IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アーファオエル・リスト・ゲーエムベーハーの特許一覧 ▶ ピエゾクリスト・アドバンスト・センソリクス・ゲーエムベーハーの特許一覧

特許7556936不平衡及び/又は不整合を検出するための方法及び駆動列試験台
<>
  • 特許-不平衡及び/又は不整合を検出するための方法及び駆動列試験台 図1
  • 特許-不平衡及び/又は不整合を検出するための方法及び駆動列試験台 図2
  • 特許-不平衡及び/又は不整合を検出するための方法及び駆動列試験台 図3
  • 特許-不平衡及び/又は不整合を検出するための方法及び駆動列試験台 図4
  • 特許-不平衡及び/又は不整合を検出するための方法及び駆動列試験台 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-17
(45)【発行日】2024-09-26
(54)【発明の名称】不平衡及び/又は不整合を検出するための方法及び駆動列試験台
(51)【国際特許分類】
   G01M 1/16 20060101AFI20240918BHJP
【FI】
G01M1/16
【請求項の数】 20
(21)【出願番号】P 2022503866
(86)(22)【出願日】2020-07-24
(65)【公表番号】
(43)【公表日】2022-10-05
(86)【国際出願番号】 AT2020060278
(87)【国際公開番号】W WO2021011982
(87)【国際公開日】2021-01-28
【審査請求日】2023-07-21
(31)【優先権主張番号】A50674/2019
(32)【優先日】2019-07-25
(33)【優先権主張国・地域又は機関】AT
(31)【優先権主張番号】A50797/2019
(32)【優先日】2019-09-12
(33)【優先権主張国・地域又は機関】AT
(31)【優先権主張番号】A50813/2019
(32)【優先日】2019-09-20
(33)【優先権主張国・地域又は機関】AT
(73)【特許権者】
【識別番号】513131176
【氏名又は名称】アーファオエル・リスト・ゲーエムベーハー
(73)【特許権者】
【識別番号】519223125
【氏名又は名称】ピエゾクリスト・アドバンスト・センソリクス・ゲーエムベーハー
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(72)【発明者】
【氏名】マルティン・シュミット
(72)【発明者】
【氏名】ルーカス・クールク
(72)【発明者】
【氏名】ヤーコプ・モーダー
【審査官】福田 裕司
(56)【参考文献】
【文献】特開平06-323943(JP,A)
【文献】特開平09-280991(JP,A)
【文献】特開2005-189161(JP,A)
【文献】特開2011-007579(JP,A)
【文献】特開2018-077216(JP,A)
【文献】特開2004-117047(JP,A)
【文献】特開平03-181835(JP,A)
【文献】特開2006-275637(JP,A)
【文献】特開2005-188951(JP,A)
【文献】特開2018-009865(JP,A)
【文献】特表2016-532102(JP,A)
【文献】米国特許出願公開第2011/0226055(US,A1)
【文献】米国特許出願公開第2011/0047711(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 1/00~1/38
(57)【特許請求の範囲】
【請求項1】
試験台(1)上で動作している駆動列(3)の少なくとも1つのプロペラシャフト(5、5a、5b)の不整合を検出するための方法(100)であって、第1の圧電力センサ(4)は、前記試験台(1)の動力計(14a、14b)と、前記駆動列(3)又は前記試験台(1)の原動機(2)との間における動力伝達によって引き起こされ(101)、前記プロペラシャフト(5;5a、5b)によって伝達される力の流れの内に配置されており、第1の力センサ(4a、4b、4c)を用いて、前記プロペラシャフト(5;5a、5b)の回転軸(D)によって交差され、回転軸(D)に対して少なくとも略垂直である第1の平面(E1)に対して垂直に、第1の力測定が行われ(102-1)、前記第1の力測定の測定値推移が、前記プロペラシャフト(5;5a、5b)の不整合を検出するために分析される(103b)方法(100)。
【請求項2】
前記第1の力センサ(4a、4b、4c)を用いて、前記第1の平面(E1)において付加的に第1の力測定が行われ(102-1)、前記第1の力測定の少なくとも1つの測定値推移と、前記測定値推移に割り当てられた、前記プロペラシャフト(5;5a、5b)に関する回転角決定の値の推移とが、不平衡を検出するために分析される(103a)、請求項1に記載の方法(100)。
【請求項3】
前記第1の力測定の測定値推移が、前記プロペラシャフト(5;5a、5b)の前記回転軸及び/又は重心に関する不平衡を検出するために分析される、請求項2に記載の方法(100)。
【請求項4】
前記力の流れの内で、第2の圧電力センサ(11)を用いて、前記第1の平面(E1)とは異なるが、同様に前記駆動列の前記プロペラシャフト(5;5a、5b)の前記回転軸(D)によって交差され、回転軸(D)に対して少なくとも略垂直である第2の平面(E2)において、第2の力測定が実施され(102-2)、前記プロペラシャフト(5;5a、5b)の重心に関する前記プロペラシャフトの不平衡が、付加的に、前記第2の力測定の測定値推移に基づいて決定され、前記第1の力測定は、前記第1の平面(E1)において実施される、請求項に記載の方法(100)。
【請求項5】
前記第1の圧電力センサ(4)及び/又は第2の圧電力センサ(11)が、複数の圧電素子(4a、4b、4c)を備えた多成分力センサである、請求項1~のいずれか一項に記載の方法(100)。
【請求項6】
分力及びトルク成分が、前記圧電素子(4a、4b、4c)それぞれの測定信号に基づく方程式系を用いて決定される、請求項に記載の方法(100)。
【請求項7】
前記圧電素子(4a、4b、4c)それぞれの測定信号が、それぞれ導出されるべき分力及び/又はトルク成分に寄与する成分に分解され、それぞれ決定されるべき分力及び/又はトルク成分に対する前記圧電素子(4a、4b、4c)それぞれの寄与が考慮される、請求項又はに記載の方法(100)。
【請求項8】
前記第1の力測定及び/又は第2の力測定において、前記動力計(14a、14b)と支持装置(10)との間、及び/又は、前記原動機(2)と前記支持装置(10)との間における前記力の流れに関する反力が測定される、請求項1~のいずれか一項に記載の方法(100)。
【請求項9】
前記プロペラシャフト(5;5a、5b)の質量が、不平衡及び/又は不整合の検出に基づいて調整される、請求項1~のいずれか一項に記載の方法(100)。
【請求項10】
コンピュータによって命令が実行される場合に、コンピュータに請求項1~8のいずれか一項に記載の方法のステップを実行させる命令を含んでいるコンピュータプログラム。
【請求項11】
請求項10に記載のコンピュータプログラムが保存されているコンピュータ可読媒体。
【請求項12】
試験されるべき駆動列(3)に接続可能な動力計(14a、14b)と、
試験されるべき前記駆動列(3)に関する力の流れの内に配置されていると共に、前記駆動列(3)のプロペラシャフト(5;5a、5b)の回転軸(D)によって交差され、前記回転軸(D)に対して少なくとも略垂直である第1の平面(E1)に対して垂直に、試験台が動作している状態で、第1の力測定を実施するように設定されている第1の圧電力センサ(4)と、
前記プロペラシャフト(5;5a、5b)に関する回転角を決定するように設定された相対値エンコーダ(6)と、
信号処理装置(7)であって
記第1の力測定の測定値推移に基づいて前記プロペラシャフト(5;5a、5b)の不整合を検出するための手段(9)、を備えている信号処理装置(7)と、
を有する駆動列試験台(1)。
【請求項13】
前記第1の圧電力センサ(4)が、前記第1の平面(E1)において第1の力測定を実施するように付加的に設定されており、
前記信号処理装置(7)が、
前記第1の力測定の測定値推移と、前記測定値推移に割り当てられた、前記プロペラシャフト(5;5a、5b)に関する回転角決定の値の推移とに基づいて前記プロペラシャフト(5;5a、5b)の不平衡を検出するための手段(8)を付加的に有する、請求項12に記載の駆動列試験台(1)。
【請求項14】
試験されるべき前記駆動列(3)に関する力の流れの内に同様に配置されていると共に、前記第1の平面(E1)とは異なるが、同様に前記駆動列の前記プロペラシャフト(5;5a、5b)の前記回転軸(D)によって交差され、回転軸(D)に対して少なくとも略垂直である第2の平面(E2)において、第2の力測定を実施するように設定されている第2の圧電力センサ(11)を有しており、
前記手段(8)が、前記プロペラシャフト(5;5a、5b)の重心に関する前記プロペラシャフトの不平衡を、付加的に、前記第2の力測定の測定値推移に基づいて決定する、請求項13に記載の駆動列試験台(1)。
【請求項15】
前記動力計(14a、14b)及び/又は原動機(2)を支持するための支持装置(10)を有しており、前記第1の圧電力センサ(4)及び/又は第2の圧電力センサは、前記動力計(14a、14b)と前記支持装置(10)との間、及び/又は、前記原動機(2)と前記支持装置(10)との間における反力を測定するように設定され、配置されている、請求項12~14のいずれか一項に記載の駆動列試験台(1)。
【請求項16】
前記第1の圧電力センサ(4)及び/又は第2の圧電力センサ(11)が、前記プロペラシャフト(5、5a;5b)の回転質量を変化させることはない、請求項1215のいずれか一項に記載の駆動列試験台(1)。
【請求項17】
前記第1の圧電力センサ(4)及び/又は第2の圧電力センサ(11)が、複数の圧電素子(4a、4b、4c)を備えた多成分力センサである、請求項1216のいずれか一項に記載の駆動列試験台(1)。
【請求項18】
圧電素子(4a、4b、4c)が、前記駆動列の前記プロペラシャフトの回転軸の周りの様々な位置に配置されている、請求項17に記載の駆動列試験台(1)。
【請求項19】
前記圧電素子(4a、4b、4c)が、前記プロペラシャフトの第1の部分(5a)と前記プロペラシャフトの第2の部分(5b)との間に、前記圧電素子(4a、4b、4c)を用いて、力が、前記第1の部分(5a)と前記第2の部分(5b)との間で測定可能であるように配置されている、請求項17に記載の駆動列試験台(1)。
【請求項20】
検出された不平衡及び/又は不整合に基づいて、前記プロペラシャフト(5、5a、5b)の質量を調整するための手段を有している、請求項1219のいずれか一項に記載の駆動列試験台(1)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、試験台上で動作している駆動列の少なくとも1つのプロペラシャフトの不平衡及び/又は不整合を検出するための方法に関する。本発明はさらに、当該方法を実施することが可能である試験台に関する。
【背景技術】
【0002】
不平衡は、その回転軸がその慣性主軸とは一致しない回転体において生じる。不平衡は、振動と、摩耗の増大とをもたらすか、又は、重大な機械の損傷(例えばシャフトの破損)をもたらすことさえある。従って、回転体は一般的に、補償質量を配置することによってバランス調整を行っている。
【0003】
この際、静的不平衡と、モーメント-不平衡とも呼ばれる動的不平衡とが区別されるべきである。静的不平衡の場合、回転体の慣性主軸は、回転軸に対して平行にずれている。言い換えると、回転軸は、回転体の重心を通っては延在していない。当該不平衡は、回転の際に、回転軸に対して垂直の遠心力を生じさせる。一般的に、このような不平衡は、平面においてバランス調整を行うことによって、取り除かれ得るものであり、バランス平面の位置は任意である。静的不平衡を補償するためには、少なくとも1つのバランス平面に、補償質量を配置しなければならない。
【0004】
純粋に動的な不平衡の場合、回転体の重心は、回転軸上に位置してはいる。しかしながら、回転体の慣性主軸は、回転軸に対して傾斜している。これによって、回転の際に、不平衡トルクが生じ、当該不平衡トルクは、回転周波数の一次高調波を有する支持力の支持点に生じる。動的不平衡を補償するためには、少なくとも2つの異なるバランス平面に、補償質量を配置しなければならない。この際、バランス平面はそれぞれ、回転体の回転軸に対して垂直である。
【0005】
不整合は、組み立て及び製造の不確定要素、沈下現象、熱膨張によって生じ、回転体の変位をもたらす。このような変位は、回転体の機能及び寿命に、悪影響を及ぼす。不整合は、回転体及びその軸受に、張力、特に曲げモーメント及び圧縮力を生じさせる。動作中に生じる熱膨張による不整合は、本発明を用いて、動作中に認識され得る。不整合を測定するための既知の手法は、一般的に、動作中には用いられず、従って、動的な熱的動作条件を検出しない。
【0006】
静的及び動的なバランス調整の方法は、教科書である非特許文献1及び非特許文献2から知られている。
【先行技術文献】
【非特許文献】
【0007】
【文献】Gasch/Nordmann/Pfuetzner, “Rotordynamik”, Springer Verlag, 2.Auflage, 1975(Gasch/Nordmann/Pfuetzner、「ローターダイナミクス」、シュプリンガー社、第2版、1975年)
【文献】”Auswuchttechnik Band 1: Allgemeine Grundlagen, Messverfahren und Richtlinien”, Springer 1977(「バランス技術第1巻:一般的な基礎、測定方法及び指導要綱」、シュプリンガー社、1977年)
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の課題は、駆動列試験台の動作の、プロペラシャフトの不平衡及び/又は不整合を検出及び/又は修正するための方法と、対応する駆動列試験台とを供給することにある。
【課題を解決するための手段】
【0009】
本課題は、独立請求項によって解決される。有利な構成は、従属請求項に記載されている。
【0010】
本発明の第1の態様は、試験台上で動作している駆動列の少なくとも1つのプロペラシャフトの不平衡及び/又は不整合を検出するための方法に関するものであり、第1の圧電力センサは、試験台の動力計と、駆動列又は試験台の原動機との間における動力伝達によって引き起こされ、プロペラシャフトによって伝達される力の流れの内に配置されている。好ましくは、第1の力センサを用いて、プロペラシャフトの回転軸によって交差され、好ましくは回転軸に対して少なくとも略垂直である第1の平面において、及び/又は、第1の平面に対して垂直に、第1の力測定が行われる。さらに好ましくは、第1の力測定の少なくとも1つの測定値推移と、当該測定値推移に割り当てられた、プロペラシャフトに関する回転角決定の値の推移とが、不平衡を検出するために分析される。代替的又は付加的に、第1の力測定の測定値推移が、プロペラシャフトの不整合を検出するために分析される。
【0011】
本発明の第2の態様は、駆動列試験台に関するものであり、当該駆動列試験台は、試験されるべき駆動列に接続可能な動力計と、第1の圧電力センサと、を有しており、第1の圧電力センサは、試験されるべき駆動列に関する力の流れの内に配置されており、駆動列のプロペラシャフトの回転軸によって交差され、好ましくは回転軸に対して少なくとも略垂直である第1の平面において、及び/又は、第1の平面に対して垂直に、試験台が動作している状態で、第1の力測定を実施するように設定されている。好ましくは、駆動列試験台は、プロペラシャフトに関して回転角を決定するように設定された相対値エンコーダと、さらに好ましくは信号処理装置と、を有しており、信号処理装置は、第1の力測定の測定値推移と、当該測定値推移に割り当てられた、プロペラシャフトに関する回転角決定の値の推移とに基づいてプロペラシャフトの不平衡を検出するための手段、及び/又は、第1の力測定の測定値推移に基づいてプロペラシャフトの不整合を検出するための手段を備えている。
【0012】
本発明のさらなる態様は、コンピュータプログラム及びコンピュータ可読媒体に関する。
【0013】
本発明においてプロペラシャフトは、回転するように接続された、1つ又は複数のシャフトを有している。
【0014】
本発明において、「接続可能」とは、好ましくは「接続され得る」又は「接続されている」という意味である。
【0015】
本発明において力の流れとは、好ましくは、機械系における力及び/又はトルクの、作用点、特に導入の位置から、力及び/又はトルクが、反力及び/又は反作用トルクによって受容される1つ又は複数の位置までの経路である。好ましくは、力の流れは、力、特にシャフトの回転方向に対する横力と、トルク、特に回転軸の周りのトルクと、から構成されている。
【0016】
本発明において出力の流れとは、好ましくは、機械系における出力の、導入の位置から、出力が取り出される1つ又は複数の位置までの伝達の経路である。
【0017】
本発明において圧電素子は、好ましくは、圧電性結晶と、電荷伝導回路又は電気回路と、を有している。
【0018】
本発明において機械は、エネルギー、好ましくは特に回転の運動エネルギーを電気エネルギーに変換する、又は、逆に変換する、又は、化学エネルギーを運動エネルギーに変換するように設定されている。本発明において機械は、好ましくはハウジングを有している。
【0019】
本発明において支持装置は、好ましくは要素を、当該要素に作用する力及び/又は当該要素に作用するトルクに対して支持するための装置である。支持装置は、好ましくは、いわゆる反力又は軸受の反力を供給するように設定されている。本発明において支持装置は、好ましくは軸受装置の支持に用いられる。好ましくは、支持装置は、トルクコンバータハウジング、駆動列のハウジング、又は、底板でもある。
【0020】
本発明において検出は、好ましくは認識及び/又は数量化及び/又は位置の特定及び/又は分析である。
【0021】
本発明において手段は、ハードウェア及び/又はソフトウェア技術によって構成されていてよく、特に、好ましくはストレージシステム及び/若しくはバスシステムとデータ若しくは信号で接続された、特にデジタル式の処理ユニット、特にマイクロプロセッサユニット(CPU)、並びに/又は、1つ若しくは複数のプログラム若しくはプログラムモジュールを有することが可能である。CPUは、ストレージシステムに格納されたプログラムとして実装された命令を処理し、データバスの入力信号を検出し、及び/又は、出力信号をデータバスに与えるように構成されていてよい。ストレージシステムは、1つ又は複数の、特に異なるストレージ媒体、特に光学媒体、磁気媒体、固体媒体、及び/又は、その他の不揮発性媒体を有し得る。プログラムは、プログラムが、本明細書に記載された方法を具現化又は実施可能であり、CPUが、当該方法のステップを実施可能であり、これによって特に、不平衡及び/又は不整合が検出され得るような性質を有していてよい。
【0022】
本発明において相対値エンコーダは、好ましくは各角度のセグメント及び/又は完全な回転を認識し得る。特に、相対値エンコーダは、1回転当たり少なくとも1つのパルスを与える。
【0023】
本発明においてバランス調整は、プロペラシャフト又は駆動列の質量の調整であると理解される。これは、例えばネジがさらに中に、又は、外へ回転することによる質量分布の変化も意味し得る。
【0024】
本発明は、特に、試験台上で試験されるべき駆動列のプロペラシャフトに対して、動作中の試験台においてバランス調整を行い、整合を得るというアプローチに基づいている。特に、プロペラシャフトに対して、個別に外部において、すなわち試験台上以外で、又は、停止状態若しくはバランスモード若しくは整合モードにおける別の測定方法によってバランス調整を行う、又は、整合を得る必要はない。不平衡及び/又は不整合の検出は、むしろ、試験台の動力計、いわゆるダイノと原動機との間における動力伝達が引き起こされる試験台の動作によって直接もたらされる力の流れの内で行われる。バランス調整に必要な力測定に関して、本発明では、特に確実な測定を可能にし、その剛性に基づいて、わずかな弾力性のみを、駆動列の振動可能なシステムに付加する圧電素子が用いられる。さらに、圧電素子は、加速度センサとは異なり、不平衡によって生じる力及びモーメントを直接測定することを可能にし、質量の加速度を介して間接的に算出する必要はない。
【0025】
本発明によって、プロペラシャフトに対して、組み立てられた状態において、駆動列の各要素のバランス調整を予め行わずとも、同じではないネジの重さ、誤った位置決め、はめ合い公差、及び、偏心、非対称、密閉の失敗等の製造時のエラーといった、あらゆる組み立ての不確定要素とのバランス調整を行うことが可能である。この際、当該方法は、プロペラシャフトの監視に持続的に使用可能であり、特に付加的な、試験台に付属しない測定器具類を必要とせず、従って、動作中に、試験走行を中断せずに実施され得る。
【0026】
直接の力測定によって、不平衡と、試験質量-不平衡な走行による影響係数とを決定するための別個の測定走行が不要になった。
【0027】
例えば加速度計等の、測定データを検出するための別個のハードウェアも不要である。圧電力センサは、好ましくは試験台の構造に固く組み込まれており、これによって、測定信号が、物理的に、歪曲されずに検出可能である。
【0028】
物理量「力」が、直接検出されるので、機械的構成要素への悪影響を、逆に推し量ることができる。振動速度の評価、及び、機械の状態に関する規準として定められたバランス等級の評価のための経験的なアプローチは、原則的に不要である。従って、不平衡及び不整合の本発明に係る決定に基づいて、機械の安全性に関する新しい規準を作成することが可能であろう。
【0029】
動作中のプロペラシャフトの不平衡状態が変化する場合、当該変化は、本発明を用いることによって、すでに動作中の試験台において検出可能であり、駆動列又は試験台の持続的な損傷を回避するために、例えば平衡アクチュエータ(Wuchtaktoren)又は緊急停止又は負荷軽減等を用いて、対策を導入することができる。
【0030】
不平衡に起因する力及びモーメントが、駆動列の回転数で回転する一方で、不整合の場合、重力に加えて、さらなる固定された、すなわち回転数で回転しないトルクが生じる。本発明によって、不整合を、付加的な振動分析を行わずに認識することができる。
【0031】
好ましくは、不平衡及び/又は不整合の検出に基づいて、プロペラシャフト又は駆動列のバランス調整が実施され、検出された不平衡又は不整合が軽減又は取り除かれる。
【0032】
質量の調整は特に、質量、特に所定の質量の除去又は付加の形で行われ、当該質量は、特に不平衡及び/又は不整合の検出を受けて決定されるプロペラシャフト又は駆動列の位置、特に所定の位置における、特に不平衡及び/又は不整合の検出を受けて決定される。特に、プロペラシャフト又は駆動列は、少なくとも1つの要素を有しており、当該要素は、好ましくは、当該要素によって材料又は質量が除去され得るように意図的に導入されている。不平衡を補償するための材料の除去は、ネガティブなバランス調整とも呼ばれる。除去は、特にフライス加工、穿孔、レーザー等によって行われ得る。
【0033】
当該方法の有利な構成では、第1の力測定の測定値推移は、プロペラシャフトの回転軸及び/又は重心に関する不平衡を検出するために分析される。回転軸に関して力測定の分析が行われる場合、静的不平衡が確認され得る。プロペラシャフトの重心軸(慣性主軸とも呼ばれる)に関して分析が行われる場合、純粋な動的不平衡が確認され得る。好ましくは、両方の分析が同時に実施され得る。
【0034】
当該方法のさらなる有利な構成では、力の流れの内で、第2の圧電力センサを用いて、第1の平面とは異なるが、同様に駆動列のプロペラシャフトの回転軸によって交差され、好ましくは回転軸に対して少なくとも略垂直である第2の平面において、第2の力測定が実施され、プロペラシャフトの重力軸又は慣性主軸に関するプロペラシャフトの不平衡が、第2の力測定の測定値推移に基づいて決定される。
【0035】
すでに冒頭で言及したように、動的不平衡は、プロペラシャフトの重心の周りに転倒モーメントを生じさせる。当該転倒モーメントは、力の流れの内の、回転軸に対して平行な点において、多成分力センサを用いて力測定を実施することによって検出され得る。従って、測定は、駆動列のプロペラシャフトの回転軸によって交差される第1の平面において行われる。さらに、第1の力測定を第1の平面で実施し、第2の力測定を第2の平面で実施すること、すなわち第2の平面に存在する力の測定によって、転倒モーメントを決定する可能性が存在する。この際、両方の平面は、互いに異なっているが、少なくともプロペラシャフトの回転軸によって交差され、好ましくは、回転軸に対して少なくとも略垂直である。
【0036】
当該方法のさらなる有利な構成では、第1及び/又は第2の圧電力センサは、複数の圧電素子を備えた多成分力センサである。多成分力センサを用いることによって、例えばプロペラシャフト内の曲げモーメントが決定され得る。さらに、複数の圧電素子は、例えば原動機を支持するために用いられ得る。このために、例えば3つの圧電素子は、動力計又は原動機の支持装置上の3つの支持点に配置され得る。
【0037】
当該方法のさらなる有利な構成では、分力及びトルク成分が、圧電素子の測定信号に基づく方程式系を用いて決定される。好ましくは、各圧電素子の測定信号は、それぞれ導出されるべき分力及び/又はトルク成分に寄与する成分に分解される。さらに好ましくは、それぞれ決定されるべき分力及び/又はトルク成分に対する各圧電素子の寄与、特に全ての寄与が考慮される。
【0038】
それぞれ決定されるべき分力及び/又はトルク成分について解かれる方程式系を用いることによって、多数の圧電素子の測定を考慮することができる。さらに、多成分力センサ又はその圧電素子の全ての測定が、決定されるべき分力及び/又はトルク成分における成分に寄与し得る。これによって、特に測定に関与しない圧電素子を通る力の分岐が回避され得る。
【0039】
当該方法のさらなる有利な構成では、不平衡及び/又は不整合の検出に基づいて、検出された不平衡又は不整合を軽減又は取り除くために、プロペラシャフトの質量が調整される。検出された不平衡又は不整合を、質量の調整の決定のための基盤として用いることによって、不平衡又は不整合を補償するために、いずれの位置において、所定の質量を付加又は除去すべきかを、特に正確に決定することができる。
【0040】
本発明の第1の態様に関して記載された特徴及び利点は、以下において、本発明のさらなる態様に対応して適用され、逆もまた然りである。
【0041】
有利な構成において、駆動列試験台は、動力計及び/又は原動機を支持するための支持装置を有しており、圧電力センサは、動力計と支持装置との間、及び/又は、原動機と支持装置との間における反力を測定するように設定され、配置されている。
【0042】
当該構成において、力センサは、原動機と動力計との間、及び/又は、原動機と支持装置との間に配置されている。従って、当該実施例では、固定された基準系に対して、すなわち駆動列試験台又は駆動列試験台の基板に対して、力測定が行われる。この際、動力計又は原動機がどのように支持装置に支持されるかに応じて、横効果、縦効果又はせん断効果をも有する1つの圧電素子のみを備えた圧電力センサを用いることが可能である。この力センサの配置方法によっては、プロペラシャフトの回転質量は概ね変化しない。
【0043】
駆動列試験台のさらなる有利な構成において、圧電力センサは、複数の圧電素子を有する多成分力センサである。これによって、力センサを用いた特に正確な測定が実現する。
【0044】
駆動列試験台のさらなる有利な構成において、圧電素子は、圧電素子を用いて、力、特にせん断力及び/又は圧縮力が、第1の部分と第2の部分との間で測定可能であるように構成され、プロペラシャフトの第1の部分とプロペラシャフトの第2の部分との間に配置されている。この際、好ましくは、圧電素子は、回転軸の周りの様々な位置に配置されている。さらに好ましくは、圧電素子は、駆動列試験台のフランジ内に配置されている。
【0045】
プロペラシャフト内又はプロペラシャフト上で直接測定することによって、特に容易な測定アセンブリが実現し得る。
【0046】
駆動列試験台のさらなる有利な構成において、駆動列試験台は、検出された不平衡又は不整合を軽減又は取り除くために、検出された不平衡及び/又は不整合に基づいて、プロペラシャフト又は駆動列の質量を調整するための手段を有している。
【0047】
このような手段は、好ましくは、切削機、質量を除去又は付加するレーザー加工機、又は、接合機であってよい。
【0048】
プロペラシャフトの質量の調整が、質量分布の変更を通じて行われる場合、当該変更は、有利には、プロペラシャフトの可動要素の位置を変更する、又は、プロペラシャフトの形状を変更する、例えば歪める装置によって行われ得る。
【0049】
従って、プロペラシャフト又は駆動列を分解し、再加工せずとも、検出された不平衡又は不整合を補償することが可能である。
【0050】
さらなる利点及び特徴は、好ましい実施例に関する図面を参照した以下の説明から明らかである。図面は、少なくとも部分的に概略的に、以下を示している。
【図面の簡単な説明】
【0051】
図1】不平衡及び/又は不整合を検出するための方法が実施可能である駆動列試験台の第1の実施例を示す図である。
図2】不平衡及び/又は不整合を検出するための方法が実施可能である駆動列試験台の第2の実施例を示す図である。
図3】不平衡及び/又は不整合を検出するための方法が実施可能である駆動列試験台の第3の実施例を示す図である。
図4図1図2又は図3に係る試験台の詳細を示す図である。
図5】不平衡及び/又は不整合を検出するための方法の実施例を示す図である。
【発明を実施するための形態】
【0052】
図1は、駆動列試験台1の第1の実施例を示しており、当該駆動列試験台上では、較正試験又は適用試験に加えて、不平衡及び/又は不整合の検出が可能である。特に、不平衡及び/又は不整合は、試験台の動作中に検出され得る。
【0053】
駆動列試験台1は、特に、動力計又はダイノ14a、14bを有しており、動力計又はダイノ14a、14bは、図1に示すように、駆動列の出力側と回転しないように接続可能である。
【0054】
さらに、駆動列試験台1は、好ましくは、プロペラシャフト5a、5bの回転角を測定するように設定された相対値エンコーダ6を有している。相対値エンコーダ6の機能は、先行技術から知られており、特に、プロペラシャフト5a、5bの回転角、又は、回転角変更及び/又は回転方向を、光電的、磁気的及び/又は滑り接触を用いて決定することができる。
【0055】
さらに、駆動列1は、好ましくは圧電力センサ4を有しており、圧電力センサ4は、好ましくは、複数の圧電素子を、図1では3つの圧電素子4a、4b、4cを有している。圧電素子は、図1に係る実施例では、測定フランジ12に配置されており、測定フランジ12は、駆動列試験台1又は駆動列3の一部であってよい。
【0056】
測定フランジは、プロペラシャフト3の第1のシャフト部分5aを、第2のシャフト部分5bと接続している。プロペラシャフト5a、5bは、図1において鎖線で示された回転軸Dの周りに回転する。
【0057】
原動機2は、駆動列3のいずれの部材が駆動列試験台1上で試験されるべきかに応じて、駆動列試験台1の構成要素であっても、駆動列3の構成要素であってもよい。
【0058】
図1に示した実施例では、駆動列3は、原動機2、プロペラシャフト5a、5b、差動装置13、及び、軸部分(符号無し)を有している。原動機2から、出力の流れが、第1のシャフト部分5a、測定フランジ12、第1の圧電力センサ、差動装置13及び軸部分を通じて、動力計14a、14bに伝達され得る。
【0059】
試験台1はさらに、支持装置10を有しており、支持装置10には、駆動列試験台全体、駆動列試験台1の各要素、及び/又は、駆動列3も、支持されている。この際、支持装置10は、各要素を例えば試験台のホールの床面に取り付けるために、機械構造を有し得る。さらに好ましくは、支持装置10は、基板を有し得るか、又は、そのようなものとして構成されていてよい。
【0060】
図1に示された実施例では、少なくとも原動機2と動力機14a、14bとが、支持装置10によって支持されている。
【0061】
好ましくは原動機2によって形成される出力の流れによって、力の流れが生じ、力の流れは、図1に示された実施例では、支持装置10から、原動機2及び駆動列3、動力計14a、14bを通って、再び支持装置10まで延在している。この際、支持装置10は、それぞれ原動機2及び動力計14a、14bの支持のために、反力を供給する。
【0062】
圧電素子4a、4b、4cは、好ましくは、平面E1、すなわち記された基準系のXY平面に対して平行な平面における力を測定するように設定され、構成されている。第1の力センサ4は、好ましくは圧電せん断効果を利用した圧電素子4a、4b、4cを有している。図示された例では、測定フランジ12上の力又はトルクは、圧電素子4a、4b、4cの端面を通じて、圧電素子4a、4b、4cに導入される。この際、圧電素子4a、4b、4cの端面は、好ましくは、測定フランジ12の表面と摩擦接続的に接続されている。
【0063】
測定フランジ12に、基準系のX方向の力及び/又はY方向の力が加えられる場合、圧電素子4a、4b、4cは、圧電せん断効果を用いて、対応する測定信号を生成する。同じことは、Z方向に作用するトルクが、測定フランジ12に加えられる場合にも適用される。
【0064】
代替的又は付加的に、圧電素子4a、4b、4cは、第1の平面E1に対して垂直に、力測定を実施することができる。このために、圧電素子4a、4b、4cは、好ましくは圧電縦効果又は圧電横効果を利用する。第1の平面E1における力も、第1の平面E1に対して垂直な力も測定される場合、好ましくは、Z方向に測定する圧電素子も、X平面又はXY平面において力を測定することができる圧電素子も、存在している。さらに好ましくは、圧電素子4a、4b、4cのいずれもが、少なくとも2つの圧電素子を有しており、当該圧電素子は、力の流れに関して直列に接続されており、第1の圧電素子は、圧電せん断効果を、第2の圧電素子は、圧電横効果又は圧電縦効果を利用する。
【0065】
図2は、プロペラシャフトの不平衡及び/又は不整合をその動作中に検出することができる試験台1の第2の実施例を示している。
【0066】
図2の第2の実施例の試験台1は、図1の第1の実施例の試験台とは、主に、第1の力センサ4が、原動機2と動力計14a、14bとの間の出力の流れの内にではなく、支持装置10と原動機2との間に配置されていることによって異なっている。
【0067】
プロペラシャフト5と原動機2との間にトルクが存在する場合、第1の力センサ4は、当該配置によって、支持装置10を通じて原動機2に及ぼされる反力を測定する。
【0068】
この際、力センサ4は、図2に示したように、回転軸Dの軸方向に取り付けられ得る。しかしまた、同じように、原動機2は、図2の平面図では、横方向において力センサ4によって支持され得るか、又は、下側に向かって、又は、上側に向かって支持され得る。圧電素子4a、4b、4cが、どのように原動機2に接触するかに応じて、圧電せん断効果、圧電縦効果若しくは圧電横効果を有する素子、又は、すでに図1において言及したように、2つの異なる効果を有する素子が用いられる。
【0069】
図2の実施例においても、力は、好ましくは平面E1において、及び/又は、平面E1に対して垂直に測定される。
【0070】
図1の実施例を図2の第2の実施例と組み合わせることも可能である。例えば、第2の実施例も、さらなる圧電力センサが配置された測定フランジ12を有することが可能であろう。この第2の圧電力センサは、力及び/又はモーメントを測定するための第2の平面を決定することが可能であろう。
【0071】
さらに、動力計14a、14bにおける反力を測定するために、さらなる圧電力センサが存在してもよいであろうし、これらのさらなる圧電力センサも、好ましくは、各動力計14a、14bを、支持装置に対して、特に基板又は底板に対して支持することが可能であろうし、これによって、ここでも、動力計14a、14bと支持装置10との間の反力を測定することが可能であろう。
【0072】
図2に示された反力の測定は、プロペラシャフト5における力の直接の測定に対して、各力センサ4が、慣性モーメントとプロペラシャフトのバランスとに何ら影響を有さないという利点を有している。
【0073】
プロペラシャフトの不平衡及び/又は不整合を検出することが可能である駆動列試験台の第3の実施例が、図3に示されている。
【0074】
描写を単純化するために、駆動列3は、1つのプロペラシャフト5と、必要に応じて原動機2とを有している。しかしまた、図1及び図2の実施例と同じように、当該駆動列も、さらなる要素、特にギア又は作動装置、軸部分等を有し得る。図1及び図2の実施例とは異なり、第3の実施例は、第1の力センサ4と第2の力センサ11とを有しており、これらの力センサの圧電素子は、各平面E1又はE2における力のみを測定することができる。
【0075】
図3を、上から見た平面図と見なす場合、力センサ4、11を用いて、測定平面E1又はE2内の水平方向における力が測定される。図3を、横から見た平面図と見なす場合、力センサ4、11を用いて、垂直方向における力が測定される。
【0076】
以下において言及するように、相対値エンコーダ6の角度測定を伴う当該配置によって、静的及び/又は動的不平衡が検出される。なぜなら、静的及び/又は動的不平衡は回転しており、従って、回転軸に対して径方向に延在するいずれの空間方向においても、周期的に測定され得るからである。これに対して、不整合は、不整合が、ZX平面において、すなわち両方の力センサ4、11の測定方向に対して垂直に、力/曲げモーメントを生じさせる場合、検出されない。
【0077】
しかしながら、当該実施例においても、各力センサ4、11が、力の流れに関して直列に接続された2つの素子を有しており、これによって、2つの異なる測定方向、特に2つの互いに直交する測定方向が可能である、と規定してよいであろう。特に、これらの測定方向は、Y方向及びX方向に方向付けられていてよいであろう。力センサ4、11の圧電素子内の第3の圧電素子によって、Z方向における力を測定することも可能であろう。
【0078】
図4は、駆動列試験台1の詳細を示す図である。
【0079】
この際、圧電力センサ4は、信号線を用いて、信号処理装置7と接続されている。好ましくは、各圧電素子は、図4に示したように、各信号線15a、15b、15cを用いて、信号処理装置7と接続されていてよい。
【0080】
さらに、信号処理装置7は、好ましくはプロペラシャフトの不平衡を検出するための手段8を有する。不平衡を検出するために、好ましくは第1の力測定の測定値推移、及び/又は、第2の圧電力センサ11を用いた第2の力測定の測定値推移が、考慮される。さらに、好ましくは、相対値エンコーダ6によって測定されたプロペラシャフト5の回転角の測定値推移が、不平衡及び/又は不整合を検出するために考慮される。
【0081】
さらに好ましくは、信号処理装置7は、プロペラシャフトの不整合を検出するための手段9を有している。このような不整合は、特に、第1の圧電力センサ4による第1の力測定の測定値推移に基づいて検出され得る。基準系においてプロペラシャフト5の回転数と共に回転する不平衡とは異なり、不整合によってもたらされる力又はトルクは、固定された基準系に関して固定されている。
【0082】
図5は、上述の図1から図4に係る駆動列1の実施例で実施され得る、不平衡及び/又は不整合を検出するための方法の実施例を示している。原動機2と動力計14a、14bとの間で、動力伝達が形成される。この際、原動機2が動力計14a、14bを、プロペラシャフト5を通じて駆動するか、又は、その逆である。
【0083】
この動力伝達が継続している間、第1の力センサを用いて、第1の平面E1において、又は、第1の平面E1に対して垂直に、第1の力測定が実施される102-1。この際、いずれの方向において力測定を行うかは、測定されるべき力及びモーメントに依存する。しかしながら、平面内で力測定が行われる、又は、平面に関して力測定が行われるところの平面それぞれは、回転軸Dに対して垂直でなくともよい。この場合、様々な算定に関して、つねに、回転軸Dに対して平行に、又は、回転軸Dに対して直交するように方向付けられた力測定の成分のみが考慮される。
【0084】
動的不平衡を検出すべき場合、好ましくは第1の平面E1とは異なる第2の平面E2において、例えば図3で駆動列試験台1の第3の実施例に関連して示したように、測定が行われる102-2。
【0085】
次に、第1の力測定及び/又は第2の力測定の測定値推移と、好ましくは、プロペラシャフトに関する回転角決定とが分析され、静的不平衡及び/又は動的不平衡が検出され得る103a。付加的又は代替的に、測定値推移が分析され、プロペラシャフトの不整合が検出され得る103b。
【0086】
好ましくは、さらなる作業ステップにおいて、補償質量が、駆動列3、特にプロペラシャフト5、5a、5bに直接配置され、これによって、駆動列3の慣性主軸が、再び回転軸Dと一致し、駆動列3の重心は、回転軸D上に変位し、及び/又は、慣性主軸は、回転軸Dに対して平行に、特に同軸に方向付けられる。
【0087】
静的不平衡は、作業ステップ103aにおいて、以下のように検出され得る:プロペラシャフト5の支持点における、又は、直接プロペラシャフト5、5a、5b上において、特に駆動側、出力側又は中間軸受における、2次元の力測定によって、以下の方程式の径方向の分力Fr(t)が決定され得る:
【0088】
【数1】
【0089】
例えば中心周波数f0=frotationであり、伝達関数H(s)を備えた狭帯域の帯域通過を用いた、Fr(t)の第1の調和成分への換算によって、径方向の分力は、以下のように分離される:
【0090】
【数2】
【0091】
回転する径方向の分力は、回転する不平衡力Fuに対応し、駆動列1に機械的損傷と、望ましくない荷重状態とをもたらし得る振動の調和励振に関する情報を与える。好ましくは、十分に多い時間ステップtnにわたる平均化から、以下のように、不平衡の一定の値が生じる:
【0092】
【数3】
【0093】
力測定の平面E1、E2内に、又は、平面E1、E2の近くに補償質量を配置することによって、静的不平衡が補償され得る。補償質量(均衡の質量)maは、補償質量maが配置されるべき径方向位置rAの不平衡力Fuと、プロペラシャフト5、5a、5bの角度旋回速度ωmessから算出される。補償力FAに関しては、以下の式が有効である:
【0094】
【数4】
【0095】
補償質量maを配置することによって、プロペラシャフトの重心が回転軸と一致し、全ての支持力の合計はゼロになる。
【0096】
補償質量maの配置に対して代替的又は付加的に、不平衡を、駆動列3又はプロペラシャフト5、5a、5bにおける質量の除去によっても、補償することが可能である。
【0097】
動的不平衡に関して、補償質量が、静的不平衡を決定するための方法に対応して決定される。しかしながら、補償質量は、少なくとも2つの異なる平面に配置されなければならない。この際、当該質量は、特に、補償質量平面E1、E2の軸方向間隔から生じる。第1の力センサ4が、平面E1における力も、平面E1に対して垂直な力も、同時に検出することができる場合、動的不平衡の検出のためには、単独の測定平面E1で十分である。
【0098】
不平衡を決定するための分力Fx(t)及びFy(t)と、動的不平衡及び不整合を決定するための分力Fz(t)及びモーメント成分Mx(t)及びMy(t)とは、それ自体知られた方法で、各圧電素子4a、4b、4c又はその圧電素子の優先方向の意図的な配置を用いて得られる。
【0099】
当該パラメータを決定するための他の方法も用いられ得る。例えば、各圧電素子4a、4b、4cの測定信号又は当該測定信号から導出される、すなわち測定される力F1、…、Fiの分解、特に直交分解である。
【0100】
この際、例えば決定されるべきパラメータMz、FX、FYは、方程式系の解であり、各測定信号に関して、以下の方程式が有効である:
【0101】
【数5】
【0102】
この際、S1、S2、…Si、…、SNは、各圧電素子4a、4b、4c、…2、Nの測定信号である。各係数aは、例えば圧電素子4a、4b、4c、…4i、4Nの各位置、及び、基準系における各優先方向の方向付け、各圧電素子4a、4b、4c、…、4i、…、Nの感受性、及び、固定手段を通じた力の分岐による考えられる信号損失等の、複数の因子に依存している。
【0103】
トルクMz、第1の横力成分Fx及び第2の横力成分Fyに関する当該方程式系を解くためには、その優先方向が1つの平面内に位置するように方向付けられている、少なくとも3つの圧電素子4a、4b、4cの測定信号が必要である。さらに、当該優先方向の内、少なくとも2つの優先方向は、平行にも逆平行にも方向付けられていてはならない。
【0104】
N=3、すなわち3つの圧電素子4a、4b、4cを備えた、この記載された一般的な場合に関しては、上述の方程式系の解は明確である。駆動列試験台1にさらなる圧電素子が付加される場合、方程式系は、3つの決定されるべきパラメータMz、Fx、Fyで過剰決定されているが、測定精度は、再度改善され得る。
【0105】
N=4の場合、4つの異なる方程式系F(S1、S2、S3)、F(S1、S2、S4)、F(S1、S3、S4)、F(S2、S3、S4)が作成され得る。決定されるべき各パラメータMz、F、Fに関して決定される値は、加算され、平均化され得る。すなわち、4つの圧電素子4a、4b、4c、…、4i、…、4Nの場合、4で割られる。同じように、最小化の課題を用いて解かれる、過剰決定された方程式系F(S1、S2…、SN)が作成され得る。
【0106】
方程式系に関する一般的な解が発見されている場合、決定されるべきパラメータMz、F、Fの算出は、行列の乗算に換算され得る。当該行列は、3つの行と、利用できる測定信号S1、S2、S3、…SNと同じ数の列とを有している。行列要素又は係数は、決定されるべきパラメータMz、F、Fに対する各センサのそれぞれの寄与を表している。
【0107】
【数6】
【0108】
測定信号S1、S2、…Si、…、SNを、それぞれ決定されるべきパラメータMz、F、Fに寄与する成分に分解するためには、圧電素子4a、4b、4c、…、4i、…、4Nの位置と、優先方向の方向付けとが知られていることが必要である。
【0109】
形状パラメータは、駆動列試験台1の設計図から、又は、圧電素子4a、4b、4c、…、2i、…、2Nの優先方向の知識から決定され得る。
【0110】
しかしながら、圧電素子4a、4b、4c、…、4i、…、4Nの優先方向の方向付けは、キャリブレーション測定を用いた優先方向の測量によっても決定され得る。好ましくは、このために、力センサ4、11は、2つの平らなプレートの間で固定される。次のステップにおいて、既知の方向を有する外部の横力がもたらされる。導入される横力の値及び方向に関係する各測定信号S1、S2、…、Si、…、SNの大きさから、圧電素子4a、4b、4c、…、4i、…、4Nの優先方向によって形成される平面における、圧電素子4a、4b、4c、…、4i、…、4Nの優先方向が決定され得る。
【0111】
同じように、各圧電素子4a、4b、4c、…、4i、…、4Nの優先方向が知られている場合、所定のトルクMzを加えること、及び、各測定信号S1、S2、…Si、…、SNを測定することによって、圧電素子4a、4b、4c、…、4i、…、4Nの回転軸Dからの距離が決定され得る。
【0112】
上述の実施例は、単に、保護範囲、応用及び構造を何ら制限すべきではない例に過ぎない。むしろ、当業者には、上述の記載によって、少なくとも1つの実施例の実施に関する手引きが与えられ、特に記載された構成要素の機能及び配置に関する様々な変更は、請求項及び請求項と等価な特徴の組み合わせから明らかになる保護範囲を離れることなく行われ得る。特に、各実施例を互いに組み合わせることが可能である。
【符号の説明】
【0113】
1 駆動列試験台
2 原動機
3 駆動列
4 第1の圧電力センサ
4a、4b、4c 圧電素子
5、5a、5b プロペラシャフト
6 相対値エンコーダ
7 信号処理装置
8 不平衡を検出するための手段
9 不整合を検出するための手段
10 支持装置
11 第2の圧電力センサ
12 測定フランジ
13 差動装置/ギア
14a、14b 動力計
15a、15b、15c 信号線
図1
図2
図3
図4
図5