(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-17
(45)【発行日】2024-09-26
(54)【発明の名称】固体電解質セラミックスおよび固体電池
(51)【国際特許分類】
H01B 1/08 20060101AFI20240918BHJP
H01B 1/06 20060101ALI20240918BHJP
H01M 10/052 20100101ALI20240918BHJP
H01M 10/0562 20100101ALI20240918BHJP
H01M 10/0585 20100101ALI20240918BHJP
H01M 4/13 20100101ALI20240918BHJP
【FI】
H01B1/08
H01B1/06 A
H01M10/052
H01M10/0562
H01M10/0585
H01M4/13
(21)【出願番号】P 2022563808
(86)(22)【出願日】2021-11-17
(86)【国際出願番号】 JP2021042277
(87)【国際公開番号】W WO2022107824
(87)【国際公開日】2022-05-27
【審査請求日】2023-03-15
(31)【優先権主張番号】P 2020191141
(32)【優先日】2020-11-17
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006231
【氏名又は名称】株式会社村田製作所
(74)【代理人】
【識別番号】100145403
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100197583
【氏名又は名称】高岡 健
(72)【発明者】
【氏名】▲高▼良 祐亮
(72)【発明者】
【氏名】高野 良平
【審査官】北嶋 賢二
(56)【参考文献】
【文献】特表2019-530963(JP,A)
【文献】特開2016-171068(JP,A)
【文献】米国特許出願公開第2020/0136217(US,A1)
【文献】特開2019-006634(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01B 1/08
H01B 1/06
H01M 10/052
H01M 10/0562
H01M 10/0585
H01M 4/13
(57)【特許請求の範囲】
【請求項1】
少なくともLi(リチウム)、La(ランタン)
,Bi(ビスマス)およびO(酸素)を含み、かつCo(コバルト),Ni(ニッケル)
およびMn(マンガン
)からなる群から選択される1種類以上の遷移金属元素を含み、
下記一般式(I):
【化1】
(式(I)中、Aは、Li(リチウム)、Ga(ガリウム)、Al(アルミニウム)、Mg(マグネシウム)、Zn(亜鉛)およびSc(スカンジウム)からなる群から選択される1種類以上の元素であって、少なくともLi(リチウム)を含む;
Bは、La(ランタン)、Ca(カルシウム),Sr(ストロンチウム),Ba(バリウム)、およびランタノイド元素からなる群から選択される1種類以上の元素であって、少なくともLa(ランタン)を含む;
Dは、酸素と6配位をとることが可能な遷移元素および第12族~第15族に属する典型元素からなる群から選択される1種類以上の元素であ
って、少なくともBi(ビスマス)およびTa(タンタル)を含む;
αは5.0≦α≦8.0を満たす;
βは2.5≦β≦3.5を満たす;
γは1.5≦γ≦2.5を満たす;
ωは11≦ω≦13を満たす)
で表される化学組成を有し、
前記Bの含有量を100mol%としたときの、前記Dの含有量をX(mol%)、前記遷移金属元素の合計含有量をY(mol%)としたとき、以下の関係式(1)~(3)のうちのいずれか1つの関係式を満た
し、
前記Dの含有量XはTa(タンタル)の含有量である、ガーネット型結晶構造を有する固体電解質セラミックス:
(1)12.0≦X<20.0の範囲で0.01≦Y≦4.00;
(2)20.0≦X<33.0の範囲で0.01≦Y≦6.00;
(3)33.0≦X≦65.5の範囲で0.01≦Y≦8.00。
【請求項2】
前記遷移金属元素はCoを含む、請求項
1に記載の固体電解質セラミックス。
【請求項3】
前記固体電解質セラミックスは前記関係式(1)または(2)を満たす、請求項1
または2に記載の固体電解質セラミックス。
【請求項4】
前記固体電解質セラミックスは前記関係式(1)を満たす、請求項1~
3のいずれかに記載の固体電解質セラミックス。
【請求項5】
請求項1~
4のいずれかに記載の固体電解質セラミックスを含む、固体電池。
【請求項6】
前記固体電池は、正極層、負極層および前記正極層と前記負極層との間に積層されている固体電解質層を含み、
前記正極層および前記負極層はリチウムイオンを吸蔵放出可能な層となっている、請求項
5に記載の固体電池。
【請求項7】
前記固体電解質層は前記正極層および前記負極層と相互に焼結体同士の一体焼結をなしている、請求項
6に記載の固体電池。
【請求項8】
前記固体電解質セラミックスは前記固体電池の固体電解質層に含まれている、請求項
5~
7のいずれかに記載の固体電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は固体電解質セラミックスおよび当該固体電解質セラミックスを含む固体電池に関する。
【背景技術】
【0002】
近年、携帯電話や携帯型パーソナルコンピュータ等の携帯型電子機器の電源として、電池の需要が大幅に拡大している。このような用途に用いられる電池としては、電解質として固体電解質を用いると共に、その他の構成要素も固体で構成されている焼結型固体二次電池(いわゆる「固体電池」)の開発が進められている。
【0003】
固体電池は、正極層、負極層および正極層と負極層との間に積層されている固体電解質層を含む。特に、固体電解質層は固体電解質セラミックスを含み、正極層と負極層との間でイオンの伝導を担っている。固体電解質セラミックスはイオン伝導度がより高く、かつ電子伝導度がより低いことが求められている。そのような固体電解質セラミックスとしては、より高いイオン伝導度の観点から、Biで置換されたガーネット型固体電解質を焼結させてなるセラミックスを用いる試みがなされている(例えば、特許文献1および非特許文献1)。
【先行技術文献】
【特許文献】
【0004】
【非特許文献】
【0005】
【文献】Gao et al., SolidState Ionics, 181 (2010) 1415-1419
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の発明者は、上記のような従来の固体電解質セラミックスを用いた固体電池において、以下の問題が生じることを見出した。詳しくは、Biを含むガーネット型固体電解質セラミックスを用いた従来の固体電池においては、粒界にLi-Bi-O系化合物などの不純物が生成し易く、このLi-Bi-O系化合物が固体電池の作動時(すなわち充放電時)に還元され、電子伝導度が上昇した。電子伝導度が上昇すると、固体電池が短絡する現象が起こったり、かつ/またはリーク電流の増大が起こったりした。
【0007】
本発明の発明者はまた、Li-Bi-O系化合物の生成を抑制する観点から、Co等の遷移金属元素を含有させることが有効であることを見出したが、以下の新たな問題が生じることも見出した。詳しくは、Co等の遷移金属元素(後述の第1の遷移金属元素)を比較的多量に含有させると、Li-Bi-O系化合物とは異なるLi-La-Co-O系化合物などの遷移金属を含む不純物が生成し、この不純物が固体電池の作動時において電子伝導度をやはり上昇させた。
【0008】
本発明は、優れたイオン伝導性を有しつつ、固体電池の作動による電子伝導度の上昇をより十分に抑制する固体電解質セラミックスを提供することを目的とする。
【0009】
本発明はまた、遷移金属元素(後述の第1の遷移金属元素)を比較的多量に含有させても、優れたイオン伝導性を有しつつ、固体電池の作動による電子伝導度の上昇をより十分に抑制する固体電解質セラミックスを提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明は、
少なくともLi(リチウム)、La(ランタン)およびO(酸素)を含み、かつCo(コバルト),Ni(ニッケル)、Mn(マンガン)およびFe(鉄)からなる群から選択される1種類以上の遷移金属元素を含む、ガーネット型結晶構造を有する固体電解質セラミックスであって、
前記固体電解質セラミックスは下記一般式(I):
【化1】
(式(I)中、Aは、Li(リチウム)、Ga(ガリウム)、Al(アルミニウム)、Mg(マグネシウム)、Zn(亜鉛)およびSc(スカンジウム)からなる群から選択される1種類以上の元素であって、少なくともLi(リチウム)を含む;
Bは、La(ランタン)、Ca(カルシウム),Sr(ストロンチウム),Ba(バリウム)、およびランタノイド元素からなる群から選択される1種類以上の元素であって、少なくともLa(ランタン)を含む;
Dは、酸素と6配位をとることが可能な遷移元素および第12族~第15族に属する典型元素からなる群から選択される1種類以上の元素である;
αは5.0≦α≦8.0を満たす;
βは2.5≦β≦3.5を満たす;
γは1.5≦γ≦2.5を満たす;
ωは11≦ω≦13を満たす)
で表される化学組成を有し、
前記Bの含有量を100mol%としたときの、前記Dの含有量をX(mol%)、前記遷移金属元素の合計含有量をY(mol%)としたとき、以下の関係式(1)~(3)のうちのいずれか1つの関係式を満たす、固体電解質セラミックスに関する:
(1)12.0≦X<20.0の範囲で0.01≦Y≦4.00;
(2)20.0≦X<33.0の範囲で0.01≦Y≦6.00;
(3)33.0≦X≦65.5の範囲で0.01≦Y≦8.00。
【発明の効果】
【0011】
本発明の固体電解質セラミックスは、優れたイオン伝導性を有しつつ、固体電池の作動による電子伝導度の上昇をより十分に抑制する。
【発明を実施するための形態】
【0012】
[固体電解質セラミックス]
本発明の固体電解質セラミックスは、固体電解質粒子が焼結されてなる焼結体から構成されている。本発明の固体電解質セラミックスは、少なくともLi(リチウム),La(ランタン)およびO(酸素)を含み、ガーネット型結晶構造を有する固体電解質セラミックスであり、Co(コバルト),Ni(ニッケル),Mn(マンガン)およびFe(鉄)からなる群から選択される1種以上の遷移金属元素(以下、単に「第1の遷移金属元素」ということがある)をさらに含む。さらに、本発明の固体電解質セラミックスは、ガーネット型結晶構造を有する固体電解質からなるセラミックスであって、本発明の効果を損ねない範囲でその他の複合酸化物や単一酸化物を含んでいてもよい。さらに、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、Bi(ビスマス)を含むことが好ましい。また、少なくとも本発明の主成分となる固体電解質セラミックスに含まれる焼結粒子がガーネット型結晶構造を有していればよい。
【0013】
本発明の固体電解質セラミックスは下記一般式(I)で表される化学組成を有しつつ、第1の遷移金属元素をさらに含むことが好ましい。
【0014】
【0015】
式(I)中、Aは、Li(リチウム)、Ga(ガリウム)、Al(アルミニウム)、Mg(マグネシウム)、Zn(亜鉛)およびSc(スカンジウム)からなる群から選択される1種類以上の元素であって、少なくともLiを含む。
Bは、La(ランタン)、Ca(カルシウム),Sr(ストロンチウム),Ba(バリウム)、およびランタノイド元素からなる群から選択される1種類以上の元素であって、少なくともLaを含む。ランタノイド元素として、例えば、Ce(セリウム)、Pr(プラセオジム)、Nd(ネオジム)、Pm(プロメチウム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミニウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Lu(ルテチウム)が挙げられる。
Dは、酸素と6配位をとることが可能な遷移元素および第12族~第15族に属する典型元素からなる群から選択される1種類以上の元素を示す。酸素と6配位をとることが可能な遷移元素として、例えば、Sc(スカンジウム)、Zr(ジルコニウム),Ti(チタン),Ta(タンタル),Nb(ニオブ),Hf(ハフニウム),Mo(モリブデン),W(タングステン)およびTe(テルル))が挙げられる。第12族~第15族に属する典型元素として、例えば、In(インジウム),Ge(ゲルマニウム),Sn(スズ),Pb(鉛),Sb(アンチモン),Bi(ビスマス)が挙げられる。Dは、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、少なくともBiおよび/またはTaを含むことが好ましく、より好ましくはBiおよびTaを含み、さらに好ましくはBi、TaおよびZrを含む。
【0016】
式(I)中、α、β、γ、ωは、それぞれ、5.0≦α≦8.0、2.5≦β≦3.5、1.5≦γ≦2.5、11≦ω≦13を満たす。
αは、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは5.0≦α≦7.0を満たし、より好ましくは5.00≦α≦6.35、さらに好ましくは5.80≦α≦6.35、特に好ましくは6.15≦α≦6.35を満たす。
βは、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは2.5≦β≦3.3を満たし、より好ましくは2.5≦β≦3.1、さらに好ましくは2.8≦β≦3.0を満たす。
γは、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは1.8≦γ≦2.5を満たし、より好ましくは1.8≦γ≦2.3、さらに好ましくは1.9≦γ≦2.3を満たす。
ωは、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは11≦ω≦12.5を満たし、より好ましくは11.5≦ω≦12.5を満たす。
【0017】
本発明においては、固体電解質セラミックスが、前記一般式(I)で表される化学組成を有し、前記Bの含有量を100mol%としたときの、前記Dの含有量をX(mol%)、前記第1の遷移金属元素の合計含有量をY(mol%)としたとき、上記関係式(1)~(3)のうちのいずれかを1つの関係式を満たすことにより、第1の遷移金属元素を比較的多量に含んでも、優れたイオン伝導性を有しつつ、電子伝導度の上昇をより十分に抑制する。このような固体電解質セラミックスにおいて、前記Dの合計含有量が少なすぎると、電子伝導度の上昇を十分に抑制することができない。前記Dの合計含有量が多すぎると、イオン伝導性が低下する。本発明において、前記Dがさらに、Ta(タンタル)およびNb(ニオブ)からなる群から選択される1種類以上の遷移金属元素(以下、単に「第2の遷移金属元素」ということがある)をさらに含むことが好ましい。
【0018】
本発明において、固体電解質セラミックスにおける前記Dおよび第1の遷移金属元素の含有量は詳しくは以下の通りである。すなわち、本発明の固体電解質セラミックスの化学組成を表す前記一般式(I)中のBの含有量を100mol%としたときの、前記Dの合計含有量をX(mol%)、第1の遷移金属元素の合計含有量をY(mol%)としたとき、本発明の固体電解質セラミックスは以下の関係式(1)~(3)のうちのいずれか1つの関係式を満たす:
(1)12.0≦X<20.0(特に13.0≦X<20.0または13.0≦X≦18.0)の範囲で0.01≦Y≦4.00(0.01≦Y<1.40および1.40≦Y≦4.00の複合範囲)(より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは0.01≦Y≦3.50(0.01≦Y<1.50および1.50≦Y≦3.50の複合範囲)、より好ましくは0.02≦Y≦3.40(0.02≦Y<1.60および1.60≦Y≦3.40の複合範囲));
(2)20.0≦X<33.0の範囲(特に20.0≦X≦30)で0.01≦Y≦6.00(0.01≦Y<1.40および1.40≦Y≦6.00の複合範囲)(より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは0.01≦Y≦5.50(0.01≦Y<1.50および1.50≦Y≦5.50の複合範囲)、より好ましくは0.02≦Y≦5.20(0.02≦Y<1.60および1.60≦Y≦5.20の複合範囲));
(3)33.0≦X≦65.5(特に33.0≦X≦65.0)の範囲で0.01≦Y≦8.00(0.01≦Y<1.40および1.40≦Y≦8.00の複合範囲)(より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは0.01≦Y≦7.50(0.01≦Y<1.50および1.50≦Y≦7.50の複合範囲)、より好ましくは0.02≦Y≦7.00(0.02≦Y<1.60および1.60≦Y≦7.00の複合範囲))。さらに、前記Dに、本発明の第2の遷移金属元素を含有することが好ましく、第2の遷移金属元素の含有量が前記Xの範囲を満たすことがより好ましい。
関係式(1)~(3)のそれぞれにおいて、第1の遷移金属元素の合計含有量Yが所定の値より多すぎると電子伝導度の上昇を十分に抑制することができない。
【0019】
本発明で規定されるDの合計含有量Xは、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、Taおよび/またはNbおよびBiの合計含有量であることが好ましく、より好ましくはTaおよびまたはNbおよびBiおよびZrの合計含有量であり、さらに好ましくはTaおよびBi含有量であり、特に好ましくはTaの含有量である。
【0020】
上記した前記Dの合計含有量Xおよび第1の遷移金属元素の合計含有量Yは、前記Bの含有量を100mol%としたときの割合(mol%)として表されているが、ガーネット型結晶構造の8配位サイトの数を100mol%としたときの割合(mol%)として表すこともできる。例えば、後述の一般式(II)の化学組成の場合において、当該割合は、LaおよびB1の合計数を100mol%としたときの割合(mol%)として表され得る値のことである。他の具体例において、ガーネット型結晶構造中の8配位サイトは、例えば、ガーネット型結晶構造を有するLi5La3Nb2O12(ICDD CardNo.00-045-0109)におけるLaが占有するサイト、同じくガーネット型結晶構造Li7La3Zr2O12(ICDD Card.No01-078-6708)におけるLaが占有するサイトのことである。
【0021】
前記Dの含有量および第1の遷移金属元素の含有量は、固体電解質セラミックスの誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析(ICP分析)を行い、当該材料の平均化学組成を得ることにより測定することができる。詳しくは、ICP分析に基づいて平均化学組成を求め、当該平均化学組成より、前記Dに含まれる元素、例えばTaおよびNbなどの含有量およびCo,Mn、NiおよびFeの含有量を、前記一般式(I)中のBの含有量(例えば、後述の一般式(II)におけるLaおよびB1の合計数)を100mol%としたときの割合として求めることができる。なお、X線光電子分光分析装置(XPS:X-ray Photoelectron Spectroscopy)で測定し算出してもよい。
【0022】
Bi(ビスマス)の含有量は通常、前記Dの含有量を100mol%としたとき、25mol%以下であり、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは0mol%超25mol%以下、より好ましくは0mol%超15mol%以下、さらに好ましくは0mol%超12mol%以下、特に好ましくは1mol%以上12mol%以下、最も好ましくは5mol%以上12mol以下である。
【0023】
Biの含有量も、第1の遷移金属元素の含有量と同様に、固体電解質セラミックスの誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析(ICP分析)を行い、当該材料の平均化学組成を得ることにより測定することができる。詳しくは、ICP分析に基づいて平均化学組成を求め、当該平均化学組成より、Biの含有量を、前記一般式(I)中Dの含有量(例えば、後述の一般式(II)におけるBiおよびD1の合計数)を100mol%としたときの割合として求めることができる。なお、X線光電子分光分析装置(XPS:X-ray Photoelectron Spectroscopy)で測定し算出してもよい。
【0024】
本発明の固体電解質セラミックスは、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは上記の関係式(1)または(2)を満たし、より好ましくは上記の関係式(1)を満たす。
【0025】
本発明の固体電解質セラミックスにおける第1の遷移金属元素の存在形態(または含有形態)は特に限定されず、結晶格子に存在してもいいし、結晶格子以外に存在してもいい。例えば、当該第1の遷移金属元素は、固体電解質セラミックスにおいて、バルクに存在してもよいし、粒界に存在してもよいし、またはそれらの両方に存在してもよい。第1の遷移金属元素がバルクに存在する一例としては、本発明の固体電解質セラミックスにおいて、当該第1の遷移金属元素がガーネット型結晶構造を構成する金属サイト(格子サイト)に存在するという意味である。金属サイトはあらゆる金属サイトであってもよく、例えば、Liサイト、Laサイト、Biサイトまたはこれらのうちの2種以上のサイトであってもよい。本発明の固体電解質セラミックスは複数の焼結粒子から構成されているところ、当該第1の遷移金属元素は2つ以上の焼結粒子の間の界面に存在してもよい。
【0026】
本発明の固体電解質セラミックスがBiを含む場合、本発明の固体電解質セラミックスにおけるBi(ビスマス)の存在形態(または含有形態)は特に限定されず、例えば、当該Bi(ビスマス)は、固体電解質セラミックスにおいて、バルクに存在してもよいし、粒界に存在してもよいし、またはそれらの両方に存在してもよい。絶縁性の観点から、Biはバルクに存在することが好ましい。Biがバルクに存在する一例としては、本発明の固体電解質セラミックスにおいて、当該Biがガーネット型結晶構造を構成する金属サイト(格子サイト)に存在してもよい。
【0027】
本発明において、当該第1の遷移金属および/またはBi(ビスマス)は、ガーネット型結晶構造を有するセラミックスに含まれていてもよい。さらに、第1の遷移金属および/またはBi(ビスマス)は、当該第1の遷移金属および/またはBi(ビスマス)および/または本発明のガーネット型固体電解質を構成する元素を含む複合酸化物および/または単一酸化物として存在してもよい。なお、前記酸化物は、本発明の主成分となるガーネット型結晶構造を有するセラミックスの結晶粒子間の界面に存在してもよい。
【0028】
本発明の固体電解質セラミックスにおけるLi(リチウム)およびLa(ランタン)それぞれは通常、バルクに存在してもよく、詳しくは、一例として、本発明の固体電解質セラミックスにおいて、ガーネット型結晶構造を構成する金属サイト(格子サイト)としてのLiサイトおよびLaサイトに存在してもよい。このとき、Li(リチウム)およびLa(ランタン)はそれぞれ独立または複合酸化物として、一部が粒界に存在してもよい。
【0029】
本発明の固体電解質セラミックスが含む第1の遷移金属元素は、作動時における電子伝導度上昇のより十分な抑制の観点から、Co、NiおよびMnからなる群から選択されることが好ましく、CoおよびMnからなる群から選択されることがより好ましく、Coを含むことがさらに好ましい。
【0030】
本発明の固体電解質セラミックスにおける前記Dに含まれる元素および第2の遷移金属元素は通常、バルクに存在し、詳しくはガーネット型結晶構造を構成する金属サイト(特に6配位サイト)に存在する。
【0031】
本発明の固体電解質セラミックスが含む前記Dに含まれる元素および第2の遷移金属元素は、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、Taを含むことが好ましい。
【0032】
本発明において、固体電解質セラミックスがガーネット型結晶構造を有するとは、当該固体電解質セラミックスが単に「ガーネット型の結晶構造」を有することだけでなく、「ガーネット型類似の結晶構造」を有することも包含して意味するものとする。詳しくは、本発明の固体電解質セラミックスは、X線回折において、固体電池の分野の当業者によりガーネット型またはガーネット型類似の結晶構造と認識され得る結晶構造を有する。より詳しくは、本発明の固体電解質セラミックスは、X線回折において、いわゆるガーネット型の結晶構造(回折パターン:ICDD Card No.422259)に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示してもよいし、またはガーネット型類似の結晶構造として、いわゆるガーネット型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークとは、組成の差異に起因して入射角度(すなわちピーク位置または回折角度)および強度比(すなわちピーク強度または回折強度比)が異なる1つ以上の主要なピークを示してもよい。ガーネット型類似の結晶構造の代表的な回折パターンとして、例えば、ICDD Card No.00-045-0109等が挙げられる。
【0033】
本発明の固体電解質セラミックスは、一具体的実施形態として、は通常、一般式(II)することができる。詳しくは、固体電解質セラミックスは、当該一般式(II)で表される化学組成を有している。なお、このとき本発明の固体電解質セラミックスは、当該一般式(II)で表される化学組成を有しつつ、上記したように第1の遷移金属元素をさらに含む。
【0034】
【0035】
式(II)中、A1はガーネット型結晶構造中のLiサイトを占める金属元素を指す。A1は前記一般式(I)におけるAに対応する元素であり、当該Aとして例示した前記元素と同様の元素のうち、Li以外の元素からなる群から選択される1種類以上の元素であってもよい。A1は通常、Ga(ガリウム)、Al(アルミニウム)、Mg(マグネシウム)、Zn(亜鉛)およびSc(スカンジウム)からなる群から選択される1種類以上の元素である。A1は、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくはGa(ガリウム)、およびAl(アルミニウム)からなる群から選択される1種類以上の元素、より好ましくはGaおよびAlの2種類の元素である。
【0036】
式(II)中、B1はガーネット型結晶構造中のLaサイトを占める金属元素を指す。B1は前記一般式(I)におけるBに対応する元素であり、当該Bとして例示した前記元素と同様の元素のうち、La以外の元素からなる群から選択される1種類以上の元素であってもよい。B1は通常、Ca(カルシウム),Sr(ストロンチウム),Ba(バリウム)、およびランタノイド元素からなる群から選択される1種類以上の元素である。
【0037】
式(II)中、D1はガーネット型結晶構造中の6配位サイト(ガーネット型結晶構造Li7La3Zr2O12(ICDD Card.No01-078-6708)におけるZrが占有するサイト)を占める金属元素を指す。D1は前記一般式(I)におけるDに対応する元素であり、当該Dとして例示した前記元素と同様の元素のうち、Biおよび後述のM以外の元素からなる群から選択される1種類以上の元素であってもよい。D1は通常、Zr(ジルコニウム),Hf(ハフニウム),Mo(モリブデン),W(タングステン)およびTe(テルル)からなる群から選択される1種類以上の元素であり、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくはZr(ジルコニウム)を含む。
Mは、前記した第2の遷移金属元素である。
【0038】
式(II)中、x1は、前記したXについて、0.03×Xに相当し、通常、0.36≦x1≦1.965、特に0.39≦x1≦1.95を満たし、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは前記した関係式(1)および(2)におけるXの範囲から換算される範囲、より好ましくは前記した関係式(1)におけるXの範囲から換算される範囲を満たす。前記した関係式におけるXの範囲から換算される範囲とは、当該Xの範囲に0.03を乗じて算出されるx1の範囲であり、例えば、関係式(1)における12.0≦X<20.0から換算される範囲は0.36≦x1<0.60である。
x2は0<x2≦1.00を満たし、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは0.01≦x2≦0.70、より好ましくは0.02≦x2≦0.40、さらに好ましくは0.10≦x2≦0.40、特に好ましくは0.20≦x2≦0.35、最も好ましくは0.25≦x2≦0.35を満たす。
x1+x2は通常、0.50≦x1+x2≦2.00を満たし、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは0.50≦x1+x2≦1.90、より好ましくは0.50≦x1+x2≦1.50、さらに好ましくは0.50≦x1+x2≦1.20、特に好ましくは0.50≦x1+x2≦1.00、最も好ましくは0.60≦x1+x2≦0.85を満たす。
yは0≦y≦0.50を満たし、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは0≦y≦0.40、より好ましくは0≦y≦0.30、さらに好ましくは0≦y≦0.20を満たし、特に好ましくは0である。
zは0≦z≦2.00を満たし、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは0≦z≦1.00、より好ましくは0≦z≦0.50を満たし、さらに好ましくは0である。
γは1.5≦γ≦2.5を満たし、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは1.8≦γ≦2.5、より好ましくは1.8≦γ≦2.3を満たし、さらに好ましくは1.9≦γ≦2.3である。
【0039】
式(II)中、pは、通常、5.00≦p≦6.35を満たし、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは5.80≦p≦6.35、より好ましくは6.15≦p≦6.35を満たす。
aはA1の平均価数である。A1の平均価数は、A1として、例えば、価数a+の元素Xがn1個、価数b+の元素Yがn2個、および価数c+の元素Zがn3個で認められる場合、(n1×a+n2×b+n3×c)/(n1+n2+n3)で表される値のことである。
bはB1の平均価数である。B1の平均価数は、B1として、例えば、価数a+の元素Xがn1個、価数b+の元素Yがn2個、および価数c+の元素Zがn3個で認められる場合、上記したA1の平均価数と同様の値のことである。
cはD1の平均価数である。D1の平均価数は、D1として、例えば、価数a+の元素Xがn1個、価数b+の元素Yがn2個、および価数c+の元素Zがn3個で認められる場合、上記したA1の平均価数と同様の値のことである。
δは酸素欠損量を示し、0であってもよい。δは通常、0≦δ<1を満たしていればよい。酸素欠損量δは、最新の装置を用いても定量分析が困難であるため、0であるものと考えられてもよい。
なお、本発明の固体電解質セラミックスが有する化学組成における各元素のモル比は、例えば、式(II)中の各元素のモル比とは必ずしも一致せず、分析手法によっては、それよりもずれる傾向があるが、特性が変化するほどの組成ずれでなければ本発明の効果を奏する。
【0040】
本発明において固体電解質セラミックスの化学組成は、ICP(誘導結合プラズマ法)を用いて求められた、セラミックス材料全体の組成であってもよい。また、当該化学組成は、XPS分析を用いて測定、算出してもよいし、TEM-EDX(エネルギー分散型X線分光法)および/またはWDX(波長分散型X線分光法)を用いて求められてもよい。さらに、当該化学組成は、任意の100個の焼結粒子各々の任意の100点の定量分析(組成分析)を行い、それらの平均値を算出することで得てもよい。
【0041】
本発明の固体電解質セラミックにおける第1の遷移金属元素(すなわちCo,Ni,Mn、Fe)の含有量[例えば、前記一般式(I)中のBの含有量(または前記一般式(II)におけるLaおよびB1の合計数)を100mol%としたときのモル比率]は以下の方法により算出されてもよい。本発明において固体電解質セラミックスの化学組成は、ICP分析(誘導結合プラズマ法)、LA-ICP-MS(レーザアブレーションICP質量分析)分析などを行い求めることができる。また、XPS分析を用いて測定、算出してもよいし、TEM-EDX(エネルギー分散型X線分光法)、WDX(波長分散型X線分光法)を用いてもよい。さらに、当該化学組成は、任意の100個の焼結粒子各々の任意の100点の定量分析(組成分析)を行い、それらの平均値を算出することで得てもよい。
【0042】
例えば、EDXまたはWDXでの分析は、固体電池の断面を測定する。固体電池の断面とは、正極層、固体電解質層および負極層の積層方向に平行な断面である。固体電池の断面は、固体電池を樹脂に包埋した後、研磨を行い断面を露出させることができる。断面研磨の方法については特に限定されないが、ダイサー等でカットしたのち、研磨紙、化学機械研磨、イオンミリング等を用いて研磨することで、固体電解質層を露出させることができる。露出した断面(固体電解質層)をEDXまたはWDX(波長分散型蛍光X線分析装置)によって定量分析を行うことで、Bに対するCo、Ni、Mn、Feのモル比率を算出することができる。
【0043】
また例えば、TEM-EELS測定では、固体電池の電極層もしくは固体電解質層を、FIB(集束イオンビーム)等を用いて剥片化後、固体電解質部位のTEM-EELS(透過顕微鏡-電子エネルギー損失分光法:Electron Energy-Loss Spectroscopy)測定を行う。これにより、前記一般式(I)中のBに含まれる元素、Co、Ni、Mn、Feを検出し、Bの含有量に対するCo、Ni、Mn、Feのモル比率を算出することができる。
【0044】
本発明の固体電解質セラミックスを示す化学組成の具体例として、以下の化学組成が挙げられる。なお、以下に示す化学組成において、ハイフン(-)以降の遷移金属元素は、前記したように、バルクおよび/または粒界に存在してもよいことを示す。
Li6.3La3Zr1.28Ta0.42Bi0.3O12-Co0.05
Li6.3La3Zr1.28Ta0.42Bi0.3O12-Co0.1
Li6.2La3Zr1.2Ta0.5Bi0.3O12-Co0.05
Li6.2La3Zr1.2Ta0.5Bi0.3O12-Co0.1
Li6.1La3Zr1.1Ta0.6Bi0.3O12-Co0.05
Li6.1La3Zr1.1Ta0.6Bi0.3O12-Co0.1
Li6.1La3Zr1.1Ta0.6Bi0.3O12-Co0.15
Li5.9La3Zr0.9Ta0.8Bi0.3O12-Co0.05
Li5.9La3Zr0.9Ta0.8Bi0.3O12-Co0.1
Li5.9La3Zr0.9Ta0.8Bi0.3O12-Co0.15
Li5.7La3Zr0.7Ta1Bi0.3O12-Co0.05
Li5.7La3Zr0.7Ta1Bi0.3O12-Co0.1
Li5.7La3Zr0.7Ta1Bi0.3O12-Co0.15
Li5.7La3Zr0.7Ta1Bi0.3O12-Co0.2
Li5.2La3Zr0.2Ta1.5Bi0.3O12-Co0.05
Li5.2La3Zr0.2Ta1.5Bi0.3O12-Co0.1
Li5.2La3Zr0.2Ta1.5Bi0.3O12-Co0.15
Li5.2La3Zr0.2Ta1.5Bi0.3O12-Co0.2
Li5La3Ta1.95Bi0.05O12-Co0.05
Li5La3Ta1.95Bi0.05O12-Co0.1
Li5La3Ta1.95Bi0.05O12-Co0.15
Li5La3Ta1.95Bi0.05O12-Co0.2
【0045】
上記した化学組成の具体例は、遷移元素としてCoを含むが、Coの代わりに、Ni、MnまたはFeを含んでもよい。
【0046】
[固体電解質セラミックスの製造方法]
本発明の固体電解質セラミックスは、所定の金属元素を含む化合物(すなわち出発原料)を水とともに混合し、乾燥後、O2中にて熱処理することにより得ることができる。所定の金属元素を含む化合物は通常、Li(リチウム),La(ランタン),Bi(ビスマス)、第1の遷移金属元素および第2の遷移金属元素からなる群から選択される1種の金属元素を含む化合物の混合物である。所定の金属元素を含む化合物(すなわち出発原料)として、例えば、水酸化リチウム一水和物LiOH・H2O、水酸化ランタンLa(OH)3、酸化ジルコニウムZrO2,酸化タンタルTa2O5,酸化ビスマスBi2O3、酸化コバルトCo3O4、塩基性炭酸ニッケル水和物NiCO3・2Ni(OH)2・4H2O、炭酸マンガンMnCO3、酸化鉄Fe2O3、硝酸リチウムLiNO3、硝酸ランタン六水和物La(NO3)3・6H2O、硝酸ビスマス五水和物Bi(NO3)3・5H2O、硝酸コバルト等が挙げられる。所定の金属元素を含む化合物の混合比率は、熱処理後において、本発明の固体電解質セラミックスが所定の化学組成を有するような比率であればよい。熱処理温度は通常、500℃以上1200℃以下であり、好ましくは600℃以上1000℃以下である。熱処理時間は通常、10分間以上1440分間以下、特に60分間以上600分間以下である。
【0047】
本発明の固体電解質セラミックスは焼結助剤を含んでもよい。焼結助剤としては、固体電池の分野で知られているあらゆる焼結助剤が使用可能である。そのような焼結助剤の組成は、少なくともLi(リチウム)、B(ホウ素)、およびO(酸素)を含み、Bに対するLiのモル比(Li/B)を2.0以上とすることが好ましい。そのような焼結助剤の具体例として、例えば、Li3BO3、(Li2.7Al0.3)BO3、Li2.8(B0.8C0.2)O3、LiBO2が挙げられる。
【0048】
焼結助剤の含有量は通常、ガーネット型固体電解質の体積比率に対して、0%以上10%以下、特に0%以上5%以下であることが好ましい。
【0049】
[固体電池]
本明細書でいう「固体電池」とは、広義にはその構成要素(特に電解質層)が固体から構成されている電池を指し、狭義にはその構成要素(特に全ての構成要素)が固体から構成されている「全固体電池」を指す。本明細書でいう「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」、および放電のみが可能な「一次電池」を包含する。「固体電池」は好ましくは「二次電池」である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」などの電気化学デバイスも包含し得る。
【0050】
本発明の固体電池は正極層、負極層および固体電解質層を含み、通常は、正極層および負極層が固体電解質層を介して積層されてなる積層構造を有する。正極層および負極層は、それらの間に固体電解質層が備わっている限り、それぞれ2層以上で積層されていてもよい。固体電解質層は正極層および負極層と接触して、それらに挟持されている。正極層と固体電解質層とは焼結体同士の一体焼結をなしており、かつ/または負極層と固体電解質層とは焼結体同士の一体焼結をなしていてもよい。焼結体同士の一体焼結をなしているとは、隣接または接触する2つまたはそれ以上の部材(特に層)が焼結により接合されているという意味である。ここでは、当該2つまたはそれ以上の部材(特に層)はいずれも焼結体でありながら、一体的に焼結されていてもよい。
【0051】
上記した本発明の固体電解質セラミックスは固体電池の固体電解質として有用である。従って、本発明の固体電池は、固体電解質として、上記した本発明の固体電解質セラミックスを含む。詳しくは、本発明の固体電解質セラミックスは、正極層、負極層および固体電解質層からなる群から選択される少なくとも1つの層に固体電解質として含まれている。本発明の固体電解質セラミックスは、固体電解質層におけるより優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、少なくとも固体電解質層に含まれていることが好ましい。
【0052】
(正極層)
本発明の固体電池において正極層は特に限定されない。例えば、正極層は正極活物質を含み、さらに本発明の固体電解質セラミックスを含んでもよい。本発明の固体電解質セラミックスを正極層に含有することで、固体電池が短絡することを抑制することができる。正極層は正極活物質粒子を含む焼結体の形態を有してもよい。正極層はイオン(特にリチウムイオン)を吸蔵放出可能な層となっていてもよい。
【0053】
正極活物質は、特に限定されず、固体電池の分野で知られている正極活物質が使用可能である。正極活物質として、例えば、ナシコン型構造を有するリチウム含有リン酸化合物粒子、オリビン型構造を有するリチウム含有リン酸化合物粒子、リチウム含有層状酸化物粒子、スピネル型構造を有するリチウム含有酸化物粒子等が挙げられる。好ましく用いられるナシコン型構造を有するリチウム含有リン酸化合物の具体例としては、Li3V2(PO4)3等が挙げられる。好ましく用いられるオリビン型構造を有するリチウム含有リン酸化合物の具体例としては、Li3Fe2(PO4)3、LiMnPO4等が挙げられる。好ましく用いられるリチウム含有層状酸化物粒子の具体例としては、LiCoO2,LiCo1/3Ni1/3Mn1/3O2等が挙げられる。好ましく用いられるスピネル型構造を有するリチウム含有酸化物の具体例としては、LiMn2O4,LiNi0.5Mn1.5O4、Li4Ti5O12等が挙げられる。本発明で用いるLISICON型固体電解質との共焼結時における反応性の観点から、正極活物質として、LiCoO2,LiCo1/3Ni1/3Mn1/3O2等のリチウム含有層状酸化物がより好ましく用いられる。なお、これらの正極活物質粒子のうちの1種のみを用いてもよいし、複数種類を混合して用いてもよい。
【0054】
正極層において正極活物質がナシコン型構造を有するとは、当該正極活物質(特にその粒子がナシコン型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりナシコン型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、正極層において正極活物質がナシコン型構造を有するとは、当該正極活物質(特にその粒子)は、X線回折において、いわゆるナシコン型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。好ましく用いられるナシコン型構造を有する正極活物質としては、上記で例示した化合物が挙げられる。
【0055】
正極層において正極活物質がオリビン型構造を有するとは、当該正極活物質(特にその粒子)がオリビン型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりオリビン型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、正極層において正極活物質がオリビン型構造を有するとは、当該正極活物質(特にその粒子)は、X線回折において、いわゆるオリビン型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。好ましく用いられるオリビン型構造を有する正極活物質としては、上記で例示した化合物が挙げられる。
【0056】
正極層において正極活物質がスピネル型構造を有するとは、当該正極活物質(特にその粒子)がスピネル型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりスピネル型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、正極層において正極活物質がスピネル型構造を有するとは、当該正極活物質(特にその粒子)は、X線回折において、いわゆるスピネル型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。好ましく用いられるスピネル型構造を有する正極活物質としては、上記で例示した化合物が挙げられる。
【0057】
正極活物質の化学組成は平均化学組成であってもよい。正極活物質の平均化学組成は、正極層の厚み方向における正極活物質の化学組成の平均値を意味する。正極活物質の平均化学組成は、固体電池を破断し、SEM-EDX(エネルギー分散型X線分光法)を用いて、正極層の厚み方向全体が収まる視野にてEDXによる組成分析を行うことで分析および測定可能である。
【0058】
正極活物質は、例えば、以下の方法により製造することができるし、または市販品として入手することもできる。正極活物質を製造する場合、まず、所定の金属原子を含有する原料化合物を、化学組成が所定の化学組成となるように秤量し、水を添加および混合してスラリーを得る。次いで、スラリーを乾燥させ、700℃以上1000℃以下で1時間以上30時間以下仮焼し、粉砕して、正極活物質を得ることができる。
【0059】
正極層における正極活物質の化学組成および結晶構造は通常、焼結時の元素拡散によって変化することがある。正極活物質は、負極層および固体電解質層とともに焼結した後の固体電池において、上記した化学組成および結晶構造を有していてもよい。
【0060】
正極活物質の平均粒径は、特に限定されず、例えば、0.01μm以上、10μm以下であってもよく、好ましくは0.05μm以上、4μm以下である。
【0061】
正極活物質の平均粒径は、例えば、SEM画像中から無作為に10個以上100個以下の粒子を選び出し、それらの粒径を単純に平均して平均粒径(算術平均)を求めることができる。
粒径は、粒子が完全な球形であると仮定したときの球形粒子の直径とする。このような粒径は、例えば、固体電池の断面を切り出し、SEMを用いて断面SEM画像撮影後、画像解析ソフト(例えば、「A像くん」(旭化成エンジニアリング社製))を用いて粒子の断面積Sを算出後、以下の式によって粒子直径Rを求めることができる。
【0062】
【0063】
なお、正極層における正極活物質の平均粒径は、上記した平均化学組成の測定時において、組成により正極活物質を特定して、自動的に測定され得る。
【0064】
正極層における正極活物質の平均粒径は通常、固体電池の製造過程における焼結により変化することがある。正極活物質は、負極層および固体電解質層とともに焼結した後の固体電池において、上記した平均粒径を有していてもよい。
【0065】
正極層における正極活物質の体積割合は特に限定されず、例えば、30%以上90%以下、特に40%以上70%以下であってもよい。
【0066】
正極層は、固体電解質として本発明の固体電解質セラミックスを含んでもよいし、かつ/または、本発明の固体電解質セラミックス以外の固体電解質を含んでもよい。
正極層はさらに、焼結助剤および/または導電性材料等をさらに含んでいてもよい。
【0067】
正極層が本発明の固体電解質セラミックスを含む場合、本発明の固体電解質セラミックスの体積割合は通常、20%以上60%以下、特に30%以上45%以下であってもよい。
【0068】
正極層における焼結助剤としては、固体電解質セラミックスに含まれてもよい焼結助剤と同様の化合物が使用可能である。
【0069】
正極層における焼結助剤の体積割合は特に限定されず、例えば、0.1%以上20%以下であることが好ましく、1%以上10%以下であることがより好ましい。
【0070】
正極層において導電性材料は、固体電池の分野で知られている導電性材料が使用可能である。好ましく用いられる導電性材料としては、例えば、Ag(銀)、Au(金),Pd(パラジウム),Pt(白金),Cu(銅)、Sn(錫)、Ni(ニッケル)などの金属材料;およびアセチレンブラック、ケッチェンブラック、Super P(登録商標)、VGCF(登録商標)等のカーボンナノチューブなどの炭素材料等が挙げられる。炭素材料の形状に関しては、特に限定されず、球形、板状、繊維状など、どのような形状のものを使用してもよい。
【0071】
正極層における導電性材料の体積割合は特に限定されず、例えば、10%以上50%以下であることが好ましく、20%以上40%以下であることがより好ましい。
【0072】
正極層の厚みは通常、0.1~30μmであり、例えば、好ましくは1~20μmである。正極層の厚みは、SEM画像において任意の10箇所で測定された厚みの平均値を用いている。
【0073】
正極層において、空隙率は特に限定されず、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは10%以下である。
【0074】
正極層の空隙率は、FIB断面加工後のSEM画像から測定された値を用いている。
【0075】
正極層は「正極活物質層」と呼ばれ得る層である。正極層はいわゆる正極集電体または正極集電層を有していてもよい。
【0076】
(負極層)
本発明の固体電池において負極層は特に限定されない。例えば、負極層は負極活物質を含み、さらに本発明の固体電解質セラミックスを含んでもよい。本発明の固体電解質セラミックスを負極層に含有することで、固体電池が短絡することを抑制することができる。負極層は負極活物質粒子を含む焼結体の形態を有してもよい。負極層はイオン(特にリチウムイオン)を吸蔵放出可能な層となっていてもよい。
【0077】
負極活物質は、特に限定されず、固体電池の分野で知られている負極活物質が使用可能である。負極活物質として、例えば、黒鉛などの炭素材料、黒鉛-リチウム化合物、リチウム金属、リチウム合金粒子、ナシコン型構造を有するリン酸化合物、スピネル型構造を有するLi含有酸化物、βII-Li3VO4型構造、γII-Li3VO4型構造を有する酸化物等が挙げられる。負極活物質は、リチウム金属、βII-Li3VO4型構造、γII-Li3VO4型構造を有するLi含有酸化物を用いることが好ましい。
【0078】
負極層において酸化物がβII-Li3VO4型構造を有するとは、当該酸化物(特にその粒子)がβII-Li3VO4型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりβII-Li3VO4型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、負極層において酸化物がβII-Li3VO4型構造を有するとは、当該酸化物(特にその粒子)は、X線回折において、いわゆるβII-Li3VO4型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度において示すことを意味する。好ましく用いられるβII-Li3VO4型構造を有するLi含有酸化物としては、Li3VO4が挙げられる。
【0079】
負極層において酸化物がγII-Li3VO4型構造を有するとは、当該酸化物(特にその粒子)がγII-Li3VO4型の結晶構造を有するという意味であり、広義には、固体電池の分野の当業者によりγII-Li3VO4型の結晶構造と認識され得る結晶構造を有することをいう。狭義には、負極層において酸化物がγII-Li3VO4型構造を有するとは、当該酸化物(特にその粒子)は、X線回折において、いわゆるγII-Li3VO4型の結晶構造に固有のミラー指数に対応する1つ以上の主要なピークを所定の入射角度(x軸)において示すことを意味する。好ましく用いられるγII-Li3VO4型構造を有するLi含有酸化物としては、Li3.2V0.8Si0.2O4が挙げられる。
【0080】
負極活物質の化学組成は平均化学組成であってもよい。負極活物質の平均化学組成は、負極層の厚み方向における負極活物質の化学組成の平均値を意味する。負極活物質の平均化学組成は、固体電池を破断し、SEM-EDX(エネルギー分散型X線分光法)を用いて、負極層の厚み方向全体が収まる視野にてEDXによる組成分析を行うことで分析および測定可能である。
【0081】
負極活物質は、例えば、正極活物質と同様の方法により製造することができるし、または市販品として入手することもできる。
【0082】
負極層における負極活物質の化学組成および結晶構造は通常、固体電池の製造過程における焼結時の元素拡散によって変化することがある。負極活物質は、正極層および固体電解質層とともに焼結した後の固体電池において、上記した平均化学組成および結晶構造を有していてもよい。
【0083】
負極層における負極活物質の体積割合は特に限定されず、例えば、50%以上(特に50%以上99%以下)であることが好ましく、70%以上95%以下であることがより好ましく、80%以上90%以下であることがさらに好ましい。
【0084】
負極層は、固体電解質として本発明の固体電解質セラミックスを含んでもよいし、かつ/または、本発明の固体電解質セラミックス以外の固体電解質を含んでもよい。
負極層はさらに、焼結助剤および/または導電性材料等をさらに含んでいてもよい。
【0085】
負極層が本発明の固体電解質セラミックスを含む場合、本発明の固体電解質セラミックスの体積割合は通常、20%以上60%以下、特に30%以上45%以下であってもよい。
【0086】
負極層における焼結助剤としては、正極層における焼結助剤と同様の化合物が使用可能である。
負極層における導電性材料としては、正極層における導電性材料と同様の化合物が使用可能である。
【0087】
負極層の厚みは通常、0.1~30μmであり、好ましくは1~20μmである。負極層の厚みは、SEM画像において任意の10箇所で測定された厚みの平均値を用いている。
【0088】
負極層において、空隙率は特に限定されず、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは10%以下である。
【0089】
負極層の空隙率は、正極層の空隙率と同様の方法により測定された値を用いている。
【0090】
負極層は「負極活物質層」と呼ばれ得る層である。負極層はいわゆる負極集電体または負極集電層を有していてもよい。
【0091】
(固体電解質層)
本発明の固体電池において固体電解質層は、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、上記した本発明の固体電解質セラミックスを含むことが好ましい。
【0092】
固体電解質層における本発明の固体電解質セラミックスの体積割合は特に限定されず、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、10%以上100%以下であることが好ましく、20%以上100%以下であることがより好ましく、30%以上100%以下であることがさらに好ましい。
【0093】
固体電解質層が本発明の固体電解質セラミックスを含む場合、固体電解質層の厚み方向の少なくとも中央部(特にその任意の10点における5点以上、好ましくは8点以上、より好ましくは10点)において前記した化学組成を有する本発明の固体電解質セラミックスが存在していればよい。固体電解質層は、正極層と負極層との間に挟持されており、固体電池の製造過程における焼結により、正極層および負極層から固体電解質層への元素拡散および/または固体電解質層から正極層および負極層への元素拡散が起こることがあるためである。
【0094】
固体電解質層には、本発明のガーネット型固体電解質セラミックス以外に、少なくともLi、Zr、Oから構成される固体電解質、γ-Li3VO4構造を有する固体電解質、酸化物ガラスセラミックス系リチウムイオン伝導体から選択される1種以上の材料を含んでいてもよい。少なくともLi、Zr、Oから構成される固体電解質としては、Li2ZrO3が挙げられる。
【0095】
γ-Li3VO4構造を有する固体電解質としては、下記一般式(III)で表される平均化学組成を有する固体電解質が挙げられる。
【0096】
【0097】
式(III)中、Aは、Na,K,Mg,Ca,Al,Ga,Zn,Fe,Cr,およびCoからなる群から選択される1種類以上の元素である。
Bは、VおよびPからなる群から選択される1種類以上の元素である。
Dは、Zn,Al,Ga,Si,Ge,Sn,As,Ti,Mo,W,Fe,Cr,およびCoからなる群から選択される1種類以上の元素である。
xは、0≦x≦1.0、特に0≦x≦0.2を満たす。
yは、0≦y≦1.0、特に0.20≦y≦0.50を満たす。
aはAの平均価数である。Aの平均価数は、Aとして、例えば、価数a+の元素Xがn1個、価数b+の元素Yがn2個、および価数c+の元素Zがn3個で認められる場合、(n1×a+n2×b+n3×c)/(n1+n2+n3)で表される値のことである。
cはDの平均価数である。Dの平均価数は、Dとして、例えば、価数a+の元素Xがn1個、価数b+の元素Yがn2個、および価数c+の元素Zがn3個で認められる場合、上記したAの平均価数と同様の値のことである。
【0098】
γ-Li3VO4構造を有する固体電解質の具体例として、例えば、Li3.2(V0.8Si0.2)O4、Li3.5(V0.5Ge0.5)O4、Li3.4(P0.6Si0.4)O4、Li3.5(P0.5Ge0.5)O4等が挙げられる。
【0099】
酸化物ガラスセラミックス系リチウムイオン伝導体としては、例えば、リチウム、アルミニウムおよびチタンを構成元素に含むリン酸化合物(LATP)、リチウム、アルミニウムおよびゲルマニウムを構成元素に含むリン酸化合物(LAGP)を用いることができる。
【0100】
固体電解質層は、固体電解質に加え、例えば、焼結助剤等をさらに含んでいてもよい。
固体電解質層における焼結助剤としては、正極層における焼結助剤と同様の化合物が使用可能である。
【0101】
固体電解質層における焼結助剤の体積割合は特に限定されず、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、0%以上20%以下であることが好ましく、1%以上10%以下であることがより好ましい。
【0102】
固体電解質層の厚みは通常、0.1~30μmであり、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは1~20μmである。固体電解質層の厚みは、SEM画像において任意の10箇所で測定された厚みの平均値を用いている。
【0103】
固体電解質層において、空隙率は特に限定されず、より優れたイオン伝導性および作動時における電子伝導度上昇のより十分な抑制の観点から、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは10%以下である。
【0104】
固体電解質層の空隙率は、正極層の空隙率と同様の方法により測定された値を用いている。
【0105】
[固体電池の製造方法]
固体電池は、例えば、いわゆるグリーンシート法、印刷法またはこれらの方法を組み合わせた方法によって、製造することができる。
【0106】
グリーンシート法について説明する。
まず、正極活物質に対して、溶剤、バインダ等を適宜混合することにより、ペーストを調製する。そのペーストをシートの上に塗布し、乾燥させることにより正極層を構成するための第1のグリーンシートを形成する。第1のグリーンシートに、固体電解質、導電性材料および/または焼結助剤等を含ませてもよい。
【0107】
負極活物質に対して、溶剤、バインダ等を適宜混合することにより、ペーストを調製する。そのペーストをシートの上に塗布し、乾燥させることにより負極層を構成するための第2のグリーンシートを形成する。第2のグリーンシートに、固体電解質、導電性材料および/または焼結助剤等を含ませてもよい。
【0108】
固体電解質に対して、溶剤、バインダ等を適宜混合することにより、ペーストを調製する。そのペーストを塗布し、乾燥させることにより、固体電解質層を構成するための第3のグリーンシートを作製する。第3のグリーンシートに、焼結助剤等を含ませてもよい。
【0109】
第1~第3グリーンシートを作製するための溶剤は特に限定されず、例えば、固体電池の分野で、正極層、負極層または固体電解質層の製造に使用され得る溶剤が使用される。溶剤としは通常、後述のバインダを使用可能な溶剤が使用される。そのような溶剤として、例えば、2-プロパノール等のアルコール等が挙げられる。
【0110】
第1~第3グリーンシートを作製するためのバインダは特に限定されず、例えば、固体電池の分野で、正極層、負極層または固体電解質層の製造に使用され得るバインダが使用される。そのようなバインダとして、例えば、ブチラール樹脂、アクリル樹脂等が挙げられる。
【0111】
次に、第1~第3のグリーンシートを適宜積層することにより積層体を作製する。作製した積層体をプレスしてもよい。好ましいプレス方法としては、静水圧プレス法等が挙げられる。
その後、積層体を、例えば600~800℃で熱処理することにより固体電池を得ることができる。
【0112】
印刷法について説明する。
印刷法は、以下の事項以外、グリーンシート法と同様である。
・溶剤および樹脂の配合量がインクとしての使用に適した配合量とすること以外、グリーンシートを得るための各層のペーストの組成と同様の組成を有する各層のインクを調製する。
・各層のインクを用いて印刷および積層し、積層体を作製する。
【0113】
以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
【実施例】
【0114】
<実施例1~26および比較例1~8>
[固体電解質セラミックスの製造]
原料には水酸化リチウム一水和物LiOH・H2O、水酸化ランタンLa(OH)3、酸化ジルコニウムZrO2,酸化タンタルTa2O5,酸化ビスマスBi2O3、酸化コバルトCo3O4、塩基性炭酸ニッケル水和物NiCO3・2Ni(OH)2・4H2O、炭酸マンガンMnCO3、酸化鉄Fe2O3を用いた。
各出発原料を化学組成が表1の各化学組成となるように秤量した。
水を添加し、ポリエチレン製ポリポットに封入してポット架上で150rpm、16時間回転し、原料を混合した。
また、Li源である水酸化リチウム一水和物LiOH・H2Oは熱処理時のLi欠損を考慮し、狙い組成に対し、3重量%過剰で仕込んだ。
得られたスラリーを蒸発および乾燥させた後、O2中にて900℃で5時間仮焼することで目的相を得た。
得られた仮焼粉にトルエン-アセトンの混合溶媒を添加し、遊星ボールミルにて12時間粉砕した。この粉砕粉はICP測定によって、組成ずれがないことを確認した。この時の粉砕粉の平均粒径は150nmであった。
【0115】
[固体電解質単板の製造]
固体電解質セラミックスの評価用試料として、固体電解質単板を以下の方法により製造した。
【0116】
得られた固体電解質粉末、ブチラール樹脂、アルコールを、200:15:140の重量比率でよく混合した後、80℃のホットプレート上でアルコールを除去し、バインダーとなるブチラール樹脂を被覆した粉末を得た。
次いで前記被覆粉末を、錠剤成型機を用いて90MPaでプレスしてタブレット状に成型した。
タブレットを、マザーパウダーで十分に覆い、酸素雰囲気下、500℃の温度で脱脂処理することにより、ブチラール樹脂を除去した後、酸素雰囲気下、約1200℃で3時間熱処理し、室温まで降温することで固体電解質の焼結体を得た。
得られた焼結体の表面を研磨することで、ガーネット固体電解質単板を得た。
【0117】
[固体電解質単板の結晶構造]
全ての実施例および比較例において、固体電解質単板のX線回折より、ガーネット型類似の結晶構造に帰属できるX線回折像が得られることを確認した(ICDD Card No.00-045-0109)。
【0118】
[固体電解質単板の化学組成]
固体電解質単板のICP分析を行い、固体電解質単板の平均化学組成を得た。この固体電解質単板全体の平均化学組成におけるCo,Mn,NiおよびFeの含有量を、ガーネット型結晶構造の8配位サイトの数(例えば、上記一般式(II)におけるLaおよびB1の合計数)を100mol%としたときの割合として、求めた。なお、化学組成中のO(酸素)については、一般式(I)におけるA、B、Dに含まれる元素のモル比および価数から、電荷中性を成り立たせるように算出した値である。
【0119】
[電子伝導度測定]
得られた単板の片面にAu電極をスパッタし、作用極とした。もう片面にAu電極と同じ面積を有するLi金属を張り付けた。最後に2035サイズのコインセルにセルを封入し、評価用セルとした。上記の作業はすべて露点-40℃以下のドライルームで行った。
室温にて作用極に、Liに対して2V印加し、過渡電流を観測した。電圧印加を行ってから、10時間後に流れた電流をリーク電流として読み取った。リーク電流から、下記の式を用いて電子伝導度を算出した。
電子伝導度=(I/V)×(L/A)
(I:リーク電流、V:印加電圧、L:固体電解質単板厚み、A:電極面積)
◎:電子伝導度<1.0×10-8S/cm(優);
○;1.0×10-8S/cm≦電子伝導度<5.0×10-8S/cm(良);
△;5.0×10-8S/cm≦電子伝導度<1.0×10-7S/cm(可)(実用上問題なし);
×;1.0×10-7S/cm≦電子伝導度(不可)(実用上問題あり)。
【0120】
[イオン伝導度測定]
固体電解質単板の両面にスパッタリングによって、集電体層となる金(Au)層を形成した後、SUS集電体で挟み込み固定した。 各固体電解質の焼結タブレットを10MHz~0.1Hz(±50mV)の範囲で室温(25℃)にて交流インピーダンス測定を行い、イオン伝導度を評価した。
◎:1.3×10-3S/cm≦イオン伝導度(優);
○;1.0×10-3S/cm≦イオン伝導度<1.3×10-3S/cm(良);
△;4.0×10-4S/cm≦イオン伝導度<1.0×10-3S/cm(可)(実用上問題なし);
×;イオン伝導度<4.0×10-4S/cm(不可)(実用上問題あり)。
【0121】
[総合判定]
電子伝導度およびイオン伝導度の全ての評価結果について、総合的に判定した。
◎:電子伝導度およびイオン伝導度の全ての評価結果が◎であった。
○:電子伝導度およびイオン伝導度の全ての評価結果のうち最低の評価結果が○であった。
△:電子伝導度およびイオン伝導度の全ての評価結果のうち最低の評価結果が△であった。
×:電子伝導度およびイオン伝導度の全ての評価結果のうち最低の評価結果が×であった。
【0122】
【0123】
【0124】
比較例1、2と実施例1~4との比較から、第2の遷移金属元素(特にTa)の含有量が12.0mol%より少ない場合には、イオン伝導度が低下することが明らかである。
実施例1~4と比較例3との比較から、第2の遷移金属元素(特にTa)の含有量が12mol%以上20.0mol%未満の範囲では、第1の遷移金属元素(特にCo)の含有量が4.00mol%より大きい場合に、電子伝導度が高くなり、短絡のリスクが高まることが明らかである。
実施例5~10と比較例4、5との比較から、第2の遷移金属元素(特にTa)の含有量が20.0mol%以上33.0mol%未満の範囲では、第1の遷移金属元素(特にCo)の含有量が6.00mol%より大きい場合には、電子伝導度が高くなり、短絡のリスクが高まることが明らかである。
実施例11~22と比較例6~8との比較から、第2の遷移金属元素(特にTa)の含有量が33.0mol%以上65.5mol%以下の範囲では、第1の遷移金属元素(特にCo)の含有量が8.00mol%より大きい場合には、電子伝導度が高くなり、短絡のリスクが高まることが明らかである。
【産業上の利用可能性】
【0125】
本発明の固体電解質セラミックスを含む固体電池は、電池使用または蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る固体電池は、エレクトロニクス実装分野で用いることができる。本発明の一実施形態に係る固体電池はまた、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、スマートウォッチ、ノートパソコン、デジタルカメラ、活動量計、アームコンピューター、電子ペーパー、ウェアラブルデバイス、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。