(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-19
(45)【発行日】2024-09-30
(54)【発明の名称】機械装置又は機械部品における異常を同定するための方法及び装置
(51)【国際特許分類】
G01M 99/00 20110101AFI20240920BHJP
【FI】
G01M99/00 Z
(21)【出願番号】P 2023541057
(86)(22)【出願日】2021-01-06
(86)【国際出願番号】 CN2021070457
(87)【国際公開番号】W WO2022147684
(87)【国際公開日】2022-07-14
【審査請求日】2023-07-28
(73)【特許権者】
【識別番号】390023711
【氏名又は名称】ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング
【氏名又は名称原語表記】ROBERT BOSCH GMBH
【住所又は居所原語表記】Stuttgart, Germany
(74)【代理人】
【識別番号】100114890
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100134315
【氏名又は名称】永島 秀郎
(74)【代理人】
【識別番号】100162880
【氏名又は名称】上島 類
(72)【発明者】
【氏名】シー デン
(72)【発明者】
【氏名】ミンガン ワン
【審査官】鴨志田 健太
(56)【参考文献】
【文献】中国特許出願公開第112069998(CN,A)
【文献】中国特許出願公開第111898321(CN,A)
【文献】中国特許出願公開第111458146(CN,A)
【文献】中国特許出願公開第107643182(CN,A)
【文献】中国特許出願公開第102254177(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 99/00
(57)【特許請求の範囲】
【請求項1】
機械装置又は機械部品における異常を同定するための方法(200)であって、以下のステップ、即ち、
i)機械装置若しくは機械部品内又は上に収集した少なくとも2種類のアンダーサンプリングした測定データを獲得するステップであって、前記少なくとも2種類のアンダーサンプリングした測定データの全ては、以下の態様、即ち、トリガイベントの発生時間(t
0)に対する
データ収集の開始の遅延(Δt)、及び、サンプリング周波数(f
s)の一方又は両方において相互に異なる、ステップと、
ii)獲得した前記少なくとも2種類のアンダーサンプリングした測定データに基づいて、前記機械装置又は機械部品における異常を同定するために、異常同定モデルを使用するステップであって、前記異常同定モデルは、機械学習に基づき、前記機械装置又は機械部品における異常を同定するために使用される、ステップと、
を少なくとも含む方法(200)。
【請求項2】
ステップii)は、
a)前記少なくとも2種類のアンダーサンプリングした測定データが別個に特徴抽出を受けることと、
b)前記機械装置又は機械部品に対する異常同定結果を入手するために、分類アルゴリズムに基づいてトレーニングした異常同定モデルに抽出した特徴を入力することと、
を含む、
ことを特徴とする、請求項1に記載の方法(200)。
【請求項3】
ステップii)は、
前記機械装置又は機械部品に対する異常同定結果を入手するために、ディープラーニングに基づいてトレーニングした異常同定モデルに前記少なくとも2種類のアンダーサンプリングした測定データを入力することを含む、
ことを特徴とする、請求項1に記載の方法(200)。
【請求項4】
前記少なくとも2種類のアンダーサンプリングした測定データは、単一センサの支援により、即ち、前記単一センサに、トリガイベントに応答して可変遅延(Δt)でデータ収集を開始させることによって、及び/又は、前記単一センサに、可変アンダーサンプリング周波数(f
s)でデータを収集させることによって、収集される、
ことを特徴とする、請求項1乃至3のいずれか一項に記載の方法(200)。
【請求項5】
前記少なくとも2種類のアンダーサンプリングした測定データは、少なくとも2つのセンサの支援により、即ち、前記少なくとも2つのセンサに、トリガイベントに応答して異なる遅延(Δt)でデータ収集を開始させることによって、及び/又は、前記少なくとも2つのセンサに、異なるアンダーサンプリング周波数(f
s)でデータを収集させることによって、収集される、
ことを特徴とする、請求項1乃至3のいずれか一項に記載の方法(200)。
【請求項6】
ステップii)の前に以下のこと、即ち、
獲得した前記少なくとも2種類のアンダーサンプリングした測定データを複数のサンプルに別個に分割することが行われ、時間内にそれぞれに隣接するサンプルの間に重複する時間があり、ステップii)においては、各サンプルは、別個に特徴抽出を受け、又は、各サンプルは、異常同定結果を入手するために、ディープラーニングに基づいて異常同定モデルに入力される、
ことを特徴とする、請求項1乃至5のいずれか一項に記載の方法(200)。
【請求項7】
機械学習に基づいて異常同定モデルをトレーニングするための方法(100)であって、前記異常同定モデルは、機械装置又は機械部品における異常を同定するために使用される、方法において、以下のステップ、即ち、
i’)機械装置若しくは機械部品内又は上に収集した少なくとも2種類のアンダーサンプリングした測定データを獲得するステップであって、前記少なくとも2種類のアンダーサンプリングした測定データの全ては、以下の態様、即ち、トリガイベントの発生時間(t
0)に対する
データ収集の開始の遅延(Δt)、及び、サンプリング周波数(f
s)の一方又は両方において相互に異なる、ステップと、
ii’)獲得した前記少なくとも2種類のアンダーサンプリングした測定データに基づいて、異常同定モデルをトレーニングするステップと、
を少なくとも含む方法(100)。
【請求項8】
プロセッサ(10)と、前記プロセッサ(10)に通信可能に接続されたコンピュータ可読記憶媒体(20)とを備えるコンピュータ装置であって、前記コンピュータ可読記憶媒体(20)は、当該コンピュータ可読記憶媒体(20)内に記憶されたコンピュータ命令を有し、前記コンピュータ命令は、前記プロセッサ(10)によって実行されるときに、請求項1乃至7のいずれか一項に記載の方法(100、200)を前記プロセッサ(10)に実施させるためのものである、コンピュータ装置。
【請求項9】
コンピュータ命令を含むコンピュータプログラムであって、前記コンピュータ命令は、プロセッサ(10)によって実行されるときに、請求項1乃至7のいずれか一項に記載の方法(100、200)を前記プロセッサ(10)に実施させるためのものである、コンピュータプログラム。
【請求項10】
アンダーサンプリング周波数で測定データを収集するように構成された検出装置であって、前記測定データは、機械装置又は機械部品の動作状態を示し、前記検出装置は、請求項8に記載のコンピュータ装置に通信可能に接続されている、検出装置において、
前記検出装置は、単一センサを備え、前記センサは、トリガイベントに応答して可変遅延(Δt)でデータ収集を開始するように構成され、及び/又は、可変アンダーサンプリング周波数(f
s)を有するように構成され、又は、
前記検出装置は、少なくとも2つのセンサを備え、前記少なくとも2つのセンサの第1のセンサは、トリガイベントに応答して第1の遅延(Δt
1)でデータ収集を開始するように構成され、第2のセンサは、トリガイベントに応答して前記第1の遅延(Δt
1)と異なる第2の遅延(Δt
2)でデータ収集を開始するように構成され、及び/又は、前記第1のセンサは、第1のアンダーサンプリング周波数(f
s1)を有するように構成され、前記第2のセンサは、前記第1のアンダーサンプリング周波数(f
s1)と異なる第2のアンダーサンプリング周波数(f
s2)を有するように構成される、
ことを特徴とする検出装置。
【請求項11】
請求項10に記載の検出装置を備える機械装置。
【請求項12】
請求項10に記載の検出装置を備える機械部品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、機械装置又は機械部品における異常を同定するための方法に関する。本発明は、対応するコンピュータ装置、対応するコンピュータプログラム製品、対応する検出装置、及び、対応する機械装置又は機械部品に、機械学習に基づいて異常同定モデルをトレーニングするための方法に更に関する。
【背景技術】
【0002】
電気駆動システム、即ち、電気機械及びギアボックス内の機械部品の故障診断又は予測保守は、軸受、ロータ、ドライブシャフト、フランジ、リム、ハウジング、ボルト及びギア、その他などの機械部品の実際に存在する又は潜在的な機械的故障を表す信号を同定することを意図する。このような信号は、加速度、置換、回転、慣性、電圧又は電流を示すことがある。
【0003】
しかし、既存の故障診断又は予測保守の解決策は、高いサンプリング周波数信号に依拠することが多い。しかし、高いサンプリング周波数は、装置のサンプリング、装置の処理、及び、装置の通信がより複雑になり、コストが増加するだけでなく、車両コストも増加し、これは、車両市場の価格競争が増々熾烈になり望ましくない。一方、低いサンプリング周波数信号が、既存の故障診断又は予測保守の解決策に使用される場合、低いサンプリング周波数信号への欠陥又は故障の表示は、エイリアシングに起因して曖昧で目立たないので、低いサンプリング周波数信号がもたらす診断結果は信頼することができない。
【発明の概要】
【発明が解決しようとする課題】
【0004】
従って、費用効果がありかつ信頼し得る故障診断又は予測保守の解決策を提供することが望ましい。
【課題を解決するための手段】
【0005】
本発明の目的は、機械装置又は機械部品における異常を同定するための方法を通して達成され、方法は、以下のステップ、即ち、
i)機械装置若しくは機械部品内又は上に収集した少なくとも2種類のアンダーサンプリングした測定データを獲得するステップであって、少なくとも2種類のアンダーサンプリングした測定データの全ては、以下の態様、即ち、トリガイベントの発生時間t0に対する遅延Δt、及び、サンプリング周波数fsの一方又は両方において相互に異なる、ステップと、
ii)獲得した少なくとも2種類のアンダーサンプリングした測定データに基づいて、機械装置又は機械部品における異常を同定するために、異常同定モデルを使用するステップであって、異常同定モデルは、機械学習に基づき、機械装置又は機械部品における異常を同定するために使用される、ステップと、
を少なくとも含む。
【0006】
本発明の任意選択の実施形態によれば、ステップii)は、
a)少なくとも2種類のアンダーサンプリングした測定データが別個に特徴抽出を受けることと、
b)機械装置又は機械部品に対する異常同定結果を入手するために、分類アルゴリズムに基づいてトレーニングした異常同定モデルに抽出した特徴を入力することと、
を含む。
【0007】
本発明の任意選択の実施形態によれば、ステップii)は、
機械装置又は機械部品に対する異常同定結果を入手するために、ディープラーニングに基づいてトレーニングした異常同定モデルに少なくとも2種類のアンダーサンプリングした測定データを入力することを含む。
【0008】
本発明の任意選択の実施形態によれば、少なくとも2種類のアンダーサンプリングした測定データは、単一センサの支援により、即ち、単一センサに、トリガイベントの発生時間t0に対する少なくとも2つの異なる遅延Δtで信号収集を開始させることによって、及び/又は、単一センサに、異なるアンダーサンプリング周波数fsで信号を収集させることによって、収集される。
【0009】
本発明の任意選択の実施形態によれば、少なくとも2種類のアンダーサンプリングした測定データは、少なくとも2つのセンサの支援により、即ち、少なくとも2つのセンサに、トリガイベントの発生時間t0に対する異なる遅延Δtで信号収集を開始させることによって、及び/又は、少なくとも2つのセンサに、異なるアンダーサンプリング周波数fsで信号を収集させることによって、収集される。
【0010】
本発明の任意選択の実施形態によれば、ステップii)の前に以下のこと、即ち、獲得した少なくとも2種類のアンダーサンプリングした測定データを複数のサンプルに別個に分割することが行われ、時間内にそれぞれに隣接するサンプルの間に重複する時間があり、ステップii)においては、各サンプルは、別個に特徴抽出を受け、又は、各サンプルは、ディープラーニングに基づいて異常同定モデルに入力される。
【0011】
他の態様においては、本発明の目的は、機械学習に基づいて異常同定モデルをトレーニングするための方法を通して更に達成され、異常同定モデルは、機械装置又は機械部品における異常を同定するために使用され、方法は、以下のステップ、即ち、
i’)機械装置若しくは機械部品内又は上に収集した少なくとも2種類のアンダーサンプリングした測定データを獲得するステップであって、少なくとも2種類のアンダーサンプリングした測定データの全ては、以下の態様、即ち、トリガイベントの発生時間t0に対する遅延Δt、及び、サンプリング周波数fsの一方又は両方において相互に異なる、ステップと、
ii’)獲得した少なくとも2種類のアンダーサンプリングした測定データに基づいて、異常同定モデルをトレーニングするステップと、
を少なくとも含む。
【0012】
他の態様においては、本発明の目的は、プロセッサ及び当該プロセッサに通信可能に接続されたコンピュータ可読記憶媒体を備えるコンピュータ装置によって更に達成され、コンピュータ可読記憶媒体は、当該コンピュータ可読記憶媒体内に記憶されたコンピュータ命令を有し、コンピュータ命令がプロセッサによって実行されるときに、上記のような方法のステップが実現される。
【0013】
他の態様においては、本発明の目的は、コンピュータ命令を含むコンピュータプログラム製品によって更に達成され、コンピュータ命令がプロセッサによって実行されるときに、上記のような方法のステップが実現される。
【0014】
他の態様においては、本発明の目的は、検出装置を通して更に達成され、検出装置は、アンダーサンプリング周波数で測定データを収集するために機械装置若しくは機械部品内又は上に配列され、測定データは、機械装置若しくは機械部品の動作状態を表し、検出装置は単一センサを含み、センサは、トリガイベントに応答して可変遅延Δtで信号収集を開始するように構成され、及び/又は、可変アンダーサンプリング周波数fsを有するように構成され、又は、検出装置は少なくとも2つのセンサを含み、少なくとも2つのセンサの第1のセンサは、トリガイベントに応答して第1の遅延Δt1で信号収集を開始するように構成され、第2のセンサは、トリガイベントに応答して第1の遅延Δt1と異なる第2の遅延Δt2で信号収集を開始するように構成され、及び/又は、第1のセンサは、第1のアンダーサンプリング周波数fs1を有するように構成され、第2のセンサは、第1のアンダーサンプリング周波数fs1と異なる第2のアンダーサンプリング周波数fs2を有するように構成される。
【0015】
任意選択の実施形態によれば、検出装置は、上記コンピュータ装置又はそのプロセッサに通信可能に接続される。
【0016】
他の態様においては、本発明の目的は、上記検出装置を含む、機械装置又は機械部品を通して達成される。
【発明の効果】
【0017】
本発明は、以下の利点を有する、即ち、
本発明は、低いサンプリング周波数を有する1つ又は複数のセンサのみを使用し、低いサンプリング周波数を有するセンサは、既存の故障診断又は予測保守方法によって依拠される高いサンプリング周波数を有するセンサより非常に優れたコスト有意性を有する。
装置、例えばセンサは、低い性能及び少量のデータのみを有し、従って、複雑なコンピューティングモジュール、及び/又は、高エネルギー消費の電源を具備する必要がなく、これにより、これらの装置の複雑さ、体積及びエネルギー消費が低減する。
【0018】
本発明の主題の他の利点及び好都合な実施形態は、説明、図面及び特許請求の範囲から明らかになる。
【0019】
本発明の更なる特徴及び利点は、図面を参照して特定の実施形態の以下の詳述を通して更に解説することができる。
【図面の簡単な説明】
【0020】
【
図1】本発明の例示的実施形態による、機械装置又は機械部品における異常を同定するための装置の構造ブロック図を示す。
【
図2】機械学習に基づき、機械装置又は機械部品における異常を同定するために使用される異常同定モデルをトレーニングするために、本発明の例示的実施形態による方法の流れ図を示す。
【
図3A】サンプリング定理の要件を満たす高いサンプリング周波数における、健全な回転部材から収集した振動信号の時間領域グラフを示す。
【
図3B】サンプリング定理の要件を満たす高いサンプリング周波数における、健全な回転部材から収集した振動信号の周波数領域グラフを示す。
【
図4A】
図3A及び
図3Bと同一のサンプリング周波数における、異常な回転部材から収集した振動信号の時間領域グラフを示す。
【
図4B】
図3A及び
図3Bと同一のサンプリング周波数における、異常な回転部材から収集した振動信号の周波数領域グラフを示す。
【
図5A】
図3乃至
図4のサンプリング周波数の1/11に等しいアンダーサンプリング周波数における、健全な回転部材から収集した振動信号の時間領域グラフを示す。
【
図5B】
図3乃至
図4のサンプリング周波数の1/11に等しいアンダーサンプリング周波数における、健全な回転部材から収集した振動信号の周波数領域グラフを示す。
【
図6A】
図5A及び
図5Bと同一のアンダーサンプリング周波数における、異常な回転部材から収集した信号の時間領域グラフを示す。
【
図6B】
図5A及び
図5Bと同一のアンダーサンプリング周波数における、異常な回転部材から収集した信号の周波数領域グラフを示す。
【
図7A】
図3乃至
図4のサンプリング周波数の1/17に等しいアンダーサンプリング周波数における、健全な回転部材から収集した振動信号の時間領域グラフを示す。
【
図7B】
図3乃至
図4のサンプリング周波数の1/17に等しいアンダーサンプリング周波数における、健全な回転部材から収集した振動信号の周波数領域グラフを示す。
【
図8A】
図7A及び
図7Bと同一のアンダーサンプリング周波数における、異常な回転部材から収集した信号の時間領域グラフを示す。
【
図8B】
図7A及び
図7Bと同一のアンダーサンプリング周波数における、異常な回転部材から収集した信号の周波数領域グラフを示す。
【
図9A】健全な機械部品から収集した信号の時間領域グラフを示し、2組のアンダーサンプリングした測定データは、その上に印を付けた異なる遅延を有する。
【
図9B】異常な機械部品から収集した信号の時間領域グラフを示し、2組のアンダーサンプリングした測定データは、その上に印を付けた異なる遅延を有する。
【
図9C】異常な機械部品から収集した信号の時間領域グラフを示し、2組のアンダーサンプリングした測定データは、その上に印を付けた異なるサンプリング周波数を有する。
【
図10】異常同定モデルをトレーニングするために、本発明に係る方法の1つのステップの流れ図を示す。
【
図11】機械装置又は機械部品における異常を同定するために、本発明の例示的実施形態による方法の流れ図を示す。
【発明を実施するための形態】
【0021】
本発明によって解決された技術的問題並びにその技術的解決策及び有利な技術的効果を明らかにするために、本発明は、図面及び複数の例示的実施形態を参照して以下に更に詳細に説明される。ここに記載された特定の実施形態は、本発明を説明するために使用されるに過ぎず、その保護の範囲を限定するものではないことを理解されたい。図面においては、同一又は類似の参照ラベルは、同一又は同等の構成要素を示す。
【0022】
図1は、本発明の例示的実施形態による機械装置又は機械部品における異常を同定するための、装置1の構造ブロック図を示す。機械装置は、駆動システム、具体的には車両駆動システム内の電気機械及びギアボックスなどの、様々な型の機械装置を広く含み得る。機械部品は、電気機械及びギアボックス等々に使用されるボルト、ハウジング、フランジ、リム、軸受(例えば、転がり軸受)及び回転部材(例えば、ロータ、ドライブシャフト、ギア又は同様のもの)などの、様々な型の機械部品を広く含み得る。
【0023】
本明細書において使用する場合、用語「異常」は、機械装置又は機械部品に生じ、機械装置若しくは機械部品自体又はその中に置かれるデバイスの機能及び/又は効率の低減若しくは劣化をもたらす、あらゆる異常現象を意味すると広く理解するべきである。これは、機械装置又は機械部品に生じ、機械装置若しくは機械部品自体又はその中に置かれるデバイスの機能及び/又は特徴に既に正常範囲から逸脱している故障若しくは欠陥を含むだけでなく、機械装置又は機械部品に生じ、機械装置若しくは機械部品自体又はその中に置かれるデバイスの機能及び/又は効率を低減させ、正常範囲から逸脱していない、「準健全な」問題も含む。
【0024】
機械装置に適用すると、装置1は、機械装置内の少なくとも1つの部品の異常を同定することができる。機械部品に適当すると、装置1は、機械部品における少なくとも1つの異常を同定することができる。
【0025】
装置1は、プロセッサ10と、プロセッサ10に通信可能に接続されたコンピュータ可読記憶媒体20と、を備えている。コンピュータ命令は、コンピュータ可読記憶媒体20に記憶されており、コンピュータ命令がプロセッサ10によって実行されるときに、本発明に係る方法100及び/又は200のステップが実現され、方法は、以下に詳細に記載される。
【0026】
更に検出装置は、機械装置若しくは機械部品内又は上に配列され、機械装置又は機械部品の動作状態を表す測定データ、例えば、振動信号、トルク信号、加速度信号、置換信号、慣性信号、回転信号、又は、電圧信号及び電流信号などの電気信号を収集するために使用される。検出装置によって収集された測定データは、異常同定モデル(以下の記載を参照)をトレーニングするためのトレーニングサンプルとして機能し、又は、機械装置若しくは機械部品における異常を分析して評価するための検出データとして機能するために、装置1によって獲得されるものとしてもよい。
【0027】
一例においては、装置1の支援により電気機械内の軸受ローラの損傷及び/又はドライブシャフトの偏心を監視する時に、振動センサ(例えば振動加速度センサ)は、電気機械の振動信号を捕捉するために、検出装置として電気機械のハウジング上に配置されるものとしてもよく、振動信号は、異常同定を行うために装置1によって獲得される。他の例においては、装置1の支援により軸受潤滑の劣化を監視する時に、電流センサ及び/又は電圧センサは、変換器内の電流及び/又は電圧信号を検出するために検出装置として使用されるものとしてもよく、電流及び/又は電圧信号は、異常同定を行うために装置1によって獲得される。
【0028】
一例においては、装置1は、リモートサーバとして構成されるものとしてもよく、検出装置は、車両内又は上に配列される。他の例においては、装置1及び検出装置の両方が、車両内又は上に配列される。
【0029】
図2は、機械学習に基づき、機械装置又は機械部品における異常を同定するために使用される異常同定モデルをトレーニングするための、本発明の例示的実施形態による方法100の流れ図を示す。
【0030】
ステップS110においては、例えば、検出装置により機械装置若しくは機械部品内又は上に収集した少なくとも2種類のアンダーサンプリングした測定データが獲得され、少なくとも2種類のアンダーサンプリングした測定データの全ては、以下の態様、即ち、トリガイベントの発生時間に対する遅延及びサンプリング周波数の一方又は両方において相互に異なる。
【0031】
「アンダーサンプリング」とは、サンプリング時に使用するサンプリング周波数が不十分である、即ち、サンプリング定理の要件を満たさないので、エイリアシングが収集した信号内に起きることを意味すると理解されるものとしてもよい。概して、アンダーサンプリングのサンプリング周波数が、信号周波数の2倍より低い周波数であることがあるのは、この場合、高周波数が低周波数としてエイリアシングされるエイリアシングが起きるからである。
【0032】
図3A及び
図3Bは、それぞれサンプリング定理の要件を満たす高いサンプリング周波数で、健全な回転部材から収集した振動信号の時間領域グラフ2及び周波数領域グラフ3を示し、
図4A及び
図4Bは、それぞれ
図3A及び
図3Bと同一のサンプリング周波数で異常回転部材から収集した振動信号の時間領域グラフ4及び周波数領域グラフ5を示す。比較のために、
図5A及び
図5Bは、それぞれ
図3乃至
図4のサンプリング周波数の1/11に等しいアンダーサンプリング周波数で健全な回転部材から収集した振動信号の時間領域グラフ2a及び周波数領域グラフ3aを示し、
図6A及び
図6Bは、それぞれ
図5A及び
図5Bと同一のアンダーサンプリング周波数で異常回転部材から収集した信号の時間領域グラフ4a及び周波数領域グラフ5aを示し、
図7A及び
図7Bは、それぞれ
図3乃至
図4のサンプリング周波数の1/17に等しいアンダーサンプリング周波数で健全な回転部材から収集した振動信号の時間領域グラフ2b及び周波数領域グラフ3bを示し、
図8A及び
図8Bは、それぞれ
図7A及び
図7Bと同一のアンダーサンプリング周波数で異常回転部材から収集した信号の時間領域グラフ4b及び周波数領域グラフ5bを示す。
【0033】
健全な回転部材の信号周波数領域グラフと異常な回転部材の信号周波数領域グラフとの間には、高いサンプリング周波数においてもアンダーサンプリング周波数においても差があることが、
図3乃至
図8から見て取ることができる。それにも関わらず、アンダーサンプリング周波数で信号時間領域グラフ及び周波数領域グラフに基づいて、複数の可能性のある故障源から故障の真の原因を同定することが困難であるのは、高周波数のサンプリングの信号時間領域グラフ及び周波数領域グラフにおいて特定の故障を特徴付ける特徴値及び/又は明確な現象が、エイリアシングに起因してこの時に信号時間領域グラフ及び周波数領域グラフで消失するからである。この理由で、高周波数でサンプリングした信号に適する先行技術で公知の故障同定方法は、もはやアンダーサンプリングした信号には適さない。
【0034】
これに基づいて、本発明は、その後のモデルトレーニング又は異常同定に対する根拠として機能するために、少なくとも2種類、例えば3種類の異なるアンダーサンプリングした測定データを獲得することを提案する。
【0035】
一実施形態によれば、検出装置は、単一センサを含み得る。この場合、単一センサは、特定のトリガイベントの発生時間t0に対する可変遅延Δtで信号の収集を開始するように構成され、及び/又は、可変アンダーサンプリング周波数fsを有するように構成されるものとしてもよい。この方法で、異なる種類のアンダーサンプリングした測定データは、単一センサによって収集されるものとしてもよい。特定のトリガイベントは、特定の状況に従って設定されるものとしてもよく、例えば、電気機械が起動する度、加速ペダル若しくはブレーキペダルが操作される度、又は、対応するギアに変更される度であるものとしてもよい。
【0036】
追加として、少なくとも2種類のアンダーサンプリングした測定データを入手するために、トリガイベントによってトリガされる度に、単一センサが使用する遅延Δt及び/又はアンダーサンプリング周波数fsは、トリガが起きた前回に使用された遅延Δt及び/又はアンダーサンプリング周波数fsと異なるものとしてもよい。
【0037】
代替実施形態によれば、検出装置は、2個以上のセンサを含み得る。この場合、異なる遅延Δt及び/又は異なるアンダーサンプリング周波数fsは、各センサに対して設定されるものとしてもよい。具体的には、2つ以上のセンサは、同じ位置又は隣接した位置に配置されるものとしてもよい。
【0038】
例示的実施形態においては、少なくとも2種類のアンダーサンプリングした測定データの第1の種類のアンダーサンプリングした測定データは、特定のトリガイベントの発生時間t
0に対する遅延Δt
1におけるサンプリング周波数f
s1で収集した信号であり、少なくとも2種類のアンダーサンプリングした測定データの第2の種類のアンダーサンプリングした測定データは、特定のトリガイベントの発生時間t
0に対する遅延Δt
2におけるサンプリング周波数f
s1で収集した信号であり、Δt
1≠Δt
2である。これについては、
図9A及び
図9Bを参照されたい。
図9Aは、健全な機械部品から収集した信号の時間領域グラフを示し、
図9Bは、異常な機械部品から収集した信号の時間領域グラフを示す。
図9A及び
図9Bにおいては、連続した曲線は、サンプリング定理の要件を満たすサンプリング周波数f
shで収集した信号を表し、円形は、第1の遅延においてアンダーサンプリング周波数f
s1で収集した信号を表し、三角形は、第1の遅延と異なる第2の遅延においてアンダーサンプリング周波数f
s1で収集した信号を表し、
【数1】
である。
【0039】
他の例示的実施形態においては、第1の種類のアンダーサンプリングした測定データは、特定のトリガイベントの発生時間t
0に対する遅延Δt
1におけるサンプリング周波数f
s1で収集した信号であり、第2の種類のアンダーサンプリングした測定データは、特定のトリガイベントの発生時間t
0に対する遅延Δt
1におけるサンプリング周波数f
s2で収集した信号であり、f
s1≠f
s2である。これについては、
図9Cを参照されたい。
図9Cは、異常な機械部品から収集した信号の時間領域グラフを示す。
図9Cにおいては、連続した曲線は、サンプリング定理の要件を満たすサンプリング周波数f
shで収集した信号を表し、円形は、第1のアンダーサンプリング周波数f
s1で収集した信号を表し、三角形は、第1のアンダーサンプリング周波数f
s1と異なる第2のアンダーサンプリング周波数f
s2で収集した信号を表し、
【数2】
かつ
【数3】
である。
【0040】
他の例示的実施形態においては、第1の種類のアンダーサンプリングした測定データの第1のサンプリング時点は、特定のトリガイベントの発生時間t0に対する遅延Δt1を有し、サンプリング周波数はfs1であるのに対して、第2の種類のアンダーサンプリングした測定データの第1のサンプリング時点は、特定のトリガイベントの発生時間t0に対する遅延Δt2を有し、サンプリング周波数はfs2であり、Δt1≠Δt2及びfs1≠fs2である。
【0041】
更に、各種類のアンダーサンプリングした測定データは、それぞれ少なくとも1組、具体的には複数組の測定データを含み得るものであり、1組のアンダーサンプリングした測定データは、収集の開始から収集の終了まで、センサによって収集されたデータストリームを指すものとしてもよい。例として、車両の起動がトリガイベントとみなされる場合は、車両の各起動は、1組の測定データを入手するためのデータの1つの収集をトリガするので、車両の複数の起動は、複数組のアンダーサンプリングした測定データの収集をトリガすることができ、これらのアンダーサンプリングした測定データのうち、同等の遅延Δt及び同一のサンプリング周波数fsを有するアンダーサンプリングした測定データは、同様の種類のアンダーサンプリングした測定データを形成することができる。
【0042】
次に、任意選択により、ステップS120においては、獲得した少なくとも2種類のアンダーサンプリングした測定データは、別個に複数のサンプルに分割され、具体的には、少なくとも2種類のアンダーサンプリングした測定データの各組の測定データは、別個に複数のサンプルに分割され、それによって入手したサンプルの一部は、トレーニングデータとして使用され、他の部分は、試験データとして使用され、トレーニングデータ及び試験データの両方は、少なくとも2種類のアンダーサンプリングした測定データからのサンプルを含む。
【0043】
例として、サンプルは、各サンプルが予め設定された一定時間の長さを有するような方法で分割されるものとしてもよい。追加として、サンプルは、時間内に相互に隣接するサンプルの間に重複する予め設定された時間があるような方法で、即ち、時系列的に先行するサンプルの終了時点が、時系列的に後続のサンプルの開始時点の後になるように、かつ、時系列的に後続のサンプルの開始時点が、時系列的に先行するサンプルの終了時点の前になるように分割されるものとしてもよい。このようにして、機械装置又は機械部品の動作条件の変化に起因して、測定データの変化によって生じた異常同定結果におけるエラーを低減又は除去することができる。
【0044】
次に、ステップS130においては、ラベルが、各サンプルに別個に割り当てられる。ラベルは、「正常」及び「異常」であるものとしてもよい。追加として、「異常」ラベルは、異なる型の異常及び/又は異なる異常領域及び/又は異常等級を表すラベルを含み得る。
【0045】
次に、ステップS140においては、獲得したサンプルは、機械学習に基づき、機械装置又は機械部品における異常を同定するために使用される、異常同定モデルをトレーニングするために使用される。ステップS120が割愛される場合、少なくとも2種類のアンダーサンプリングした測定データにおける各組の測定データは、異常同定モデルをトレーニングするために直接使用されるものとしてもよい。
【0046】
一例においては、異常同定モデルは、異常が機械装置又は機械部品に存在するかどうか、並びに、異常の型及び等級を同定し得るように構成されてトレーニングされる。例として転がり軸受に適用する時に、異常同定モデルは、異常が内輪、外輪、転がり軸受のローラ又はケージに存在するかどうか、及び、異常の深刻度を特定することができる。
【0047】
例示的実施形態によれば、異常同定モデルは、特徴に基づいた分類アルゴリズムを使用して構築される。このような異常同定モデルは、故障と、信号又は監視される故障若しくは異常の背後の機構との間の因果関係を確認することができる状態に適する。
【0048】
ステップS140は、ステップS141において各サンプルが特徴抽出を受けることを更に含む(
図10参照)。抽出される特徴は、監視した機械装置若しくは機械部品及び/又は監視した故障の機構に基づいて決定されるものとしてもよく、あらゆる1つ又は複数の以下の特徴、即ち、
i.周波数領域振幅と、
ii.有意な振幅を有する周波数と、
iii.有意な振幅の大きさの次数と、
iv.時間領域の振幅の分散指数、その一次及び二次微分であって、以下の分散指数及び/又は一次若しくは二次微分、即ち、
1.最大値、平均値及び最小値と、
2.固定時間内の特定閾値より大きいピークの発生であって、特定閾値は分析モデル及び有限要素分析によって決定される、ピークの発生と、
3.分散及び標準偏差と、
4.ピーク対ピーク比及びピーク対平均比と、
5.統計的分布の尖度及び歪度と、を含む、時間領域の振幅の分散指数、その一次及び二次微分と、
v.ケプストラムにおける有意な時間周期であって、これはギアボックスの故障及び一部の軸受の故障に特に適する、ケプストラムにおける有意な時間周期と、
を含む。
【0049】
一例においては、抽出される特徴は、エキスパートシステムを用いて決定されるものとしてもよい。
【0050】
概して、機械装置又は機械部品の状態が、既に非常に危険である場合、時間領域の大きさの最大次数又は分散指数全体及び平均値全体が、この著しさを反映することがある。このような状態に発展する前に、時間領域及び周波数領域特徴の他の統計的指数は、まだあまり危険でないこれらの潜在的異常を同定するために役立つことが可能である。
【0051】
次に、ステップS142においては、抽出した特徴及びそのラベルは、異常同定モデルが要件を満たすようにトレーニングされるまで、監修された学習工程を行うために異常同定モデルに入力される。
【0052】
他の例示的実施形態によれば、異常同定モデルは、ディープラーニングアルゴリズムを使用して構築される。このような異常同定モデルは、故障と、信号又は監視される故障若しくは異常の背後の機構との間の因果関係を認知することができない状態に適する。
【0053】
このような異常同定モデルをトレーニングするために使用したデータは、ステップS120から獲得したサンプル、又は、各組の時間領域若しくは周波数領域測定データ自体であるものとしてもよい。その上、ディープラーニングに基づいて異常同定モデルをトレーニングするために使用するサンプルの時間の長さ、及び、分類アルゴリズムに基づいて異常同定モデルをトレーニングするために使用するサンプルの時間の長さは、同じであっても異なっていてもよい。
【0054】
例として、ディープラーニングに基づいた異常同定モデルは、ニューラルネットワークに基づいて構築され、具体的には、畳み込みニューラルネットワーク又は双方向LSTM(長短期記憶)(long short term memory)ニューラルネットワークに基づいて構築される。具体的には、双方向LSTMニューラルネットワークに基づいた異常同定モデルの場合、時系列データは、トレーニングのために使用するものとしてもよい。畳み込みニューラルネットワークに基づいた異常同定モデルの場合、時間領域又は周波数領域データのパターンは、例えば、固定回転速度での周波数領域データ(例えば、スペクトル)のパターン、回転速度間隔内の周波数領域データ(例えば、キャンベル線図)のパターン、又は、キャンベル線図から入手した勾配図のパターンをトレーニングするために使用するものとしてもよい。
【0055】
図11は、機械装置又は機械部品における異常を同定するための、本発明の例示的実施形態による方法200の流れ図を示す。
【0056】
方法200では、ステップS210において、例えば、検出装置により機械装置若しくは機械部品内又は上に収集した少なくとも2種類のアンダーサンプリングした測定データは、リアルタイムで、周期的に、又は、データ獲得要求の支援により獲得され、少なくとも2種類のアンダーサンプリングした測定データの全ては、以下の態様、即ち、トリガイベントの発生時間に対する遅延、及び、サンプリング周波数の一方又は両方において相互に異なる。
【0057】
任意選択により、ステップS220においては、獲得した少なくとも2種類のアンダーサンプリングした測定データは、別個に複数のサンプルに分割される。
【0058】
次に、ステップS230においては、獲得したサンプルは、特徴抽出を受ける。ステップS220が割愛される場合、少なくとも2種類のアンダーサンプリングした測定データは、特徴抽出を直接受けるものとしてもよい。
【0059】
次に、ステップS240においては、抽出した特徴は、機械装置又は機械部品に対する異常監視結果を出力するために、分類アルゴリズムに基づいて異常同定モデルに入力される。
【0060】
他の態様においては、ステップS250において、少なくとも2種類のアンダーサンプリングした測定データ又は複数のサンプルは、機械装置又は機械部品に対する異常監視結果を出力するために、ディープラーニングに基づいて異常同定モデルに入力される。
【0061】
ステップS210、S220及びS230は、それぞれ上記のステップS110、S120及びS141に対応する。こうしてステップS110、S120及びS141の上の説明は、ステップS210、S220及びS230に適用可能である。
【0062】
一例においては、ステップS120及びS220の前に、獲得した測定データは、前処理、例えば、データの正規化、クリーニング、及び/又は、補間を受けるものとしてもよい。
【0063】
本発明に係る方法は、機械装置又は機械部品に既に起き、対応する修理を必要とする故障を同定することができるだけでなく、実際の故障に発展する前に、予め機械装置又は機械部品における異常の存在を同定することもでき、従って、関係要員が予測保守についての決定を行うのを支援することができる。
【0064】
一部の実施形態が記載されたが、これらの実施形態は例として提示されるに過ぎず、本発明の範囲を限定することを意図するものではない。添付の特許請求の範囲及びそれらの等価物は、本発明の範囲及び精神に含まれる全ての修正、置換及び変更を網羅することを意図する。
【符号の説明】
【0065】
Δt 遅延
Δt1 第1の遅延
Δt2 第2の遅延
t0 発生時間
fs アンダーサンプリング周波数
fs1 第1のアンダーサンプリング周波数
fs2 第2のアンダーサンプリング周波数
fsh サンプリング周波数
1 装置
2 時間領域グラフ
2a 時間領域グラフ
2b 時間領域グラフ
3 周波数領域グラフ
3a 周波数領域グラフ
3b 周波数領域グラフ
4 時間領域グラフ
4a 時間領域グラフ
4b 時間領域グラフ
5 周波数領域グラフ
5a 周波数領域グラフ
5b 周波数領域グラフ
10 プロセッサ
20 コンピュータ可読記憶媒体
100 方法
200 方法
S120 ステップ
S130 ステップ
S140 ステップ
S141 ステップ
S142 ステップ
S210 ステップ
S220 ステップ
S230 ステップ
S240 ステップ
S250 ステップ