(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2024-09-20
(45)【発行日】2024-10-01
(54)【発明の名称】タンパク質の発現を増強するための人工合成核酸
(51)【国際特許分類】
C12N 15/11 20060101AFI20240924BHJP
【FI】
C12N15/11 Z ZNA
(21)【出願番号】P 2024522596
(86)(22)【出願日】2024-01-30
(86)【国際出願番号】 JP2024002945
【審査請求日】2024-04-15
(31)【優先権主張番号】P 2023013290
(32)【優先日】2023-01-31
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】517235683
【氏名又は名称】株式会社シンプロジェン
(74)【代理人】
【識別番号】100136629
【氏名又は名称】鎌田 光宜
(74)【代理人】
【識別番号】100080791
【氏名又は名称】高島 一
(74)【代理人】
【識別番号】100125070
【氏名又は名称】土井 京子
(74)【代理人】
【識別番号】100121212
【氏名又は名称】田村 弥栄子
(74)【代理人】
【識別番号】100174296
【氏名又は名称】當麻 博文
(74)【代理人】
【識別番号】100137729
【氏名又は名称】赤井 厚子
(74)【代理人】
【識別番号】100152308
【氏名又は名称】中 正道
(74)【代理人】
【識別番号】100201558
【氏名又は名称】亀井 恵二郎
(74)【代理人】
【識別番号】100118371
【氏名又は名称】▲駒▼谷 剛志
(72)【発明者】
【氏名】細田 直
(72)【発明者】
【氏名】林 謙太郎
(72)【発明者】
【氏名】柘植 謙爾
【審査官】松原 寛子
(56)【参考文献】
【文献】国際公開第2021/075567(WO,A1)
【文献】R-STEINER: mRNA 高翻訳化のための5’UTR生成手法,DEIM Forum 2018,2018年,F5-4
【文献】Drug Delivery System,2022年,37-3,p.196-208
(58)【調査した分野】(Int.Cl.,DB名)
C12N 15/00-15/90
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含む核酸構築物であって、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、
前記非相補部分と前記相補部分とが交互に存在することを特徴とする、核酸構築物であって、該非相補部分が2塩基または3塩基であり、
(1)前記非相補部分が2塩基の場合、前記相補部分は塩基置換の場合5~7塩基長であり、塩基除去の場合5~11塩基長であるか、または
(2)前記非相補部分が3塩基の場合、前記相補部分は塩基置換の場合8~9塩基長であり、塩基除去の場合8~11塩基長であり、前記3’UTRの前記5’UTRに対する相補率が75%以上である、核酸構築物。
【請求項2】
前記非相補部分がすべて除去である、請求項
1に記載の核酸構築物。
【請求項3】
前記非相補部分の長さが2塩基であり、前記相補部分の長さがそれぞれ独立して5~7塩基である、請求項1に記載の核酸構築物。
【請求項4】
前記非相補部分の長さが3塩基であり、前記相補部分の長さがそれぞれ独立して8~11塩基である、請求項1に記載の核酸構築物。
【請求項5】
前記相補率が、80%~90%である、請求項
1に記載の核酸構築物。
【請求項6】
前記相補率が、81%~89%である、請求項
1に記載の核酸構築物。
【請求項7】
自由エネルギー変化(ΔG)が所定値またはその範囲である、請求項1に記載の核酸構築物。
【請求項8】
前記所定値またはその範囲が、自由エネルギー変化(ΔG)の最大値および最小値の平均値に対する増加率0%~60%の範囲の自由エネルギー変化の値またはその範囲である、請求項
7に記載の核酸構築物。
【請求項9】
前記所定値またはその範囲が、自由エネルギー変化(ΔG)の最大値および最小値の平均値に対する増加率10%~50%の範囲の自由エネルギー変化の値またはその範囲である、請求項
8に記載の核酸構築物。
【請求項10】
核酸構築物を製造する方法であって、該核酸構築物は、互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含み、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、該方法は、複数の候補核酸構築物を設計する工程、設計した該複数の候補核酸構築物について自由エネルギー変化(ΔG)を計算する工程、
および自由エネルギー変化(ΔG)の最大値および最小値の平均値に対する増加率0%~60%の範囲の自由エネルギー変化の値をもつ候補核酸構築物を選択する工
程を含む、方法。
【請求項11】
さらに、選択された該候補核酸構築物の細胞における発現量を測定する工程を含む、請求項10に記載の方法。
【請求項12】
前記平均値に対する増加率が10%~50%である、請求項
10または11に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、タンパク質の発現を増強するための人工合成核酸を提供する。
【背景技術】
【0002】
mRNA医薬は、COVID-19のワクチンやがんワクチン、疾患治療薬として重要なモダリティである。mRNAを細胞内の送達することで有効成分であるタンパク質を発現させることで薬効を発揮する。核内に移行する必要はなく、ゲノムへの挿入リスクが低いことから安全性が高いと考えられている。
【0003】
翻訳効率を高めるためにコドン最適化や配列を最適化する技術が開発されている。目的のmRNAをコードするプラスミドを原料とし、直鎖化したのち、試験管内で転写、キャップの付加、DNaseでのテンプレートDNAの除去が行われる。ポリA鎖を後から酵素的に付加する方法もある。また、mRNAを環状化することによる翻訳促進機構が知られている。
【発明の概要】
【課題を解決するための手段】
【0004】
本発明者らは、核酸構築物において、3’非翻訳領域と5’非翻訳領域との間の相補率および相補部分および非相補部分の特定のパターンにより、タンパク質発現を制御できることを新たに見出した。したがって、本開示は、互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含む核酸構築物であって、特定の相補パターンを有する核酸構築物を提供する。
【0005】
したがって、本開示は、以下を提供する。
[項目X1]
互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含む核酸構築物であって、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、該非相補部分の各々の長さがすべて1塩基の置換である場合、該3’UTRの該5’UTRに対する相補率が75%より高い、核酸構築物。
[項目X2]
非相補部分の塩基が置換または除去されたものである、上記項目に記載の核酸構築物。
[項目X2A]
前記非相補部分がすべて置換である、上記項目のいずれか一項に記載の核酸構築物。
[項目X2B]
前記非相補部分がすべて置換であり、かつ、各々の長さがすべて1塩基である、上記項目のいずれか一項に記載の核酸構築物。
[項目X2C]
前記非相補部分がすべて除去である、上記項目のいずれか一項に記載の核酸構築物。
[項目X3]
該非相補部分の少なくとも1つが2塩基以上の長さのものを含む、上記項目のいずれか一項に記載の核酸構築物。
[項目X4]
少なくとも1つの前記非相補部分の長さがいずれも2塩基または3塩基である、上記項目のいずれか一項に記載の核酸構築物。
[項目X5]
少なくとも1つの前記相補部分の長さが5塩基以上である、上記項目のいずれか一項に記載の核酸構築物。
[項目X6]
少なくとも1つの前記相補部分の長さが5~11塩基である、上記項目のいずれか一項に記載の核酸構築物。
[項目X7]
前記非相補部分の長さが2塩基であり、前記相補部分の長さがそれぞれ独立して5~7塩基である、上記項目のいずれか一項に記載の核酸構築物。
[項目X8]
前記非相補部分の長さが3塩基であり、前記相補部分の長さがそれぞれ独立して8~11塩基である、上記項目のいずれか一項に記載の核酸構築物。
[項目X9]
前記非相補部分の各々の長さがすべて1塩基以上であり、前記相補率が75%より高い、上記項目のいずれか一項に記載の核酸構築物。
[項目X10]
前記相補率が、80%~90%である、上記項目のいずれか一項に記載の核酸構築物。
[項目X11]
前記相補率が、81%~89%である、上記項目のいずれか一項に記載の核酸構築物。
[項目X12]
少なくとも1つの前記非相補部分が1塩基である、上記項目のいずれか一項に記載の核酸構築物。
[項目X13]
前記相補部分の長さがそれぞれ独立して3~11塩基である、上記項目のいずれか一項に記載の核酸構築物。
[項目X14]
前記非相補部分が1塩基であり、前記相補部分の長さがそれぞれ独立して3~7塩基である、上記項目のいずれか一項に記載の核酸構築物。
[項目X15]
前記非相補部分の長さが2塩基であり、前記相補部分の長さがそれぞれ独立して5~7塩基である、上記項目のいずれか一項に記載の核酸構築物。
[項目X16]
前記非相補部分の長さが3塩基であり、前記相補部分の長さがそれぞれ独立して8~11塩基である、上記項目のいずれか一項に記載の核酸構築物。
[項目X17]
互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含む核酸構築物であって、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、前記非相補部分と前記相補部分とが交互に存在することを特徴とする、核酸構築物。
[項目X17A]
前記交互に存在する部分以外の部分(端数部分(4)ともいう。)は1塩基以上相補部分の塩基長以下であることを特徴とする、上記項目のいずれか一項に記載の核酸構築物。
[項目X17B]
前記非相補部分(2)が1塩基の場合、前記相補部分(3)は塩基置換の場合3~6塩基長であり、塩基除去の場合、3~9塩基長である、上記項目のいずれか一項に記載の核酸構築物。
[項目X18]
前記非相補部分が2塩基の場合、前記相補部分(3)は塩基置換の場合5~7塩基長であり、塩基除去の場合5~11塩基長である、上記項目のいずれか一項に記載の核酸構築物。
[項目X19]
前記非相補部分が3塩基の場合、前記相補部分は塩基置換の場合8~9塩基長であり、塩基除去の場合8~11塩基長である、上記項目のいずれか一項に記載の核酸構築物。
[項目X19A]
前記非相補部分(2)は2塩基もしくは3塩基がである、上記項目のいずれか一項に記載の核酸構築物。
[項目X19B]
前記非相補部分の各々の長さがすべて1塩基以上であり、相補率が75%より高い、上記項目のいずれか一項に記載の核酸構築物。
[項目X19C]
前記相補率が、80%~90%である、上記項目のいずれか一項に記載の核酸構築物。
[項目X19D]
前記相補率が、81%~89%である、上記項目のいずれか一項に記載の核酸構築物。
[項目X20]
前記5’UTRまたは前記3’UTRのいずれか一方が、非相補部分を含まない、上記項目のいずれか一項に記載の核酸構築物。
[項目X21]
自由エネルギー変化(ΔG)が所定値またはその範囲である、上記項目のいずれか一項に記載の核酸構築物。
[項目X22]
前記所定値またはその範囲が、自由エネルギー変化(ΔG)の最大値および最小値の平均値に対する増加率0%~60%の範囲の自由エネルギー変化の値またはその範囲である、上記項目のいずれか一項に記載の核酸構築物。
[項目X23]
前記所定値またはその範囲が、自由エネルギー変化(ΔG)の最大値および最小値の平均値に対する増加率10%~50%の範囲の自由エネルギー変化の値またはその範囲である、上記項目のいずれか一項に記載の核酸構築物。
[項目X24]
核酸構築物を製造する方法であって、該核酸構築物は、互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含み、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、該方法は、複数の候補核酸構築物を設計する工程、設計した該複数の候補核酸構築物について自由エネルギー変化(ΔG)を計算する工程、自由エネルギー変化(ΔG)が所定値またはその範囲である候補核酸構築物を選択する工程、および必要に応じて、選択された該候補核酸構築物の細胞における発現量を測定する工程を含む、方法。
[項目X25]
核酸構築物を製造する方法であって、該核酸構築物は、互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含み、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、該方法は、複数の候補核酸構築物を設計する工程、設計した該複数の候補核酸構築物について自由エネルギー変化(ΔG)を計算する工程、自由エネルギー変化(ΔG)の最大値および最小値の平均値に対する増加率0%~60%の範囲の自由エネルギー変化の値をもつ候補核酸構築物を選択する工程、および必要に応じて、選択された該候補核酸構築物の細胞における発現量を測定する工程を含む、方法。
[項目X26]
前記平均値に対する増加率が10%~50%である、上記項目のいずれか一項に記載の方法。
[項目X27]
上記項目のいずれか一項のいずれか一項に記載の方法に従って製造された、上記項目のいずれか一項に記載の核酸構築物。
【0006】
また、本開示は、以下をも提供する。
(項目1)
互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含む核酸構築物であって、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、該非相補部分の各々の長さがすべて1塩基である場合、該3’UTRの該5’UTRに対する相補率が75%より高い、核酸構築物。
(項目2)
該非相補部分の少なくとも1つが2塩基以上の長さのものを含む、項目1に記載の核酸構築物。
(項目3)
少なくとも1つの前記非相補部分の長さがいずれも2塩基または3塩基である、項目1または2に記載の核酸構築物。
(項目4)
少なくとも1つの前記相補部分の長さが5塩基以上である、項目1~3のいずれか一項に記載の核酸構築物。
(項目5)
少なくとも1つの前記相補部分の長さが5~11塩基である、項目1~3のいずれか一項に記載の核酸構築物。
(項目6)
前記非相補部分の長さが2塩基であり、前記相補部分の長さがそれぞれ独立して5~7塩基である、項目1に記載の核酸構築物。
(項目7)
前記非相補部分の長さが3塩基であり、前記相補部分の長さがそれぞれ独立して8~11塩基である、項目1に記載の核酸構築物。
(項目8)
前記非相補部分の各々の長さがすべて1塩基以上であり、前記相補率が75%より高い、項目1に記載の核酸構築物。
(項目9)
前記相補率が、80%~90%である、項目8に記載の核酸構築物。
(項目10)
前記相補率が、81%~89%である、項目8に記載の核酸構築物。
(項目11)
少なくとも1つの前記非相補部分が1塩基である、項目7に記載の核酸構築物。
(項目12)
前記相補部分の長さがそれぞれ独立して3~11塩基である、項目8~11のいずれか一項に記載の核酸構築物。
(項目13)
前記非相補部分が1塩基であり、前記相補部分の長さがそれぞれ独立して3~7塩基である、項目8に記載の核酸構築物。
(項目14)
前記非相補部分の長さが2塩基であり、前記相補部分の長さがそれぞれ独立して5~7塩基である、項目8に記載の核酸構築物。
(項目15)
前記非相補部分の長さが3塩基であり、前記相補部分の長さがそれぞれ独立して8~11塩基である、項目8に記載の核酸構築物。
(項目16)
前記5’UTRまたは前記3’UTRのいずれか一方が、非相補部分を含まない、項目1に記載の核酸構築物。
(項目17)
自由エネルギー変化(ΔG)が所定値またはその範囲である、項目1~16のいずれか一項に記載の核酸構築物。
(項目18)
前記所定値またはその範囲が、自由エネルギー変化(ΔG)の最大値および最小値の平均値に対する増加率0%~60%の範囲の自由エネルギー変化の値またはその範囲である、項目17に記載の核酸構築物。
(項目19)
前記所定値またはその範囲が、自由エネルギー変化(ΔG)の最大値および最小値の平均値に対する増加率10%~50%の範囲の自由エネルギー変化の値またはその範囲である、項目17に記載の核酸構築物。
(項目20)
核酸構築物を製造する方法であって、該核酸構築物は、互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含み、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、該方法は、複数の候補核酸構築物を設計する工程、設計した該複数の候補核酸構築物について自由エネルギー変化(ΔG)を計算する工程、自由エネルギー変化(ΔG)が所定値またはその範囲である候補核酸構築物を選択する工程、および必要に応じて、選択された該候補核酸構築物の細胞における発現量を測定する工程を含む、方法。
(項目21)
核酸構築物を製造する方法であって、該核酸構築物は、互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含み、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、該方法は、複数の候補核酸構築物を設計する工程、設計した該複数の候補核酸構築物について自由エネルギー変化(ΔG)を計算する工程、自由エネルギー変化(ΔG)の最大値および最小値の平均値に対する増加率0%~60%の範囲の自由エネルギー変化の値をもつ候補核酸構築物を選択する工程、および必要に応じて、選択された該候補核酸構築物の細胞における発現量を測定する工程を含む、方法。
(項目22)
前記平均値に対する増加率が10%~50%である、項目21に記載の方法。
(項目23)
項目20~22のいずれか一項に記載の方法に従って製造された、項目1~19のいずれか一項に記載の核酸構築物。
【発明の効果】
【0007】
本開示の核酸構築物は、従来の核酸構築物と比べてタンパク質の高い発現量を示す改善された核酸構築物である。
【図面の簡単な説明】
【0008】
【
図1】
図1は、5’UTRがGAPDH遺伝子配列(図左)、ファイザー配列(Messenger RNA encoding the full-length SARS-CoV-2 spike glycoprotein Sept. 2020 document 11889;第19回厚生科学審議会予防接種・ワクチン分科会 資料(https://www.mhlw.go.jp/stf/shingi2/0000192554_00004.html)を参照のこと。)(図中央)、HSD17B4遺伝子配列(図右)とするmRNAの発現レベルを検証した結果を示している。いずれも比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図2】
図2は、5’UTRはGAPDH遺伝子配列、3’UTRはこの5’UTRと100%、94%、もしくは75%の相補率をもつ配列とするmRNAの発現レベルを検証した結果を示している。図左上はmRNA構造を模式的に示している。図左下は、5’UTRおよび3’UTRの塩基配列を示しおり、各配列において、上段は5’UTR配列を5’末端が左になるように、下段は3’UTR配列を5’末端が右になるように記載している。ORFの記載は省略している。5’UTRと3’UTRが相補する塩基を囲っている。図右は、各mRNAについて293細胞における発現レベルを検証した結果を示すグラフである。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図3】
図3は、5’UTRはGAPDH遺伝子配列とし、3’UTRはこの5’UTRと部分的に相補となるmRNA各種の5’UTRおよび3’UTRの塩基配列を示している。非相補部分の塩基数毎に類別して示している。各配列において、上段は5’UTR配列を5’末端が左になるように、下段は3’UTR配列を5’末端が右になるように記載している。ORFの記載は省略している。5’UTRと3’UTRが相補する塩基を囲っている。
【
図4】
図4は、5’UTRとしてGAPDH遺伝子配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、293細胞における発現レベルを検証した結果を示すグラフである(左)。右図は、左図について相対発現量(E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率)に対して相補率の分布を示したものである。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図5】
図5は、5’UTRはファイザー配列とし、3’UTRはこの5’UTRと部分的に相補となるmRNA各種の5’UTRおよび3’UTRの塩基配列を示している。非相補部分の塩基数毎に類別して示している。各配列において、上段は5’UTR配列を5’末端が左になるように、下段は3’UTR配列を5’末端が右になるように記載している。ORFの記載は省略している。5’UTRと3’UTRが相補する塩基を囲っている。
【
図6】
図6は、5’UTRとしてファイザー配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、293細胞における発現レベルを検証した結果を示すグラフである。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図7】
図7は、5’UTRはHSD17B4遺伝子配列とし、3’UTRはこの5’UTRと部分的に相補となるmRNA各種の5’UTRおよび3’UTRの塩基配列を示している。非相補部分の塩基数毎に類別して示している。各配列において、上段は5’UTR配列を5’末端が左になるように、下段は3’UTR配列を5’末端が右になるように記載している。ORFの記載は省略している。5’UTRと3’UTRが相補する塩基を囲っている。
【
図8】
図8は、5’UTRとしてHSD17B4遺伝子配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、293細胞における発現レベルを検証した結果を示すグラフである。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図9】
図9は、5’UTRはGAPDH遺伝子配列とし、3’UTRはこの5’UTRと部分的に相補となるmRNA各種の5’UTRおよび3’UTRの塩基配列を示している。相補率が高い順に示している。各配列において、上段は5’UTR配列を5’末端が左になるように、下段は3’UTR配列を5’末端が右になるように記載している。ORFの記載は省略している。5’UTRと3’UTRが相補する塩基を囲いで示している。
【
図10】
図10は、5’UTRとしてGAPDH遺伝子配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、293細胞における発現レベルを検証した結果を示している。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。縦軸をこの相対発現量、横軸を各mRNAの相補率とし、散布図として示している。各mRNAに対して3サンプルの測定を行いその平均値をプロットで示している。さらにこれら測定値の標準偏差を算出しプロット上においてエラーバーとして示している。5’UTRがGAPDH遺伝子配列のmRNAを黒プロット、ファイザー配列のmRNAを白プロットで示している。発現量が最大となるmRNAの相補率は75%~80%であった。
【
図11】
図11は、3’UTRが5’UTRと部分的に相補性をもつmRNAについて、5’UTRと3’UTRの相互作用における自由エネルギー変化と各mRNAの発現レベルの相関を示している。発現レベルは5’UTR、3’UTRがいずれもファイザー配列のmRNAを1として算出した。自由エネルギー変化は2次構造予測プログラムMfoldにより求めた(Michael Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res. 2003 Jul 1;31(13):3406-15)。図左、中央、右に、5’UTRがそれぞれGAPDH遺伝子、HSD17B4遺伝子、ファイザー配列のときの結果を示している。各5’UTRについて、得られた実測値をシグモイド曲線のひとつである4係数ロジスティック曲線y=d+(a-d)/(1+(x/c)^b)にそれぞれフィッティングし、係数a、b、c、dおよび相関係数を求めた。係数cの値がシグモイド曲線上で変曲点となる自由エネルギー変化の値である。グラフ内、各mRNAについて複数サンプルの測定を行いその平均値をプロットで、得られたシグモイド曲線を実線で、変曲点となる自由エネルギー変化の値を点線で示している。
【
図12】
図12は、最大発現レベルとなるmRNAにおいて、該当mRNAの5’UTRと3’UTRの相互作用における自由エネルギー変化がとりうる値を示している。図左、中央、右に、5’UTRがそれぞれGAPDH遺伝子、HSD17B4遺伝子、ファイザー配列のときの結果を示している。自由エネルギー変化の最小値は、5’UTRと3’UTRの相補率が100%となるmRNAについて自由エネルギー変化をMfoldにより求めた値とした。自由エネルギー変化の最大値は、5’UTRと3’UTRの相補率が100%となる3’UTRの全塩基に対して、5’UTRとミスマッチとなるよう塩基置換を行ったmRNAについて、その自由エネルギー変化をMfoldにより求めた値とした。相対的な自由エネルギー変化の値は、変曲点からの増加率(右側シフト)を指標とし、変曲点となる値と最大値の差を100%として算出した。変曲点からの増加率が10%以上50%以下の自由エネルギー変化値となるmRNAにおいて、その発現レベルが最大となった。
【
図13】
図13は、5’UTRと3’UTR配列からのmRNAの発現レベルを予測する方法を示している。自由エネルギー変化の最大値と最小値は、
図12と同様に求めた。この自由エネルギーの最大値と最小値の平均値が、シグモイド曲線の変曲点となる自由エネルギー変化の値と一致することを見出した。この平均値をもちいることで、誤差4.9kcal/mol以下もしくは13.1%以下の精度で、変曲点を予測することができた。この誤差パーセントは、
図12と同様に、変曲点となる値と自由エネルギー変化最大値の差を100%として算出している。この変曲点の予測に基づき、発現レベルが最大となるmRNAにおける5’UTRと3’UTRの相互作用の自由エネルギー変化が予測できる。
【
図15】
図15は、
図6で用いたmRNAについて、筋芽細胞株C2C12における発現レベルを検証した結果を示すグラフである。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図16】
図16は、5’UTRとしてファイザー配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列、ORFとしてSARS CoV2 Spike、E2Crimson融合タンパク質とするmRNAについて、293細胞におけるいて発現レベルを検証した結果を示すグラフである。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図17A】
図17は非相補部分の設計方法に関する置換と除去の概念を模式図化したものである。
図17は
図17Aおよび
図17Bに示す。
図17(1)は、相補配列においてその塩基を置換することにより非相補配列に変換したmRNAの模式図を示している。
図17(2)は、相補配列においてその塩基を除去することにより非相補配列に変換したmRNAの模式図を示している。
図17(3)相補配列において5’UTR上の塩基を除去することにより非相補配列に変換したmRNAの模式図を示している。
図17(4)は相補配列においてその塩基を置換することにより非相補配列に変換した場合と、除去することにより非相補配列に変換した場合が混在するmRNAの模式図を示している。
図17(4―1)は3’UTR上のみにおいて、
図17(4―2)は5’UTR上のみにおいて、
図17(4―3)は5’UTR、3’UTR上いずれにおいて、上記塩基除去と塩基置換が混在しているmRNAの模式図を示している。
【
図17B】
図17Bは
図17Aの続きである。
図17(5)は3’UTR上に塩基を追加することにより非相補配列に変換したmRNAの模式図を示している。
図17(6)は5’UTR上に塩基を追加することにより非相補配列に変換したmRNAの模式図を示している。
【
図18A】
図18は、
図18A~Cに分けて示し、
図17で示した模式図の(2)~(6)について、具体的な5’UTRはファイザー配列とし、3’UTRはこの5’UTRと部分的に相補となるmRNA各種の5’UTRおよび3’UTRの塩基配列を示している。
図18(2)は3’UTRにおいてその塩基を除去することにより非相補配列に変換したmRNAについて、非相補部分の塩基数毎に類別して示している。
【
図18B】
図18Bは
図18Aの続きである。
図18(3)は5’UTRにおいてその塩基を除去することにより非相補配列に変換したmRNAを示している。
図18(4)は相補配列においてその塩基を置換することにより非相補配列に変換した場合と、除去することにより非相補配列に変換した場合が混在するmRNAを示している。
図18(4―1)は3’UTR上のみにおいて、
図18(4―2)は5’UTR上のみにおいて、
図18(4―3)は5’UTR、3’UTR上いずれにおいて、上記塩基除去と塩基置換が混在しているmRNAを示している。
【
図18C】
図18Cは
図18Bの続きである。
図18(5)は3’UTRにおいて塩基を追加することにより非相補配列を作出したmRNAについて、非相補部分が1塩基、2塩基、3塩基の場合のmRNAを示している。
図18(6)は5’UTRにおいて塩基を追加することにより非相補配列を作出したmRNAについて、非相補部分が1塩基、2塩基、3塩基の場合のmRNAを示している。各配列において、上段は5’UTR配列を5’末端が左になるように、下段は3’UTR配列を5’末端が右になるように記載している。下段において―で示している塩基は、相補配列においてその塩基を除去することにより非相補配列に変換した塩基であることを示している。ORFの記載は省略している。5’UTRと3’UTRが相補する塩基を囲っている。
【
図19】
図19は、5’UTRとしてファイザー配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、293細胞における発現レベルを検証した結果を示すグラフである。これら3’UTRにおいては、塩基を除去することにより非相補配列としている。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図20】
図20は、5’UTRとしてファイザー配列、3’UTRとしてこの5’UTRと部分的に相補性をもちかつ非相補部分が3塩基の各種配列をもつmRNAについて、293細胞における発現レベルを検証した結果を示すグラフである。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図21】
図21は、
図19で用いたmRNAについて、筋芽細胞株C2C12におけるいて発現レベルを検証した結果を示すグラフである。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図22】
図22は、
図20で用いたmRNAについて、筋芽細胞株C2C12において発現レベルを検証した結果を示すグラフである。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図23】
図23は、5’UTRとしてファイザー配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列、ORFとしてSARS CoV2 Spike、E2Crimson融合タンパク質とするmRNAについて、293細胞におけるいて発現レベルを検証した結果を示すグラフである。これら3’UTRにおいては、塩基を除去することにより非相補配列としている。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。
【
図24】
図24は、5’UTRはファイザー配列とし、3’UTRはこの5’UTRと部分的に相補となるmRNA各種の5’UTRおよび3’UTRの塩基配列を示している。
図24(1)は非相補部分の塩基数が5’UTRと3’UTRにおいて同じである場合を、
図24(2)は非相補部分の塩基数が5’UTRと3’UTRにおいて異なる場合を示している。各配列において、上段は5’UTR配列を5’末端が左になるように、下段は3’UTR配列を5’末端が右になるように記載している。下段において―で示している塩基は、相補配列においてその塩基を除去することにより非相補配列に変換した塩基であることを示している。ORFの記載は省略している。5’UTRと3’UTRが相補する塩基を囲っている。
【発明を実施するための形態】
【0009】
以下、本開示を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
【0010】
以下に本明細書において特に使用される用語の定義および/または基本的技術内容を適宜説明する。
【0011】
本明細書において、「約」は、示された値プラスまたはマイナス10%を指す。
【0012】
本明細書において、用語「非翻訳領域(UTR)」とは、タンパク質をコードする部分を含むmRNA等の核酸において、タンパク質に翻訳されるコード領域の前後に存在するタンパク質に翻訳されない領域を指す。核酸の5’側に存在するUTRを5’UTR、3’側に存在するUTRを3’UTRという。
【0013】
本明細書において、用語(互いに)「相補的」または「相補性」とは、核酸の塩基配列において、アデニンとチミンまたはウラシル、グアニンとシトシンまたはウラシル(ゆらぎ塩基対)とが特異的に対合することを指す。「非相補部分」とは、塩基配列において、相補的ではない部分を指し、「相補部分」とは、塩基配列において、相補的である部分を指す。本明細書では相補部分および非相補部分は1塩基単位で特定され得る。「非相補部分の各々の長さがすべて1塩基」であるとは、対象となる核酸の部分において、相補部分と非相補部分とを特定した場合に、非相補部分が単数の場合は、それが1塩基の長さであり、複数ある場合は、その複数あるすべての非相補部分の長さがいずれも1塩基であることをいう。また、非相補部分においては、5’UTRまたは3’UTRのいずれか一方が、0塩基であり得る。この場合、本明細書において「除去」ということがある(他方側からみると、「追加」とも称することができるが、本明細書では特に断らない限り「除去」を採用し、広義には「除去」は狭義の除去と追加を含むと理解される。)。また、非相補部分において、5’UTRおよび3’UTRに1塩基以上の非相補的な塩基が存在する場合は「置換」と称することがある。なお、非相補部分において、一方の側の塩基数と他方の側の塩基数が異なる場合、同数の部分は「置換」に該当し、異なる数の部分は、多いほうの側の塩基に対して少ないほうの側が「除去」に該当する。例えば、
5’-NNNAGNNN
3’-NNNA0NNN
(Nは相補鎖、0は塩基なし)
のような場合、5‘側のAに対してUAは、相補鎖であればUであるところの置換であるが、5’側のGに対して0は除去に該当する。
【0014】
また、
5’-NNNAGNNNU0NNN
3’-NNNA0NNNUGNNN
のような場合、5’側のAG部分は、上記と同様であるが、U0に対応する部分は、Gは「追加」とみることもできるが、本明細書では、広義には、「除去」と記載することがある。
【0015】
なお、本明細書では特に断らない限り、除去、置換、追加は、5’側から順番に核酸を比較して判断することとする。
【0016】
本明細書において「部分的に相補的」とは、対象となる塩基配列のうち、少なくとも一部(好ましくは、2塩基以上)にわたり、相補的であることをいう。好ましい相補部分の塩基数は、3塩基以上であり、かつ11塩基以下である。
【0017】
本明細書において、用語「核酸構築物」とは、少なくとも一部が核酸から構成される構築物を言い、代表的に組換えDNA技術の使用の結果生じる(非天然の)核酸分子(例えば組換え核酸)を指す。代表的に、核酸構築物は、天然では見られない様式で組み合わされ配置されている核酸配列のセグメントを含有するように修飾されている、一本鎖または二本鎖の核酸分子である。核酸構築物は、「ベクター」(例えば、プラスミド、rAAVベクターゲノム、発現ベクターなど)、すなわち、外因的に生成されたDNAを宿主細胞に送達するように設計された核酸分子であり得る。
【0018】
本明細書において、用語「相補率(%)」とは、基準配列の相補配列の塩基配列に対する一本鎖核酸の塩基配列の一致率を指す。相補率は、基準配列の長さを基準に計算される。基準配列の相補配列と一本鎖核酸の塩基配列が完全に一致する場合、相補率は100%である。本開示における非相補領域を除去した実施形態においては、非相補領域が存在していると仮定して、上記一致率が算出される。 本明細書において「タンパク質」、「ポリペプチド」および「ペプチド」は、同じ意味で使用され、任意の長さのアミノ酸のポリマーをいう。このポリマーは、直鎖であっても分岐していてもよく、環状であってもよい。アミノ酸は、天然のものであっても非天然のものであってもよく、改変されたアミノ酸であってもよい。この用語はまた、天然または人工的に改変されたポリマーも包含する。そのような改変としては、例えば、ジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化または任意の他の操作もしくは改変(例えば、標識成分との結合体化)が包含される。アミノ酸は、本開示において、一般に知られている三文字記号又はIUPAC-IUB生化学命名委員会(Biochemical Nomenclature Commission)によって推奨される一文字記号で表される場合がある。同様に、ヌクレオチドは、一般に受け入れられている一文字コードによって表される場合がある。なお、本明細書では、ヌクレオチドの表示は、配列表の規則に従うため、RNAの場合でもTと表示することがあるが、当業者はTとの表示がRNAの場合にはUを意味するものと理解する。
【0019】
本明細書において「ポリヌクレオチド」および「核酸」は、同じ意味で使用され、任意の長さのヌクレオチドのポリマーをいう。核酸の例として、DNA、RNA、cDNA、mRNA、rRNA、tRNA、マイクロRNA(miRNA)、lncRNAが挙げられる。この用語はまた、「ポリヌクレオチド誘導体」を含む。「ポリヌクレオチド誘導体」とは、ヌクレオチド誘導体を含むか、またはヌクレオチド間結合が通常とは異なるポリヌクレオチドをいう。「ヌクレオチド誘導体」とは、天然のDNAまたはRNAにおいて使用される通常のヌクレオチドとは異なる構造を有するヌクレオチドをいい、例えば、ロックト核酸(LNA)、2’-O,4’-C-エチレン架橋核酸(2'-O,4'-C-ethylene bridged nucleic acid、ENA)などのエチレン核酸、その他の架橋核酸(bridged nucleic acid、BNA)、ヘキシトール核酸(hexitol nucleic acid、HNA)、アミド架橋核酸(Amido-bridged nucleic acid、AmNA)、モルホリノ核酸、トリシクロ-DNA(tcDNA)、ポリエーテル核酸(例えば、米国特許第5,908,845号参照)、シクロヘキセン核酸(CeNA)などが挙げられる。ヌクレオチド間結合が通常とは異なる例として、例えば、リン酸ジエステル結合がホスホロチオエート結合に変換されたオリゴヌクレオチド間結合、リン酸ジエステル結合がN3’-P5’ホスホロアミデート結合に変換されたオリゴヌクレオチド間結合、リボースとリン酸ジエステル結合とがペプチド核酸結合に変換されたオリゴヌクレオチド間結合などが挙げられる。
【0020】
本明細書において「遺伝子」とは、一定の生物学的機能を果たす核酸部分を指す。この生物学的機能として、ポリペプチドまたはタンパク質をコードすること、タンパク質非コード機能性RNA(rRNA、tRNA、マイクロRNA(miRNA)、lncRNAなど)をコードすること、ポリペプチド、タンパク質またはタンパク質非コード機能性RNAの生産を制御すること、特定のタンパク質に特異的に結合されること、核酸の切断または複製を制御することが挙げられる。
【0021】
本明細書において「キット」とは、通常2つ以上の区画に分けて、提供されるべき部分(例えば、核酸構築物、説明書など)が提供されるユニットをいう。安定性等のため、混合されて提供されるべきでなく、使用直前に混合して使用することが好ましいような組成物の提供を目的とするときに、このキットの形態は好ましい。そのようなキットは、好ましくは、提供される部分をどのように使用するか、あるいは、試薬をどのように処理すべきかを記載する指示書または説明書を備えていることが有利である。本明細書においてキットが試薬キットとして使用される場合、キットには、通常、核酸構築物等の使い方などを記載した指示書などが含まれる。
【0022】
本明細書において「指示書」は、本開示を使用する方法を使用者に対して説明したものである。この指示書は、本開示の核酸構築物の使用方法を指示する文言が記載されている。この指示書は、通常は紙媒体で提供され得るが、それに限定されず、例えば、電子媒体(例えば、インターネットで提供されるホームページ、電子メール)のような形態でも提供され得る。
【0023】
本明細書において「(ギブスの)自由エネルギー変化(ΔG)」は、熱力学的また統計力学的に以下の式(1)および(2)で記述される。
【0024】
ΔG=ΔH-TΔS (1)
ΔG=ΔG°+RTlnK (2)
ここで、Kは平衡定数、ΔG°は標準状態(1 atm、25℃)のギブズの自由エネルギー変化量とする。核酸の平衡定数を考える場合、二つの鎖AとB(例えば、3’UTRおよび5’UTR)が1:1で会合する平衡反応として記述できる(式(3))。
【0025】
A+B⇔AB (3)
二本鎖の状態モル分率をα、核酸の全濃度をCとすると、完全解離したときのAおよびBの濃度[A]、[B]はC/2になるため、平衡定数は以下の式(4)で表すことができる。
【0026】
K=2α/((1-α)2×C) (4)
核酸が50%乖離した平衡状態であるとき、
α=1/2、ΔG=0 (5)
となるため、式(2)に式(4)および(5)を代入すると、
ΔG°=-RTmln(4/C) (6)
となる。
式(1)に式(6)を代入することで、以下の式(7)が得られる。
【0027】
1/Tm=(R/ΔH°)ln(Ct/4)+ΔS°/ΔH°(7)
1/Tmとln(C/4)の2つの関数として測定値をプロットすると、切片と傾きから標準状態のエンタルピー変化量ΔH°およびエントロピー変化量ΔS°が求められる。
【0028】
(好ましい実施形態)
以下に本開示の好ましい実施形態を説明する。以下に提供される実施形態は、本開示のよりよい理解のために提供されるものであり、本開示の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本開示の範囲内で適宜改変を行うことができることは明らかである。また、以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
【0029】
一態様において、本開示は、互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含む核酸構築物であって、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、該非相補部分の各々の長さがすべて1塩基である場合、該3’UTRの該5’UTRに対する相補率が75%より高い、核酸構築物を提供する。本開示の核酸構築物は、タンパク質発現を制御することができる。好ましくは、本開示の核酸構築物は、タンパク質発現を増加させることができる。
【0030】
いくつかの実施形態において、少なくとも1個、少なくとも2個、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個、少なくとも10個、少なくとも15個、少なくとも20個の非相補部分の長さがそれぞれ2塩基または3塩基であり得る。好ましい実施形態では、すべての非相補部分の長さが、2塩基または3塩基である。
【0031】
別の実施形態において、非相補部分の各々の長さがすべて1塩基であってもよく、この場合、3’UTRの5’UTRに対する相補率が75%より高く、例えば、75%より高く90%以下、75%より高く89%以下、80%以上90%以下、81%以上89%以下であり得る。
【0032】
いくつかの実施形態において、少なくとも1個、少なくとも2個、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個、少なくとも10個、少なくとも15個、少なくとも20個の相補部分の長さは、5塩基以上、例えば、5塩基、6塩基、7塩基、8塩基、9塩基、10塩基、11塩基、12塩基、13塩基、15塩基、または20塩基であり得る。好ましい実施形態において、少なくとも1個、少なくとも2個、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個、少なくとも10個、少なくとも15個、少なくとも20個の相補部分の長さは、5~11塩基であり得る。相補部分の長さは、すべて同じであっても、異なっていてもよいが、すべて同じであるのが好ましい。
【0033】
いくつかの実施形態において、非相補部分の長さが2塩基であり、相補部分の長さがそれぞれ独立して5~7塩基であり得る。
【0034】
いくつかの実施形態において、非相補部分の長さが3塩基であり、相補部分の長さがそれぞれ独立して8~11塩基であり得る。
【0035】
一つの実施形態において本開示は、互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含む核酸構築物であって、少なくとも一方のUTRが、他方のUTRに対する非相補部分(2)および相補部分(3)を含み、前記非相補部分と前記相補部分とが交互に存在することを特徴とする。
【0036】
一つの実施形態において交互に存在する部分以外の部分(端数部分(4)ともいう。)は1塩基以上相補部分の塩基長以下であることを特徴とする。
【0037】
一つの実施形態において、非相補部分(2)が1塩基の場合、相補部分(3)は塩基置換の場合3~6塩基長であり、塩基除去の場合 3~9塩基長である。
【0038】
一つの実施形態において、前記非相補部分(2)が2塩基の場合、相補部分(3)は塩基置換の場合5~7塩基長であり、塩基除去の場合5~11塩基長である。
【0039】
一つの実施形態において、相補部分(2)が3塩基の場合、相補部分(3)は塩基置換の場合8~9塩基長であり、塩基除去の場合8~11塩基長である。
【0040】
一つの実施形態において非相補部分(2)は、0~3塩基が通常であり、2塩基もしくは3塩基が好ましい。
【0041】
このように、置換・除去によって、適切な塩基長は、変動し得るが、本明細書の記載に基づいて当業者は適宜設計することができる。
【0042】
一つの実施形態において非相補部分(2)は、非翻訳領域中に、2種類上の長さが混在してもよい。この場合、上記好ましい塩基長は、少なくとも1つが満たすことが有利であり、すべてが満たすことが有利である。
【0043】
一つの実施形態において非相補部分(2)は、非翻訳領域中に、置換と除去が混在してもよい。この場合、この場合、上記好ましい塩基長は、少なくとも1つが満たすことが有利であり、すべてが満たすことが有利である。
【0044】
いくつかの実施形態において、非相補部分の各々の長さがすべて2塩基または3塩基である場合、前記相補率は、少なくとも60%以上、少なくとも65%以上、少なくとも70%以上、少なくとも75%以上、少なくとも80%以上、少なくとも85%以上、少なくとも90%以上であり得る。特定の実施形態において、非相補部分の各々の長さがすべて2塩基または3塩基である場合、相補率は、75%より高く、例えば、75%より高く90%以下、75%より高く89%以下、80%以上90%以下、81%以上89%以下であり得る。
【0045】
相補部分および非相補部分の長さは、所望の相補率に応じて適宜決定することができるが、典型的には、非相補部分の長さはそれぞれ独立して1~3塩基であり、相補部分の長さはそれぞれ独立して3~11塩基であり得る。
【0046】
特定の実施形態において、非相補部分がすべて1塩基である場合、相補部分の長さがそれぞれ独立して3~7塩基であり得る。
【0047】
特定の実施形態において、非相補部分がすべて2塩基である場合、相補部分の長さがそれぞれ独立して5~7塩基であり得る。
【0048】
特定の実施形態において、非相補部分がすべて3塩基である場合、相補部分の長さがそれぞれ独立して8~11塩基であり得る。
【0049】
特定の実施形態において、5’UTRまたは3’UTRのいずれか一方は、非相補部分が取り除かれていてもよい。
【0050】
いくつかの実施形態において、UTRは、GAPDH、HSD17B4、PSMB3、RPL31、RPL32、RPL35、RPL21、Albumin7、LDHB、ACAT2、ATP5A1、Ndufa4、Mp68、NOSIP、SLC7A3、TUBB4B、UBQLN2、mRPL35A、mRPL21、AIG1、COX6C、α-globin、β-globin、RPS8、TOP、MCP-1、RPL12s.c.、Ang-2、HSP70、H3.3.、Galectin-9、GADD34、EDN1、HSP70m5、E-selectin、ICAM-1、IL-6、またはvWFのUTRから選択され得る。その他のUTRの例は、特表2021-501572、特表2015-517803、および特開2022-164843に開示されている。
【0051】
別の態様において、本開示の核酸構築物はキットとして提供されてもよい。
【0052】
さらなる態様において、本開示は、核酸構築物を製造する方法であって、核酸構築物は、互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含み、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、方法は、複数の候補核酸構築物を設計する工程、設計した複数の候補核酸構築物の二次構造の自由エネルギー変化(ΔG)を計算する工程、自由エネルギー変化が所定値またはその範囲(例えば、最大値(ΔGmax)および最小値(ΔGmin)の平均値に対する増加率0%~60%)である候補核酸構築物を選択する工程、および必要に応じて、選択された候補核酸構築物の細胞における発現量を測定する工程を含む、方法を提供する。
【0053】
いくつかの実施形態において、自由エネルギー変化(ΔG(kcal/mol))は、核酸二次構造予測プログラム、例えば、mfold(GCG Software)、IPknot、CentroidFold (https://www.ncrna.org/)、ViennaRNA (http://rna.tbi.univie.ac.at/)、RNALOSS (P Clote, RNALOSS: a web server for RNA locally optimal secondary structures, Nucleic Acids Res. 2005 Jul 1; 33: W600-4.)、またはRNA Secondary structure prediction (http://www.genebee.msu.su/services/rna2_reduced.html)によって計算され得る。
【0054】
自由エネルギー変化が所定値またはその範囲は、当業者であれば、実施例6および7を参照して、適宜決定することができる。具体的には、種々の相補率を有する核酸構築物を作製して、核酸構築物によるタンパク質発現量と自由エネルギー変化とを相関させることによって、発現量が最大となる自由エネルギー変化の所定値またはその範囲を決定することができる。
【0055】
いくつかの実施形態において、本開示の核酸構築物の二次構造の自由エネルギーは、
((ΔGmax+ΔGmin)/2)×t
であり得る。ここで、t=0.9~1.7、好ましくはt=1~1.6、最も好ましくはt=1.1~1.5であり得る。
【0056】
いくつかの実施形態において、自由エネルギー変化は、核酸構築物における3’UTRと5’UTRとの相互作用の自由エネルギー変化であり得る。
【0057】
いくつかの実施形態において、自由エネルギー変化の最大値(ΔGmax)は、3’UTRまたは5’UTR全塩基と、これの相補鎖においてミスマッチ置換を行った5’UTRまたは3’UTR配列(すなわち相補率0%の配列)との相互作用についての自由エネルギー変化であり、自由エネルギー変化の最小値(ΔGmin)は、5’-3’UTR相補率100%の配列の5’UTRと3’UTRとの相互作用についての自由エネルギー変化であり得る。
【0058】
特定の実施形態において、前記平均値に対する増加率は、0%~60%であり、好ましくは10%~50%であり得る。
【0059】
本開示は、核酸技術の応用分野(例えば医薬)において応用され得る。例えば本開示の核酸構築物であるmRNAはmRNA医薬の原薬として用いることもできる。また本開示の核酸構築物であるプラスミドDNAはmRNA原薬の製造に用いるセルバンクを作成するのに用いることができる。また、本開示の核酸構築物である直鎖状鋳型DNAは原材料としてmRNA原薬の製造工程中に用いることもできる。
【0060】
本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値」の「範囲内」と明記した場合、その範囲には2つの値自体も含む。
【0061】
本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
【0062】
以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したのではない。従って、本開示の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、請求の範囲によってのみ限定される。
【実施例】
【0063】
試薬類は具体的には実施例中に記載した製品を使用したが、他メーカー(Sigma-Aldrich、和光純薬、ナカライ、R&D Systems、USCN Life Science INC等)の同等品でも代用可能である。
【0064】
(分子生物学実験操作)
一般的なDNA、RNA、遺伝子組換えの実験操作については、標準プロトコル(Sambrook, J., et al., Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York(1989))に従って行った。
【0065】
(製造実施例)
(低融点アガロースゲルを用いたDNA断片の精製)
DNA断片は、2-ヒドロキシエチルアガロース(シグマアルドリッチ)および1×TAEバッファー(ナカライ)を用い作製した0.7%の低融点アガロースゲルにより、電圧100Vで1時間の電気泳動により分離した。泳動後のゲルは、GelRed 核酸ゲル染色液(富士フイルム和光純薬)を含む1×TAEバッファーにより30分間染色し、長波長の紫外線(366nm)で可視化することにより、目的のDNA断片をアガロースゲルから回収した。DNA断片を含むアガロースゲルは、Thermostable β―Agarase(ニッポンジーン)存在下で、63℃で5分間インキュベートしさらに60℃で10分間インキュベートすることにより溶解したのち、TE飽和フェノール(ナカライ)を添加し十分混合した。遠心分離(20,000×g、10分間)によりフェノール相と水相に分離し、水相は新しいチューブに回収した。回収した水相は、1-ブタノールを添加し十分混合したのち遠心分離(20,000×g、10分間)により1-ブタノール相と水相に分離し、分離した1-ブタノール相を除去する一連の操作を3回繰り返すことにより、フェノールを除去するとともに水相の体積を減少させた。この水相に3M酢酸カリウム-酢酸緩衝液(pH5.2)、エタノールを添加し十分混合したのち遠心分離(20,000×g、10分間)することによりDNA断片を沈殿させた。沈殿したDNA断片は70%エタノールで洗浄したのちTEバッファー(ナカライ)に溶解させた。
【0066】
(合成オリゴヌクレオチドのアニーリング)
5μlずつ混合した2種類の100μM合成オリゴヌクレオチドを、TaKaRa PCR Thermal Cycler Dice Touch(タカラバイオ)をもちいて99℃10秒間インキュベーションののち40℃まで90分間かけて徐々に冷却することにより、50μMの2本鎖オリゴヌクレオチドを形成させた。この2本鎖オリゴヌクレオチドは蒸留水により0.5μMに希釈した。
【0067】
(ライゲーション、大腸菌形質転換、プラスミド調製)
1~20ng/μlの制限酵素処理を行ったプラスミド溶液1μl、0.1~20ng/μlのDNA断片溶液1μlもしくは0.5μMの2本鎖オリゴヌクレオチド溶液1μlおよびDNA Ligation Kit <Mighty Mix>(タカラバイオ)2μlを混合し、16℃で1~4時間インキュベーションすることによりライゲーション反応を行った。この反応液1μlと大腸菌JM109コンピテントセル(タカラバイオ)10μlを混合し、氷上に1時間静置後、42℃の湯浴で1分間インキュベーションした。インキュベーション後の大腸菌は、氷上で2分静置後、SOC培地を50μl添加し、小型回転培養機RT-50(タイテック)により回転速度30rpmで37℃1時間培養した。培養後の大腸菌は10μg/mlカルベニシリンを含むLB培地寒天プレートに塗抹し37℃で一晩培養した。寒天プレート上に形成した大腸菌コロニーは、10μg/mlカルベニシリンを含む2mlのLB液体培地に植菌し、中型恒温振とう培養機BR―53FP(タイテック)により回転速度220rpmで37℃下一晩振とう培養を行った。培養後の大腸菌は、遠心分離(20,000×g、1分間)により回収し、QIAprep Spin Miniprep Kitおよび核酸抽出精製装置QIAcube(キアゲン)により製造元の使用説明書に従ってプラスミドを調製した。
【0068】
(RNA合成の鋳型となるプラスミドの構築)
T7プロモーター配列、コザック配列、終止コドンおよび101塩基長のポリA連続配列から構成されるDNA断片は、3’末端が一部相補となっている配列番号1、2に示す合成オリゴヌクレオチドをアニールさせその一本鎖部分をKOD―Plus―Ver.2(東洋紡)の5’から3’方向へのポリメラーゼ伸長反応により二本鎖とした産物を鋳型として、プライマーCommon-FとCommon-R(配列番号3、4)およびKOD―Plus―Ver.2を用いたPCRにより増幅した。このDNA断片には、T7プロモーター配列とコザック配列の間に5’UTRを挿入するためのBsaIサイト、コザック配列と終止コドンの間に翻訳領域(ORF)を挿入するためのBspQIサイト、終止コドンとポリA配列の間に3’UTRを挿入するためのPaqCIサイトおよびポリA連続配列の下流に鋳型DNA直鎖化のためのBsmBIサイトを付加している。この増幅したDNA断片は、MinElute PCR Purification Kit(キアゲン)により精製したのち、pBR322_ΔtypeIISプラスミドのXcmIサイトに挿入することにより、pT7_TL_pA100プラスミド(配列番号135)を構築した。
【0069】
蛍光タンパク質E2CrimsonをコードするDNA断片は、3’末端が一部相補となっている配列番号5、6、配列番号7、8および配列番号9、10の合成オリゴヌクレオチドをそれぞれアニールさせ、これら一本鎖部分をKOD―Plus―Ver.2(東洋紡)の5’から3’方向へのポリメラーゼ伸長反応により二本鎖とした産物を鋳型として、プライマーCommon-FとCommon-R(配列番号3、4)およびKOD―Plus―Ver.2を用いたPCRにより増幅した。増幅したDNA断片はpBR322_ΔtypeIISプラスミドのXcmIサイトに挿入することによりpBR_E2Crimsonプラスミドを構築した。pBR_E2CrimsonをBspQI処理することにより得たE2CrimsonDNA断片を、pT7_TL_pA100のPaqCIサイトに挿入することにより、pT7_TL_E2Crimson_pA100プラスミドを構築した。SARS CoV2 Spikeタンパク質をコードするDNA断片は、Messenger RNA encoding the full-length SARS-CoV-2 spike glycoprotein Sept. 2020 document 11889;第19回厚生科学審議会予防接種・ワクチン分科会 資料(https://www.mhlw.go.jp/stf/shingi2/0000192554_00004.html)に記載された配列とした。このDNA断片をpT7_TL_E2Crimson_pA100プラスミド内E2Crimsonをコードする領域の上流に挿入することにより、pT7_TL_Spk_E2Crimson_pA100プラスミドを構築した。
【0070】
ファイザー社5’UTR配列は、配列番号13、14に示す合成オリゴヌクレオチドをアニールすることにより得た。このDNA断片をpT7_TL_E2Crimson_pA100もしくはpT7_TL_Spk_E2Crimson_pA100のBsaIサイトに挿入することによりpT7_TL_5Pf_E2Crimson_pA100プラスミドもしくはpT7_TL_5Pf_Spk_E2Crimson_pA100プラスミドを構築した。ファイザー社3’UTR配列は、3’末端が一部相補となっている配列番号11、12に示す合成オリゴヌクレオチドをアニールさせその一本鎖部分をKOD―Plus―Ver.2(東洋紡)の5’から3’方向へのポリメラーゼ伸長反応により二本鎖とした産物を鋳型として、プライマーCommon-FとCommon-R(配列番号3、4)およびKOD―Plus―Ver.2を用いたPCRにより増幅した。このPCR断片をpBR322_ΔtypeIISプラスミドのXcmIサイトにクローニングすることによりpBR-3Pfプラスミドを構築した。このpBR-3PfプラスミドをBsaI処理することにより得たファイザー社3’UTR配列を、pT7_TL_5Pf_E2Crimson_pA100もしくはpT7_TL_5Pf_Spk_E2Crimson_pA100のPaqCIサイトに挿入することによりpT7_TLpA_5Pf_E2Crimson_3Pf_pA100(配列番号136)もしくはpT7_TL_5Pf_Spk_E2Crimson_3Pf_pA100(配列番号300)を構築した。
【0071】
GAPDH遺伝子の5’UTR配列は、配列番号15、16に示す合成オリゴヌクレオチドをアニールすることにより得た。このDNA断片をpT7_TL_E2Crimson_pA100のBsaIサイトに挿入することによりpT7_TL_5GAP_E2Crim_pA100プラスミドを構築した。GAPDH遺伝子の5’UTR配列と部分的に相補となる3’UTR配列は、以下に記載する合成オリゴヌクレオチドをアニールさせることにより得た。このDNA断片をpT7_TL_5GAP_E2Crim_pA100のPaqCIサイトに導入することにより、pT7_TL_5GAP_E2Crim_3UTR_pA100プラスミドを構築した。合成オリゴヌクレオチドの配列番号および構築されたプラスミドの組み合わせは以下の表1に記載する。
【0072】
【0073】
ファイザー社5’UTR配列と部分的に相補となる3’UTR配列は、以下に記載する合成オリゴヌクレオチドをアニールさせることにより得た。このDNA断片をpT7_TL_5Pf_E2Crimson_pA100のPaqCIサイトに導入することにより、pT7_TL_5Pf_E2Crim_3UTR-100_pA100プラスミドを構築した。合成オリゴヌクレオチドの配列番号および構築されたプラスミドの組み合わせを以下に記載する。
【0074】
【0075】
【0076】
【0077】
【0078】
HSD17B4遺伝子の5’UTR配列は、配列番号99、100に示す合成オリゴヌクレオチドをアニールすることにより得た。このDNA断片をpT7_TL_E2Crimson_pA100のBsaIサイトに挿入することによりpT7_TL_5HSD_E2Crim_pA100プラスミドを構築した。HSD17B4遺伝子の5’UTR配列と部分的に相補となる3’UTR配列は、以下に記載する合成オリゴヌクレオチドをアニールさせることにより得た。このDNA断片をpT7_TL_5HSD_E2Crim_pA100のPaqCIサイトに導入することにより、pT7_TL_5HSD_E2Crim_3UTR_pA100プラスミドを構築した。合成オリゴヌクレオチドの配列番号および構築されたプラスミドの組み合わせは以下の通りである。
【0079】
【0080】
(T7RNAポリメラーゼによるin vitro転写)
鋳型DNAからRNAポリメラーゼが解離することによりRNA合成を停止させ、かつ合成したRNAの3’末端をAヌクレオチド連続配列とするために、鋳型DNAとなるプラスミドは制限酵素BsmBI(New England Biolab)により直鎖化した。BsmBI処理後のプラスミドは、TE飽和フェノールを添加し十分混合したのち、遠心分離(20,000×g、10分間)により有機相と水相とに分離させ、水相は新しいチューブに回収した。回収した水相は、1-ブタノールを添加し十分混合したのち遠心分離(20,000×g、10分間)により1-ブタノール相と水相に分離し、分離した1-ブタノール相を除去した。この操作を3回繰り返すことによりフェノールを完全に除去するとともに水相の体積を減少させた。この水相に3M酢酸ナトリウム溶液(pH5.2)(ナカライ)、エタノールを添加し十分混合したのち遠心分離(20,000×g、10分間)することによりDNA断片を沈殿させた。沈殿したDNA断片は、70%エタノールで洗浄したのち、蒸留水に溶解し直鎖鋳型DNAを得た。25ng/μl直鎖鋳型DNA、1×T7RNAポリメラーゼ添付バッファー(タカラバイオ)、5mM DTT、1.6mM CleanCap(TriLink)、0.4mM GTP、2.0mM ATP、2.0mM CTPおよび2.0mM N1―メチルシュードUTP(TriLinkもしくはヤマサしょう油)、1U/μl Recombinant RNase Inhibitor(タカラバイオ)2U/ml無機ピロフォスファターゼ(New
England Biolab)、2.5U/μl T7 RNAポリメラーゼ(タカラバイオ)の条件下、42℃で3時間インキュベーションすることによりin vitro転写反応を行った。この反応後、残存する直鎖鋳型DNAを除去するために、Recombinant DNaseI(タカラバイオ)を終濃度0.125U/μlとなるように添加し、さらに37℃で15分間インキュベーションした。反応後のRNAを含む溶液は、クエン酸飽和フェノール(pH4.3)(ナカライ)とクロロホルム(ナカライ)の1:1混合溶液を添加し十分混合したのち、遠心分離(20,000×g、10分間)により有機相と水相とに分離させた。回収した水相にクロロホルムを添加し十分混合したのち、遠心分離(20,000×g、10分間)によりクロロホルム相と水相に分離させた。この操作を2回繰り返すことで水相に含まれるフェノールを完全に除去した。この水相に3M酢酸ナトリウム溶液(pH5.2)およびエタノールを添加し、十分混合したのち遠心分離(20,000×g、10分間)することによりRNAを沈殿させた。沈殿したRNAは70%エタノールで洗浄したのち50μlの蒸留水に溶解した。このRNA溶液は、あらかじめ700×gで1分間遠心分離したMicroSpin S―200 Column(Cytiva)にアプライし、700×gで2分間の遠心分離ののちさらに蒸留水50μl添加後700×gで2分間の遠心分離を行い、このRNA溶液に含まれる未反応のヌクレオチドを除去した。この溶出液に3M酢酸ナトリウム溶液(pH5.2)およびエタノールを添加し、十分混合したのち遠心分離(20,000×g、10分間)することによりRNAを沈殿させた。沈殿したRNAは70%エタノールで洗浄したのち20μlの蒸留水に溶解した。RNA濃度は微量分光光度計Nano drop One(Thermofisher)およびQubit RNA Broad Range Assasy Kit(Thermofisher)により製造元の使用説明書に従い定量した。
【0081】
(定量実施例)
(培養細胞へのRNAトランスフェクションおよび蛍光タンパク質発現量の定量)
293細胞は10% FBS(Thermofisher)、ペニシリン-ストレプトマイシン混合溶液(ナカライ)を添加したDMEM(Thermofisherもしくはナカライ)中において5%CO2存在下37℃で培養した。6ウェル培養プレート1ウェルあたり1.5mlの培地中に1×105細胞となるように播種し、37℃で24時間培養したのちRNAトランスフェクションを行った。1ウェルあたりOpti-MEM(Thermofisher)48.5μlとLipofectamine messengerMAX(Thermofisher)1.5μlの混合物および50ngのRNAを含むOpti-MEM50μlをそれぞれあらかじめ調製したのち、これらを混合し室温で10分間インキュベーションした。この溶液を培養ウェルに添加しさらに37℃で24時間培養した。RNAトランスフェクション後の293細胞は、1ウェルあたり1mlのDPBS(Thermofisher)で洗浄後、0.5mlのトリプシン―EDTA(ナカライ)により培養プレート底面から解離させた。解離後の細胞は1mlのDPBSを添加するとともに1.5mlチューブに移したのち、3000×gで3分間の遠心分離により回収した。回収した細胞は100μlのDPBSに再度懸濁し、そのうち30μlを384ウェル・マイクロプレート・平底・黒(グライナー)に分注した。各ウェルに含まれるE2Crimsonタンパク質の相対量を、プレートリーダーInfinite 200 PRO(TECAN)による励起波長606nm、蛍光波長651nmの蛍光測定により算出した。さらに、上記蛍光測定ののち、各ウェルに分注した細胞懸濁液に5μg/mlのCalcein-AM(同仁化学)を含むDPBSを3μl添加し混合し、37℃で30分間インキュベートした。各ウェルに含まれる相対生細胞数を、細胞内エステラーゼによるCalcein-AMの加水分解産物であるCalceinが示す励起波長480nm、蛍光波長533nmの蛍光測定により算出した。なお、E2Crimsonタンパク質の示す蛍光が、Calceinの示す蛍光に干渉しないことを別途確認している。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。
【0082】
(実施例1:5’-3’非翻訳領域間の相補性による発現効率化:非相補2および3塩基の有用性)
本実施例では、5’UTRがGAPDH遺伝子配列、ファイザー配列、HSD17B4遺伝子配列とするmRNAの発現レベルを検証した。いずれも比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。構築物の製造および発現量の定量は、上記製造実施例および定量実施例に基づき行った。
【0083】
(結果)
結果を
図1に示す。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。(相補塩基数)/(非相補塩基数)=3の場合、5’UTRがGAPDHまたはHSD17B4の場合は、非相補2塩基または3塩基がより、高い発現量を示した。5’UTRがファイザーの場合は、非相補1~3塩基においてほぼ同等であった。
【0084】
図2は、5’UTRはGAPDH遺伝子配列、3’UTRはこの5’UTRと100%、94%、もしくは75%の相補率をもつ配列とするmRNAの発現レベルを検証した結果を示している。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。非相補部分が2塩基(#2)の場合において最も高い発現量を示し、非相補部分が1塩基および4塩基の場合において発現量は同等であった。相補性が90%を超えると、発現量が低下した。また、非相補部分が4塩基を超えると、発現量が低下した。
【0085】
(実施例2:5’-3’非翻訳領域間の相補性による発現効率化:5’UTR GAPDH)
本実施例では、5’UTRとしてGAPDH遺伝子配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、293細胞における発現レベルを検証した。構築物の製造および定量は、上記製造実施例および定量実施例に基づき行った。
【0086】
(結果)
図3は、本実施例で使用した3’UTRおよび5’UTRの各塩基配列を示す。
図4に結果を示す。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。非相補部分が1塩基の場合、相補率75~89%および相補部分3~7塩基において、高い発現量を示した。相補部分が7塩基を超えると、発現量が低下した。また、非相補部分が2塩基かつ相補部分が6塩基の場合、非相補部分が3塩基かつ相補部分が11塩基の場合、高い発現量を示した。
【0087】
(実施例3:5’-3’非翻訳領域間の相補性による発現効率化:5’UTR ファイザー配列)
本実施例では、5’UTRとしてファイザー配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、293細胞における発現レベルを検証した。構築物の製造および定量は、上記製造実施例および定量実施例に基づき行った。
【0088】
(結果)
図5は、本実施例で使用した3’UTRおよび5’UTRの各塩基配列を示す。結果を
図6に示す。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。相補-非相補:4-1、3-1、6-2、5-2、9-3のmRNAにおいて、ファイザー配列より発現レベルが亢進し、最大で約50%増大した。相補塩基数が短いと発現量が高い傾向にあった。
【0089】
(実施例4:5’-3’非翻訳領域間の相補性による発現効率化:5’UTR HSD17B4配列)
本実施例では、5’UTRとしてHSD17B4遺伝子配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、293細胞における発現レベルを検証した。構築物の製造および定量は、上記製造実施例および定量実施例に基づき行った。
【0090】
(結果)
図7は、本実施例で使用した3’UTRおよび5’UTRの各塩基配列を示し、結果は
図8を示す。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。相補-非相補:4-1、3-1、6-2、5-2、9-3、8-3のmRNAにおいて、ファイザー配列より発現レベルが亢進した。
【0091】
以上をまとめると、非相補部分が1塩基の場合、相補部分は3~7塩基であることが好ましく、非相補部分が2塩基の場合、相補部分は5~7塩基であることが好ましく、非相補部分が3塩基の場合、相補部分は8~11塩基が好ましい。
【0092】
(実施例5:5’-3’非翻訳領域間の相補性による発現効率化:相補率75~80%での臨界的意義)
本実施例では、5’UTRとしてGAPDH遺伝子配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、293細胞における発現レベルを検証した。構築物の製造および定量は、上記製造実施例および定量実施例に基づき行った。合成オリゴヌクレオチドの配列番号および構築されたプラスミドの組み合わせは以下の通りである。
【0093】
【0094】
(結果)
図9は、本実施例で使用した3’UTRおよび5’UTRの各塩基配列を示し、結果を
図10に示す。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して3サンプルの測定を行いその平均値をプロットで示している。
図10は、相補率が75%~80%の間で最大値となり、75%またはそれより高い相補率が好ましいことを示している。
【0095】
(実施例6:5’-3’非翻訳領域間の相補性による発現効率化:自由エネルギー変化)
本実施例では、3’UTRが5’UTRと部分的に相補性をもつmRNAについて、5’UTRと3’UTRの相互作用における自由エネルギー変化と各mRNAの発現レベルの相関を調べた。構築物の製造および定量は、上記製造実施例および定量実施例に基づき行った。
【0096】
(結果)
結果を
図11に示す。発現レベルは5’UTR、3’UTRがいずれもファイザー配列のmRNAを1として算出した。自由エネルギー変化は2次構造予測プログラムMfoldにより求めた(Michael Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res. 2003 Jul 1;31(13):3406-15)。図左、中央、右に、5’UTRがそれぞれGAPDH遺伝子、HSD17B4遺伝子、ファイザー配列のときの結果を示している。各5’UTRについて、得られた実測値をシグモイド曲線のひとつである4係数ロジスティック曲線y=d+(a-d)/(1+(x/c)^b)にそれぞれフィッティングした。
図11は、自由エネルギー変化と発現量とが相関しており、自由エネルギー変化から発現量をある程度予測することができることが明らかとなった。
【0097】
図12を示す。自由エネルギー変化の最大値は、5’UTRと3’UTRの相補率が100%となる3’UTRの全塩基に対して、5’UTRとミスマッチとなるよう塩基置換を行ったmRNAについて、その自由エネルギー変化をMfoldにより求めた値とした。相対的な自由エネルギー変化の値は、変曲点からの増加率(右側シフト)を指標とし、変曲点となる値と最大値の差を100%として算出した。変曲点からの増加が10%以上50%以下の自由エネルギー変化値となるmRNAにおいて、その発現レベルが最大となった。
【0098】
図13は、5’UTRと3’UTR配列からのmRNAの発現レベルを予測する方法を示している。自由エネルギー変化の最大値と最小値は、
図12と同様に求めた。この自由エネルギーの最大値と最小値の平均値が、シグモイド曲線の変曲点となる自由エネルギー変化の値と一致することを見出した。この平均値をもちいることで、誤差4.9kcal/mol以下もしくは13.1%以下の精度で、変曲点を予測することができた。この誤差パーセントは、
図12と同様に、変曲点となる値と自由エネルギー変化最大値の差を100%として算出している。この変曲点の予測に基づき、発現レベルが最大となるmRNAにおける5’UTRと3’UTRの相互作用の自由エネルギー変化が予測できる。
【0099】
(実施例7:自由エネルギー変化を用いた発現量の予測)
1.5’UTRの候補配列を設計する。
2.5’UTRと部分的に相補(相補率40~90%)となる3’UTRの候補配列を、非相補1,2もしくは3塩基でありかつ相補4~14塩基となるように設計する。このとき相補塩基数は連続した数とする。例えば、相補7~10塩基を選択するのであれば相補7、8、9、10塩基とする配列をすべて設計する。5’UTR1種につき10~20種類設計する。
3.設計した配列について、2次構造予測プログラムMfoldにより自由エネルギー変化を求める。
4.自由エネルギー変化の最大値および最小値の平均を基準値とする。ここで、自由エネルギー変化の最大値は、3’UTR全塩基についてミスマッチ置換を行った配列に基づき、自由エネルギー変化の最小値は、5’-3’UTR相補率100%の配列に基づく。
5.基準値に対する増加率0%~60%の範囲の自由エネルギー変化の値をもつ候補配列を選択する。
6.必要に応じて、選択した候補配列のタンパク質発現量を確認し、発現量が高い配列を選択する。
【0100】
(実施例8:5’-3’非翻訳領域間の相補性による発現効率化:筋芽細胞株C2C12)
本実施例では、5’UTRとしてファイザー配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、C2C12細胞における発現レベルを検証した。構築物の製造および定量は、上記製造実施例および定量実施例に基づき行った。
【0101】
(結果)
図5は、本実施例で使用した3’UTRおよび5’UTRの各塩基配列を示す。結果を
図15に示す。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。相補-非相補:4-1、3-1、6-2、5-2、9-3のmRNAにおいて、ファイザー配列より発現レベルが亢進し、最大で約60%増大した。
図6に示した293細胞における結果と同等であったことから、部分的に相補的である5’非翻訳領域(UTR)および3’UTRがもたらす効果は、細胞種に限定されないことが明らかとなった。
【0102】
(実施例9:5’-3’非翻訳領域間の相補性による発現効率化:長鎖mRNA)
本実施例では、5’UTRとしてファイザー配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列、ORFとしてSARS CoV2 Spike、E2Crimson融合タンパク質をもつmRNAについて、293細胞における発現レベルを検証した。構築物の製造および定量は、上記製造実施例および定量実施例に基づき行った。
【0103】
(結果)
図5は、本実施例で使用した3’UTRおよび5’UTRの各塩基配列を示す。結果を
図16に示す。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。相補-非相補:6-1、3-1、11-2、8-2、7-2、6-2、5-2、12-3、11-3、10-3、9-3、8-3において、ファイザー配列より発現レベルが亢進し、最大で約2倍増大した。
図6に示したE2Crimsonタンパク質をORFとするmRNAにおける結果と同等であった。SARS CoV2 Spike、E2Crimson融合タンパク質のORFは4.5 kbp、E2Crimsonタンパク質のORFは0.7 kbpであることから部分的に相補的である5’非翻訳領域(UTR)および3’UTRがもたらす効果は、ORF種別およびその鎖長に限定されないことが明らかとなった。
【0104】
(実施例10:5’-3’非翻訳領域間の相補性による発現効率化:非相補部分を塩基除去)
本実施例では、5’UTRとしてファイザー配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、293細胞における発現レベルを検証した。これら3’UTRにおいて塩基を除去することにより非相補配列としている。構築物の製造および定量は、上記製造実施例および定量実施例に基づき行った。
【0105】
(結果)
図17(2)に本実施例で使用したmRNAについて模式図として示す。
図18は、本実施例で使用した3’UTRおよび5’UTRの各塩基配列を示す。
図18(2)に示す3’UTR上の非相補部位を除去したmRNAの結果を
図19および
図20に示す。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。相補-非相補:9-1、5-1、4-1、3-1、9-2、8-2、7-2、6-2、5-2、11-3、10-3、9-3、8-3において、ファイザー配列より発現レベルが亢進し、最大で約60%増大した。
図6に示す非相補部分を塩基置換とした場合においては、相補-非相補:4-1、3-1、6-2、5-2、9-3、8-3のmRNAにおいてファイザー配列より発現レベルが亢進したことから、塩基除去の場合は相補鎖が長くかつ高相補率のmRNAにおいて発現レベルが高くなる傾向が認められた。さらに
図18(3)に示す5’UTR上の非相補部位を除去したmRNA、
図18(4)に示す塩基置換と塩基除去が混在するmRNA、
図18(5)に示す3’UTRにおいて塩基を追加することにより非相補配列を作出したmRNA、
図18(6)に示す5’UTRにおいて塩基を追加することにより非相補配列を作出したmRNAの発現レベルも同様の方法で確認する。配列番号301-315、334―339にmRNA合成に用いるプラスミドの配列を示す。
図18(2)に示す3’UTR上の非相補部位を除去したmRNAと同様に発現レベルが制御されうる。
【0106】
【0107】
【0108】
(実施例11:5’-3’非翻訳領域間の相補性による発現効率化:非相補部分を塩基除去・筋芽細胞株C2C12)
本実施例では、5’UTRとしてファイザー配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、C2C12細胞における発現レベルを検証した。これら3’UTRにおいて塩基を除去することにより非相補配列としている。構築物の製造および定量は、上記製造実施例および定量実施例に基づき行った。
【0109】
(結果)
図19および
図20において使用したmRNAにより得られた結果を
図21および
図22に示す。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。相補-非相補4-1、3-1、8-2、7-2、6-2、5-2、11-3、10-3、9-3、8-3において、ファイザー配列より発現レベルが亢進し、最大で約50%増大した。
図15に示す非相補部分を塩基置換とした場合においては、相補-非相補:4-1、3-1、6-2、5-2、9-3のmRNAにおいてファイザー配列より発現レベルが亢進したことから、293細胞の場合と同様に、塩基除去の場合は相補鎖が長くかつ高相補率のmRNAにおいて発現レベルが高くなる傾向が認められた。
【0110】
(実施例12:5’-3’非翻訳領域間の相補性による発現効率化:非相補部分を塩基除去・筋芽細胞株C2C12・長鎖mRNA)
本実施例では、5’UTRとしてファイザー配列、3’UTRとしてこの5’UTRと部分的に相補性をもつ各種配列をもつmRNAについて、C2C12細胞における発現レベルを検証した。これら3’UTRにおいて塩基を除去することにより非相補配列としている。またORFはSARS CoV2 Spike、E2Crimson融合タンパク質としている。構築物の製造および定量は、上記製造実施例および定量実施例に基づき行った。
【0111】
(結果)
結果を
図23に示す。比較対象として5’UTR、3’UTRがいずれもファイザー配列のmRNAを用いた。E2Crimson蛍光測定値のCalcein蛍光測定値に対する比率を、各mRNAにおけるE2Crimsonタンパク質の相対発現量とした。各mRNAに対して複数サンプルについて測定を行い、その平均値を棒グラフで、各サンプルの個別値を黒プロットで示している。相補-非相補:9-1,6-1、5-1、11-2、10-2、9-2、8-2、7-2、11-3、10-3、8-3において、ファイザー配列より発現レベルが亢進し、最大で約40%増大した。
図16に示す非相補部分を塩基置換とした場合においては、相補-非相補:6-1、11-2、8-2、7-2、6-2、5-2、12-3、11-3、10-3、9-3、8-3のmRNAにおいてファイザー配列より発現レベルが亢進したことから、長鎖mRNAでも同様に塩基除去の場合は相補鎖が長くかつ高相補率のmRNAにおいて発現レベルが高くなる傾向が認められた。
【0112】
(実施例13:5’-3’非翻訳領域間の相補性による発現効率化:塩基数の異なる非相補部分が混在する場合)
図24は、本実施例で使用する3’UTRおよび5’UTRの各塩基配列を示す。配列番号316-333にmRNA合成に用いるプラスミドの配列を示す。
図24(1)は非相補部分がすべて置換、すなわち非相補部分の塩基数が5’UTRと3’UTRにおいて同じ場合である。これらについて前記実施例記載の方法でタンパク質の発現を確認する。
図5に示すmRNAと同様に発現レベルが制御しうる。さらに、
図24(2)は非相補部分の塩基が置換または除去されたもの、すなわち非相補部分の塩基数が5’UTRと3’UTRで異なる場合である。これらについて前記実施例記載の方法でタンパク質の発現を確認する。
図18(2)に示す3’UTR上の非相補部位を除去したmRNAと同様に発現レベルが制御されうる。
【0113】
(注記)
以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。本出願は、2023年1月31日に日本国特許庁に出願した特願2023-013290に対して優先権主張をともなうものであり、その内容は本出願において必要に応じてすべてが本明細書を構成するものとして引用される。
【産業上の利用可能性】
【0114】
本開示は、核酸技術の応用分野(例えば医薬)において応用され得る。
【配列表フリーテキスト】
【0115】
配列番号1~339:明細書中の表1を参照。
【要約】
本開示はタンパク質発現を制御することができる核酸構築物を提供する。詳細には、本開示は、互いに少なくとも部分的に相補的である5’非翻訳領域(UTR)および3’UTRを含む核酸構築物であって、少なくとも一方のUTRが、他方のUTRに対する非相補部分および相補部分を含み、該非相補部分の各々の長さがすべて1塩基である場合、該3’UTRの該5’UTRに対する相補率が75%より高い、核酸構築物を提供する。
【配列表】