(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-24
(45)【発行日】2024-10-02
(54)【発明の名称】有機硫黄材料、電極およびリチウムイオン二次電池並びに製造方法
(51)【国際特許分類】
C08F 8/34 20060101AFI20240925BHJP
H01M 4/137 20100101ALI20240925BHJP
H01M 4/1399 20100101ALI20240925BHJP
H01M 4/60 20060101ALI20240925BHJP
【FI】
C08F8/34
H01M4/137
H01M4/1399
H01M4/60
(21)【出願番号】P 2022155306
(22)【出願日】2022-09-28
(62)【分割の表示】P 2021022756の分割
【原出願日】2021-02-16
【審査請求日】2022-09-28
(31)【優先権主張番号】P 2020074882
(32)【優先日】2020-04-20
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000183233
【氏名又は名称】住友ゴム工業株式会社
(74)【代理人】
【識別番号】110001896
【氏名又は名称】弁理士法人朝日奈特許事務所
(72)【発明者】
【氏名】中条 文哉
(72)【発明者】
【氏名】久保 達也
【審査官】松元 洋
(56)【参考文献】
【文献】中国特許出願公開第1396202(CN,A)
【文献】国際公開第2020/071298(WO,A1)
【文献】特開2019-032983(JP,A)
【文献】国際公開第2010/044437(WO,A1)
【文献】特開2010-153296(JP,A)
【文献】特開2015-092449(JP,A)
【文献】特許第7163983(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
C08F 8/00 - 8/50
H01M 4/00 - 4/62
CAplus/REGISTRY(STN)
Japio-GPG/FX
(57)【特許請求の範囲】
【請求項1】
アクリル樹脂を硫黄で変性した有機硫黄材料であり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm
-1付近、1066cm
-1付近、1150cm
-1付近、1245cm
-1付近、1270cm
-1付近、1453cm
-1付近および1732cm
-1付近にピークを有し、
前記アクリル樹脂の粒子径が、0.1~300.0μmであり、
ラマン分光法によって検出されたラマンスペクトルにおいて、1450cm
-1付近に主ピークが存在し、かつ、200~1800cm
-1の範囲で他に485cm
-1付近、1250cm
-1付近、1540cm
-1付近にピークが存在する、有機硫黄材料。
【請求項2】
アクリル樹脂を硫黄で変性した有機硫黄材料であり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm
-1付近、1066cm
-1付近、1150cm
-1付近、1245cm
-1付近、1270cm
-1付近、1453cm
-1付近および1732cm
-1付近にピークを有し、
前記アクリル樹脂が多孔質構造を有し、
ラマン分光法によって検出されたラマンスペクトルにおいて、1450cm
-1付近に主ピークが存在し、かつ、200~1800cm
-1の範囲で他に485cm
-1付近、1250cm
-1付近、1540cm
-1付近にピークが存在する、有機硫黄材料。
【請求項3】
前記多孔質構造を有するアクリル樹脂の吸油量が100ml/100g以上である、請求項2記載の有機硫黄材料。
【請求項4】
アクリル樹脂を硫黄で変性した有機硫黄材料であり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm
-1付近、1066cm
-1付近、1150cm
-1付近、1245cm
-1付近、1270cm
-1付近、1453cm
-1付近および1732cm
-1付近にピークを有し、
有機硫黄材料のメジアン径が5~40μmであり、
ラマン分光法によって検出されたラマンスペクトルにおいて、1450cm
-1付近に主ピークが存在し、かつ、200~1800cm
-1の範囲で他に485cm
-1付近、1250cm
-1付近、1540cm
-1付近にピークが存在する、有機硫黄材料。
【請求項5】
前記アクリル樹脂のFT-IRスペクトルにおいて、前記1150cm
-1付近のピークと前記1732cm
-1付近のピークが、残りのピークよりも大きいものである、請求項1~4のいずれか1項に記載の有機硫黄材料。
【請求項6】
前記FT-IRスペクトルが、さらに、846cm
-1付近、992cm
-1付近、1196cm
-1付近、2955cm
-1付近および2996cm
-1付近にピークを有する、請求項1~5のいずれか1項に記載の有機硫黄材料。
【請求項7】
前記アクリル樹脂の総量中に占める炭素、水素、窒素および硫黄の質量比が、それぞれ、60.0~70.0%、7.5~9.5%、0.0%および0.0~1.0%である、請求項1~6のいずれか1項に記載の有機硫黄材料。
【請求項8】
前記変性が非酸化性雰囲気下での焼成により実施される、請求項1~7のいずれか1項に記載の有機硫黄材料。
【請求項9】
有機硫黄材料中の硫黄量が50.0質量%以上である請求項1~8のいずれか1項に記載の有機硫黄材料。
【請求項10】
有機硫黄材料中の水素含有量が1.8質量%以下である、請求項1~9のいずれか1項に記載の有機硫黄材料。
【請求項11】
有機硫黄材料のメジアン径が5~40μmである、請求項1~
3、5~10のいずれか1項に記載の有機硫黄材料。
【請求項12】
請求項1~11のいずれか1項に記載の有機硫黄材料を含んでなる電極。
【請求項13】
請求項12の電極を含んでなるリチウムイオン二次電池。
【請求項14】
有機硫黄材料の製造方法であって、
(1)アクリル樹脂を準備する工程、
(2)前記アクリル樹脂を硫黄で変性する工程
を含んでなるものであり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm
-1付近、1066cm
-1付近、1150cm
-1付近、1245cm
-1付近、1270cm
-1付近、1453cm
-1付近および1732cm
-1付近にピークを有するものであり、
前記アクリル樹脂の粒子径が、0.1~300.0μmであり、
前記有機硫黄材料のラマン分光法によって検出されたラマンスペクトルにおいて、1450cm
-1付近に主ピークが存在し、かつ、200~1800cm
-1の範囲で他に485cm
-1付近、1250cm
-1付近、1540cm
-1付近にピークが存在する、製造方法。
【請求項15】
有機硫黄材料の製造方法であって、
(1)アクリル樹脂を準備する工程、
(2)前記アクリル樹脂を硫黄で変性する工程
を含んでなるものであり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm
-1付近、1066cm
-1付近、1150cm
-1付近、1245cm
-1付近、1270cm
-1付近、1453cm
-1付近および1732cm
-1付近にピークを有するものであり、
前記アクリル樹脂が多孔質構造を有し、
前記有機硫黄材料のラマン分光法によって検出されたラマンスペクトルにおいて、1450cm
-1付近に主ピークが存在し、かつ、200~1800cm
-1の範囲で他に485cm
-1付近、1250cm
-1付近、1540cm
-1付近にピークが存在する、製造方法。
【請求項16】
前記変性が非酸化性雰囲気下での焼成により実施される、請求項14または15記載の製造方法。
【請求項17】
前記アクリル樹脂に対する前記硫黄の量が、アクリル樹脂100質量部に対して硫黄50~1000質量部である、請求項14~16のいずれか1項に記載の製造方法。
【請求項18】
前記変性が非酸化性雰囲気下での焼成により実施されるものであり、
前記焼成の温度が250~550℃である請求項14、15および17のいずれか1項に記載の製造方法。
【請求項19】
電極の製造方法であって、
請求項14~18のいずれか1項に記載の製造方法により、有機硫黄材料を製造した後、さらに、
(3)該有機硫黄材料を用いて電極を作製する工程
を含んでなる、製造方法。
【請求項20】
リチウムイオン二次電池の製造方法であって、
請求項19の製造方法により電極を製造した後、さらに、
(4)該電極を用いてリチウムイオン二次電池を作製する工程
を含んでなる製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規な有機硫黄材料、当該有機硫黄材料を含んでなる電極、および、当該電極を含んでなるリチウムイオン二次電池、並びに、それらの製造方法に関する。
【背景技術】
【0002】
リチウムイオン二次電池は充放電容量が大きいため、主として携帯電子機器用の電池として用いられている。またリチウムイオン二次電池は、電気自動車用の電池としても使用量が増加しており、性能の向上が期待されている。
【0003】
特許文献1には、硫黄粉末とポリアクリロニトリル粉末を含む原料粉末を非酸化性雰囲気下で加熱して得た、リチウムイオン二次電池用の正極活物質が記載されている。また、特許文献2は、工業用のゴムを使用することで安価に正極活物質を提供しようとするものである。
【0004】
一方、負極活物質としては、ケイ素(Si)、スズ(Sn)などのより多くのリチウムイオンを吸蔵および放出可能な材料を用いることで、リチウムイオン二次電池の電池容量を増加させることが提案されている。
【先行技術文献】
【特許文献】
【0005】
【文献】国際公開第2010/044437号
【文献】特開2015-92449号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、特許文献1の正極活物質は、原料であるポリアクリロニトリルが高価であること、特に、品質が安定したポリアクリロニトリルはより高価であるため、リチウムイオン二次電池を安価に提供し難いという問題がある。特許文献2の正極活物質は、サイクル特性の十分な向上になお課題がある。負極活物質として提案されている上記材料は、リチウムイオンの吸蔵および放出に伴う体積変化が大きいため、充放電を繰り返した際のサイクル特性が良好ではないという問題がある。また、グラファイトやハードカーボンといった炭素材料も用いられるが、既に理論容量に達しつつあり、大幅な容量向上は見込めない状況である。
【0007】
本発明は、リチウムイオン二次電池の充放電容量とサイクル特性を向上できる、新規な有機硫黄材料、当該有機硫黄材料を含んでなる電極、すなわち、正極または負極、および、当該電極を含んでなるリチウムイオン二次電池、並びに、それらの製造方法を提供しようとするものである。
【課題を解決するための手段】
【0008】
本発明者らは、上記課題解決のため鋭意検討した結果、所定のアクリル樹脂を硫黄により変性すれば、優れた特性を示す有機硫黄材料が得られることを見出し、さらに検討を重ねて、本発明を完成した。
【0009】
すなわち、本発明は、
[1]アクリル樹脂を硫黄で変性した有機硫黄材料であり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有する、有機硫黄材料、
[2]前記1150cm-1付近のピークと前記1732cm-1付近のピークが、前記残りのピークよりも大きいものである、上記[1]記載の有機硫黄材料、
[3]前記FT-IRスペクトルが、さらに、846cm-1付近、992cm-1付近、1196cm-1付近、2955cm-1付近および2996cm-1付近にピークを有する、上記[1]または上記[2]記載の有機硫黄材料、
[4]前記アクリル樹脂の総量中に占める炭素、水素、窒素および硫黄の質量比が、それぞれ、60.0~70.0%、7.5~9.5%、0.0%および0.0~1.0%、好ましくは60.0~69.0%、7.6~9.4%、0.0%および0.0~0.9%、より好ましくは60.0~68.0%、7.7~9.3%、0.0%および0.0~0.8%、さらに好ましくは60.0~67.0%、7.7~9.2%、0.0%および0.0~0.7%、さらに好ましくは60.0~67.0%、7.7~9.2%、0.0%および0.0~0.6%、さらに好ましくは60.5~66.5%、7.7~9.2%、0.0%および0.0~0.5%である、上記[1]~[3]のいずれかに記載の有機硫黄材料、
[5]前記変性が非酸化性雰囲気下での焼成により実施される、上記[1]~[4]のいずれかに記載の有機硫黄材料、
[6]前記アクリル樹脂の粒子径が、0.1~300.0μm、好ましくは1.0~270.0μm、より好ましくは1.0~200.0μm、さらに好ましくは1.0~100.0μm、さらに好ましくは1.0~50.0μm、さらに好ましくは1.0~20.0μm、さらに好ましくは1.0~15.0μmである、上記[1]~[5]のいずれかに記載の有機硫黄材料、
[7]前記アクリル樹脂が多孔質構造を有する、上記[1]~[6]のいずれかに記載の有機硫黄材料、
[8]ラマン分光法によって検出されたラマンスペクトルにおいて、1450cm-1付近に主ピークが存在し、かつ、200~1800cm-1の範囲で他に485cm-1付近、1250cm-1付近、1540cm-1付近にピークが存在する、上記[1]~[7]のいずれかに記載の有機硫黄材料、
[9]前記ラマンスペクトルにおいて、1000cm-1の強度と1800cm-1の強度とを結ぶ直線をベースラインとして、1450cm-1付近のピーク強度と対応するベースライン強度との差(I1450)および1540cm-1付近のピーク強度と対応するベースライン強度との差(I1540)を算出するとき、I1450/I1540の値が1~4の範囲である、上記[8]記載の有機硫黄材料、
[10]有機硫黄材料中の硫黄量が50.0質量%以上、より好ましくは53.0質量%以上、さらに好ましくは55.0質量%以上、さらに好ましくは56.0質量%以上である上記[1]~[9]のいずれかに記載の有機硫黄材料、
[11]上記[1]~[10]のいずれかに記載の有機硫黄材料を含んでなる電極、
[12]上記[11]の電極を含んでなるリチウムイオン二次電池、
[13]有機硫黄材料の製造方法であって、
(1)アクリル樹脂を準備する工程、
(2)前記アクリル樹脂を硫黄で変性する工程
を含んでなるものであり、
前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有するものである、製造方法、
[14]前記変性が非酸化性雰囲気下での焼成により実施される、上記[13]記載の製造方法、
[15]前記アクリル樹脂に対する前記硫黄の量が、アクリル樹脂100質量部に対して硫黄50~1000質量部、好ましくは100質量部~750質量部、より好ましくは150質量部~500質量部、さらに好ましくは200質量部~500質量部、さらに好ましくは250質量部~500質量部である、上記[13]または上記[14]記載の製造方法、
[16]前記焼成の温度が250~550℃、好ましくは300℃~500℃、より好ましくは300℃~450℃以下である上記[13]~[15]のいずれかに記載の製造方法、
[17]前記アクリル樹脂の粒子径が、0.1~300.0μm、好ましくは1.0~270.0μm、より好ましくは1.0~200.0μm、さらに好ましくは1.0~100.0μm、さらに好ましくは1.0~50.0μm、さらに好ましくは1.0~20.0μm、さらに好ましくは1.0~15.0μmである、上記[13]~[16]のいずれかに記載の製造方法、
[18]前記アクリル樹脂が多孔質構造を有する、上記[13]~[17]のいずれかに記載の製造方法、
[19]電極の製造方法であって、
上記[13]~[18]のいずれかに記載の製造方法により、有機硫黄材料を製造した後、さらに、
(3)該有機硫黄材料を用いて、常法により、電極を作製する工程
を含んでなる、製造方法、
[20]リチウムイオン二次電池の製造方法であって、
上記[19]の製造方法により電極を製造した後、さらに、
(4)該電極を用いて、常法により、リチウムイオン二次電池を作製する工程
を含んでなる製造方法、
に関する。
【発明の効果】
【0010】
本発明によれば、充放電容量とサイクル特性を向上できる、新規な有機硫黄材料、当該有機硫黄材料を含んでなる電極、すなわち、正極または負極、および、当該電極を含んでなるリチウムイオン二次電池を提供することができる。
【0011】
本明細書において、「サイクル特性」とは、充放電の繰り返しにも拘わらず、二次電池の充放電容量が維持される特性をいう。したがって、充放電の繰り返しに伴い、充放電容量の低下の度合いが大きく、容量維持率が低い二次電池はサイクル特性が劣っているのに対し、逆に、充放電容量の低下の度合いが小さく、容量維持率が高い二次電池はサイクル特性が優れている。
【図面の簡単な説明】
【0012】
【
図1】実施例において、有機硫黄材料の製造に使用した反応装置を模式的に示す断面図である。
【
図2】実施例1~4で使用したアクリル樹脂のFT-IRスペクトルのプロファイルを、そのピーク位置を比較できるよう、同一の横軸(波数(cm
-1))の下、並記したものである。
【
図3】実施例1および比較例1、2の有機硫黄材料についてのラマンスペクトルのプロファイルを、そのピーク位置を比較できるよう、同一の横軸(ラマンシフト(cm
-1))の下、並記したものである。
【
図4】前図の各ラマンスペクトルのプロファイルについて、I
1450/I
1540の値をグラフ上で把握できるように表したものである。ここで、I
1450は1450cm
-1付近のピーク強度と対応するベースライン強度との差(図中のA)であり、I
1540は1540cm
-1付近のピーク強度と対応するベースライン強度との差(図中のB)である。なお、ベースラインとは同図中、ほぼ水平に引かれた直線であり、各プロファイルにおける1000cm
-1の強度と1800cm
-1の強度とを結んだ直線である。
【発明を実施するための形態】
【0013】
以下、本開示の構成について詳述する。なお、数値範囲の記載に関する「以上」、「以下」、「~」にかかる上限および下限の数値は任意に組み合わせできる数値であり、実施例における数値を該上限および下限とすることもできる。また、「~」によって数値範囲を特定する場合、特に断りのない限り、その両端の数値も含む意味である。
【0014】
本開示の一実施形態は、アクリル樹脂を硫黄で変性した有機硫黄材料であり、前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有する、有機硫黄材料である。
【0015】
本開示の他の実施形態は、前記有機材料を含んでなる電極である。
【0016】
本開示の他の実施形態は、前記電極を含んでなるリチウムイオン二次電池である。
【0017】
本開示の他の実施形態は、有機硫黄材料の製造方法であって、
(1)アクリル樹脂を準備する工程、
(2)前記アクリル樹脂を硫黄で変性する工程
を含んでなるものであり、前記アクリル樹脂が、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有するものである、製造方法である。
【0018】
本開示の他の実施形態は、電極の製造方法であって、上記製造方法により有機硫黄材料を製造した後、さらに、
(3)該有機硫黄材料を用いて、常法により、電極を作製する工程
を含んでなる製造方法である。
【0019】
本開示の他の実施形態は、リチウムイオン二次電池の製造方法であって、上記製造方法により電極を製造した後、さらに、
(4)該電極を用いて、常法により、リチウムイオン二次電池を作製する工程
を含んでなる製造方法である。
【0020】
<アクリル樹脂>
本開示において、アクリル樹脂は、FT-IRスペクトルにおいて、756cm-1付近、1066cm-1付近、1150cm-1付近、1245cm-1付近、1270cm-1付近、1453cm-1付近および1732cm-1付近にピークを有するものである。
【0021】
アクリル樹脂は、本開示の効果の観点から、好ましくは、前記1150cm-1付近のピークと前記1732cm-1付近のピークが、前記残りのピークよりも大きいものである。
【0022】
アクリル樹脂は、本開示の効果の観点から、より好ましくは、前記FT-IRスペクトルが、さらに、846cm-1付近、992cm-1付近、1196cm-1付近、2955cm-1付近および2996cm-1付近にピークを有するものである。
【0023】
本開示において、FT-IRスペクトルは、(株)島津製作所製のフーリエ変換赤外分光光度計(IRAffinity-1)を用いて、分解能:4cm
-1、積算回数:10回、測定範囲:400cm
-1~4000cm
-1の条件の下、全反射法で測定できる。
図2には、実施例1~4で使用したアクリル樹脂のFT-IRスペクトルのプロファイルを、そのピーク位置を相互に比較できるよう、同一の横軸(波数(cm
-1))の下並記して示している。FT-IRスペクトルのピーク位置について、「付近」とあるのは、±10cm
-1、特に、±5cm
-1の誤差を許容する意味である。
【0024】
アクリル樹脂は、本開示の効果の観点から、その総量中に占める炭素、水素、窒素および硫黄の質量比が、それぞれ、60.0~70.0%、7.5~9.5%、0.0%および0.0~1.0%の範囲内であることが好ましい。ここで、上記炭素の質量比は、60.0~69.0%がより好ましく、60.0~68.0%がさらに好ましく、60.0~67.0%がさらに好ましく、60.5~66.5%がさらに好ましい。上記水素の質量比は、7.6~9.4%であることがより好ましく、7.7~9.3%であることがより好ましく、7.7~9.2%であることがさらに好ましい。上記窒素の質量比は、0.0%である。上記硫黄の質量比は、0.0~0.9%であることがより好ましく、0.0~0.8%であることがさらに好ましく、0.0~0.7%であることがさらに好ましく、0.0~0.6%であることがさらに好ましく、0.0~0.5%であることがさらに好ましい。
【0025】
本開示において、アクリル樹脂を構成する元素の質量比は、後述する有機硫黄材料についての元素分析と同様の方法により測定できる。
【0026】
アクリル樹脂としては、(メタ)アクリル酸アルキルエステルのポリマー、(メタ)アクリル酸アルキルエステルとアルキレングリコールジ(メタ)アクリレートとのコポリマーなどが挙げられる。ここで、「(メタ)アクリレート」とは、「アクリレート」または「メタクリレート」のいずれかであることを表す(以下同様)。
【0027】
アクリル樹脂の、限定されることのない好ましい例としては、メチル(メタ)アクリレートのホモポリマー、ブチル(メタ)アクリレートのホモポリマー、メチル(メタ)アクリレートとエチレングリコールジ(メタ)アクリレートとのコポリマー、ブチル(メタ)アクリレートとエチレングリコールジ(メタ)アクリレートとのコポリマーなどが挙げられる。このうち、アクリル樹脂としては、メタクリレート型のものが好ましい。さらに好ましい例としては、ブチルメタアクリレートとエチレングリコールジメタアクリレートとのコポリマーが挙げられる。
【0028】
アクリル樹脂は、1種または2種以上を使用することができる。
【0029】
(アクリル樹脂の形態)
本開示において、アクリル樹脂は、微粒子の形態のものが好ましい。ここで、微粒子とは、粒子径が300.0μm以下の粒子をいう。該粒子径は270.0μm以下が好ましく、200.0μm以下がより好ましく、100.0μm以下がさらに好ましく、50.0μm以下がさらに好ましく、20.0μm以下がさらに好ましく、15.0μm以下がさらに好ましく、13.0μm以下がさらに好ましく、10.0μm以下がさらに好ましく、6.0μm以下がさらに好ましい。一方、該粒子径の下限は特に限定されないが、通常、例えば、0.1μm以上であり、好ましくは1.0μm以上である。該粒子径は、ベックマン・コールター(株)製の精密粒度分布測定装置Multisizer3により測定される値である。
【0030】
アクリル樹脂は、球状の微粒子であってもよく、多孔質状の微粒子であってもよい。アクリル樹脂が多孔質状である場合、その吸油量は、100ml/100g以上であることが好ましく、110ml/100g以上であることがより好ましく、120ml/100g以上であることがさらに好ましく、130ml/100g以上であることがさらに好ましく、140ml/100g以上であることがさらに好ましい。該吸油量は、JIS K 5101-13-2:2004に準じて測定される値である。より詳細には、特開2017-88501号公報の段落0069の方法により測定できる。
【0031】
(アクリル樹脂の重量平均分子量(Mw))
アクリル樹脂は、上記構造を有する限り、Mwは特に限定されない。但し、アクリル樹脂のMwは、通常、2000~1500000の範囲内である。Mwは、ゲル浸透クロマトグラフィー(GPC)により測定される値(ポリスチレンにより較正)である。
【0032】
(アクリル樹脂の入手または製造)
アクリル樹脂は、商業的に入手可能であるか、あるいは、当業者の知識の範囲内である、常法により、製造することができる。商業的に入手可能なアクリル樹脂としては、例えば、積水化成品工業(株)製、積水化学(株)製のものが挙げられる。
【0033】
<硫黄>
硫黄としては粉末硫黄、不溶性硫黄、沈降硫黄、コロイド硫黄等の種々の形態のものをいずれも使用できるが、このうち、沈降硫黄、コロイド硫黄が好ましい。硫黄の配合量は、アクリル樹脂100質量部に対して、50質量部以上が好ましく、100質量部以上がより好ましく、さらに好ましくは150質量部以上であり、さらに好ましくは200質量部以上であり、さらに好ましくは250質量部以上である。100質量部以上であることで充放電容量やサイクル特性を向上できる傾向がある。一方、硫黄の配合量について、上限は特にないが、通常は、1000質量部以下、好ましくは750質量部以下であり、より好ましくは500質量部以下であり、さらに好ましくは400質量部以下であり、さらに好ましくは350質量部以下である。1000質量部以下であることで、コスト的に有利な傾向がある。
【0034】
<導電性炭素材料>
アクリル樹脂を硫黄により変性する場合、アクリル樹脂に予め導電性を有する炭素材料を添加しておいてもよい。有機硫黄材料の導電性を向上させることができるからである。このような導電性炭素材料としては、グラファイト構造を有する炭素材料が好ましい。炭素材料としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛、カーボンナノチューブ(CNT)、カーボンファイバー(CF)、グラフェン、フラーレンなどの縮合芳香環構造を有するものが使用できる。導電性炭素材料としては1種または2種以上を使用することができる。
【0035】
中でも安価で分散性に優れることから、アセチレンブラック、カーボンブラック、ケッチェンブラックが好ましい。また、アセチレンブラックやカーボンブラックやケッチェンブラックに、CNTやグラフェンなどを少量併用してもよい。かかる併用系により、コストを大幅に上昇させることなく、リチウムイオン二次電池のサイクル特性をさらに向上させることが可能となる。なお、CNTやグラフェンの併用量は、導電性炭素材料の総量の8質量%以上、12質量%以下であるのが好ましい。
【0036】
該導電性炭素材料の配合量は、アクリル樹脂100質量部に対して、5質量部以上が好ましく、より好ましくは10質量部以上である。配合量が5質量部以上であることで、充放電容量やサイクル特性を一層向上させるという目的を達成し易い傾向がある。一方、該配合量は、50質量部以下が好ましく、より好ましくは40質量部以下である。50質量部以下であることで、有機硫黄材料における硫黄を含む構造の割合が相対的に低下せず、充放電容量やサイクル特性を一層向上させるという目的を達成し易い傾向がある。
【0037】
<その他の材料>
アクリル樹脂を硫黄により変性する場合、アクリル樹脂に予めこの分野で通常使用されるその他の材料を、所望により、添加しておいてもよい。
【0038】
<有機硫黄材料の製造>
本開示において、有機硫黄材料は、所定のアクリル樹脂を硫黄により変性することにより製造することができる。
【0039】
(原料の調製)
変性にあたり、アクリル樹脂と硫黄は、予め十分に混合しておくことが望ましい。アクリル樹脂に予め導電性炭素材料等を添加しておく場合には、これら添加剤も一緒に混合される。該混合は、常法により実施することができ、例えば、高速ブレンダー等を用いて実施することができる。一方、アクリル樹脂と硫黄と、所望により、添加剤とは、ペレット状に成形した状態とすることもできる。
【0040】
(非酸化性雰囲気)
変性は非酸化性雰囲気下で実施することが好ましい。非酸化性雰囲気とは、酸素を実質的に含まない雰囲気をいい、構成成分の酸化劣化や過剰な熱分解を抑制するために採用されるものである。具体的には、窒素やアルゴンなどの不活性ガス雰囲気、硫黄ガス雰囲気等をいう。したがって、変性は、例えば、不活性ガス雰囲気下の石英管中で実施される。
【0041】
(変性の方法)
アクリル樹脂の硫黄による変性は常法により行うことができ、例えば、アクリル樹脂と硫黄を焼成することにより実施することができる。焼成は常法により行うことができる。例えば、焼成は、焼成原料(アクリル樹脂と硫黄と、所望により、添加剤とを含む)を、所定の温度に到達するまで所定の昇温速度で加熱し、当該所定の温度で所定の時間維持し、その後自然に冷却することにより行うことができる。
【0042】
[昇温速度]
該昇温速度は、例えば、50~500℃/hの範囲内であることが好ましい。該昇温速度は、100℃/h以上であることがより好ましい。一方、該昇温速度は、400℃/h以下であることがより好ましく、300℃/h以下であることがさらに好ましく、200℃/h以下であることがさらに好ましい。昇温速度がこのような範囲内にあることで、充放電容量やサイクル特性を向上させるという目的を達成し易い傾向がある。
【0043】
[焼成温度・時間]
焼成温度とは、焼成原料の昇温完了後の温度であって、焼成原料の焼成のために一定時間維持される温度をいう。該温度は、250~550℃の範囲であることが好ましい。250℃以上であることで、硫化反応が不十分となることを避け、目的物の充放電容量の低下を防止できる傾向がある。一方、550℃以下とすることで、焼成原料の分解を防ぎ、収率の低下や、充放電容量の低下を防止できる傾向がある。該温度は、300℃以上がより好ましく、350℃以上がさらに好ましく、一方、500℃以下がより好ましく、450℃以下がより好ましい。焼成温度で維持する時間は、焼成原料の種類、焼成温度等に応じて適宜設定すればよいが、例えば、1~6時間であることが好ましい。1時間以上であることで、焼成を十分に進行させることができる傾向があり、6時間以下であることで、構成成分の過剰な熱分解を防止できる傾向がある。
【0044】
[装置]
焼成は、
図1に示す装置によって実施できる他、例えば、二軸押出機等の連続式の装置を用いて実施することもできる。連続式の装置を用いる場合、該装置内で、焼成原料を混練して粉砕・混合しながら、焼成も施すなど、有機硫黄材料を一連の操作により連続して製造できるというメリットがある。
【0045】
(残留物除去工程)
焼成後に得られる処理物中には、焼成時に昇華した硫黄が冷えて析出した未反応硫黄などが残留している。これら残留物はサイクル特性を低下させる要因となるため、できるだけ除去することが望ましい。残留物の除去は、例えば、減圧加熱乾燥、温風乾燥、溶媒洗浄などの常法に従い、実施することができる。
【0046】
(粉砕、分級)
得られた有機硫黄材料は、所定の粒度となるように粉砕し、分級して、電極の製造に適したサイズの粒子とすることができる。粒子の好ましい粒度分布としては、メジアン径で5~40μm程度である。なお、先に説明した二軸押出機を用いた焼成方法では、混練時のせん断によって、有機硫黄材料の製造と同時に、製造した有機硫黄材料の粉砕も行うことができる。
【0047】
<有機硫黄材料>
こうして得られる有機硫黄材料は、炭素と硫黄を主たる成分とするものであり、硫黄量が多い方が充放電容量やサイクル特性が向上する傾向にある。そのため、硫黄の含有量は多い程好ましい。一般に、硫黄量の好ましい範囲としては、有機硫黄材料中、50.0質量%以上であり、より好ましくは53.0質量%以上、さらに好ましくは55.0質量%以上、さらに好ましくは56.0質量%以上である。ただし、導電性炭素材料を配合する場合には、当該導電性炭素材料を構成する炭素の影響で、硫黄の含有量が多少下回っても、充放電容量やサイクル特性の向上効果を期待できる場合がある。そのような場合の硫黄の含有量は、上述の硫黄量を約5.0質量%下回るものであってもよい。有機硫黄材料中の炭素量と硫黄量との合計は、好ましくは90質量%以上、より好ましくは92質量%以上、さらに好ましくは94質量%以上である。
【0048】
また、焼成によりアクリル樹脂中の水素(H)は、硫黄と反応し、硫化水素となり、硫化物中から減っていく。したがって、有機硫黄材料の水素含有量は、1.8質量%以下であることが好ましく、さらに、1.6質量%以下であることが好ましい。1.8質量%以下である場合には、焼成(硫化反応)が十分であるという傾向があり、1.6質量%以下である場合には、より焼成(硫化反応)が十分であるという傾向がある。したがって、この場合、充放電容量が向上する傾向にある。水素含有量は、より好ましくは1.0質量%以下、さらに好ましくは0.6質量%以下である。本明細書において、元素の含有量は、常法に従い、元素分析により測定される。
【0049】
有機硫黄材料は、ラマン分光法によって検出されたラマンスペクトルにおいて、1450cm
-1付近に主ピークが存在し、かつ、200~1800cm
-1の範囲で他に485cm
-1付近、1250cm
-1付近、1540cm
-1付近にピークが存在するものであることが好ましい。この点について、実施例1および比較例1、2のラマンスペクトルを、
図3に示す。なお、ラマンスペクトルのピーク位置において、「付近」とあるのは、±50cm
-1、特に±30cm
-1の誤差を許容する意味である。
【0050】
また、有機硫黄材料は、前記ラマンスペクトルにおいて、1000cm
-1の強度と1800cm
-1の強度とを結ぶ直線をベースラインとして、1450cm
-1付近のピーク強度と対応するベースライン強度との差(I
1450)および1540cm
-1付近のピーク強度と対応するベースライン強度との差(I
1540)を算出するとき、I
1450/I
1540の値が1~4の範囲であるものであることが好ましい。この点について、実施例1および比較例1、2のI
1450/I
1540の値をグラフ上で把握できるように表したものとして、
図4を示す。
図4に示すA/Bの値がI
1450/I
1540の値である。
【0051】
実施例1および比較例1、2について、I1450/I1540の値を算出すれば、下記表1のとおりである。
【0052】
【0053】
I1450/I1540の値は、本開示の効果の観点から、1.20以上がより好ましく、1.40以上がさらに好ましく、1.50以上がさらに好ましく、2.00以上がさらに好ましい。一方、該値は、3.80以下が好ましく、3.60以下がより好ましく、3.50以下がさらに好ましく、3.20以下がさらに好ましい。
【0054】
本開示において、ラマンスペクトルは、日本分光(株)製のRMP-320(励起波長λ=532nm、グレーチング:1800gr/mm、分解能:3cm-1)で測定できる。
【0055】
<リチウムイオン二次電池>
本開示の有機硫黄材料は、リチウムイオン二次電池の電極活物質として、すなわち、正極活物質または負極活物質として、使用することができる。すなわち、該有機硫黄材料を用いること以外は一般的なリチウムイオン二次電池用電極を作製する場合と同様にして、リチウム二次電池用電極を作製することができ、さらに該リチウムイオン二次電池用電極を用いること以外は一般的なリチウムイオン二次電池を作製する場合と同様にして、リチウムイオン二次電池を作製することができる。こうして作製したリチウムイオン二次電池は、充放電容量が大きくサイクル特性に優れる。
【0056】
1.有機硫黄材料を正極活物質として用いる場合
本開示のリチウムイオン二次電池は、上記有機硫黄材料(正極活物質)を含む正極に、負極および電解質、さらには、所望により、セパレータ等の部材を使用して、常法に従い、作製することができる。
【0057】
(正極)
リチウムイオン二次電池用正極は、正極活物質として上記有機硫黄材料を用いること以外は、一般的なリチウムイオン二次電池用正極と同様にして、作製することができる。例えば、該正極は、粒子状にした有機硫黄材料を、導電助剤、バインダ、および溶媒と混合してペースト状の正極材料を調製し、当該正極材料を集電体に塗布した後、乾燥させることによって作製することができる。また、その他の方法として、該正極は、例えば、有機硫黄材料を、導電助剤、バインダ、および少量の溶媒とともに、乳鉢などを用いて混練し、かつフィルム状にしたのち、プレス機等を用いて集電体に圧着して、作製することもできる。
【0058】
[導電助剤]
導電助剤としては、例えば、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)、炭素粉末、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック(KB)、黒鉛、あるいは、アルミニウムやチタンなどの正極電位において安定な金属の微粉末等が例示される。これらの導電助剤は、1種または2種以上を使用することができる。
【0059】
[バインダ]
バインダとしては、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVDF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、カルボキシメチルセルロース(CMC)、ポリ塩化ビニル(PVC)、アクリル樹脂、メタクリル樹脂(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)等が例示される。これらのバインダは、1種または2種以上を使用することができる。
【0060】
[溶媒]
溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルホルムアルデヒド、アルコール、ヘキサン、水等が例示される。これら溶媒は、1種または2種以上を使用することができる。
【0061】
[配合量]
これら正極を構成する材料の配合量は、特に問わないが、例えば、有機硫黄材料100質量部に対して、導電助剤2~100質量部、バインダ2~50質量部、および適量の溶媒を配合するのが好ましい。
【0062】
[集電体]
集電体としては、リチウムイオン二次電池用正極に一般に用いられるものを使用すればよい。例えば、集電体としては、アルミニウム箔、アルミニウムメッシュ、パンチングアルミニウムシート、アルミニウムエキスパンドシート、ステンレススチール箔、ステンレススチールメッシュ、パンチングステンレススチールシート、ステンレススチールエキスパンドシート、発泡ニッケル、ニッケル不織布、銅箔、銅メッシュ、パンチング銅シート、銅エキスパンドシート、チタン箔、チタンメッシュ、カーボン不織布、カーボン織布等からなるものが例示される。このうち、黒鉛化度の高いカーボンで構成されたカーボン不織布やカーボン織布からなる集電体は、水素を含まず、硫黄との反応性が低いために、本開示の有機硫黄材料を正極活物質とする場合の集電体として好適である。黒鉛化度の高い炭素繊維の原料としては、カーボン繊維の材料となる各種のピッチ(すなわち、石油、石炭、コールタールなどの副生成物)やポリアクリロニトリル繊維(PAN)等を用いることができる。集電体は1種を用いる他、2種以上を併用してもよい。
【0063】
(負極)
負極材料としては、公知の金属リチウム、黒鉛などの炭素系材料、シリコン薄膜などのシリコン系材料、銅-錫やコバルト-錫などの合金系材料を使用できる。負極材料として、リチウムを含まない材料、例えば、上記した負極材料の内で、炭素系材料、シリコン系材料、合金系材料等を用いる場合には、デンドライトの発生による正負極間の短絡を生じ難い点で有利である。ただし、これらのリチウムを含まない負極材料を本開示の正極と組み合わせて用いる場合には、正極および負極が何れもリチウムを含まない。このため、負極および正極の何れか一方、または両方にあらかじめリチウムを挿入するリチウムプリドープ処理が必要となる。リチウムのプリドープ法としては公知の方法に従えばよい。例えば、負極にリチウムをドープする場合には、対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電解ドープ法によってリチウムを挿入する方法や、金属リチウム箔を電極に貼り付けたあと電解液の中に放置し電極へのリチウムの拡散を利用してドープする貼り付けプリドープ法によりリチウムを挿入する方法が挙げられる。また、正極にリチウムをプリドープする場合にも、上記した電解ドープ法を利用することができる。リチウムを含まない負極材料としては、特に、高容量の負極材料であるシリコン系材料が好ましく、その中でも電極厚さが薄くて体積当りの容量で有利となる薄膜シリコンがより好ましい。
【0064】
(電解質)
リチウムイオン二次電池に用いる電解質としては、有機溶媒に電解質であるアルカリ金属塩を溶解させたものを用いることができる。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ジメチルエーテル、γ-ブチロラクトン、アセトニトリル等の非水系溶媒から選ばれる少なくとも一種を用いるのが好ましい。電解質としては、LiPF6、LiBF4、LiAsF6、LiCF3SO3、LiI、LiClO4等を用いることができる。電解質の濃度は、0.5mol/L~1.7mol/L程度であればよい。なお、電解質は液状に限定されない。例えば、リチウムイオン二次電池がリチウムポリマー二次電池である場合、電解質は固体状(例えば、高分子ゲル状)をなす。
【0065】
(セパレータ)
リチウムイオン二次電池は、上述した負極、正極、電解質以外にも、セパレータ等の部材を備えてもよい。セパレータは、正極と負極との間に介在し、正極と負極との間のイオンの移動を許容するとともに、正極と負極との内部短絡を防止する。リチウムイオン二次電池が密閉型であれば、セパレータには電解液を保持する機能も求められる。セパレータとしては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、アラミド、ポリイミド、セルロース、ガラス等を材料とする薄肉かつ微多孔性または不織布状の膜を用いるのが好ましい。
【0066】
(形状)
リチウムイオン二次電池の形状は特に限定されず、円筒型、積層型、コイン型、ボタン型等の種々の形状にできる。
【0067】
2.有機硫黄材料を負極活物質として用いる場合
本開示のリチウムイオン二次電池は、上記有機硫黄材料(負極活物質)を含む負極に、正極および電解質、さらには、所望により、セパレータ等の部材を使用して、常法に従い、作製することができる。
【0068】
(負極)
リチウムイオン二次電池用負極は、負極活物質として上記有機硫黄材料を用いること以外は、一般的なリチウムイオン二次電池用負極と同様にして、作製することができる。例えば、該負極は、粒子状にした有機硫黄材料を、導電助剤、バインダ、および溶媒と混合してペースト状の負極材料を調製し、当該負極材料を集電体に塗布した後、乾燥させることによって作製することができる。また、その他の方法として、該負極は、例えば、有機硫黄材料を、導電助剤、バインダ、および少量の溶媒とともに、乳鉢などを用いて混練し、かつフィルム状にしたのち、プレス機等を用いて集電体に圧着して、作製することもできる。
【0069】
導電助剤、バインダおよび溶媒は、有機硫黄材料を正極活物質として使用する上記の場合と同様のものを同様に使用することができ、集電体も、同じく、同様のものを同様に使用することができる。
【0070】
(正極)
正極材料としては、例えば、リチウムを含む遷移金属酸化物もしくは固溶体酸化物、または電気化学的にリチウムイオンを吸蔵および放出することができる物質であれば特に制限されない。リチウムを含む遷移金属酸化物としては、例えば、LiCoO2等のLi・Co系複合酸化物、LiNixCoyMnzO2等のLi・Ni・Co・Mn系複合酸化物、LiNiO2等のLi・Ni系複合酸化物、またはLiMn2O4等のLi・Mn系複合酸化物等を例示することができる。固溶体酸化物としては、例えば、LiaMnxCoyNizO2(1.150≦a≦1.430、0.450≦x≦0.600、0.100≦y≦0.150、0.200≦z≦0.280)、LiMnxCoyNizO2(0.300≦x≦0.850、0.100≦y≦0.300、0.100≦z≦0.300)、LiMn1.5Ni0.5O4等を例示することができる。これらの化合物を単独または複数種、混合して用いてもよい。
【0071】
電解質、セパレータおよびリチウムイオン二次電池の形状についても、有機硫黄材料を正極活物質として使用する上記の場合と同様のものを同様に使用することができる。
【実施例】
【0072】
本開示を実施例に基づいて説明するが、本開示は、実施例にのみ限定されるものではない。
【0073】
以下に、実施例および比較例において使用した各種薬品をまとめて示す。各種薬品は必要に応じて常法に従い精製を行った。
【0074】
<試験に使用した材料>
アクリル樹脂1:球状アクリル樹脂(積水化学(株)製のアドバンセルHB-2051、粒子径:20μm)
アクリル樹脂2:ポリメタクリル酸メチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーMB-8(メチルメタクリレートのホモポリマーから成る球状アクリル樹脂)、粒子径:8μm)
アクリル樹脂3:架橋ポリメタクリル酸メチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーMB30X-5(メチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:5μm)
アクリル樹脂4:架橋ポリメタクリル酸ブチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーBM30X-8(ブチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:8μm)
アクリル樹脂5:架橋ポリメタクリル酸メチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーMB30X-8(メチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:8μm)
アクリル樹脂6:架橋ポリメタクリル酸メチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーMB30X-20(メチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:20μm)
アクリル樹脂7:架橋ポリメタクリル酸メチルから成る多孔質状アクリル樹脂(積水化成品工業(株)製のテクポリマーMBP-8(メチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る多孔質状アクリル樹脂)、粒子径:8μm)
アクリル樹脂8:ポリメタクリル酸メチルから成る球状アクリル樹脂((株)クラレ製のパラペットGF-P(メチルメタクリルレートのホモポリマーから成る球状アクリル樹脂)、粒子径:270μm)
アクリル樹脂9:架橋ポリメタクリル酸ブチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーBM30X-5(ブチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:5μm)
アクリル樹脂10:架橋ポリメタクリル酸ブチルから成る球状アクリル樹脂(積水化成品工業(株)製のテクポリマーBM30X-12(ブチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:12μm)
アクリル樹脂11:架橋ポリメタクリル酸ブチルから成る球状アクリル樹脂(アイカ工業(株)製のガンツパールGB-15S(ブチルメタクリレートとエチレングリコールジメタクリレートコポリマーから成る球状アクリル樹脂)、粒子径:15μm)
ハイシスBR:ハイシスブタジエンゴム(宇部興産(株)製のBR150L、シス1,4結合含量=98質量%)
PAN:ポリアクリロニトリル(シグマアルドリッチ社製、粒子径:8μm)
硫黄:鶴見化学工業(株)製の沈降硫黄
【0075】
実施例1
<原料の作製>
表3の配合に従い、材料をブレンダーで混合し、焼成のための原料(焼成原料)を得た。
【0076】
(反応装置)
焼成原料の焼成には、
図1に示す反応装置1を用いた。反応装置1は、原料2を収容して焼成するための、有底筒状をなす石英ガラス製の、外径60mm、内径50mm、高さ300mmの反応容器3、当該反応容器3の上部開口を閉じるシリコーン製の蓋4、当該蓋4を貫通する1本のアルミナ保護管5((株)ニッカトー製の「アルミナSSA-S」、外径4mm、内径2mm、長さ250mm)と、2本のガス導入管6とガス排出管7(いずれも、(株)ニッカトー製の「アルミナSSA-S」、外径6mm、内径4mm、長さ150mm)、および反応容器3を底部側から加熱する電気炉8(ルツボ炉、開口幅φ80mm、加熱高さ100mm)を備えている。
【0077】
アルミナ保護管5は、蓋4から下方が、反応容器3の底に収容した原料2に達する長さに形成され、内部に熱電対9が挿通されている。アルミナ保護管5は、熱電対9の保護管として用いられる。熱電対9の先端は、アルミナ保護管5の閉じられた先端で保護された状態で、原料2に挿入されて、当該原料2の温度を測定するために機能する。熱電対9の出力は、図中に実線の矢印で示すように、電気炉8の温度コントローラ10に入力され、温度コントローラ10は、この熱電対9からの入力に基づいて、電気炉8の加熱温度をコントロールするために機能する。
【0078】
ガス導入管6とガス排出管7は、その下端が、蓋4から下方へ3mm突出するように形成されている。ガス導入管6には、図示しないガスの供給系から、Ar(アルゴン)ガスが継続的に供給される。またガス排出管7は、水酸化ナトリウム水溶液11を収容したトラップ槽12に接続されている。反応容器3からガス排出管7を通って外部へ出ようとする排気は、一旦、トラップ槽12内の水酸化ナトリウム水溶液11を通ったのちに外部へ放出される。そのため排気中に、加硫反応によって発生する硫化水素ガスが含まれていても、水酸化ナトリウム水溶液と中和されて排気からは除去される。
【0079】
(焼成工程)
まず原料2を反応容器3の底に収容した状態で、ガスの供給系から、80ml/分の流量でArガスを継続的に供給しながら、供給開始30分後に、電気炉8による加熱を開始した。昇温速度は150℃/hで実施した。そして原料の温度が表3の焼成温度(400℃)に達した時点で、該焼成温度を維持しながら2時間焼成をした。次いでArガスの流量を調整しながら、Arガス雰囲気下、反応生成物の温度を25℃まで自然冷却させたのち、生成物を反応容器3から取り出した。
【0080】
(未反応硫黄の除去)
焼成工程後の生成物に残存する未反応硫黄(遊離した状態の単体硫黄)を除去するために、以下の工程をおこなった。すなわち、該生成物を乳鉢で粉砕し、粉砕物2gをガラスチューブオーブンに収容して、真空吸引しながら250℃で3時間加熱して、未反応硫黄が除去された(または、微量の未反応硫黄しか含まない)有機硫黄材料を得た。昇温速度は10℃/分とした。
【0081】
(分級作業)
焼成物の粗大粒子を除去するために、32μmメッシュのステンレスふるいを用いて分級して有機硫黄材料1を得た。
【0082】
<リチウムイオン二次電池の作製>
以下のとおり、リチウムイオン二次電池を作製した。
【0083】
(正極)
活物質として有機硫黄材料1、導電助剤としてアセチレンブラック、バインダとしてアクリル樹脂を用いた。これらを、割合が、活物質:導電助剤:バインダ=90:5:5(質量%)になるよう秤量し、容器にいれ、分散剤にmilliQ水を使用して自転公転ミキサー((株)シンキー製のARE-250)を用いて攪拌、混合を行い、均一なスラリーを作製した。作製したスラリーを20μmのアルミ箔上に、スリット幅60μmのアプリケーターを使用して塗工し、ロールプレスを用いて圧縮した電極を120℃で3時間、乾燥機で加熱し、乾燥後、φ11に打ち抜くことで電極(正極)を得た。その後、電極の重量を測定し、上述の比率から電極中の活物質量を算出した。
【0084】
(負極)
負極としては、金属リチウム箔(直径14mm、厚さ500μmの円盤状、本城金属(株)製)を用いた
【0085】
(電解液)
電解液としては、エチレンカーボネートとジエチルカーボネートとの混合溶媒に、LiPF6を溶解した非水電解質を用いた。エチレンカーボネートとジエチルカーボネートとは体積比1:1で混合した。電解液中のLiPF6の濃度は、1.0mol/lであった。
【0086】
(リチウムイオン二次電池)
上記正極および負極を用いて、コイン電池を製作した。詳しくは、ドライルーム内で、セパレータ(Celgard社製のCelgard2400、厚さ25μmのポリプロピレン微孔質膜)と、ガラス不織布フィルタ(厚さ440μm、ADVANTEC社製のGA100)と、を正極と負極との間に挟装して、電極体電池とした。この電極体電池を、ステンレス容器からなる電池ケース(CR2032型コイン電池用部材、宝泉(株)製)に収容した。電池ケースには上記電解液を注入した。電池ケースをカシメ機で密閉して、実施例1のリチウムイオン二次電池を得た。
【0087】
実施例2~16並びに比較例1~2
表3および表4の配合・条件に従って適宜変更を加えた以外は、実施例1と同様に処理して、それぞれの焼成原料、有機硫黄材料、および、リチウムイオン二次電池を作製した。
【0088】
<放電容量、および容量維持率の測定>
各実施例、比較例で作製したコイン型のリチウムイオン二次電池について、試験温度30℃の条件下で、正極活物質1gあたり、1回から9回目までは50mAに相当する電流値で充放電させた。10回から30回目までは250mAに相当する電流値で充放電させた。放電終止電圧は1.0V、充電終止電圧は3.0Vとした。また充放電を繰り返し、10、30回の電池放電容量(mAh)を観察した。
【0089】
2回目の放電容量(mAh/g)を初期容量とした。初期容量が大きいほど、リチウムイオン二次電池は充放電容量が大きく好ましいと評価できる。また10回目の放電容量DC10(mAh/g)と30回目の放電容量DC30(mAh/g)から、下記式(a):
容量維持率(%)=(DC30/DC10)×100 (a)
により、容量維持率(%)を求めた。先に説明したように容量維持率が高いほど、リチウムイオン二次電池はサイクル特性に優れていると言える。
【0090】
<元素分析>
(方法)
炭素、水素、硫黄および窒素について、エレメンタール社(Elementar)製の全自動元素分析装置 vario MICRO cubeを用いて質量を測定し、それぞれの質量比(%)を算出する。
【0091】
(アクリル樹脂)
実施例で使用したアクリル樹脂について元素分析をした。結果は、下表のとおりである。C(炭素)、H(水素)、N(窒素)およびS(硫黄)の質量比は実測値である。これら実測値を、総量(100%)から引いた残りが、ほぼ、O(酸素)の質量比であると推定される。
【0092】
【0093】
(有機硫黄材料)
実施例、比較例で製造した有機硫黄材料について、元素分析をした。結果を表3および表4に示す。
【0094】
<IRスペクトル>
IRスペクトルは、上記の方法により測定した。アクリル樹脂1(実施例1)、アクリル樹脂2(実施例2)、アクリル樹脂3(実施例3)およびアクリル樹脂4(実施例4)についての結果を
図2に示す。
【0095】
<ラマンスペクトル>
ラマンスペクトルは、上記の方法により測定した。実施例1および比較例1、2の有機硫黄材料についての結果を
図3に示す。
【0096】
【0097】
【0098】
表3および表4より、実施例では、比較例1に比べて、高い初期容量(mAh/g)を示し、かつ、容量維持率(%)も高い水準で維持されていることがわかる。比較例2は高い初期容量および容量維持率を示すが、高価なポリアクリロニトリルを原料とするため安価には提供し難い。本開示の有機硫黄材料によれば、初期容量が高く、容量維持率も良好であるリチウムイオン二次電池を安価に提供できる。
【符号の説明】
【0099】
1 反応装置
2 原料
3 反応容器
4 シリコーン製の蓋
5 アルミナ保護管
6 ガス導入管
7 ガス排出管
8 電気炉
9 熱電対
10 温度コントローラ
11 水酸化ナトリウム水溶液
12 トラップ槽
A 1450cm-1付近のピーク強度と対応するベースライン強度との差
B 1540cm-1付近のピーク強度と対応するベースライン強度との差