュール220などのコンピュータ装置によって自動的に計算される。いくつかの実施形態では、各々の切断面について、該切断面における心臓の3‐Dモデルの左心室の断面から、該切断面における人工僧帽弁の断面を差し引くことによって、neo‐LVOTの面積が計算される。得られた断面の表面積は、neo‐LVOTの面積として計算される。
【0050】
ブロック422では、複数の切断面のうちのneo‐LVOTの最も小さいまたは最小面積が決定される。いくつかの態様では、neo‐LVOTの最小面積は、クライアント装置240、3‐D測定および分析モジュール220などのコンピュータ装置によって自動的に計算される。例えば、コンピュータ装置240は複数の切断面に対するneo‐LVOTの面積を比較し、neo‐LVOTの最小面積を有する切断面を見つける。
【0051】
ブロック424では、neo‐LVOTの最小面積が閾値を満たすかどうかが判定される。いくつかの態様では、ブロック424は、クライアント装置240、3‐D測定および分析モジュール220などのコンピュータ装置によって自動的に実行される。ある態様では、閾値は絶対表面積である。ある態様では、閾値は、neo‐LVOTの最小面積を有する切断面内の、元のLVOTの面積に対するneo‐LVOTの最小面積のパーセンテージまたは比率の閾値である。例えば、ある態様では、neo‐LVOTの最小面積を有する切断面内の、元のLVOTの面積が計算される。ある態様では、元のLVOTの面積は、クライアント装置240などのコンピュータ装置によって自動的に計算される。元のLVOTの面積は、該切断面における心臓の3‐Dモデルの左心室の断面を決定し、該断面の表面積を元のLVOTの面積として計算することによって計算されてもよい。したがって、元のLVOTの面積に対するneo‐LVOTの最小面積の比率またはパーセンテージが閾値と比較されてもよい。
【0052】
ブロック424では、neo‐LVOTの最小面積が閾値を満たすと判定された場合、手順400はブロック426に進む。ブロック426では、選択された人工僧帽弁のデザインが完成される。例えば、人工僧帽弁のデザインは、流通している人工僧帽弁の選択、特定の人工僧帽弁の処方、特注した人工僧帽弁のデザイン、CADファイルなどの方式で、出力されてもよい。特定の実施形態では、人工僧帽弁のデザインは、特注した人工僧帽弁などのために製造されてもよい。いくつかの実施形態では、人工僧帽弁のデザインは、付加的な製造により製造される。特定の態様では、選択された人工僧帽弁は、患者に移植されてもよい。
【0053】
ブロック424では、neo‐LVOTの最小面積が閾値を満たさないと判定された場合、手順400は408に戻り、そこで、僧帽弁の置換に対する適合性について検査されて、新しい人工僧帽弁のデザインが選択される。特定の実施形態では、新しい人工僧帽弁のデザインが再び手動で選択されてもよい。特定の実施形態では、新しい人工僧帽弁のデザインがコンピュータ装置204などのコンピュータ装置によって自動的に選択または設計されてもよい。例えば、以前に選択された人工僧帽弁のデザインは、自動的に修正されてもよい(例えば、1つ以上の寸法は、許容される寸法の範囲内で、増加量などによって自動的に変更される)。手順400が実行され、新しい人工僧帽弁のデザインが自動的に選択または設計されるように、修正は、適切な人工僧帽弁のデザインが決定されるまで反復的に実行されてもよい。
【0054】
いくつかの実施形態では、neo‐LVOTの最小面積が閾値を満たさないと判定された場合、手順400は終了してもよく、僧帽弁の置換は実行されなくてもよい。
【0055】
手順400は、neo‐LVOTの最小面積を決定するために、単一の開始面および該開始面に対応する複数の切断面を使用することについて記載されているが、特定の実施形態では、複数の開始面および該複数の開始面に対応する複数の切断面が、neo‐LVOTの最小面積を決定するために使用されてもよいことに留意されたい。例えば、人工僧帽弁のデザイン上の異なる場所で人工僧帽弁のデザイン(例えば、人工僧帽弁のボトムエッジ、人工僧帽弁のデザインの異なる表面など)と交差する複数の開始面が使用されてもよい。一実施形態では、第1の開始面は、人工僧帽弁のボトムエッジと最初に交差するまで、人工僧帽弁に向かって平行移動される大動脈弁の面に基づいていてもよい。追加的な複数の開始面は、ある範囲(例えば、-20度から+20度)にわたって、ボトムエッジに沿って第1の開始面からの増加量(例えば、5度)で配置されてもよい。例えば、
図5Fは、複数の開始面と人工僧帽弁のボトムエッジとの交点の間隔を示す。別の実施形態では、第1の開始面を選択してもよく、複数の追加的な開始面は、第1の開始面から特定の方向に(例えば、人工僧帽弁、neo‐LVOTなどの特定の面、線、表面に沿って)増加量(例えば、5度、特定の間隔など)で配置されていてもよい。特定の実施形態では、複数の開始面がそれ自体、ブロック418で生成される複数の切断面に対応してもよい。
【0056】
図6は、特定の実施形態による、複数の切断面を生成するための手順600を示すフローチャートである。特定の実施形態では、手順600は、
図4の手順400のブロック418を実行するために使用されてもよい。
【0057】
ブロック602では、原点が開始面上に選択される。原点は、複数の切断面を生成するために開始面が回転される点として作用してもよい。例えば、一実施形態では、原点は、開始面が交差する人工僧帽弁(例えば、人工僧帽弁のボトムエッジ)上の点(例えば、
図5Gの点530)、開始面が交差するneo‐LVOTを画定する患者の解剖学的構造(例えば、左心室または大動脈)上の点(例えば、点532)、または開始面が交差するneo‐LVOT内の点(例えば、点534)であってもよい。特定の実施形態では、クライアント装置204などのコンピュータ装置のユーザが原点を示してもよい。特定の実施形態では、コンピュータ装置は、開始面と人工僧帽弁のボトムエッジとの間の交点を見つけることによって、原点を自動的に計算してもよい。特定の実施形態では、複数の異なる原点が開始面に対して選択されてもよい。つまり、手順600は複数回実行されてもよく、複数の切断面を生成するために、各原点に対して1回実行される。
【0058】
ブロック604では、原点における回転させるための第1の軸が決定される。特定の実施形態では、回転させるための第1の軸は、開始面と人工僧帽弁のボトムエッジを含む人工僧帽弁の底面との間の交線であってもよい。例えば、
図5Dは、開始面526と人工僧帽弁の底面538との交点である回転させるための第1の軸536の一例を示す。特定の実施形態では、クライアント装置204などのコンピュータ装置のユーザは、回転させるための第1の軸を示してもよい。特定の実施形態では、コンピュータ装置が画像技術を使用して底面538を決定し、開始面526と底面538との間の交点を見つけることによって、回転させるための第1の軸を自動的に決定してもよい。回転させるための第1の軸はまた、開始面と人工僧帽弁の表面、面、線などとの間の交線など、他の方法で決定されてもよい。
【0059】
ブロック606では、原点における回転させるための第2の軸が決定される。特定の実施形態では、回転させるための第2の軸は、原点を通る開始面内の線であり、回転させるための第1の軸に垂直であってもよい。例えば、
図5Eは、回転させるための第2の軸540の一例を示す。特定の実施形態では、コンピュータ装置は、回転させるための第2の軸を自動的に決定してもよい。回転させるための第1の軸に対して垂直な回転させるための第2の軸を有することによって、3‐D空間内の容積全体が、断面積に対して定量化されてもよい。
【0060】
ブロック608では、1つ以上の回転増加量が決定される。例えば、1回の回転増加量(例えば、1度)は、第1の軸および第2の軸に対して決定されてもよい。別の実施例では、異なった回転増加量が、第1の軸および第2の軸に対して決定されてもよい。
【0061】
ブロック610において、複数の切断面は、第1の軸または第2の軸のうちの1つ以上の周りで開始面を適切な回転増加量だけ回転させることによって生成され、各切断面は、異なる増加量での回転である。例えば、特定の実施形態では、開始面は、
図5Dに示されるように、複数の切断面528を生成するために、回転増加量だけ、第1の軸を中心に1回以上回転させてもよい。加えて、または代替的に、特定の実施形態では、開始面は、
図5Eに示されるように、複数の切断面528を生成するために、回転増加量だけ、第2の軸を中心に1回以上回転させてもよい。
【0062】
特定の実施形態では、複数の切断面は、さらにブロック610で生成された1つ以上の切断面を複製し、1つ以上の切断面を(例えば、人工僧帽弁のボトムエッジ、表面、線などに沿って)1つ以上の距離増加量にわたって平行移動させることによって、生成される。特定の実施形態では、複数の切断面は、さらにブロック610で生成された1つ以上の切断面を複製し、平行移動された1つ以上の切断面が人工僧帽弁(例えば、人工僧帽弁のボトムエッジ)に対して接線方向になるまで、1つ以上の切断面を(例えば、人工僧帽弁のボトムエッジ、表面、線などに沿って)平行移動することによって、生成される。
【0063】
特定の実施形態では、開始面が回転される回転範囲は、心臓の3‐Dモデルおよび人工僧帽弁に基づいて制限されてもよい。例えば、第1の軸の周りの回転は、1)第1の軸と、第1の軸がボトムエッジと交差する点に対して反対側に位置する人工僧帽弁のトップエッジ上の点と、を通る面(
図5Hに面550として示される)、2)第1の軸を通り、人工器官のトップエッジに接する面(
図5Hに面560として示される)とによって画定される範囲に限定されてもよい。
【0064】
上述のシステムおよび方法を用いて、標準化された方法は、医師および研究者に、経カテーテル僧帽弁修復研究および開発のためのneo‐LVOTの最小面積を決定する能力、ならびに患者および処置計画との関連における適切なサイズ決定を提供する。上記の特定の実施例は僧帽弁に関するが、当業者は上記の原理、システム、および方法が他の種類の外科的処置および解剖学的構造の他の領域に関連して容易に適用され得ることを理解する。例えば、いくつかの実施実施例では、弁は、肺枝弁、三尖弁などであってもよい。他の実施形態では、上記のシステムおよび方法は、肺動脈狭窄、他の弁、左心耳(LAA)閉塞、大動脈瘤のためのステントグラフト、脳動脈瘤デバイス、環状評価(例えば、最小/最大面積)などの治療に使用されてもよい。特定の実施形態では、説明されるシステムおよび方法は、気道、気道の病気の治療、および気道内の人工器官(例えば、ステント、移植片、弁、薬物送入システムなど)の置換物などのために使用されてもよい。
【0065】
任意の1つの実施形態に関連して説明された任意の特徴は、単独で、または説明された他の特徴と組み合わせて使用されてもよく、また、任意の他の実施形態の1つ以上の特徴、または任意の他の実施形態の任意の組み合わせと組み合わせて使用されてもよいことが理解されるべきである。さらに、添付の特許請求の範囲に定義される本発明の範囲から逸脱することなく、上記で説明されていない均等物および修正を使用することもできる。
【0066】
本明細書で開示される方法は、説明される方法を達成するための1つ以上のステップまたは動作を備える。方法のステップおよび/または動作は、特許請求の範囲から逸脱することなく、互いに交換されてもよい。言い換えれば、ステップまたは動作の特定の順序が指定されない限り、特定のステップおよび/または動作の順序および/または使用は、特許請求の範囲から逸脱することなく修正されてもよい。さらに、1つ以上のブロック/ステップは、削除されても、または追加させてもよい。例えば、
図4および
図4Aに関して示された手順400の一部(例えば、neo‐LVOTの最小面積を決定するためにブロック402~422)のみが、特定の実施形態で実行されてもよい。
【0067】
本明細書で開示される様々な実施形態は、特定の特徴を実行するためのコンピュータシステムの使用を提供する。当業者は、これらの実施形態が汎用および/または専用コンピュータシステム環境または構成の両方を含む、多数の異なる種類のコンピュータ装置を使用して実行され得ることを容易に理解するのであろう。上述の実施形態に関連して使用するのに適し得る周知のコンピュータシステム、環境、および/または構成の実施例には、パーソナルコンピュータ、サーバーコンピュータ、ハンドヘルドまたはラップトップデバイス、マルチプロセッサシステム、マイクロプロセッサベースのシステム、プログラマブル家庭用電化製品、ネットワークPC、ミニコンピュータ、メインフレームコンピュータ、上記のシステムまたは装置のいずれかを含む分散コンピューティング環境などが含まれ得るが、これらに限定されない。これらの装置は、コンピュータ装置内のマイクロプロセッサによって実行されると、コンピュータ装置に命令を実行するための指定された動作を実行させる、記憶された命令を含んでいてもよい。本明細書で使用されるように、命令は、システム内の情報を処理するためのコンピュータ実行ステップを指す。命令は、ソフトウェア、ファームウェア、またはハードウェアで実行することができ、システムの構成要素によって実行される任意の種類のプログラムされたステップを含む。
【0068】
マイクロプロセッサは、Pentium(登録商標)プロセッサ、Pentium(登録商標)Proプロセッサ、8051プロセッサ、MIPS(登録商標)プロセッサ、Power PC(登録商標)プロセッサ、またはAlpha(登録商標)プロセッサなどの従来の汎用シングルチップまたはマルチチップマイクロプロセッサであってもよい。さらに、マイクロプロセッサは、デジタル信号プロセッサまたはグラフィックプロセッサなどの任意の従来の専用マイクロプロセッサであってもよい。マイクロプロセッサは、典型的には従来のアドレス線、従来のデータ線、および1つ以上の従来の制御線を有する。
【0069】
本明細書で開示される本発明の態様および実施形態は、ソフトウェア、ファームウェア、ハードウェア、またはそれらの任意の組合せを生じさせるために、標準的なプログラミング技法またはエンジニアリング技法を使用して、方法、装置、または製造物として実行されてもよい。本明細書で使用される「製造物」という用語は、光記憶デバイスなどのハードウェアまたは非一時的なコンピュータ可読媒体、ならびに信号、搬送波などの揮発性または不揮発性メモリデバイス、または一時的なコンピュータ可読媒体で実行されるコードまたはロジックを指す。そのようなハードウェアは、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向集積回路(ASIC)、複合プログラマブル論理デバイス(CPLD)、プログラマブル論理アレイ(PLA)、マイクロプロセッサ、または他の同様の処理デバイスを含むことができるが、これらに限定されない。
【図面の簡単な説明】
【0070】
【
図1】
図1は、心臓のデジタル2‐Dまたは3‐Dモデルの左側を示す。
【
図2】
図2は、本明細書で開示される様々な実施形態を実施するのに適したコンピュータ環境の一実施例の機能構成図である。
【
図3】
図3は、1つ以上の実施形態に従って使用することができるコンピュータシステムの高度なレベルのシステム図である。
【
図4】
図4は、特定の実施形態による、容積の最小断面積を決定するための手順を示すフローチャートを示す。
【
図4A】
図4Aは、特定の実施形態による、容積の最小断面積を決定するための手順を示すフローチャートを示す。
【
図5A】3‐Dモデルに含まれる人工僧帽弁の描写に伴う心臓の一実施例である3‐Dモデルの図を示す。
【
図5B】3‐Dモデルに含まれる人工僧帽弁の描写に伴う心臓の一実施例である3‐Dモデルの図を示す。
【
図5C】3‐Dモデルに含まれる人工僧帽弁の描写に伴う心臓の一実施例である3‐Dモデルの図を示す。
【
図5D】3‐Dモデルに含まれる人工僧帽弁の描写に伴う心臓の一実施例である3‐Dモデルの図を示す。
【
図5E】3‐Dモデルに含まれる人工僧帽弁の描写に伴う心臓の一実施例である3‐Dモデルの図を示す。
【
図5F】3‐Dモデルに含まれる人工僧帽弁の描写に伴う心臓の一実施例である3‐Dモデルの図を示す。
【
図5G】3‐Dモデルに含まれる人工僧帽弁の描写に伴う心臓の一実施例である3‐Dモデルの図を示す。
【
図5H】3‐Dモデルに含まれる人工僧帽弁の描写に伴う心臓の一実施例である3‐Dモデルの図を示す。
【
図6】
図6は、特定の実施形態による、複数の切断面を生成する手順を示すフローチャートである。