(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-24
(45)【発行日】2024-10-02
(54)【発明の名称】昇圧装置
(51)【国際特許分類】
H02M 3/155 20060101AFI20240925BHJP
【FI】
H02M3/155 C
H02M3/155 P
(21)【出願番号】P 2021015790
(22)【出願日】2021-02-03
【審査請求日】2023-08-10
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110003214
【氏名又は名称】弁理士法人服部国際特許事務所
(72)【発明者】
【氏名】天野 春樹
(72)【発明者】
【氏名】藤田 敏博
(72)【発明者】
【氏名】松田 邦彦
【審査官】安食 泰秀
(56)【参考文献】
【文献】特開平06-233519(JP,A)
【文献】特開2011-030292(JP,A)
【文献】特開2007-325459(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 3/155
(57)【特許請求の範囲】
【請求項1】
入力された電源電圧を昇圧して出力する昇圧装置であって、
電源(15)に一端が接続されたコイル(21)の他端とグランドとの間に設けられ、スイッチング動作により前記コイルの他端の電圧を昇圧する昇圧スイッチング素子(25)と、
前記昇圧スイッチング素子をPWM動作させるドライブ回路(41、42)と、
前記昇圧スイッチング素子に流れる電流を監視する過電流監視回路(44)と、
前記過電流監視回路からの通知に基づき異常判定し、処置を行う制御部(50、42)と、
を備え、
前記過電流監視回路は、前記昇圧スイッチング素子に流れる電流の状態について
、前記制御部との通信間隔ごとに過電流検出回数をカウントし、前記過電流検出回数が所定回数を超えたとき、又は、前記制御部との通信間隔ごとに電流もしくは電流二乗値の積算値が閾値を超えたとき、第1条件が成立した
と判断し、前記制御部に通知信号を送信し、
前記制御部は、前記過電流監視回路から受信した前記通知信号について
、前記通知信号が所定の判定時間以上継続したとき、第2条件が成立した
と判断し、異常判定し、処置を行い、
前記制御部は、当該昇圧装置の動作中を含む複数の状況に応じて
前記判定時間を異なる値に設定するか、或いは、前記通知信号をマスクする昇圧装置。
【請求項2】
前記制御部は、当該昇圧装置の動作中を含む期間に、動作モード、又は、昇圧前もしくは昇圧後の回路で監視される電圧である監視電圧に応じて前記判定時間を異なる値に設定するか、或いは、特定の動作モードもしくは特定の前記監視電圧の範囲で前記通知信号をマスクする請求項
1に記載の昇圧装置。
【請求項3】
前記制御部は、当該昇圧装置の電源投入時に、前記判定時間を基準値よりも長く設定するか、或いは、前記通知信号をマスクする請求項
2に記載の昇圧装置。
【請求項4】
前記制御部は、当該昇圧装置のイニシャルチェックにおいて昇圧出力目標値を一時的に上げるとき、前記判定時間を基準値よりも長く設定するか、或いは、前記通知信号をマスクする請求項
2または
3に記載の昇圧装置。
【請求項5】
前記制御部は、前記監視電圧が所定の電圧閾値以下のとき、前記判定時間を基準値よりも長く設定するか、或いは、前記通知信号をマスクする請求項
2~
4のいずれか一項に記載の昇圧装置。
【請求項6】
前記制御部は、前記監視電圧の時間変化率の絶対値が所定の電圧変動閾値以上のとき、前記判定時間を基準値よりも長く設定するか、或いは、前記通知信号をマスクする請求項
2~
5のいずれか一項に記載の昇圧装置。
【請求項7】
入力された電源電圧を昇圧して出力する昇圧装置であって、
電源(15)に一端が接続されたコイル(21)の他端とグランドとの間に設けられ、スイッチング動作により前記コイルの他端の電圧を昇圧する昇圧スイッチング素子(25)と、
前記昇圧スイッチング素子をPWM動作させるドライブ回路(41、42)と、
前記昇圧スイッチング素子に流れる電流を監視する過電流監視回路(44)と、
前記過電流監視回路からの通知に基づき異常判定し、処置を行う制御部(50、42)と、
を備え、
前記過電流監視回路は、前記昇圧スイッチング素子に流れる電流の状態について
、前記制御部との通信間隔ごとに過電流検出回数をカウントし、前記過電流検出回数が所定回数を超えたとき、又は、前記制御部との通信間隔ごとに電流もしくは電流二乗値の積算値が閾値を超えたとき、第1条件が成立した
と判断し、前記制御部に通知信号を送信し、
前記制御部は、前記過電流監視回路から受信した前記通知信号について、
所定期間内の前記通知信号の受信回数又は頻度に基づき第2条件の成否を判定し、前記第2条件が成立したとき、異常判定し、処置を行い、
前記制御部は、当該昇圧装置の動作中を含む複数の状況に応じて、
所定期間内の前記通知信号の受信回数又は頻度の判定閾値を異なる値に設定する昇圧装置。
【請求項8】
前記過電流監視回路が過電流検出するごとに、前記ドライブ回路は前記昇圧スイッチング素子を強制的にオフし、次のdutyオンタイミングまでオフ状態を継続する請求項1~
7のいずれか一項に記載の昇圧装置。
【請求項9】
前記過電流監視回路の過電流検出に用いられる過電流閾値は、前記昇圧スイッチング素子の発熱に応じて可変に設定される請求項1~
8のいずれか一項に記載の昇圧装置。
【請求項10】
前記制御部は、異常判定時の処置として、前記昇圧スイッチング素子の動作を停止するか、又は、duty比を変更して前記昇圧スイッチング素子を動作させる請求項1~
9のいずれか一項に記載の昇圧装置。
【請求項11】
前記制御部がさらに前記電源の電力を用いてモータ(80)の駆動を制御する昇圧装置であって、
前記制御部は、異常判定時の処置として、さらに前記モータの駆動を停止するか、又は、前記モータの出力を制限する請求項
10に記載の昇圧装置。
【請求項12】
前記昇圧スイッチング素子、前記ドライブ回路及び前記過電流監視回路は、同一のIC(40)に内蔵されている請求項1~
11のいずれか一項に記載の昇圧装置。
【請求項13】
前記ドライブ回路(42)が前記制御部としての機能の少なくとも一部を兼ねる請求項1~
12のいずれか一項に記載の昇圧装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、昇圧装置に関する。
【背景技術】
【0002】
従来、入力された電源電圧を昇圧して出力する昇圧装置が知られている。
【0003】
また、過電流を検出したとき異常判定し動作を停止する過電流保護回路において、電源投入時等の一時的な過電流による誤判定を防止する技術が知られている。例えば特許文献1に開示されたスイッチングレギュレータは、過電流が検出されたとき、ソフトスタート回路のコンデンサをディスチャージすることで電流を制限している。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1のスイッチングレギュレータでは、ソフトスタート回路を用いるため、回路構成が複雑になり、電源投入時の立ち上げ時間が長くかかる。
【0006】
本発明は上述の点に鑑みて創作されたものであり、その目的は、過電流異常の誤判定を防止する昇圧装置において、回路構成を簡素化し、立ち上げ時間を短縮する昇圧装置を提供することにある。
【課題を解決するための手段】
【0007】
本発明は、入力された電源電圧を昇圧して出力する昇圧装置である。この昇圧装置は、昇圧スイッチング素子(25)と、ドライブ回路(41、42)と、過電流監視回路(44)と、制御部(50、42)とを備える。
【0008】
昇圧スイッチング素子は、電源(15)に一端が接続されたコイル(21)の他端とグランドとの間に設けられ、スイッチング動作によりコイルの他端の電圧を昇圧する。ドライブ回路は、昇圧スイッチング素子をPWM動作させる。過電流監視回路は、昇圧スイッチング素子に流れる電流を監視する。制御部は、過電流監視回路からの通知に基づき異常判定し、処置を行う。
【0009】
過電流監視回路は、昇圧スイッチング素子に流れる電流の状態について、制御部との通信間隔ごとに過電流検出回数をカウントし、過電流検出回数が所定回数を超えたとき、又は、制御部との通信間隔ごとに電流もしくは電流二乗値の積算値が閾値を超えたとき、第1条件が成立したと判断し、制御部に通知信号を送信する。制御部は、過電流監視回路から受信した通知信号について、通知信号が所定の判定時間以上継続したとき、第2条件が成立したと判断し、異常判定し、処置を行う。また、制御部は、当該昇圧装置の動作中を含む複数の状況に応じて判定時間を異なる値に設定するか、或いは、通知信号をマスクする。
【0010】
本発明では、過電流監視回路が過電流検出しただけでは異常判定せず、第1条件が成立したとき制御部に通知信号を送信する。制御部は、さらに第2条件が成立したときに初めて異常判定し、処置を行う。したがって、電源投入時やイニシャルチェック時の過電流に対し、異常と誤判定することが回避される。
【0011】
また本発明では、特許文献1の従来技術のようにソフトスタート回路を用いず、電源投入時やイニシャルチェック時には、昇圧スイッチング素子の定格以下に設定された過電流閾値に対して過電流を検出しながら通電する。つまり、電源投入時やイニシャルチェック時には第1条件が成立する可能性が高いことを前提としつつ、第2条件が成立しないようにすることで誤判定を防止する。これにより、回路構成を簡素化し、立ち上げ時間を短縮することができる。
【図面の簡単な説明】
【0012】
【
図1】第1実施形態による昇圧装置及び周辺の構成図。
【
図2】第1実施形態による昇圧装置が適用される電動パワーステアリング装置の概略構成図。
【
図3】ダイオード又はコイルのショート故障時に発生する過電流を示す回路図。
【
図4】第1実施形態による昇圧装置の動作を示すタイムチャート。
【
図5】第1条件が成立する例を説明するタイムチャート。
【
図11】第2実施形態による昇圧装置及び周辺の構成図。
【発明を実施するための形態】
【0013】
以下、本発明の昇圧装置の複数の実施形態を、図面に基づいて説明する。第1及び第2実施形態を包括して「本実施形態」という。本実施形態の昇圧装置は、車両の電動パワーステアリング装置において電源電圧を昇圧する。第1、第2実施形態の昇圧装置の符号をそれぞれ「301」、「302」と記し、共通する事項については昇圧装置301の説明として記載する。第1実施形態及び第2実施形態は、「制御部」として機能する要素が異なる。
【0014】
(第1実施形態)
図1に、第1実施形態の昇圧装置301及び周辺の構成を示す。昇圧回路20は、バッテリ15の低電圧時にも動作を継続できるようにするため、バッテリ15から入力された電源電圧を昇圧して出力する。昇圧回路20による昇圧前の電圧をVL、昇圧後の電圧をVHと記す。また、インバータ60は、バッテリ15の直流電力を交流電力に変換し、モータ80に供給する。モータ80は、例えば3相ブラシレスモータである。
【0015】
昇圧回路20は、コイル21、ダイオード23、コンデンサ24、及び、「昇圧スイッチング素子」としての昇圧MOS25を含む、チョッパ式の昇圧回路である。昇圧MOS25は、nチャネル型MOSFETで構成されている。なお、本明細書ではMOSFETを省略し、単に「MOS」と記す。
【0016】
コイル21は、一端が「電源」としてのバッテリ15に接続されている。バッテリ15とコイル21との間には、電源リレー16や、図示しないダイオード等の素子が接続されてもよい。電源リレー16は機械式リレーでも半導体スイッチング素子でもよい。ダイオード23は、アノードがコイル21の他端に接続され、カソードが出力端に接続されている。コンデンサ24は、ダイオード23のカソードとグランドとの間に設けられている。
【0017】
昇圧MOS25は、コイル21の他端における接続点Nとグランドとの間に設けられている。つまり、ドレイン端子が接続点Nに接続され、ソース端子が接地されている。昇圧MOS25のゲート端子はドライブ回路41に接続されている。昇圧MOS25は、ドライブ回路41から出力されるPWM指令信号に基づいてスイッチング動作する。これに伴い、コイル21が誘導エネルギーの蓄積と放出とを繰り返すことで、コイル21の他端、すなわち出力側の電圧が昇圧される。要するに昇圧MOS25は、スイッチング動作により、コイル21の出力側の電圧を昇圧する。
【0018】
第1実施形態の昇圧装置301は、昇圧回路20の構成要素のうち少なくとも昇圧MOS25を備える。また、昇圧装置301は、ドライブ回路41、過電流監視回路44、及び、「制御部」としてのマイコン50を備える。ドライブ回路41は、昇圧MOS25をPWM動作させる。過電流監視回路44は、昇圧MOS25に流れる電流を監視し、過電流を検出する。過電流監視回路44の技術的意義については後述する。
【0019】
昇圧MOS25、ドライブ回路41及び過電流監視回路44は、同一のICに内蔵されている。本明細書では、このICを、特定用途向けICを意味するASIC40と記す。過電流監視回路44が過電流検出したとき、保護機能として、過電流監視回路44はドライブ回路41に対し昇圧MOS25の強制オフを指令する。昇圧装置301を構成するASIC40とマイコン50とは互いに通信する。マイコン50は、過電流監視回路からの通知に基づき異常判定し、処置を行う。詳しくは、過電流監視回路44からマイコン50に対し、過電流検出を示す通知信号が出力される。
【0020】
またマイコン50は、異常判定時の処置として、ドライブ回路41に対し、例えば昇圧MOS25の動作停止を指令する。さらにマイコン50は、「昇圧前もしくは昇圧後の回路で監視される電圧」である監視電圧を監視する。例えば、昇圧前の回路の電圧として、バッテリ15の電源電圧、すなわち、
図1における電源リレー16よりもバッテリ15側のリレー前電圧VLaが監視される。或いは、電源リレー16とコイル21との間のリレー後電圧VLbが監視されてもよい。或いは、昇圧後の回路の電圧である昇圧後電圧VHが監視されてもよい。
【0021】
図2に、電動パワーステアリング(図中「EPS」と記す)装置90を含むステアリングシステム99の概略構成を示す。なお、
図2の電動パワーステアリング装置90はコラムアシスト式であるが、本実施形態の昇圧装置301は、ラックアシスト式の電動パワーステアリング装置にも同様に適用可能である。ステアリングシステム99は、ハンドル91、ステアリングシャフト92、操舵トルクセンサ94、ピニオンギア96、ラック軸97、車輪98、及び、電動パワーステアリング装置90等を含む。
【0022】
ステアリングシャフト92の先端に設けられたピニオンギア96は、ラック軸97に噛み合っている。ラック軸97の両端には、タイロッド等を介して一対の車輪98が設けられる。運転者がハンドル91を回転させると、ハンドル91に接続されたステアリングシャフト92が回転する。ステアリングシャフト92の途中に設けられた操舵トルクセンサ94は、操舵トルクtrqを検出する。ステアリングシャフト92の回転運動は、ピニオンギア96によりラック軸97の直線運動に変換され、ラック軸97の変位量に応じた角度に一対の車輪98が操舵される。
【0023】
電動パワーステアリング装置90は、昇圧装置301、インバータ60、モータ80、減速ギア89等を含む。本実施形態では昇圧装置301の一要素であるマイコン50は、電動パワーステアリング装置90におけるモータ制御装置としても機能する。モータ制御装置としてのマイコン50は、操舵トルクtrqや操舵速度、車速等の情報を外部から取得し、これらの情報から演算される所望のアシストトルクをモータ80が出力するようにモータ80の駆動を制御する。モータ80が出力したアシストトルクは、減速ギア89を介してステアリングシャフト92に伝達される。
【0024】
次に
図3を参照し、昇圧回路20の素子故障によって生じる過電流異常の発生例について説明する。コイル21がショート故障すると、バッテリ15の電力が誘導エネルギーに変換されることなく昇圧MOS25に直接印加され、昇圧MOS25のオン時、一点鎖線矢印で示すように過電流が流れる。ダイオード23がショート故障すると、コンデンサ24から放電された電流がダイオード23を逆流し、昇圧MOS25のオン時、二点鎖線矢印で示すように、昇圧MOS25に過電流が流れる。これにより、昇圧MOS25が破壊されるおそれがある。
【0025】
このような場合に昇圧MOS25を保護するため、過電流を検出し、異常の場合に通電停止等の処置を取ることが求められる。しかし一方、電源投入時等には回路が正常であっても一時的に過電流が検出される場合があり、誤って異常と判定することを防止することが求められる。
【0026】
ただし、特許文献1(特開2014-3850号公報)の従来技術のようにソフトスタート回路を用いると、回路構成が複雑になり、電源投入時の立ち上げ時間が長くかかる。そこで本実施形態は、過電流異常の誤判定を防止する昇圧装置において、回路構成を簡素化し、立ち上げ時間を短縮することを目的とするものである。
【0027】
次に
図4~
図10を参照し、本実施形態による過電流検出から異常判定時の処置までの一連の処理について説明する。
図7~
図10のフローチャートの説明で記号「S」はステップを示す。
【0028】
図4のタイムチャートには、過電流監視回路44による過電流検出の通知動作を示す。過電流監視回路44からマイコン50への通信間隔は、例えば1msに設定されている。昇圧動作許可信号がオンのとき、ドライブ回路41は昇圧MOS25を例えばPWM周期5ms、すなわち周波数200kHzでスイッチング動作する。したがって、昇圧MOS25は通信間隔1ms中に200回オンオフ動作する。
【0029】
図5に示すように、PWM一周期Tにおける昇圧MOS25のオン時間をTon、オフ時間をToffとすると、duty比は、「Ton/T」で表される。昇圧装置301の通常動作時には、昇圧出力目標値に応じてduty比が演算され、PWM指令信号が生成される。
図5には、duty比が約50%の場合の指令信号を図示する。
【0030】
昇圧MOS25のオン時の電流に対し、過電流監視回路44の過電流検出に用いられる過電流閾値が設定される。過電流閾値は、主に昇圧MOS25の定格や基板実装のはんだ信頼性に基づき、破壊耐量以下で設定される。また過電流閾値は、昇圧MOS25の発熱に応じて可変に設定されてもよい。
【0031】
例えば
図6に示す構成では、ASIC40内に設けられた過電流閾値演算部43が現在の昇圧MOS25の発熱に応じて過電流閾値を演算し、過電流監視回路44に出力する。昇圧MOS25の発
熱は温度センサにより検出されてもよいし、電流二乗値等から算出されたジュール熱を初期温度に加算して推定されてもよい。例えば昇圧MOS25の発熱が大きいほど過電流閾値を低くして過電流検出されやすくすることで、昇圧MOS25をより過熱から保護する方向に調整される。
【0032】
過電流監視回路44は、通信間隔ごとに過電流検出回数をカウントする。
図5に示すように、過電流監視回路44が過電流検出するごとに、ドライブ回路41は昇圧MOS25を強制的にオフし、次のdutyオンタイミングまでオフ状態を継続する。したがって、過電流検出時のスイッチ動作では、PWM指令信号に対し二点鎖線で示す時間だけ、オン時間が短くなる。昇圧MOS25が強制的にオフされるため、電流は0になる。そして、過電流の要因が続く限り、次のdutyオン期間に再び電流が過電流閾値以上となり、過電流検出される。
【0033】
例えば、昇圧装置301の電源投入時やイニシャルチェックでの過昇圧モード時には、昇圧動作許可信号がオンされた後、一時的に過電流状態となる。その期間、過電流監視回路44は、通信間隔ごとに過電流検出回数をカウントする。そして、通信間隔ごとの過電流検出回数が所定回数であるN回を超えたとき、過電流監視回路44は、昇圧MOS25に流れる電流の状態について「第1条件が成立した」と判断し、通知信号として過電流フラグを出力する。一方、昇圧動作の開始前で昇圧動作許可信号がオフのときや、一時的な過電流状態が終了した後には、通信間隔ごとの過電流検出回数がN回以下となり、過電流フラグは出力されない。
【0034】
ここで、過電流検出回数のカウントは、
図5の[例1]に示すように、毎周期連続して過電流検出される場合に限らず、[例2]に示すように、途中に過電流検出されない場合があっても、合計回数がカウントされればよい。[例2]に図示するように実際に電流が閾値以下となった場合の他、電流が閾値に達したにもかかわらず、検出のエラーによってカウントし損なった場合等も含まれる。要するに、連続か不連続かに関係なく、通信間隔ごとの過電流検出回数の合計がN回を超えたとき、過電流フラグが出力される。
【0035】
その後、時刻txにコイル、ダイオード等の素子がショート故障し、恒久的な過電流異常(すなわち真性異常)の状態になると仮定する。それ以後は常に過電流が検出され、通信間隔ごとの過電流検出回数の合計がN回を超えて、過電流フラグが出力される。マイコン50は、過電流監視回路44から受信した過電流フラグについて、過電流フラグが所定の判定時間以上継続したとき、「第2条件が成立した」と判断し、異常判定する。そしてマイコン50は、異常判定時の処置として、昇圧動作許可信号をオンからオフに変更し、昇圧MOS25の動作を停止する。
【0036】
図7、
図8のフローチャートに上記処理の基本的な流れを示す。フローチャート、及び以下のフローチャートに関する説明では、第1実施形態のマイコン50を一般化して「制御部」と記す。したがって、第2実施形態でも同じフローチャート及び同じ説明が援用される。
図7のS11では、過電流監視回路44が過電流検出したか判断される。S11でYESの場合、S12でドライブ回路41は昇圧MOS25をオフし、次のdutyオンタイミングまでオフ状態を継続する。
【0037】
図8のS13で過電流監視回路44は、制御部との通信間隔ごとに過電流検出回数をカウントする。S14では過電流検出回数が所定回数N回を超えたか判断される。S14でYESの場合、過電流監視回路44は、第1条件が成立したと判断し、制御部に通知信号として過電流フラグを送信する。
【0038】
S26で制御部は、過電流監視回路44からの通知信号が判定時間以上継続したか判断する。S26でYESの場合、S30で制御部は、第2条件が成立したと判断し、異常判定する。続いて制御部は、S40で処置を行う。S26でNOの場合、制御部は、第2条件が成立しないと判断する。
【0039】
第2条件の判定において、例えば判定時間は、電源投入時やイニシャルチェックでの過昇圧モード時における過電流状態の最大時間よりも長い時間に設定されてもよい。これにより、電源投入時やイニシャルチェックでの過昇圧モード時には第1条件は成立しても第2条件が不成立となるため、異常と誤判定されることが防止される。或いは、電源投入時等の状況に応じて制御部が異常判定の処理を変更することで、誤判定を防止してもよい。次に
図9を参照し、誤判定防止の処理例について説明する。
【0040】
図9には、制御部が、状況に応じて判定時間を異なる値に設定するか、或いは、通知信号をマスクする処理を示す。ここでは、
図1のリレー前電圧VLaに相当する電源電圧が「監視電圧」として監視されるものとして説明する。具体的に制御部は、昇圧装置301の動作モードもしくは電源電圧に応じて判定時間を異なる値に設定するか、或いは、特定の動作モードもしくは特定の電源電圧の範囲で通知信号をマスクする。このように制御部は、過電流監視回路44からの通知、電源電圧監視値、状態コード等の内部値を併せて、すなわち外部及び内部の情報に基づき異常判定する。
【0041】
図9のS21からS24では、「特定の動作モードもしくは特定の監視電圧」に関する4つの判断項目について順に成否が判断される。これらの判断順序は任意である。S21では、昇圧装置301の電源投入時であるか判断される。一般に電源投入時には突入電流による誤判定が生じやすくなる。
【0042】
S22では、起動時に回路の異常を診断するイニシャルチェックにおいて、昇圧出力目標値を一時的に上げるときであるか判断される。イニシャルチェックでは昇圧出力目標値を通常時の値よりも高くして昇圧機能が正常であることを診断するため、誤判定が生じやすくなる。
【0043】
S23では、電源電圧が所定の電圧閾値以下であるか判断される。電源電圧が低いときほど昇圧比が大きくなり、大電流が流れるため、誤判定が生じやすくなる。S24では、電源電圧の時間変化率の絶対値が所定の電圧変動閾値以上であるか、つまり、電源電圧が急変動したか判断される。例えば何らかの要因で電源電圧が途絶した後に復帰したとき、瞬時に大電流が流れる可能性があるため、誤判定が生じやすくなる。
【0044】
S21~S24のいずれかでYESの場合、S25で制御部は、判定時間を基準値よりも長く設定するか、或いは、通知信号をマスクする。特定の動作モードもしくは特定の電源電圧において判定時間を基準値よりも長く設定することで、第2条件が成立しにくくなり、誤判定を防止することができる。また、特定の動作モードもしくは特定の電源電圧において通知信号をマスクすることで、第2条件の成立の可能性が無くなり、誤判定が確実に防止される。なお、S23、S24では、リレー前の電源電圧VLaに代えて、リレー後電圧VLbや昇圧後電圧VHが「監視電圧」として閾値と比較されてもよい。
【0045】
図10に、異常判定時の処置例を示す。制御部が異常判定し、S41でYESの場合、制御部は、S42で昇圧MOS25の動作を停止するか、又は、duty比を変更して昇圧MOS25を動作させる。
図4には昇圧MOS25の動作を停止する場合が例示されているが、素子故障の状況によっては、duty比を変更して昇圧MOS25制限的に動作させることも可能である。
【0046】
制御部としてのマイコン50は、さらにバッテリ15の電力を用いて電動パワーステアリング装置99のモータ80の駆動を制御する。マイコン50は、異常判定時の処置として、さらにS43でモータ80の駆動を停止するか、又は、モータ80の出力を制限してもよい。駆動を停止する場合、制御に用いる入出力信号の通信のみは継続してもよいし、通信系も含めてシステムをシャットダウンしてもよい。
【0047】
(第1実施形態の作用効果)
以上のように第1実施形態では、過電流監視回路44が過電流検出しただけでは異常判定せず、第1条件が成立したときマイコン50に通知信号を送信する。マイコン50は、さらに第2条件が成立したときに初めて異常判定し、処置を行う。したがって、電源投入時やイニシャルチェック時の過電流に対し、異常と誤判定することが回避される。また、素子故障等により異常判定した場合、マイコン50が昇圧MOS25の動作を停止させることで、壊れた状態のままPWM動作を続けることを防止することができる。
【0048】
また第1実施形態では、特許文献1の従来技術のようにソフトスタート回路を用いず、電源投入時やイニシャルチェック時には、昇圧MOS25の定格以下に設定された過電流閾値に対して過電流を検出しながら通電する。つまり、電源投入時やイニシャルチェック時には第1条件が成立する可能性が高いことを前提としつつ、第2条件が成立しないようにすることで誤判定を防止する。これにより、回路構成を簡素化し、立ち上げ時間を短縮することができる。
【0049】
さらに、マイコン50が過電流監視回路44から通知信号を受信したとき、判定時間による通知信号の継続判定に加え、動作モードや電源電圧等に基づく判定時間の変更や通知信号のマスク等の処理を組み合わせ、総合的に異常判定することができる。したがって、状況に応じた異常判定や処置が可能となる。さらに、電源変動試験や外付け素子の定数変更等により判定条件を設計変更した場合等、ソフトウァアで条件設定を変更することで、対応が容易になる。
【0050】
加えて第1実施形態では、昇圧MOS25、ドライブ回路41及び過電流監視回路44が同一のASIC40に内蔵されているため、基板上のレイアウトがコンパクトになる。なお、ASIC40には昇圧装置以外の各機能が統合されてもよい。また、「制御部」の機能をマイコン50が担っているため、演算処理能力や外部との通信の点で有利である。
【0051】
(第2実施形態)
次に
図11を参照し、第2実施形態について説明する。第2実施形態の昇圧装置302では、ASIC40内のドライブ回路42が「制御部」としての機能を兼ねる。つまり、第1条件が成立したとき生成された通知信号は、ASIC40の過電流監視回路44からマイコン50に送信されるのでなく、ASIC40の内部で過電流監視回路44からドライブ回路42に送信される。通知信号を受信したドライブ回路42は、第2条件の成否を判定し、第2条件が成立したとき異常判定し、処置を行う。また、電源電圧の情報もマイコン50に代わってドライブ回路42が取得してもよい。
【0052】
第2実施形態の作用効果は、第1実施形態の制御部に関する説明中における「マイコン50」を「ドライブ回路42」と読み替えて同様に解釈される。過電流の検出及び異常判定という機能のみに着目した場合、
図11に破線で示すように、第2実施形態ではマイコン50が無くてもよいため、昇圧装置302をより簡素に構成することができる。また、異常判定時に通信遅れなく昇圧MOS25の動作を即座に停止することができ、信頼性が向上する。
【0053】
ただし、現実的にASIC40がマイコン50と同レベルの演算量を処理することはできないため、モータ80の駆動制御演算等のためにマイコン50が必要となる。そこで、ドライブ回路42が「制御部」としての機能の一部を兼ねることで、ドライブ回路42とマイコン50とが「制御部」の機能を分担して協働するように構成されてもよい。
【0054】
(その他の実施形態)
(a)過電流監視回路における「第1条件」は、制御部との通信間隔ごとに過電流検出回数が連続で又は断続的に所定回数を超えたときの他、例えば、制御部との通信間隔ごとに電流もしくは電流二乗値の積算値が閾値を超えたときに成立するものとしてもよい。
【0055】
(b)制御部における「第2条件」について、通知信号(例えば過電流フラグ)が判定時間以上「継続」したことの解釈として、例えば所定時間以内の短時間の中断の場合は、継続したものとみなしてもよい。つまり、中断時間が所定時間を超えた場合のみ継続不成立と扱い、計時をリセットするようにしてもよい。また、判定時間に代えて、所定期間内の通知信号の受信回数又は頻度に基づき第2条件の成否を判定してもよい。
【0056】
(c)昇圧スイッチング素子は、MOSFETに限らず、MOSFETE以外のFETやバイポーラトランジスタで構成されてもよい。昇圧スイッチング素子、ドライブ回路及び過電流監視回路は、同一のASIC40に内蔵される構成に限らず、基板に直接実装されてもよく、別々のICに内蔵されてもよい。また、「電源」としてバッテリ15以外にキャパシタ等が用いられてもよい。
【0057】
(d)本発明は、電動パワーステアリング装置のアシストモータの駆動に限らず、どのような電動アクチュエータの駆動や、その他の電気機器の出力に用いられてもよい。
【0058】
本発明はこのような実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において、種々の形態で実施することができる。
【0059】
本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
【符号の説明】
【0060】
15 ・・・バッテリ(電源)、
21 ・・・コイル、
25 ・・・昇圧MOS(昇圧スイッチング素子)、
301、302・・・昇圧装置、
41 ・・・ドライブ回路、
42 ・・・ドライブ回路(制御部[第2実施形態])、
44 ・・・過電流監視回路、
50 ・・・マイコン(制御部[第1実施形態])。