(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-09-27
(45)【発行日】2024-10-07
(54)【発明の名称】精密な公差内で流体を堆積させる印刷インク量制御のための技法
(51)【国際特許分類】
H10K 71/13 20230101AFI20240930BHJP
B05C 5/00 20060101ALI20240930BHJP
B05C 11/10 20060101ALI20240930BHJP
B05D 1/26 20060101ALI20240930BHJP
B05D 3/00 20060101ALI20240930BHJP
H05B 33/10 20060101ALI20240930BHJP
H05B 33/14 20060101ALI20240930BHJP
H10K 50/10 20230101ALI20240930BHJP
B41J 2/01 20060101ALN20240930BHJP
【FI】
H10K71/13
B05C5/00 101
B05C11/10
B05D1/26 Z
B05D3/00 D
H05B33/10
H05B33/14 Z
H10K50/10
B41J2/01 205
B41J2/01 401
B41J2/01 451
【外国語出願】
(21)【出願番号】P 2021109778
(22)【出願日】2021-07-01
(62)【分割の表示】P 2020070936の分割
【原出願日】2013-12-24
【審査請求日】2021-07-31
(32)【優先日】2012-12-27
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2013-05-13
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2013-07-02
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2013-07-23
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2013-11-01
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2013-12-24
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】513317345
【氏名又は名称】カティーバ, インコーポレイテッド
(74)【代理人】
【識別番号】100140833
【氏名又は名称】岡東 保
(72)【発明者】
【氏名】ナヒッド ハルジー
(72)【発明者】
【氏名】ルーカス ディー. バークレー
(72)【発明者】
【氏名】クリストファー アール. ハウフ
(72)【発明者】
【氏名】エリヤフ ブロンスキー
(72)【発明者】
【氏名】コナー エフ. マディガン
【審査官】横川 美穂
(56)【参考文献】
【文献】特開2007-117833(JP,A)
【文献】特開2010-227762(JP,A)
【文献】特開2006-212501(JP,A)
【文献】特開2009-093189(JP,A)
【文献】特表2011-508062(JP,A)
【文献】特開2003-127430(JP,A)
【文献】特開2006-205004(JP,A)
【文献】特開2009-117140(JP,A)
【文献】特開平04-027552(JP,A)
【文献】特開2003-014442(JP,A)
【文献】特開2001-071476(JP,A)
【文献】国際公開第2012/164628(WO,A1)
【文献】特開2007-207762(JP,A)
【文献】特開2012-139655(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H10K 50/00-99/00
B05C 5/00
B05C 11/10
B05D 1/26
B05D 3/00
H05B 33/00-33/28
B41J 2/01
(57)【特許請求の範囲】
【請求項1】
電子デバイスを生成するために基板上に層を作製する装置であって、前記装置は、
液体の液滴を放出するノズルを有するプリントヘッドと、
前記プリントヘッドによって印刷が可能な印刷領域に基板を搬送する基板輸送機構と、
前記液滴から前記基板上に形成される液体コートを処理し、層を形成する処理機構と、
前記ノズルのうちの1つから放出された前記液体の前記液滴の液滴量を
、飛行中の前記液滴を撮像することにより、測定する
液滴測定システムと、
前記プリントヘッドの各々のノズルに対して、前記液滴測定システムにより、
前記測定された液滴
量に基づき、前記各々のノズルの電子駆動回路に印加される
複数の電圧に関する
複数のパラメータを作成し、
前記各々のノズルの電子駆動回路に格納し、さらに、前記
複数のパラメータに基づいて、選択された前記各々のノズルに印加される電子駆動波形を含むノズル発射命令を生成するように構成されるプロセッサと、を備える装置。
【請求項2】
インクまたはガスの少なくとも一方をパージすること、およびプリントヘッドの定期的な較正を行うこと、を実行するプリントヘッド維持システムをさらに備える、請求項1に記載の装置。
【請求項3】
前記プロセッサは、基板の各印刷領域が所定の量公差範囲内に制限される液体の集合的な期待量を受け取るように、各々のノズルに対する期待液滴量に従って印刷を計画し、前記ノズル発射命令は、前記液滴測定システムによって実行されるノズルごとの液滴量測定に依存する、請求項1に記載の装置。
【請求項4】
前記プリントヘッドが第1のプリントヘッドであり、前記装置が、前記第1のプリントヘッドを含む1つ以上の前記プリントヘッドを備え、1つ以上の前記プリントヘッドは、集合的に少なくとも1000個の前記ノズルを備え、前記装置は、前記液滴測定システムに、前記少なくとも1000個の前記ノズルの各々のノズルによって生成される少なくとも1つの液滴について特性を測定
させ、前記特性は期待量または期待軌道である、請求項3に記載の装置。
【請求項5】
前記プロセッサは、前記ノズルのうちの1つのノズルから液滴を放出するための少なくとも2つの電子駆動波形を選択する、請求項3に記載の装置。
【請求項6】
各ノズルに対する電子駆動回路をさらに備え、前記電子駆動回路は前記電子駆動波形の波形形状を画定する少なくとも2つのパラメータを有する、請求項5に記載の装置。
【請求項7】
前記装置は、前記プリントヘッドに、前記プリントヘッドまたは前記基板の異なるスキャンの間に1つの領域において異なるノズルから液滴を堆積させて集合体の期待量を形成させ、前記異なるスキャンは、前記プリントヘッドと前記基板の間に、前記スキャンの方向とは異なる方向にオフセットを有する、請求項3に記載の装置。
【請求項8】
各ノズルに対して電子駆動回路をさらに備え、前記電子駆動回路は、前記ノズルから前記液滴を放出する電子駆動波形を選択するために用いられるデジタル値を
格納するメモリを有する、請求項3に記載の装置。
【請求項9】
各領域の所定の量公差範囲は、標的量のプラス2%から標的量のマイナス2%である、請求項3に記載の装置。
【請求項10】
前記プリントヘッドおよび前記処理機構を制御された雰囲気内に収容するエンクロージャをさらに備え、前記液体の前記液滴の放出および前記液体コートの処理は各々、制御されていない雰囲気に露出されることなく、制御された雰囲気内で実行される、請求項1に記載の装置。
【請求項11】
前記電子デバイスは、電子発光デバイスである、請求項1に記載の装置。
【請求項12】
前記電子発光デバイスは、画素と層とを含む電子ディスプレイデバイスであり、前記各電子ディスプレイデバイスに対する前記層の各々は、前記画素の各々に対する膜を提供する、請求項11に記載の装置。
【請求項13】
前記層は、色フィルタを含む、請求項12に記載の装置。
【請求項14】
前記層は、光生成層を含む、請求項12に記載の装置。
【請求項15】
前記層は、有機封入層を含む、請求項12に記載の装置。
【請求項16】
前記層は、ブランケット層を含む、請求項12に記載の装置。
【請求項17】
前記処理機構は、放射
線によって前記液滴を硬化
させる、請求項1に記載の装置。
【請求項18】
前記
放射線は、紫外線
である、請求項17に記載の装置。
【請求項19】
前記液体が有機単量体を含み、前記処理機構は前記有機単量体をポリマーに変換し、前記層を形成する、請求項1に記載の装置。
【請求項20】
前記各々のノズルに対して、前記液滴測定システムは、
撮像により液滴形状を測定し、前記装置は、前記液滴形状から液滴量を計算し、前記装置によって計算された前記液滴量に依存して印刷することを計画する、請求項1に記載の装置。
【請求項21】
電子デバイスを生成するために基板上に層を製作する装置であって、前記装置は、
プリントヘッドを使用して基板上に液体を印刷する手段であって、前記プリントヘッドは、前記液体の液滴を放出するノズルを各々有する、手段と、
前記基板を、前記プリントヘッドによって印刷が可能な印刷領域へ輸送する、手段と、
前記液滴から前記基板上に形成された液体コートを処理し、前記層を形成する、手段と、
撮像デバイスを使用する手段であって、前記各々のノズルの1つから放出された前記液体の前記液滴の液滴量を
、飛行中の前記液滴を撮像することにより、測定する、手段と、
前記プリントヘッドの前記各々のノズルに対して、前記
撮像デバイスを使用する手段により
、前記測定された液滴量に基づき、前記各々のノズルの電子駆動回路に印加される
複数の電圧に関する
複数のパラメータを作成し
、前記各々のノズルの電子駆動回路に記録する、手段と、
前記
複数のパラメータに基づいて、選択された前記各々のノズルに印加される電子駆動波形を含むノズル発射命令を生成する手段と、を有する装置。
【請求項22】
前記
撮像デバイスを使用する手段は、前記
撮像デバイスを使用して液滴形状を測定し、前記装置は前記液滴形状から液滴量を計算し、前記装置によって計算された液滴量に依存して印刷することを計画する、請求項21に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願への相互参照)
本願は、以下の特許出願の各々を基礎とする優先権を主張する:米国仮特許出願第61/746545号(2012年12月27日出願、名称「Smart Mixing」、発明者Conor Francis Madigan、他);米国仮特許出願第61/822855号(2013年5月13日出願、名称「Systems and Methods Providing Uniform Printing of OLED Panels」、発明者Nahid Harjee、他);米国仮特許出願第61/842351号(2013年7月2日出願、名称「Systems and Methods Providing Uniform Printing of OLED Panels」、発明者Nahid Harjee、他);米国仮特許出願第61/857298号(2013年7月23日出願、名称「Systems and Methods Providing Uniform Printing of OLED Panels」、発明者Nahid Harjee、他);米国仮特許出願第61/898769号(2013年11月1日出願、名称「Systems and Methods Providing Uniform Printing of OLED Panels」、発明者Nahid Harjee、他);および米国仮特許出願第61/920,715号(2013年12月24日出願、名称「Techniques for Print Ink Volume Control To Deposit Fluids Within Precise Tolerances」、発明者Nahid Harjee、他)。上記出願の各々は、参照により本明細書に引用される。
【0002】
本開示は、流体を基板の標的領域に移送する印刷プロセスの使用に関する。1つの非限定的用途では、本開示によって提供される技法は、大規模ディスプレイのための製造プロセスに適用されることができる。
【背景技術】
【0003】
プリントヘッドが複数のノズルを有する印刷プロセスでは、全てのノズルが標準駆動波形に同じように反応するわけではない。すなわち、各ノズルは、わずかに異なる量の液滴を生成する可能性がある。それぞれの流体堆積領域(「標的領域」)の中へ流体液滴を堆積させるために、ノズルが頼りにされる状況では、一貫性の欠如が問題につながり得る。
【0004】
図1Aは、概して数字101を使用して参照される例示的略図を用いて、このノズル・液滴の非一貫性問題を紹介するために使用される。
図1では、プリントヘッド103は、各々がそれぞれ、(1)-(5)と番号付けられた、プリントヘッドの底部で小さい三角形を使用して各々が描写される、5つのインクノズルを有することが分かる。例示的用途では、そのような領域のアレイの5つの特定の標的領域の各々の中へ50ピコリットル(50.00pL)の流体を堆積させることが所望され、さらに、プリントヘッドの5つのノズルの各々は、プリントヘッドと基板との間の各相対移動(「通過」または「スキャン」)を伴って、種々の標的領域の各々の中へ10ピコリットル(10.00pl)の流体を放出するものであると仮定される。標的領域は、隣接する未分離領域(例えば、堆積した流体インクが部分的に拡散して領域間で一緒に混合するような)、またはそれぞれの流体的に分離された領域を含む、基板の任意の表面領域であり得る。これらの領域は、概して、それぞれ、長円形104-108を使用して
図1で表される。したがって、5つの特定の標的領域の各々を充填するために、描写されるようにプリントヘッドの正確に5回の通過が必要であることが仮定され得る。しかしながら、プリントヘッドノズルは、実践では、構造または作動にいくつかの軽微な変動を有するであろう。それによって、それぞれのノズル変換器に適用される所与の駆動波形は、各ノズルに対してわずかに異なる液滴量を生じる。例えば、
図1Aで描写されるように、ノズル(1)の発射は、各通過で9.80ピコリットル(pL)の液滴量を生じ、5つの9.80pL液滴が長円形104内に描写されている。液滴の各々は、標的領域104内の異なる場所によって図に表されるが、実践では、液滴の各々の場所は、同一であり得るか、または重複し得ることに留意されたい。一方で、ノズル(2)-(5)は、10.01pL、9.89pL、9.96pL、および10.03pLのわずかに異なるそれぞれの液滴量を生じる。各ノズルが相互排他的に標的領域104-108の中へ流体を堆積させる、プリントヘッドと基板との間の5回の通過により、この堆積は、5つの標的領域にわたって1.15pLの総堆積インク量変動をもたらすであろう。これは、多くの用途に対して受け入れ難くあり得る。例えば、いくつかのの用途では、堆積した流体のわずか1パーセント(またはさらに少ない)の相違が問題を引き起こし得る。
【0005】
この問題が生じる、1つの例示的用途は、有機発光ダイオード(「OLED」)ディスプレイ等のディスプレイの製作に適用される製造プロセスにある。そのようなディスプレイの光発生材料を運ぶインクを堆積させるために、印刷プロセスが使用される場合、流体容器または「ウェル」の行または列(例えば、1画素につき3つのそのような容器を伴う)にわたる量の相違は、表示された画像において見える色または照明の欠陥につながり得る。本明細書で使用される場合、「インク」は、色の特性にかかわらず、プリントヘッドのノズルによって基板に適用される任意の流体を指し、記述された製造用途では、インクは、典型的には、定位置で堆積させられ、次いで、永久材料層を直接形成するために処理または硬化されることに留意されたい。したがって、テレビおよびディスプレイ製造業者は、結果として生じた製品が容認可能であると見なされるために、高度な精度、例えば、50.00pL±0.25pLで観察されなければならない、精密な量範囲を効果的に特定するであろう。この用途では、特定された公差は、50.00pLの標的の0.5パーセント以内でなければならないことに留意されたい。
図1によって表される各ノズルが、高解像度テレビ(「HDTV」)画面の各々の水平線内の画素の中へ堆積させるものであった用途では、したがって、49.02pL~50.17pLの描写された変動が、受け入れ難い品質を生じ得た。ディスプレイ技術が実施例として引用されているが、ノズル・
液滴の非一貫性問題は他の状況でも生じ得ることを理解されたい。
【0006】
図1Aでは、特定のノズルが特定の標的領域の中へ印刷するように、ノズルは、標的領域(例えば、ウェル)と特定的に整列させられる。
図1Bでは、ノズルが特定的に整列させられないが、ノズル密度が標的領域密度に対して高い、代替的な事例151が示されており、そのような場合において、スキャンまたは通過中に特定の標的領域をたまたま横断する、いずれかのノズルが、これらの標的領域の中へ印刷するために使用され、潜在的に、いくつかのノズルが各通過で各標的領域を横断する。示される実施例では、プリントヘッド153は、5つのインクノズルを有することが分かり、基板は、ノズル(1)および(2)が標的領域154を横断し、ノズル(4)および(5)が標的領域155を横断し、ノズル(3)がいずれの標的領域も横断しないように各々が位置する、2つの標的領域154-155を有することが分かる。示されるように、各通過で、1つまたは2つの液滴が、描写されるように各ウェルの中へ堆積させられる。再度、重複する様式で、または各標的領域内の個別の点で、液滴を堆積させることができ、
図1Bの特定の説明図は例証的にすぎず、
図1Aで提示される実施例と同様に、再度、標的領域154-155の各々の中へ50ピコリットル(50.00pL)の流体を堆積させることが所望され、各ノズルは、約10.00pLの公称液滴量を有すると仮定されることを留意されたい。
図1Aの実施例に関連して観察されるものと同一のノズルあたりの液滴量変動を利用し、所与の通過で標的領域と重複する各ノズルが、合計5つの液滴が送達されるまで、その標的領域の中へ液滴を送達するであろうことを仮定すると、標的領域が3回の通過で充填され、2つの標的領域にわたって50.00pLの標的から0.58pLの総堆積インク量変動があることが観察され、これは再度、多くの用途に対して受け入れ難くあり得る。
【0007】
非一貫性の問題に対処するように技法が提案されているが、一般的に言えば、これらの技法は、所望の公差範囲内にとどまる充填量を依然として確実に提供しないか、または製造時間および費用を著しく増加させるかのいずれかであり、すなわち、それらは、低い消費者プライスポイントとともに高い品質を有するという目標と矛盾し、そのような品質および低いプライスポイントは、HDTV等の商品生産物が関係する用途に対して重要であり得る。
【0008】
したがって、必要とされるものは、ノズルを伴うプリントヘッドを使用して、基板の標的領域の中へ流体を堆積させることにおいて有用な技法である。より具体的には、必要とされるものは、理想的には、高速流体堆積動作を可能にし、したがって、デバイス製作の速度を向上させる、費用効率的な基準で、ノズル・液滴放出量の変動を考慮して、基板のそれぞれの標的領域において堆積した流体量を正確に制御するための技法である。以下で説明される技法は、これらの必要性を満たし、さらなる関連利点を提供する。
【発明の概要】
【課題を解決するための手段】
【0009】
本開示は、層材料を基板に移送するための印刷プロセスの使用に関する。上で紹介されるノズル一貫性の問題は、所与のノズル発射波形に対するプリントヘッドのノズルあたりの液滴量(またはノズルにわたる液滴量の変動)を測定することによって対処される。これは、各標的領域中でインクの精密な総充填量を堆積させるためのプリントヘッド発射パターンおよび/または運動の計画を可能にする。どのように液滴量がノズルにわたって変動するかという理解により、プリントヘッド/基板の位置オフセットおよび/または液滴発射パターンが、液滴量の差異に適応するが、各通過またはスキャンにより隣接標的領域中で液滴を依然として同時に堆積させる様式で計画されることができる。異なる視点から見ると、液滴量のノズル間変動を正規化または平均化するよりもむしろ、各ノズルの特定の液滴量特性が測定され、それが、基板の複数の標的領域に対する特定の範囲内総量を同時に達成するために、計画された様式で使用される。多くの実施形態では、このタスクは
、1つ以上の最適化基準に依拠して、スキャンまたはプリントヘッド通過の数を削減する最適化プロセスを使用して行われる。
【0010】
1つの随意的な実施形態では、プリントヘッドおよび/または基板は、適宜、種々の通過で各標的領域に使用されるノズルを変更するように可変量で「段階的」であり、特定的に所望される液滴量を放出する。各標的領域が特定の総充填を受け取るように、複数の通過が計画される。つまり、各標的領域(例えば、ディスプレイの画素化構成要素を形成するであろう、ウェルの行の中の各ウェル)が、基板に対するプリントヘッドの異なる幾何学的ステップを使用して、特定された公差範囲内の総量を達成するように、1つ以上の液滴量の計画された組み合わせを受け取る。本実施形態のさらに詳細な特徴では、互に対するノズルの位置関係が与えられると、パレート最適解法が計算され、適用されることができ、各標的領域中の量変動の許容量が仕様内で許可されるが、同時に、プリントヘッド/基板移動が、それぞれの標的堆積領域に対するノズルの平均同時使用を最大化するよう計画される。1つの随意的な精緻化では、印刷のために必要とされるプリントヘッド/基板の通過の数を削減し、さらに最小化するように、機能が適用される。これらの種々の機能を手短に熟考すると、基板上の材料の層の印刷を迅速かつ効率的に行うことができるので、製作費用が大幅に削減される。
【0011】
典型的な用途では、インクを受け取る標的領域を、行または列で整列させる、つまり、レイアウトすることができ、相対的プリントヘッド/基板運動によって表される帯状の範囲は、(アレイの標的領域の)行の全ての一部の中であるが、1回の通過でアレイの全ての列を覆う様式でインクを堆積させるであろうことに留意されたい。また、行、列、およびプリントヘッドノズルの数は、極めて大きくあり得、例えば、何百または何千もの行、列、および/またはプリントヘッドノズルを伴う。
【0012】
第2の随意的な実施形態は、わずかに異なる様式で、ノズル一貫性の問題に対処する。既知の(かつ異なる)液滴量特性を伴う、一組の複数の事前配列された代替的ノズル発射波形が、各ノズルに利用可能にされ、例えば、対応する組の選択可能なわずかに異なる液滴量を提供するために、一組の4つ、8つ、または別の数の代替的波形を、配線で組み込むか、または別様に事前定義することができる。次いで、基板の各標的領域に対する組のノズル・波形の組み合わせを決定することによって、複数の標的領域の同時堆積を計画するために、ノズルあたりの量のデータ(または差異データ)が使用される。再度、特定の充填量を達成するために、各ノズル(この場合、各ノズル・波形の組み合わせ)の特定の量特性が頼りにされ、つまり、ノズルあたりの量変動を補正しようとするよりもむしろ、特定の充填量を得るために、その変動が組み合わせで特定的に使用される。典型的には、基板の各標的領域中で所望の範囲に到達するように液滴を堆積させるために使用されることができる、多数の代替的な組み合わせがあろうことに留意されたい。さらに詳細な実施形態では、「共通の組」のノズル波形を、プリントヘッドのいくつか(またはさらに全ての)ノズルにわたって共有することができ、ノズルあたりの液滴量が記憶され、特定の充填を達成するために異なる液滴量を混合して合致させるために利用可能である。さらなるオプションとして、オフラインプロセスで異なる波形を選択するために、較正段階を使用することができ、一組の特定のノズル発射波形が、一組のそれぞれの特定的に所望される量特性を達成するために、較正に基づいて選択される。再度、さらなる詳細な実施形態では、例えば、スキャンまたはプリントヘッド通過の数を最小化することによって、同時ノズル使用を最大化することによって、またはいくつかの他の基準を最適化することによって、印刷時間を向上させる方法で印刷を計画するように、最適化を行うことができる。
【0013】
随意的な第3の実施形態は、各々が互に対してオフセットされることができるノズルを有する複数のプリントヘッド(または同等に、互に対してオフセットすることができるノズルの複数の行を有する、印刷構造)の使用に依拠する。そのような意図的なオフセット
を使用して、ノズルあたりの量変動を、プリントヘッド(またはノズルの行)にわたって、各通過またはスキャンのたびに知的に組み合わせることができる。再度、典型的には、基板の各標的領域中で所望の範囲に到達するように液滴を堆積させるために使用することができる、多数の代替的な組み合わせが生じ、詳細な実施形態では、例えば、スキャンまたはプリントヘッド通過の数を最小化することによって、または同時ノズル使用を最大化すること等によって、印刷時間を向上させる方法でオフセットの使用を計画するように、最適化が行われる。
【0014】
上で説明される技法の1つの利益は、液滴量変動を受け入れるが、特定の所定の標的領域充填量を達成するようにそれらを組み合わせることによって、所望の充填公差範囲を満たす能力だけでなく、精密な量およびそのような量の意図的に制御された(または注入された)変動にも対する高度な制御を達成できることであることに留意されたい。例えば、記述された技法の1つの例示的な用途、すなわち、表示デバイスの製作では、上記の技法が、完成したディスプレイにおいて任意の表示アーチファクトを目立たなくするであろう(すなわち、完成した電子的に動作可能なディスプレイにおいて人間の眼にそうでなければ見えるであろう「線効果」を軽減する)、画素から画素への充填量の制御された意図的な変動を促進する。つまり、低空間周波数でのディスプレイのわずかな相違でさえも、人間の眼に見え、したがって、望ましくない、非意図的なアーチファクトを導入し得る。したがって、いくつかの実施形態では、依然として仕様内であるが、各標的領域の充填量を意図的に変動させることが所望される。49.75pL~50.25pLの例示的公差を使用する場合、単純に、全ての標的領域充填が、この公差範囲内の共通の精密な値にあることを恣意的に確実にすることよりもむしろ、変動または差異の任意のパターンが、完成した動作するディスプレイにおいてパターンとして人間の眼に観察可能ではないように、この範囲内で無作為な変動を意図的に導入することがそのような用途に対して所望され得る。カラーディスプレイに適用される場合、1つの例示的実施形態は、(a)(例えば、標的領域の行の方向に沿った)x次元、(b)(例えば、標的領域の列の方向に沿った)y次元、および/または(c)1つ以上の色次元にわたって(例えば、赤対青、青対緑、赤対緑の標的領域について独立して)のうちの少なくとも1つについて統計的に独立した様式で、そのような充填量変動を意図的に追加する。一実施形態では、変動は、これらの次元の各々にわたって統計的に独立している。そのような変動は、任意の充填量変動を人間の眼に認識できなくし、したがって、そのようなディスプレイの高い画質に寄与すると考えられる。
本発明はさらに、例えば、以下を提供する。
(項目1)
プリントヘッドのノズルが基板の少なくとも1つの標的領域においてインクの総量を堆積させるための制御データを生成する方法であって、前記総量は、所定の量公差範囲内であり、前記ノズルの各々は、少なくとも1つのそれぞれの液滴量を生成し、前記方法は、
前記液滴量を表す情報を受信することと、
対応する液滴量が、合計すると前記所定の公差範囲内であるように制限された値になる液滴の組み合わせを計算することと、
前記組み合わせに応じて前記制御データを生成することと
を含み、
前記制御データは、前記組み合わせに関連付けられている前記ノズルの各々を前記少なくとも1つの標的領域のうちの第1の標的領域と近接させるように、前記プリントヘッドと基板との間の相対運動を指示するために十分であり、かつ、前記第1の標的領域において前記組み合わせに関連付けられている各液滴量を堆積させるように、前記組み合わせに関連付けられている前記ノズルの各々の発射を指示するために十分である、方法。
(項目2)
前記所定の公差範囲は、標的量を中心とする範囲を備え、前記範囲は、前記標的量±前記標的量の1パーセントによって表される範囲によって包含され、前記制御データを生成
することは、前記少なくとも1つの標的領域のうちの標的領域に対する総標的量を生成するために、前記ノズルのうちの少なくとも2つからの液滴の組み合わせを使用するように適合された様式で、前記制御データを生成することを含む、項目1に記載の方法。
(項目3)
前記方法は、インクジェット印刷機構を制御する方法として具現化され、前記方法は、前記制御データに依存して、前記組み合わせに関連付けられている前記ノズルの相対運動および発射を行うように、前記インクジェット印刷機構を制御することをさらに含む、項目2に記載の方法。
(項目4)
前記インクジェット印刷機構は、液滴測定デバイスを備え、前記情報を受信することは、前記液滴量の各々を経験的に決定するように、前記液滴測定デバイスを従事させることを含み、前記情報を受信することは、前記液滴測定デバイスから前記情報を受信することを含む、項目3に記載の方法。
(項目5)
前記基板は、ウェルの行を備え、各ウェルは、表示デバイスのそれぞれの画素、および前記少なくとも1つの標的領域のうちのそれぞれの標的領域を表し、前記方法は、
前記行の各々に対する対応するウェルに対する前記液滴量の組み合わせを計算するために十分な様式で、前記計算を行うことをさらに含み、
生成することは、前記組み合わせの各々に関連付けられているノズルを、前記行の各々に対する前記対応するウェルと近接させるように、前記プリントヘッドと基板との間の相対運動を指示するために十分であり、かつ、前記対応するウェルのうちのウェルにおいて液滴を同時に堆積させるように、前記組み合わせの各々に関連付けられている前記ノズルの発射を指示するために十分である制御データを生成することを含む、項目1に記載の方法。
(項目6)
プリントヘッドのノズルが前記基板のそれぞれの標的領域において前記所定の公差範囲内で前記インクの総量を堆積させるための制御データを生成する方法として具現化され、
組み合わせの前記計算は、前記それぞれの標的領域の各々に対して行われ、
制御データの前記生成は、各組み合わせと関連する様式で前記制御データを生成するように行われ、前記制御データは、各組み合わせに関連付けられている少なくとも1つのノズルを前記それぞれの標的領域と同時に近接させるように、前記プリントヘッドと基板との間の相対運動を指示するために十分であり、かつ、前記それぞれの標的領域において前記液滴量を同時に堆積させるように、各組み合わせに関連付けられている前記少なくとも1つのノズルの発射を指示するために十分である、項目1に記載の方法。
(項目7)
前記方法は、一組の所定のノズル制御波形を識別することをさらに含み、各所定のノズル制御波形は、ノズルに適用されると、それぞれのインク液滴量を生成し、
前記それぞれの標的領域の各々に対する前記組み合わせは、整数の液滴に関連付けられ、前記ノズルのうちの少なくとも2つの異なるノズルおよび前記所定のノズル制御波形のうちの少なくとも2つの異なる波形を包含するように適合されている、項目1に記載の方法。
(項目8)
前記少なくとも1つの標的領域は、複数の標的領域を含み、前記標的領域の各々は、前記所定の量公差範囲を達成し、前記標的領域は、第1の軸の方向に互からオフセットされ、前記相対運動は、各々が前記第1の軸に対して実質的に垂直な方向である少なくとも2回のスキャンを含み、前記少なくとも2回のスキャンは、一連の少なくとも1つの幾何学的ステップに従って互からオフセットされ、前記ノズルの各々は、互に対する位置関係を有し、
前記方法は、前記標的領域のうちの各標的領域に対して、対応する液滴量が、合計すると前記所定の公差範囲内であるように制限された値になる液滴の少なくとも1つの組み合
わせを計算することをさらに含み、
前記制御データを生成することは、前記標的領域のうちの各標的領域に対する液滴の特定の組み合わせと関連する様式で行われ、
前記方法は、前記特定の組み合わせと関連する様式で各幾何学的ステップを選択することをさらに含む、項目1に記載の方法。
(項目9)
前記ノズルは、互に対する固定位置関係を有し、前記ノズルは、前記第1の軸の方向に沿った距離に集合的に及び、前記少なくとも2回のスキャンは、前記一連の幾何学的ステップのうちの幾何学的ステップによってオフセットされた2つのスキャン経路を備え、各スキャン経路は、前記プリントヘッドと前記基板との間の実質的に連続的な運動を表し、
前記制御データを生成することは、前記一連の幾何学的ステップのうちの前記幾何学的ステップが標的領域のうちの各標的領域に対する前記特定の組み合わせと関連するように行われ、前記一連の幾何学的ステップのうちの前記幾何学的ステップは、前記距離の非整数倍数を自由に表すことができる、項目8に記載の方法。
(項目10)
前記制御データを生成することは、前記標的領域の全てに対するインクの量を堆積させるために必要とされる前記幾何学的ステップの数を最小化する様式で、前記標的領域のうちの各標的領域に対する前記特定の組み合わせを選択することを含む、項目8に記載の方法。
(項目11)
液滴の少なくとも1つの組み合わせを計算することは、前記標的領域のうちの各標的領域に対して、対応する液滴量が、合計すると前記所定の公差範囲内であるように制限された値になる前記ノズルからの液滴の各可能な組み合わせを計算することを含む、項目8に記載の方法。
(項目12)
前記プリントヘッドは、128個以上の前記プリントノズルを有し、
前記方法は、プリントヘッド、プリントヘッド運動制御機構、および基板運動制御機構を備えている分割軸インクジェット印刷機構を制御する方法としてさらに具現化され、
前記制御データを生成することは、前記基板運動制御機構が、第1の方向へ前記プリントヘッドに対して前記基板を移動させるためのものであり、前記プリントヘッド運動制御機構が、前記第1の方向から独立した第2の方向へ前記基板に対して前記プリントヘッドを移動させるためのものであるように、機械に前記インクジェット印刷機構を制御させて前記プリントヘッドと前記基板との間で相対運動を行うことをさらに含む、項目1に記載の方法。
(項目13)
前記少なくとも1つの標的領域は、アレイとして配列されている標的領域を備え、前記相対運動は、一連のスキャン経路を備え、前記スキャン経路は、一連の可変サイズの幾何学的ステップに従って互からオフセットされている、項目1に記載の方法。
(項目14)
電子デバイスのための有機発光層を形成する方法として具現化され、前記インクは、溶剤によって運ばれる有機材料、有機単量体、または有機ポリマーのうちの少なくとも1つを含む、項目1に記載の方法。
(項目15)
前記少なくとも1つの標的領域は、第1のインクを受け取る第1の標的領域を含み、前記所定の量公差範囲は、第1の公差範囲であり、前記第1の標的領域は、前記第1の標的領域の行および列を備えている、前記基板上の第1のアレイとして配列され、各第1の標的領域は、前記第1の公差範囲内の前記第1のインクを受け取るためのものである、項目1に記載の方法。
(項目16)
前記組み合わせを計算することは、前記第1の標的領域の各々に対する特定の組み合わ
せが、前記行または前記列のうちの少なくとも1つに沿って、前記第1の公差範囲内で前記第1の標的領域にわたって総インク量の変動をもたらすような様式で、前記第1の標的領域の各々に対する液滴の前記特定の組み合わせを機械に選択させることをさらに含む、項目15に記載の方法。
(項目17)
前記第1の標的領域は、第1のウェルによって画定され、前記第1のインクは、表示デバイスの第1の光の色を生成し、
前記基板はまた、前記第1のアレイに重複する前記基板上の第2のアレイとして配列されている第2のウェルとして形成されている第2の標的領域も有し、前記第2のアレイは、前記第2のウェルの行および列を備え、各第2のウェルは、第2の公差範囲内の総インク量で第2のインクを受け取り、前記第2のインクは、前記表示デバイスの第2の光の色を生成し、
前記基板はまた、前記第1のアレイおよび前記第2のアレイの各々に重複する前記基板上の第3のアレイとして配列されている第3のウェルとして形成されている第3の標的領域も有し、前記第3のアレイは、前記第3のウェルの行および列を備え、各第3のウェルは、第3の公差範囲内の総インク量で第3のインクを受け取り、前記第3のインクは、前記表示デバイスの第3の光の色を生成する、
項目16に記載の方法。
(項目18)
前記第1のインク、前記第2のインク、および前記第3のインクの各々は、前記ディスプレイの光発生層を形成するためのものである、項目17に記載の方法。
(項目19)
前記ノズルのうちの少なくとも2つは、前記基板のウェルの中へ相互排他的にインクを放出するためのものである、項目1に記載の方法。
(項目20)
基板の標的領域の中へのインクの放出を制御するインクジェット印刷プロセスにおいて、前記インクは、デバイスの永久層を形成するであろう材料を含み、前記インクジェット印刷プロセスは、各々がインクのそれぞれの液滴量を放出するノズルを有するプリントヘッドを使用し、各標的領域は、前記プリントヘッドからの複数の液滴を使用してインクの標的量を受け取り、改良は、
前記ノズルの各々に対する量測定を表すデータを受信することであって、前記データは、インクの前記それぞれの液滴量を表す、ことと、
対応する液滴量が、合計されると値の±1パーセント以内にある公差範囲内に入るように制限された充填値になる各標的領域に対する液滴の組み合わせを計算することと、
前記基板に対する前記プリントヘッドの複数のスキャンを計画することと
を含み、
各スキャンは、前記プリントヘッドのノズルが前記標的領域のうちのそれぞれの標的領域において前記インクの液滴を堆積させるために使用されるような様式で、前記組み合わせと関連する様式で計画される、改良。
(項目21)
前記改良は、他のスキャン順列に対して最小数の前記複数のスキャンを使用して、前記基板全体に対する前記それぞれの標的領域において前記充填値を堆積させる様式で、前記プリントヘッドの前記複数のスキャンを計画することをさらに含む、項目20に記載の改良。
(項目22)
前記改良は、他のスキャン順列に対して最短時間で前記基板全体に対する前記それぞれの標的領域において前記充填値を堆積させる様式で、前記プリントヘッドの前記複数のスキャンを計画することをさらに含む、項目20に記載の改良。
(項目23)
プリンタであって、
基板の標的領域のアレイ上にインクを印刷するノズルを有するプリントヘッドと、
前記プリントヘッドと前記基板との間の相対移動を提供する少なくとも1つの運動機構であって、前記相対移動は、前記プリントヘッドと前記基板との間の実質的に連続的な運動のスキャンを含む、少なくとも1つの運動機構と、
前記ノズルの各々に対する液滴量を識別するデータを記憶する記憶装置と、
非一過性の機械読み取り可能な媒体上に記憶された命令と
を備え、
前記命令は、実行されると、
前記標的領域の各々に対する所望の充填量を定義する電子ファイルを受信することであって、前記標的領域の各々に対する前記所望の充填量は、関連する量公差範囲内で達成される、ことと、
前記ノズルの各々に対する液滴量を識別する前記データ、および前記標的領域の各々に対する前記充填量を定義する前記ファイルに基づいて、各標的領域に対する前記ノズルのうちの1つ以上のからの液滴の組み合わせであって、前記液滴の組み合わせは、対応する液滴量が、合計すると前記関連する量公差範囲内の充填値になる、液滴の組み合わせを印刷するように、前記運動機構および前記プリントヘッドを制御することと
を前記プリンタに行わせ、
前記命令は、前記アレイの前記標的領域の行の数および前記アレイの前記標的領域の列の数の各々より小さい前記スキャンの数を使用して、前記標的領域の全てを充填するために、前記それぞれの標的領域に対する前記充填値を堆積させるように前記運動機構および前記プリントヘッドを制御するためのものである、プリンタ。
(項目24)
前記命令は、実行されると、それぞれのノズルを同時に使用して、前記標的領域の複数の行において液滴を堆積させるように、前記運動機構および前記プリントヘッドを制御するためのものである、項目23に記載のプリンタ。
(項目25)
前記命令は、実行されると、前記スキャンの数が、前記関連量公差範囲内で前記標的領域の各々に対して前記充填値が達成される前記ノズルからの液滴量の異なる組み合わせに対して最小数であるように、前記それぞれの標的領域に対する前記充填値を堆積するように前記運動機構および前記プリントヘッドを制御するためのものである、項目23に記載のプリンタ。
(項目26)
前記プリントヘッドおよび前記基板を含むためのガスエンクロージャと、印刷中に前記ガスエンクロージャに制御された雰囲気を注入する雰囲気制御システムとをさらに備えている、項目23に記載のプリンタ。
(項目27)
前記基板は、表示デバイスを形成するためのものであり、前記基板の標的領域の3つのアレイを有し、各アレイの前記標的領域は、前記アレイの画素のそれぞれの色成分を表し、前記プリンタは、前記3つのアレイのうちの対応するアレイの標的領域上にそれぞれのインクを印刷するために、1つの色成分につき少なくとも1つを含む少なくとも3つのプリントヘッドを備えている、項目23に記載のプリンタ。
(項目28)
前記表示デバイスは、有機発光ダイオード(OLED)パネルであり、前記それぞれのインクの各々は、流体として運ばれる有機材料を含み、前記それぞれのインクの各々は、それぞれの色成分のうちの1つに対応する光を生成するためのものである、前記OLEDパネルの光発生層を形成する、項目27に記載のプリンタ。
(項目29)
液滴測定デバイスをさらに備え、前記命令は、実行されると、前記プリンタに、原位置で前記ノズルの各々に対する前記液滴量を測定するために前記液滴測定デバイスを使用させることをさらにもたらし、前記液滴量を識別する前記データは、原位置での前記ノズル
の各々に対する前記液滴測定デバイスによる前記液滴量の測定から得られる、項目23に記載のプリンタ。
(項目30)
前記命令は、実行されると、前記プリンタに、原位置で前記ノズルの各々に対する前記液滴量を更新するために断続的に前記液滴測定デバイスをさらに使用させる、項目29に記載のプリンタ。
【図面の簡単な説明】
【0015】
【
図1A】
図1Aは、5つの特定の標的領域のぞれぞれの中で50.00pLの標的充填を堆積させるために、5つのノズルを伴うプリントヘッドが使用される、基板の標的領域中でインクを堆積させることの仮想問題を提示する、略図である。
【
図1B】
図1Bは、2つの特定の標的領域の各々の中で50.00pLの標的充填を堆積させるために、5つのノズルを伴うプリントヘッドが使用される、基板の標的領域中でインクを堆積させることの仮想問題を提示する、別の略図である。
【
図2A】
図2Aは、基板が画素を有する表示パネルを最終的に形成するものである用途において、プリンタおよび基板の仮想配列を示す例示的略図である。
【
図3A】
図3Aは、
図1Aに類似する略図であるが、所定の公差範囲内で各標的領域に対するインク充填量を確実に生成するための液滴量の組み合わせの使用を図示する。1つの随意的な実施形態では、異なる液滴量の組み合わせが、所定のノズル発射波形のセットから生成され、別の随意的な実施形態では、異なる液滴量の組み合わせが、プリントヘッドと基板との間の相対運動(305)を使用して、プリントヘッドの各々のノズルから生成される。
【
図3B】
図3Bは、相対的プリントヘッド/基板運動、および基板の各々の標的領域の中への異なる液滴量の組み合わせの放出を図示するために使用される略図である。
【
図3C】
図3Cは、
図1Bに類似する略図であるが、所定の公差範囲内で各標的領域に対するインク充填量を確実に生成するための液滴量の組み合わせの使用を図示する。1つの随意的な実施形態では、異なる液滴量の組み合わせが、所定のノズル発射波形のセットから生成され、別の随意的な実施形態では、異なる液滴量の組み合わせが、プリントヘッドと基板との間の相対運動(372)を使用して、プリントヘッドの各々のノズルから生成される。
【
図4】
図4は、以前に紹介された技法をそれぞれ独立して具現化することができる、一連の随意的な階層、製品、またはサービスを示す、例証的な図を提供する。
【
図5】
図5は、基板の各標的領域に対する液滴の組み合わせを計画する方法を示すブロック図を提供し、この方法は、
図3Aによって紹介されるいずれか一方の随意的な方法に適用することができる。
【
図6A】
図6Aは、例えば、以前に紹介された実施形態のうちのいずれかを用いて使用可能である、基板の各標的領域に対する特定の組の容認可能な液滴の組み合わせを選択するためのブロック図を提供する。
【
図6B】
図6Bは、プリントヘッド/基板運動を反復して計画し、各印刷領域に対する液滴の組み合わせに基づいてノズルを使用するためのブロック図を提供する。
【
図6C】
図6Cは、具体的には、可能な限り効率的に印刷を行うことができる様式でスキャンを順序付けるように、プリントヘッド/基板運動のさらなる最適化およびノズルの使用を図示する、ブロック図を提供する。
【
図6D】
図6Dは、複数のフラットパネル表示デバイス(例えば、683)を最終的に生産するであろう、基板の仮想平面図である。領域687によって表されるように、プリントヘッド/基板運動は、単一のフラットパネル表示デバイスの特定の領域のために最適化することができ、最適化は、各表示デバイス(4つの描写されたフラットパネル表示デバイス)にわたって繰り返し可能または周期的に使用される。
【
図7】
図7は、表示デバイスにおける視覚アーチファクトを低減させるために、容認可能な公差内で充填量を意図的に変動させるためのブロック図を提供する。
【
図8A】
図8Aは、プリントヘッドのノズル間液滴量変動の調整を伴わない、標的領域充填量の変動を示すグラフを提供する。
【
図8B】
図8Bは、プリントヘッドのノズル間液滴量変動を統計的に補償するために、異なるノズルが無作為に使用される、標的領域充填量の変動を示すグラフを提供する。
【
図8C】
図8Cは、計画された基準で精密な公差内の標的領域充填量を達成するために、異なる量の1つ以上の液滴が使用される、標的領域充填量の変動を示すグラフを提供する。
【
図9A】
図9Aは、プリントヘッドのノズル間液滴量変動の調整を伴わない、標的領域充填量の変動を示すグラフを提供する。
【
図9B】
図9Bは、プリントヘッドのノズル間液滴量変動を統計的に補償するために、異なるノズルが無作為に使用される、標的領域充填量の変動を示すグラフを提供する。
【
図9C】
図9Cは、計画された基準で精密な公差内の標的領域充填量を達成するために、異なる量の1つ以上の液滴が使用される、標的領域充填量の変動を示すグラフを提供する。
【
図10】
図10は、製作装置の一部として使用されるプリンタの平面図を示す。プリンタは、制御された雰囲気中で印刷が起こることを可能にする、ガスエンクロージャ内にあり得る。
【
図11】
図11は、プリンタのブロック図を提供する。そのようなプリンタは、随意に、例えば、
図10で描写される製作装置で採用することができる。
【
図12A】
図12Aは、基板上でインクを堆積させるために、(それぞれノズルを伴う)複数のプリントヘッドが使用される、実施形態を示す。
【
図12B】
図12Bは、それぞれのプリントヘッドのノズルを基板とより良好に整列させるための複数のプリントヘッドの回転を示す。
【
図12C】
図12Cは、特定の液滴量の組み合わせを意図的に生成するためのインテリジェントスキャンと関連する複数のプリントヘッドのうちの個々のプリントヘッドのオフセットを示す。
【
図12D】
図12Dは、有機発光ダイオード(OLED)ディスプレイで使用することができる層を含む、基板の断面図を示す。
【
図13A】
図13Aは、ノズル発射波形をカスタマイズするか、または変動させる、いくつかの異なる方法を示す。
【
図14A】
図14Aは、所定のノズル発射波形の異なる組み合わせを使用して、異なる液滴量の組み合わせを達成することができる、実施形態を示す。
【
図14B】
図14Bは、プログラムされた波形を生成し、プログラムされた時間(または位置)でプリントヘッドのノズルに適用することに関連付けられている回路を示す。この回路は、例えば、
図14Aからの回路1423/1431、1424/1432、および1425/1433の各々の1つの可能な実装を提供する。
【
図14C】
図14Cは、異なるノズル発射波形を使用する一実施形態のフロー図を示す。
【発明を実施するための形態】
【0016】
列挙された請求項によって定義される主題は、添付図面と併せて熟読されるべきである、以下の発明を実施するための形態を参照することによって、より深く理解され得る。請求項によって記載される技術の種々の実装を構築して使用することを可能にするように以下で立案される、1つ以上の特定の実施形態の本説明は、列挙された請求項を限定することを目的としていないが、それらの用途を例示することを目的としている。前述の内容を限定することなく、本開示は、所定の許容内で堆積したインク量を維持するよう、プリントヘッド移動を計画する一方で、プリントヘッド通過の数(したがって、堆積層を完成さ
せるために必要とされる時間)を過剰に増加させないことによって、材料層を製作するために使用される技法のいくつかの異なる実施例を提供する。これらの技法は、これらの技法を行うためのソフトウェアとして、そのようなソフトウェアを実行するコンピュータ、プリンタ、または他のデバイスの形態で、材料層を形成するための制御データ(例えば、印刷イメージ)の形態で、堆積機構として、またはこれらの技法の結果として製作される電子あるいは他のデバイス(例えば、フラットパネルデバイスまたは他の消費者最終製品)の形態で具現化することができる。具体的実施例が提示されているが、本明細書で説明される原理は、他の方法、デバイス、およびシステムにも適用され得る。
【0017】
実施例は、標的領域あたりの充填量の知的計画に関する、いくつかの概念を導入することに役立つであろう。各標的領域に対する可能なノズル・液滴量の組を決定することによって、複数の標的領域の同時堆積を計画するために、所与のノズル発射波形に対するノズルあたりの量のデータ(または差異データ)を使用することができる。典型的には、仕様を満たす狭い公差範囲内の所望の充填量まで、各標的領域を充填するように、複数の通過でインク液滴を堆積させることができる、ノズルの多数の可能な組み合わせがあろう。
図1Aを使用して紹介される仮説に手短に戻ると、仕様に従った容認できる充填量が49.75pL~50.25pL(すなわち、標的の0.5%の範囲内)である場合、限定ではないが、(a)合計50.05pLのためにノズル2(10.01pL)の5回の通過、(b)合計49.92pLのためにノズル1(9.80pL)の1回の通過およびノズル5(10.03pL)の4回の通過、(c)合計50.01pLのためにノズル3(9.89pL)の1回の通過およびノズル5(10.03pL)の4回の通過、(d)合計49.80pLのためにノズル3(9.89pL)の1回の通過、ノズル4(9.96pL)の3回の通過、およびノズル5(10.03pL)の1回の通過、(e)合計49.99pLのためにノズル2(10.01pL)の1回の通過、ノズル4(9.96pL)の2回の通過、およびノズル5(10.03pL)の2回の通過を含む、多くの異なる組のノズル/通過を使用して、容認できる充填量を達成することもできる。他の組み合わせもまた、明確に可能である。したがって、たとえノズル駆動波形の1つだけの選択が各ノズル(または全てのノズル)に利用可能であったとしても、(例えば、異なる標的領域中で)液滴を堆積させるように、各スキャン中に可能な限り多くのノズルを適用するが、特定的に意図された様式で各標的領域に対する堆積液滴を組み合わせる、一連の計画されたオフセットまたは「幾何学的ステップ」で基板に対してプリントヘッドをオフセットするために、上で紹介される第1の実施形態を使用することができる。つまり、この仮定でのノズル・液滴量の多くの組み合わせが、所望の充填量を達成するために使用されることができ、特定の実施形態は、それぞれのノズルを使用して、標的領域の異なる行および/または列の同時充填を促進するよう、スキャン運動および/またはノズル駆動波形のその選択を通して、各標的領域に対する容認可能な液滴の組み合わせのうちの特定の1つ(すなわち、各領域に対する特定の組)を効果的に選択する。印刷が起こる時間を最小化する方法で、相対的プリントヘッド/基板運動のパターンを選択することによって、この第1の実施形態は、実質的に増進した製造スループットを提供する。この増進は、随意に、プリントヘッド/基板スキャンまたは「通過」の数を最小化する形態で、相対的プリントヘッド/基板移動の生の距離を最小化する様式で、または全体的な印刷時間を別様に最小化する様式で、具現化できることに留意されたい。すなわち、プリントヘッド/基板移動(例えば、スキャン)は、事前に計画し、最小限のプリントヘッド/基板通過またはスキャン、1つまたは複数の定義された次元での最小限のプリントヘッドおよび/または基板移動、最小限の時間量での印刷、あるいは他の基準等の事前定義された基準を満たす様式で、標的領域を充填するために使用することができる。
【0018】
同一のアプローチは全て、ノズルがそれぞれの標的領域と特に整列させられない、
図1Bの仮説に同等に適用される。再度、仕様に従った容認できる充填量が49.75pL~50.25pL(すなわち、標的の両側の0.5%の範囲内)である場合、限定ではない
が、
図1Aについて上に記載される実施例の全て、ならびに2つの隣接ノズルが特定の標的領域を充填するために1回の通過で使用される、
図1Bの仮説に特定の追加の実施例、例えば、合計49.99pLのためのノズル(4)(9.96pL)およびノズル(5)(10.03pL)の2回の通過、ならびにノズル(2)(10.01pL)の1回の通過を含む、多くの異なる組のノズル/通過で、容認できる充填量を達成することもできる。他の組み合わせもまた、明確に可能である。
【0019】
これらの同一の原理はまた、上で紹介される第2の実施形態にも適用される。例えば、
図1Aによって提示される仮説では、異なる発射波形に対する異なるノズルの結果として生じる量特性が、以下の表1Aによって説明されるように、発射波形A-Eとして識別される、5つの異なる発射波形によって、ノズルの各々が駆動されることができる。標的領域104のみ、およびノズル(1)のみを考慮すると、例えば、全てスキャン経路のいかなるオフセットも伴わずに、(ノズル(1)から9.96pL液滴を生成するための)事前定義された発射波形Dを使用する最初のプリントヘッド通過と、(ノズル(1)から10.01pL液滴を生成するための)事前定義された発射波形Eを使用する4回の後続の通過とを用いて、5回の通過で50.00pL標的を堆積させることが可能であろう。同様に、スキャン経路のいかなるオフセットも伴わずに、各ノズルが標的値に近い量を標的領域の各々の中で生成するために、発射波形の異なる組み合わせを各通過で同時に使用することができる。したがって、このようにして複数の通過を使用することは、異なる標的領域中で(すなわち、例えば、画素の異なる行内で)液滴を同時に堆積させることが所望される、実施形態に対して有利であろう。
【0020】
【0021】
これらの同一の原理は全て、
図1Bの仮説に同等に適用される。例えば、標的領域104のみと、ノズル(1)および(2)(すなわち、スキャン中に標的領域154に重複する2つのノズル)とを考慮すると、例えば、(9.70pLの液滴量のための)ノズル(1)および事前定義された波形Bと(10.10の液滴量のための)ノズル(2)および事前定義された波形Cとを使用する第1のプリントヘッド通過、(10.01pLの液滴量のための)ノズル(1)および事前定義された波形Eと(10.18pLの液滴量のための)ノズル(2)および事前定義された波形Dとを使用する第2のプリントヘッド通過、および、(10.01pLの液滴量のための)ノズル(1)および事前定義された波形Eを使用する第3のプリントヘッド通過を用いて、3回の通過で50.00pLを達成することが可能である。
【0022】
おそらく、
図1Aの仮説および
図1Bの仮説の両方が、本実施例では1回の通過で、標的領域の単一の行において各標的量の各充填を堆積させることも可能であろうことに留意されたい。例えば、プリントヘッドを90度回転させて、例えば、ノズル(1)に波形(E)、ノズル(2)、(4)、および(5)に波形(A)、ならびにノズル(3)に波形
(C)(10.01pL+10.01pL+9.99pL+9.96pL+10.03pL=50.00pL)を使用して、ある行における各標的領域に対して各ノズルからの単一の液滴を用いて正確に50.00pLを堆積させることが可能であろう。
【0023】
これらの同一の原理はまた、上で紹介される第3の実施形態にも適用される。例えば、
図1Aによって提示される仮説については、量特性が、第1のプリントヘッド(例えば、「プリントヘッドA」)のためのノズルを反映することができ、この第1のプリントヘッドは、4つの追加のプリントヘッド(例えば、プリントヘッド「B」-「E」)と一緒に統合され、各々が単一の発射波形によって駆動され、それぞれのノズルあたりの液滴量特性を有する。プリントヘッドは、スキャン通過を実行する際に、プリントヘッドのためのノズル(1)として識別されるノズルの各々が、標的領域(例えば、
図1Aからの標的領域104)の中へ印刷するように整列させられ、種々のプリントヘッドからのノズル(2)として識別されるノズルの各々が、第2の標的領域(例えば、
図1Aからの標的領域105)の中へ印刷するように整列させられる等であり、異なるプリントヘッドのための異なるノズルの量特性が、以下の表1Bによって説明されるように、集合的に組織化される。随意に、それぞれのプリントヘッドは、例えば、スキャンの間の間隔を調整するモータを使用して、互からオフセットされることができる。標的領域104のみ、および各プリントヘッド上のノズル(1)のみを考慮すると、例えば、プリントヘッドDおよびプリントヘッドEの両方が液滴を標的領域の中へ発射する第1のプリントヘッド通過と、プリントヘッドEのみが液滴を標的領域の中へ発射する3回の後続の通過とを用いて、4回の通過で50.00pLを堆積させることが可能であろう。例えば、49.75pL~50.25pLの範囲内で、50.00pL標的に近い量を標的領域中で依然として生成することができる、さらに少ない通過を使用して、他の組み合わせが可能である。再度、標的領域104のみ、および各プリントヘッド上のノズル(1)のみを考慮すると、例えば、プリントヘッドC、D、およびEが全て、液滴を標的領域の中へ発射する第1のプリントヘッド通過と、プリントヘッドDおよびEが両方とも、液滴を標的領域の中へ発射する第2のプリントヘッド通過とを用いて、2回の通過で49.83pLを堆積させることが可能であろう。同様に、スキャン経路のいかなるオフセットも伴わずに、標的値に近い量を標的領域の各々の中で生成するために、異なるプリントヘッドからのノズルの異なる組み合わせを各通過で同時に使用することができる。したがって、このようにして複数の通過を使用することは、異なる標的領域中で(すなわち、例えば、画素の異なる行で)液滴を同時に堆積させることが所望される、実施形態に対して有利であろう。
【0024】
【0025】
同一のアプローチの全ては、
図1Bの仮説に同等に適用される。再度、標的領域154のみ、および各プリントヘッド上のノズル(1)および(2)のみ(すなわち、スキャン中に標的領域154と重複するノズル)を考慮すると、例えば、プリントヘッドCおよびEがノズル(1)を発射し、プリントヘッドBおよびCがノズル(2)を発射する第1の
プリントヘッド通過と、プリントヘッドCがノズル(2)を発射する第2のプリントヘッド通過とを用いて、2回の通過で50.00pLを堆積させることが可能である。また、例えば、プリントヘッドC、D、およびEがノズル(1)を発射し、プリントヘッドBおよびEがノズル(2)を発射するプリントヘッド通過を用いて、1回の通過で49.99pL(明確には、49.75pL~50.25pLの標的範囲内)を堆積させることも可能である。
【0026】
また、随意に、スキャン経路オフセットと組み合わせられて、代替的なノズル発射波形の使用が、所与のプリントヘッドについて達成されることができる液滴量の組み合わせの数を著しく増加させ、これらのオプションは、上で説明されるような複数のプリントヘッド(または同等にノズルの複数の行)によってさらに増加させられることも明白なはずである。例えば、上記の
図1の議論によって伝えられる仮想実施例では、それぞれの固有の放出特性(例えば、液滴量)および8つの代替的な波形との5つのノズルの組み合わせが、文字通り何千もの異なる組の可能な液滴量の組み合わせを提供し得る。組のノズル・波形の組み合わせを最適化し、各標的領域に対する(またはアレイ内の印刷ウェルの各行に対する)特定の組のノズル・波形の組み合わせを選択することは、所望の基準に従って印刷のさらなる最適化を可能にする。複数のプリントヘッド(またはプリントヘッドノズルの行)を使用する実施形態では、これらのプリントヘッド/行を選択的にオフセットする能力もまた、プリントヘッド/基板スキャンにつき適用されることができる組み合わせの数をさらに増進する。再度、これらの実施形態について、特定充填量を達成するために、代替として、複数の組の(1つ以上の)ノズル・波形の組み合わせが使用されることができるとすると、この第2の実施形態は、各標的領域に対する「許容」な組のうちの特定の組を選択し、標的領域にわたるその特定の組のこの選択は、概して、複数のノズルを使用する複数の標的領域の同時印刷に対応する。つまり、印刷が起こる時間を最小化するようにパラメータを変動させることによって、これらの実施形態の各々は、製造スループットを増進し、必要なプリントヘッド/基板スキャンまたは「通過」の数、特定の次元に沿った相対的プリントヘッド/基板移動の生の距離、全体的な印刷時間、またはある他の所定の基準を満たすことに役立つものを最小化することを促進する。
【0027】
これらの技法は、互に対して随意的であり、つまり、例えば、プリントヘッド/基板スキャンの位置ステップを変動させることなく、かつ複数のプリントヘッド/ノズル行をオフセットすることなく、所望の液滴の組み合わせを達成するために複数のノズル発射波形を使用することが可能であり、および、位置ステップを変動させること、またはノズル発射波形を変動させることなく、プリントヘッド/ノズル行オフセットを使用することが可能であることに留意されたい。
【0028】
これらの種々の技法はまた、随意に、任意の所望の様式で、互に、または他の技法と組み合わせることもできる。例えば、ノズルあたりの液滴量の変動を低減させるように、ノズル毎にノズル駆動波形を「調節」することが可能である(例えば、駆動電圧、上昇または下降傾斜、パルス幅、減衰時間、液滴につき使用されるパルスの数およびそれぞれのレベル等を変更することによる、駆動パルスの成形)。
【0029】
本書で議論される、ある用途は、個別的な流体容器または「ウェル」の中の充填量を参照するが、基板の他の構造に対して(例えば、トランジスタ、経路、ダイオード、および他の電子構成要素に対して等)大きい地形を有する「ブランケットコーティング」を堆積させるために、記述された技法を使用することも可能である。そのような状況では、(例えば、永久デバイス層を形成するように原位置で硬化、乾燥、または硬質化させられるであろう)層材料を運ぶ流体インクは、ある程度拡散するであろうが、(インク粘度および他の要因を考慮すると)基板の他の標的堆積領域に対して特定の特性を依然として保持するであろう。この状況では、例えば、各標的領域に対するインク充填量の特定的な局所的
制御を用いて、封入層または他の層等のブランケット層を堆積させるために、本明細書の技法を使用することが可能である。本明細書で議論される技法は、具体的に提示された用途または実施形態によって限定されない。
【0030】
上で紹介される技法からの他の変形例、利点、および用途が、当業者に容易に明白であろう。すなわち、これらの技法は、多くの異なる分野に適用されることができ、表示デバイスまたは画素化デバイスの製作に限定されない。本明細書で使用される場合、印刷「ウェル」とは、堆積したインクを受け取るものである基板の任意の容器を指し、したがって、そのインクの流動を抑制するように適合される化学または構造特性を有する。以下のOLED印刷について例示されるように、これは、それぞれの流体容器がそれぞれの量のインクおよび/またはそれぞれの種類のインクを各々が受け取るものである、状況を含むことができ、例えば、異なる色の発光材料を堆積させるために記述された技法が使用される、ディスプレイ用途では、それぞれのプリントヘッドおよびそれぞれのインクを使用して、連続印刷プロセスを各色について行うことができ、この場合、各プロセスは、アレイ内の「2つおきのウェル」(例えば、全ての「青」色成分のために)、または同等に、2つおきのアレイにおける全てのウェル(他の色成分のために重複アレイとともにウェルを散在させる)を堆積させることができる。他の変形例も可能である。また、いかなる絶対方向も示唆することなく、「行」および「列」が本開示で使用されることに留意されたい。例えば、印刷ウェルの「行」は、基板の長さまたは幅に、あるいは別の様式で(線形または非線形)延びることができ、一般的に言えば、「行」および「列」は、少なくとも1つの独立次元を各々が表す方向を指すために本明細書で使用されるであろうが、これは全ての実施形態に当てはまる必要はない。また、現代のプリンタは、複数の次元を伴う相対的基板/プリントヘッド運動を使用することができるため、相対移動は、経路または速度が線形である必要はなく、すなわち、プリントヘッド/基板相対運動は、真っ直ぐな経路または連続経路にさえも、あるいは一定の速度に従う必要がないことに留意されたい。したがって、基板に対するプリントヘッドの「通過」または「スキャン」とは、単純に、相対的プリントヘッド/基板運動を伴う、複数の標的領域にわたって複数のノズルを使用して液滴を堆積させることの反復を指す。しかしながら、OLED印刷プロセスについて以下で説明される多くの実施形態では、各通過またはスキャンは、実質的に連続的な線形運動であり得、各引き続いて起きる通過またはスキャンは、次の通過またはスキャンと平行であり、互に対する幾何学的ステップによってオフセットされることを確保する。このオフセットまたは幾何学的ステップは、通過またはスキャン開始位置、平均位置、終了位置の差異、またはある他の種類の位置オフセットであり得、必ずしも平行スキャン経路を示唆するわけではない。また、本明細書で議論される種々の実施形態は、異なる標的領域(例えば、標的領域の異なる行)中で堆積させるための異なるノズルの「同時」使用について話し、この「同時」という用語は、同時液滴放出を必要としないが、むしろ、任意のスキャンまたは通過中に、相互排他的にインクをそれぞれの標的領域の中へ発射するために、異なるノズルまたはノズル群を使用することができるという概念を指すにすぎないことも留意されたい。例えば、流体ウェルの第1の行の中で第1の液滴を堆積させるように、1つ以上のノズルの第1のグループを所与のスキャン中に発射することができる一方で、流体ウェルの第2の行の中へ第2の液滴を堆積させるように、1つ以上のノズルの第2のグループをこの同一のスキャン中に発射することができる。
【0031】
いくつかの異なる実施形態の主要部品がこのようにしてレイアウトされると、本開示は、おおよそ以下のように組織化されるであろう。ノズル一貫性の問題、OLED印刷/製作、およびどのようにして実施形態がノズル一貫性の問題に対処するかに関する、いくつかの一般的原理を紹介するために、
図2A-3Cが使用されるであろう。これらの図はまた、例えば、基板の標的領域のアレイの各行の中で液滴を堆積させるために、どのプリントヘッドノズルが使用されるかを変更するためにオフセット変動が使用される、プリントヘッド/基板運動を計画することに関する概念を導入するためにも使用されるであろう。
図4-7は、基板の各標的領域に対する液滴の組み合わせを計画するために使用することができる、ソフトウェアプロセスを例示するために使用されるであろう。
図8A-9Cは、つまり、ウェル充填の一貫性を向上させることにおいて記述された技法の有効性を実証する、いくつかの経験的データを提示するために使用される。
図10-11は、OLEDパネル製作、ならびに関連印刷および制御機構への例示的適用について議論するために使用されるであろう。
図12A-12Cは、各スキャンで堆積させることができる液滴の組み合わせを変動させるために使用することができる、プリントヘッドオフセットについて議論するために使用される。最終的に、
図13A-14Cは、異なる液滴量を提供するように適用される、異なる代替的なノズル発射波形ついてさらに議論するために使用される。
【0032】
図2Aによって表されるように、ある用途では、材料の1つ以上の層を基板上に堆積させるために、印刷プロセスを使用することができる。上で議論される技法は、デバイスを製作する際に後に使用するためのプリンタ制御命令(例えば、プリンタに転送されることができる電子制御ファイル)を生成するために使用されることができる。ある特定の用途では、これらの命令は、低費用の拡張可能有機発光ダイオード(「OLED」)ディスプレイの層を印刷する際に有用なインクジェット印刷プロセスのために適合させられることができる。より具体的には、記述された技法は、そのようなOLEDデバイスの1つ以上の発光層または他の層、例えば、そのようなデバイスの「赤色」、「緑色」、および「青色」(またはその他)画素化色成分あるいは他の発光層または構成要素を堆積させるように適用されることができる。この例示的用途は非限定的であり、記述された技法は、これらの層が発光するか否か、およびデバイスが表示デバイスであるか否かにかかわらず、多くの他の種類の層および/またはデバイスの製作に適用されることができる。この例示的用途では、インクジェットプリントヘッドの種々の従来の設計制約が、種々のインクジェット印刷システムを使用して印刷されることができる、OLEDスタックの種々の層のプロセス効率およびフィルムコーティング一様性に対する課題を提供する。これらの課題は、本明細書の教示を通して対処されることができる。
【0033】
より具体的には、
図2Aは、プリンタ201の一実施形態の平面図である。プリンタは、基板205上に流体インクを堆積させるために使用される、プリントヘッド203を含む。テキストおよびグラフィックを印刷するプリンタ用途とは異なり、本実施例でのプリンタ201は、所望の厚さを有するであろう流体インクを堆積させるために、製造プロセスで使用される。つまり、典型的な製造用途では、インクは、完成したデバイスの永久層を形成するために使用されるであろう材料を運び、その層は、適用されたインクの量に依存する、特定的に所望される厚さを有する。インクは、典型的には、単量体、ポリマー、または溶剤あるいは他の輸送媒体によって運ばれる材料として形成される、完成した層の一部を形成するであろう、1つ以上の材料を特色とする。一実施形態では、これらの材料は有機的である。インクの堆積に続いて、インクは、永久層を形成するように乾燥、硬化、または硬質化させられ、例えば、いくつかの用途が、単量体またはポリマーを硬質化材料に変換するために紫外線(UV)硬化プロセスを使用する一方で、他のプロセスは、溶剤を除去して永久的な場所に輸送された材料を残すように、インクを乾燥させる。他のプロセスも可能である。描写された印刷プロセスを従来のグラフィックスおよびテキスト用途と区別する、多くの他の変形例があり、例えば、いくつかの実施形態では、所望の材料層の堆積は、空気以外のものであるように周囲大気を調節するか、または別様に不要な粒子物質を除外するかのいずれかを行うように制御される、環境で行われることに留意されたい。例えば、以下でさらに説明されるように、例えば、窒素、希ガスのうちのいずれか、およびそれらの任意の組み合わせを含むが、それらによって限定されない、不活性環境等の制御された雰囲気の存在下で印刷を行うことができるように、ある想定される用途は、ガスチャンバ内にプリンタ201を封入する製作機構を使用する。
【0034】
図2Aでさらに見られるように、プリントヘッド203は、ノズル207等のいくつかのノズルを含む。
図2Aでは、例証を容易にするために、プリントヘッド203およびノズルは、ページの最上部から外へ開放するものとして描写されているが、実際には、これらのノズルおよびプリントヘッドは、基板に向かって下向きに面し、
図2Aの視点からは図から隠されている(すなわち、
図2Aは、実際にはプリントヘッド203の切断図であるものを示す)ことに留意されたい。ノズルは、行および列(例示的な行208および列209等)で配列されることが分かるが、これは全ての実施形態に必要とされるわけではなく、すなわち、いくつかの実装は、1行のノズルのみ(行208等)を使用する。加えて、ノズルの行がそれぞれのプリントヘッド上に配置されることが可能であり、各プリントヘッドは、(随意に)上で紹介されるように互に対して個々にオフセット可能である。表示デバイスの一部、例えば、表示デバイスのそれぞれの赤、緑、および青色成分の各々のための材料を製作するために、プリンタが使用される用途では、プリンタは、典型的には、各異なるインクまたは材料に専用プリントヘッド構成要素を使用し、本明細書で議論される技法は、各対応するプリントヘッドに別々に適用されることができる。
【0035】
図2Aは、1つのプリントヘッド203を図示する。プリンタ201は、本実施例では、基板205に対してプリントヘッド203を位置付けるために使用されることができる、2つの異なる運動機構を含む。第1に、プリントヘッド203を搭載するために、および矢印213によって表されるような相対運動を可能にするために、トラベラまたはキャリッジ211が使用されることができる。しかしながら、第2に、1つ以上の次元に沿って、トラベラに対して基板を移動させるために、基板輸送機構が使用されることができる。例えば、矢印215によって表されるように、基板輸送機構は、xおよびyデカルト次元(217)に従って等、2つの直交次元の各々で移動を可能にすることができ、随意に、基板回転を支援することができる。一実施形態では、基板輸送機構は、ガス軸受上の基板の移動を選択的に固定および可能にするために使用される、ガス浮動テーブルを備えている。さらに、プリンタは、随意に、回転グラフィック218によって表されるように、トラベラ211に対するプリントヘッド203の回転を可能にすることに留意されたい。そのような回転は、ノズル207の見掛けの間隔および相対構成が、基板に対して変化させられることを可能にし、例えば、基板の各標的領域が特定面積であるように画定される場合、または、それが別の標的領域に対する間隔を有する場合、プリントヘッドおよび/または基板の回転は、スキャン方向に沿った、またはそれと垂直な方向におけるノズルの相対分離を変化させることができる。実施形態では、例えば、
図2Aの図の方向の内外にあるzデカルト次元に沿って、基板205に対するプリントヘッド203の高度も変化させられることができる。
【0036】
2つのスキャン経路は、それぞれ、
図2Aの方向矢印219および220によって図示される。簡潔には、基板運動機構は、プリントヘッドが矢印213の方向へ幾何学的ステップまたはオフセットで移動する場合、矢印219および220の方向へ前後に基板を移動させる。これらの移動の組み合わせを使用して、プリントヘッドのノズルは、インクを堆積させるための基板の任意の所望の領域に到達することができる。以前に参照されたように、インクは、制御された基準で基板の個別的な標的領域の中へ堆積させられる。これらの標的領域は、随意に、それぞれ、描写されたyおよびx次元に沿って等、行および列に整列させられること、つまり、配列されることができる。ノズルの行(行208等)は、この図では、すなわち、1行のノズルが、スキャンごとに、標的領域の行の方向に沿って掃引し、(例えば、方向219に沿って)基板の標的領域の列の各々を横断するように、標的領域の行および列と垂直に見られることに留意されたい。これは、全ての実施形態に当てはまる必要はない。運動の効率のために、次いで、後続のスキャンまたは通過は、この運動の方向を逆転させ、逆の順序で、つまり、方向220に沿って、標的領域の列をヒットする。
【0037】
本実施例での標的領域の配列は、図の右側に拡大図で見られる、強調表示された領域221によって描写される。つまり、各画素が赤、緑、および青色成分を有する、2行の画素が、各々、数字223によって表される一方で、スキャン方向(219/220)に対して直角の画素の列は、各々、数字225によって表される。最も左上の画素では、赤、緑、および青色成分は、領域のそれぞれの重複アレイの一部として、異なる標的領域227、229、および231を占有することが分かる。各画素内の各色成分はまた、例えば、数字233によって表されるように、関連電子機器を有することもできる。製作されるデバイスが(例えば、従来型のLCDテレビの一部としての)バックライト付きディスプレイである場合、これらの電子機器は、赤色、緑色、および青色領域によってフィルタにかけられる光の選択的生成を制御することができる。製作されるデバイスが、より新しい種類のディスプレイである場合、つまり、赤色、緑色、および青色領域が、対応する色特性を有する独自の色を直接生成する場合、これらの電子機器233は、所望の光生成および光特性に寄与する、パターン化電極および他の材料層を含むことができる。
【0038】
図2Bは、
図2Aの線A-Aの視点から得られた、プリントヘッド203および基板205の接近断面図を提供する。
図2Bでは、
図2Aを参照してすでに紹介された数字が、同一の特徴を表す。より具体的には、数字201が、概して、プリンタを表す一方で、数字208は、1行の印刷ノズル207を表す。各ノズルは、括弧付きの数字、例えば、(1)、(2)、(3)等を使用して指定される。典型的なプリントヘッドは、典型的には、例えば、64、128、または別の数である、複数のそのようなノズルを有し、一実施形態では、1つ以上の行で配列される、1,000個以上のノズルがあり得る。前述のように、本実施形態でのプリントヘッドは、スキャンの間に幾何学的ステップまたはオフセットを達成するように、矢印213によって参照される方向へ基板に対して移動させられる。基板運動機構に応じて、基板は、この方向に対して直角に(例えば、
図2Bの図に対してページの内外に)、およびいくつかの実施形態では、矢印213によって表される方向にも移動させられることができる。
図2Bはまた、この場合、堆積したインクを受け取り、それぞれのウェルの構造的領域内に堆積したインクを保持するであろう、「ウェル」として配列される、基板の各々の標的領域253の列225も示すことに留意されたい。
図2Bの目的で、1つだけのインクが表される(例えば、各描写されたウェル253が、赤色成分等のディスプレイの1つだけの色を表し、他の色成分および関連ウェルが示されていない)ことが仮定されるであろう。図面は縮尺に忠実ではなく、例えば、ノズルが、(1)から(16)まで番号付けられることが分かる一方で、ウェルは、702個のウェルを表す、(A)から(ZZ)まで文字を付けられることが分かることに留意されたい。いくつかの実施形態では、16個のノズルを伴う描写されたプリントヘッドが、
図2Bの視点からページの内外にある相対的プリントヘッド/基板運動のスキャンを使用して、矢印255の方向へ同時に16個もの多くのウェルの中でインクを堆積させるように、ノズルは、それぞれのウェルに整列するであろう。(例えば、
図1Bを参照して)記述されるような他の実施形態では、ノズル密度は、標的領域密度よりさらに大きくなり、任意のスキャンまたは通過で、ノズルの一部(例えば、どのノズルが各標的領域を横断するかに依存して、1つから多くのノズルのグループ)が、堆積のために使用されるであろう。例えば、再度、16個のノズルの例証的実施例を使用して、所与の通過について相互排他的に、第1の標的領域においてインクを堆積させるためにノズル(1)-(3)が使用されることができ、第2の標的領域中でインクを堆積させるためにノズル(7)-(10)が同時に使用されることができるであろう。
【0039】
従来、プリンタは、例えば、5つの液滴が各ウェルの中で堆積させられるまで、必要に応じて次のスキャンで前後に移動して、16行もの多くのウェルの中でインクを同時に堆積させるために16個のノズルを使用するように操作され得、プリントヘッドは、スキャンによって横断される帯状の範囲の幅の整数倍数である、固定ステップを使用して必要に応じて前進させられる。しかしながら、本開示によって提供される技法は、各ウェルのた
めの特定の充填量を生成するように計算された組み合わせで、異なるノズルによって生成される液滴量の固有の変動を利用する。異なる実施形態は、これらの組み合わせを達成するために異なる技法に依拠する。一実施形態では、幾何学的ステップは、異なる組み合わせを達成するように変動させられ、プリントヘッドの帯状の範囲によって表される幅の整数倍数以外のものに自由になることができる。例えば、
図2Aのそれぞれのウェル253の中に選択された組の液滴の組み合わせを堆積させることに対して適切であれば、幾何学的ステップは、実際には、本実施例では1行のウェルの10分の1の間隔のプリントヘッドと基板との間の相対変位を表す、プリントヘッドの帯状の範囲の160分の1であり得る。次のオフセットまたは幾何学的ステップは、各ウェルの中で所望される液滴の特定の組み合わせに対して適宜異なり得、例えば、ウェルの整数間隔に対応する、プリントヘッドの帯状の範囲の16分の5の仮想オフセットであり得る。この変動は、インクを堆積させて所望の充填量を得るように、必要に応じて、正および負のステップの両方を継続し得る。多くの異なる種類またはサイズのオフセットが可能であり、ステップサイズは、スキャン間で固定される必要がなく、またはウェル間隔の特定の割合である必要はないことに留意されたい。しかしながら、多くの製造用途では、可能な限り生産速度を最大化し、単位あたりの製造費用を最小化するために、印刷時間を最小化することが所望される。この目的を達成するために、特定の実施形態では、スキャンの総数、幾何学的ステップの総数、オフセットまたは幾何学的ステップのサイズ、および幾何学的ステップによって横断される累積距離を最小化する様式で、プリントヘッド運動が計画されて順序付けられる。これらまたは他の尺度は、総印刷時間を最小化するように、個々に、一緒に、または任意の所望の組み合わせで使用されることができる。独立してオフセット可能なノズルの行(例えば、複数のプリントヘッド)が使用される実施形態では、幾何学的ステップは、プリントヘッドまたはノズル行の間のオフセットによって部分的に表されることができ、プリントヘッド構成要素の全体的なオフセット(例えば、プリントヘッドアセンブリの固定ステップ)と組み合わせられるそのようなオフセットは、可変サイズの幾何学的ステップを達成するために、したがって、各ウェルの中へ液滴の組み合わせを堆積させるために使用されることができる。ノズル駆動波形の変動が単独で使用される実施形態では、従来の固定ステップが使用されることができ、液滴量変動は、複数のプリントヘッドおよび/または複数のプリントヘッド通過を使用して達成される。以下で記述されるように、一実施形態では、ノズル駆動波形が液滴の間で各ノズルに対してプログラムされることができ、したがって、各ノズルが、1行のウェル内で1つのウェルあたりのそれぞれの液滴量を生成して提供することを可能にする。
【0040】
図3A、3B、および3Cは、所望の充填量を達成する際の特定の液滴量への依拠に関する追加の詳細を提供するために使用される。
【0041】
図3Aは、プリントヘッド303の例証的な
図301、およびプリントヘッド303の下方で見られる2つの関連略図を提示する。プリントヘッドは、随意に、基板に対するプリントヘッドの固定されていない幾何学的ステップを提供する、実施形態で使用され、特定のプリントヘッドノズル(例えば、図で描写されるノズル(1)-(5)を伴う合計16個のノズル)を異なる標的領域(本実施例では、307、308、309、310、および311の5つ)と整列させるオフセットを表すために、数字305が使用される。
図1Aの実施例を思い返すと、ノズル(1)-(16)が、それぞれ、9.80、10.01、9.89、9.96、10.03、9.99、10.08、10.00、10.09、10.07、9.99、9.92、9.97、9.81、10.04、および9.95pLの流体インクの液滴量を生成する場合、および標的領域につき50.00pL(この値の±0.5パーセント)を堆積させることが所望される場合、それぞれ、0、-1、-1、-2、および-4の幾何学的ステップを使用して、5回の通過またはスキャンで液滴を堆積させ、図で描写されるように、領域につき49.82、49.92、49.95、49.90、および50.16pLの総充填値をもたらすために、プリントヘッドを使用
することができる。これは、明確に、描写された標的領域の各々に対して49.75pL~50.25pLの所望の公差範囲内である。この実施例での全てのステップは、前の位置に対して漸進的に表されるが、他の尺度を使用することも可能である。したがって、示されるように、高度な信頼性で精密な調節された充填を達成するために、各標的領域に対するそれぞれの液滴量および所望の充填に依存する意図的な様式での液滴の組み合わせを使用することができる。
【0042】
この同一の図は、ノズル駆動波形変動および/または複数のプリントヘッドの使用を表すために使用できることに留意されたい。例えば、ノズル参照(1)-(16)が、16個の異なる駆動波形によって(すなわち、波形1-16を使用して)生成される単一のノズルのための液滴量を指す場合、単純に、標的領域307に、異なる駆動波形、例えば、波形番号1、3、4、5、および9を使用することによって、理論上の領域あたりの充填量を取得することができる。実践では、プロセス変動が、異なるノズルあたりの特性をもたらし得るため、本システムは、各波形に対する各ノズルのための液滴量を測定し、この基準で液滴の組み合わせを知的に計画するであろう。ノズル参照(1)-(15)が複数のプリントヘッドを指す(例えば、参照(1)-(5)が第1のプリントヘッドを指し、参照(6)-(10)が第2のプリントヘッドを指し、参照(11)-(15)が第3のプリントヘッドを指す)実施形態では、通過またはスキャンの数を削減するために、プリントヘッドの間のオフセットを使用することができる。例えば、最右標的領域311は、10.03、10.09、および9.97pLの液滴量(プリントヘッド(1)、0オフセット;プリントヘッド(2)、+1オフセット;およびプリントヘッド(3)、+2オフセット)を含む、1回の通過で堆積させられる3つの液滴を有することができる。これらの種々の技法の組み合わせは、公差範囲内の特定の充填量を達成するように特定の量の液滴の多くの可能な組み合わせを促進することが明白なはずである。
図3Aでは、標的領域の間の総インク充填量の分散が小さく、公差内であり、すなわち、49.82pL~50.16pLの範囲内であることに留意されたい。
【0043】
図3Bは、各スキャンが、数字353-360によって参照されるような異なる長方形またはバーによって表される、別の例証的な
図351を示す。この図に関連して、プリントヘッド/基板相対運動が一連の可変サイズの幾何学的ステップで前進させられると仮定されるべきである。再度、典型的には、各ステップは、図面ページの平面上に表される(および数字362-366によって表される)5つの領域の1列を越えて標的領域(例えば、画素)の複数の列を掃引する、スキャンを指定するであろうことに留意されたい。ノズル(1)および(2)のみが、それぞれ、標的領域365および366と整列させられるように、プリントヘッドが基板に対して右に変位させられて見える、第1のスキャン353を含む、スキャンが、上から下への順序で示される。各印刷スキャン描写(ボックス353等)内で、円は、ノズルがスキャン中に特定的に描写された標的領域を覆っているときにノズルが発射されるものであることを表すように、黒く塗りつぶして、またはノズルが関連する時間に発射されないものである(しかしスキャンで遭遇する他の標的領域については発射され得る)ことを表すように、「中空」、つまり、白く塗りつぶして、いずれかで各ノズルを表す。本実施形態では、各ノズルは、2元基準で発射され、すなわち、各ノズルは、例えば、スキャン中に遭遇する各標的領域について、所定の液滴量を堆積させるように、任意の調整可能なパラメータに従って発射されるか、またはされないかのいずれかであることに留意されたい。この「2元」発射方式は、随意に、本明細書で説明される実施形態のいずれかに(つまり、例えば、波形パラメータが液滴の間で調整される、複数の発射波形が使用される実施形態で)採用することができる。第1の通過353では、ノズル(1)が、2番目に最右の標的領域の中へ9.80pL液滴を堆積させるように発射される一方で、ノズル(2)は、最右標的領域366の中へ10.01pL液滴を堆積させるように発射されることが分かる。スキャンは、適宜インク液滴を堆積させて、標的領域の他の列(例えば、画素ウェルの他の行)を掃引し続ける。第1の通過353が完
了した後、プリントヘッドは、-3の幾何学的ステップだけ前進させられ、それは、ノズル(1)が第1のスキャンと反対の方向へ、第2のスキャン354中に標的領域362を横断するように、基板に対してプリントヘッドを左に移動させる。この第2のスキャン354中に、ノズル(2)、(3)、(4)、および(5)もまた、それぞれ、領域363、364、365、および366を横断するであろう。適切な時間に、それぞれ、ノズル(1)、(2)、(3)、および(5)の固有の特性に対応する、9.80pL、10.01pL、9.89pL、および10.03pLの液滴量を堆積させるように、ノズル(1)、(2)、(3)、および(5)が発射されるであろうことが黒く塗りつぶした円によって分かる。また、任意の1回の通過で、インクを堆積させるために使用される1行のノズルの中のノズルが、相互排他的にそれぞれの標的領域の中へ堆積させるであろう。例えば、通過354については、ノズル(1)が、(標的領域363-366のうちのいずれでもなく)標的領域362の中へインクを堆積させるために使用され、ノズル(2)が、(領域362または364-366のうちのいずれでもなく)標的領域363の中へインクを堆積させるために使用され、ノズル(3)が、(領域362-363または365-366のうちのいずれでもなく)標的領域364の中へインクを堆積させるために使用され、ノズル(5)が、(領域362-365のうちのいずれでもなく)標的領域366の中へインクを堆積させるために使用されることにも留意されたい。数字355を使用して表される第3のスキャンは、ノズル(2)、(3)、(4)、(5)、および(6)が、スキャン中に、それぞれ、領域362、363、364、365、および366を横断するように、1行の標的領域(-1幾何学的ステップ)だけプリントヘッドを効果的に前進させ、塗りつぶしたノズルグラフィックは、この通過中に、ノズル(2)-(6)のそれぞれが液滴を発射し、それぞれ、10.01、9.89、9.96、10.03、および9.99pLの量を生成するように作動させられるであろうことを表す。
【0044】
印刷プロセスがこの時点で停止された場合、領域366が、例えば、3つの液滴に対応する30.03pL(10.01pL+10.03pL+9.96pL)の充填を有するであろう一方で、領域362は、2つの液滴に対応する19.81pL(9.80pL+10.01pL)の充填を有するであろう。スキャンパターンは、一実施形態では、
図2Aの矢印219および220によって表される前後パターンに従うことに留意されたい。これらの標的領域のその後の通過356、357、358、359、360、および361(または複数のそのような領域の複数の列のスキャン)は、それぞれ、(a)連続スキャンにおいてノズル(2)、(3)、(4)、(7)、および(9)による通過に対応する、領域362における10.01pL、0.00pL、0.00pL、10.08pL、および10.09pL液滴、(b)連続スキャンにおいてノズル(3)、(4)、(5)、(8)、および(10)によるそれぞれの通過に対応する、領域363における0.00pL、0.00pL、10.03pL、10.00pL、および10.07pL液滴、(c)連続スキャンにおいてノズル(4)、(5)、(6)、(9)、および(11)による通過に対応する、領域364における9.89pL、9.96pL、10.03pL、9.99pL、10.09pL、および0.00pL液滴、(d)連続スキャンにおいてノズル(5)、(6)、(7)、(10)、および(12)による通過に対応する、領域365における0.00pL、9.99pL、10.08pL、10.07pL、および0.00pL液滴、ならびに(e)連続スキャンにおいてノズル(6)、(7)、(8)、(11)、および(13)による通過に対応する、領域366における9.99pL、0.00pL、10.00pL、0.00pL、および0.00pL液滴を堆積させる。再度、本実施例でのノズルは、2元基準で単一の発射波形のみとともに(すなわち、それらの液滴量特性がスキャンによって変化しないように)使用され、例えば、第5のスキャン357では、ノズル(7)が発射されず、領域366のための液滴を生成しない(0.00pL)一方で、次のスキャンでは、発射されて領域365のための10.08pL液滴を生成することに留意されたい。
【0045】
ページの最下部でのグラフで見られるように、この仮想スキャンプロセスは、容易に標的値(50.00pL)±0.5パーセント(49.75pL~50.25pL)の所望の範囲内で、49.99pL、50.00pL、49.96pL、49.99pL、および50.02pLの総充填を生成する。本実施例では、ノズルは、各スキャンに対して略同時に複数の標的領域の中へインクを堆積させるために使用され、各描写された領域に対する液滴量の特定の組み合わせ(すなわち、数字362、363、364、365、および366でグラフィックによって識別されるような)は、多くの通過により各標的領域中で複数の液滴を堆積させることができるように計画された。8つの描写された通過はともに、特定された公差範囲内の充填量を生成する特定の組の液滴量(または特定の組み合わせ)(例えば、領域362の場合、ノズル(1)、(2)、(2)、(7)、および(9)からの液滴の組み合わせ)と関連するが、可能な液滴の他のセットも、おそらく使用されることができたであろう。例えば、領域362については、代替として、ノズル(2)からの5つの液滴(5×10.01pL=50.05pL)を使用することが可能であったであろう。しかしながら、(例えば)ノズル(3)(9.89pL)を、この時間の間に同時に広範に使用することができなかったであろう(すなわち、このノズルからの5つの液滴からの結果が、所望の公差範囲外の5×9.89=49.45pLであったであろう)ことにより、追加のスキャンが必要とされたであろうため、この代替案は非効率的であったであろう。
図3Bによって伝えられる実施例では、より少ない印刷時間、より少数の通過、より小さい幾何学的ステップ、および潜在的に小さい総幾何学的ステップ距離を使用するように、またはある他の基準に従って、特定のスキャンおよびそれらの順序が選択された。描写された実施例は、叙述的議論のためのものにすぎず、標的充填を取得するように、提示された液滴量を使用するスキャンの数を、8より少ないスキャンにさらに削減することが可能であり得ることに留意されたい。いくつかの実施形態では、スキャンプロセスは、必要とされるスキャンの数とともに最悪の場合のシナリオを回避する様式で計画される(例えば、90度回転させられるプリントヘッドを用いた1行の標的領域につき1回のスキャン)。他の実施形態では、この最適化は、1つ以上の最大値または最小値に基づく程度に適用され、例えば、所与のインクに対する各標的領域のための全ての可能な液滴の組み合わせを考慮して、可能な限り少数のスキャンをもたらす様式で、スキャンを計画する。
【0046】
図3Cは、
図3Aに類似するが、ここでは特定のウェルに特に整列させられていないノズルを有する、プリントヘッド303の例証的な
図301およびプリントヘッド303の下方で見られる2つの関連略図を提示する。プリントヘッドは、随意に、基板に対するプリントヘッドの固定されていない幾何学的ステップを提供する、実施形態で使用されるため、特定のプリントヘッドノズル(例えば、図で描写されるノズル(1)-(5)を伴う合計16個のノズル)を異なる標的領域(本実施例では、374および375の2つ)と整列させるオフセットを表すために、数字305が使用される。再度、
図3Aの実施例に従って、ノズル(1)-(16)が、それぞれ、9.80、10.01、9.89、9.96、10.03、9.99、10.08、10.00、10.09、10.07、9.99、9.92、9.97、9.81、10.04、および9.95pLの流体インクの液滴量を生成する場合、かつ、標的領域につき50.00pL(この値の±0.5パーセント)を堆積させることが所望される場合、それぞれ、0、-1、および-3の幾何学的ステップを使用し、スキャンにつき各標的領域の中へ1つまたは2つの液滴を発射して、3回の通過またはスキャンで液滴を堆積させるために、プリントヘッドを使用することができる。これは、再度、明確に、描写された標的領域の各々に対して49.75pL~50.25pLの所望の公差範囲内である、図で描写されるように領域につき49.93または50.10の総充填値をもたらすであろう。したがって、示されるように、同一のアプローチは、ウェルに整列させられていないノズルの場合に同等に適用され、精密な調節された充填を達成するために、各標的領域に対するそれぞれの液滴量および所望の充填に依存する意図的な様式での液滴の組み合わせを使用することができる。さらに、
図3Aの
仮説について上で説明されるように、この同一の図は、ノズル駆動波形変動および/または複数のプリントヘッドの使用を表すために使用することができる。例えば、ノズル参照(1)-(16)が、16個の異なる駆動波形によって(すなわち、波形1-16を使用して)生成される単一のノズルのための液滴量を指す場合、単純に、異なる駆動波形を使用することによって、理論上の領域あたりの充填量を取得することができる。当業者であれば、
図3Bを参照して上で説明されるような同一のアプローチはまた、ウェルに特別に整列させられていない、すなわち、1つ以上のノズルのグループがそれぞれのウェルの中への同時液滴堆積に使用される、ノズルの場合にも同等に適用されることを理解することができる。最終的に、
図3A、3B、および3Cはまた、比較的単純な実施例を表し、典型的な用途では、数百から数千のノズル、および何百万もの標的領域があり得ることに留意されたい。例えば、開示された技法が電流分解能高解像度テレビ画面の各画素色成分の製作で適用される(例えば、画素がそれぞれ、赤色、緑色、および青色ウェルを有し、画素が、垂直解像度の1080本の水平線、および水平解像度の1920本の垂直線で配列される)用途では、インクを受け取り得る約600万個のウェル(すなわち、200万個ずつのウェルの3つの重複アレイ)がある。次世代テレビは、この解像度を4倍以上増加させることが期待される。そのようなプロセスでは、印刷速度を向上させるために、プリントヘッドは、印刷に何千個ものノズルを使用し得、例えば、典型的には、圧倒的な数の可能な印刷プロセス順列があろう。上で提示される簡略化実施例は、概念を紹介するために使用されるが、典型的な組み合わせで提示される圧倒的な数を考慮すると、実世界のテレビ用途によって表される順列は極めて複雑であり、印刷最適化は、典型的には、ソフトウェアによって適用され、複雑な数学演算を使用することに留意されたい。
図4-7は、どのようにしてこれらの動作を適用することができるかという非限定的実施例を提供するために使用される。
【0047】
本開示で紹介される技法は、いくつかの異なる方法で明示できることに留意されたい。例えば、
図4は、参照数字401によって集合的に指定される、いくつかの異なる実装階層を表し、これらの階層の各々は、上で紹介される技法の可能な個別的な実装を表す。第1に、上で紹介される技法は、グラフィック403によって表されるような非一過性の機械読み取り可能な媒体上に記憶された命令(例えば、コンピュータまたはプリンタを制御するためのソフトウェア)として具現化することができる。第2に、コンピュータアイコン405により、これらの技法は、例えば、販売用または他の製品で使用するための構成要素を設計または製造する企業内で、コンピュータまたはネットワークの一部として実装することができる。例えば、上で紹介される技法は、高解像度テレビ(DTV)の製造業者に相談するか、または製造業者のために設計を行う企業によって、設計ソフトウェアとして実装することができ、代替として、これらの技法は、テレビ(または表示画面)を作製するために、そのような製造業者によって直接使用することができる。第3に、以前に紹介され、記憶媒体グラフィック407を使用して例示されるように、以前に紹介された技法は、例えば、作用されたときに、上記の議論により、計画された液滴凝集技法の使用に依存する構成要素の1つ以上の層をプリンタに製作させるであろう、記憶された命令またはデータとして、プリンタ命令の形態を成すことができる。第4に、製作デバイスアイコン409によって表されるように、上で紹介される技法は、製作装置または機械の一部として、あるいはそのような装置または機械内のプリンタの形態で、実装することができる。例えば、液滴測定、および外部から供給された「層データ」の変換が、機械によって(例えば、ソフトウェアの使用を通して)、印刷プロセスを透過的に最適化/加速するように本明細書で説明される技法を使用して印刷するであろう、プリンタ命令に自動的に変換される様式で、製作機械を販売またはカスタマイズすることができる。そのようなデータはまた、オフラインで計算され、次いで、多くのユニットを製造する拡張可能なパイプライン製造プロセスにおいて、再現可能な基準で再適用されることができる。製作デバイスアイコン409の特定の描写は、(例えば、
図8-9を参照して)以下で議論されるであろう、1つの例示的なプリンタデバイスを表すことが留意される。上で紹介される技法
はまた、別々に販売されるであろう複数の構成要素のアレイ411等のアセンブリとして具現化することもできる。
図4では、例えば、いくつかのそのような構成要素が、最終消費者製品に組み込むために、後に分離されて販売されるであろう、半完成フラットパネルデバイスのアレイの形態で描写されている。描写されたデバイスは、例えば、上で紹介される方法に依存して堆積させられる1つ以上の層(例えば、色成分層、半導体層、封入層、または他の材料)を有し得る。上で紹介される技法はまた、参照されるような最終消費者製品の形態で、例えば、携帯用デジタルデバイス413(例えば、電子パッドまたはスマートフォン等)用の表示画面の形態で、テレビ表示画面415(例えば、HDTV)または他の種類のデバイスとして、具現化することもできる。例えば、
図4は、例えば、標的領域あたりの構造(集合デバイスを構成する個々のセルの1つ以上の層等)またはブランケット層(例えば、テレビまたはソーラパネル用の封入層)を堆積させるように、上で紹介されるプロセスを他の形態の電子デバイスに適用できることを表すために、ソーラパネルグラフィック417を使用する。明確に、多くの実施例が可能である。
【0048】
上で紹介される技法は、限定ではないが、
図4で図示される階層または構成要素のいずれかに適用されることができる。例えば、本明細書で開示される技法の一実施形態は、最終消費者デバイスであり、本明細書で開示される技法の第2の実施形態は、特定のノズル量の組み合わせを使用して層の製作を制御し、特定の標的領域あたりの充填を取得するようにデータを備えている、装置である。ノズル量は、事前に決定されるか、または原位置で測定され、適用されることができる。さらに別の実施形態は、例えば、上で紹介される技法を使用して1つ以上のインクを印刷するためにプリンタを使用する、堆積機械である。これらの技法は、1つの機械または1つより多くの機械、例えば、異なるステップが異なる機械で適用される、機械のネットワークまたは一連の機械で実装することができる。全てのそのような実施形態およびその他は、本開示によって紹介される技法を独立して利用する。
【0049】
印刷を計画するための例示的なプロセスが、
図5によって紹介される。このプロセスならびに関連方法およびデバイスは、概して、数字501を使用して参照される。
【0050】
より具体的には、各ノズルに対する(および複数の駆動波形が適用される場合は各波形に対する各ノズルに対する)液滴量が特定的に決定される(503)。そのような測定は、例えば、限定ではないが、プリンタ(または工場常駐機械)に組み込まれる工学撮像またはレーザ撮像デバイスを含む種々の技法を使用して行うことができ、工学撮像またはレーザ撮像デバイスは、飛行中に(例えば、較正印刷動作またはライブ印刷動作中に)液滴を撮像し、液滴形状、速度、軌道、および/または他の要因に基づく精度で量を計算する。インクを印刷し、次いで、パターン認識に基づいて個々の液滴量を計算するために印刷後撮像または他の技法を使用することを含む、他の技法も使用することができる。代替として、識別は、プリンタまたはプリントヘッド製造業者によって供給されるデータに基づき、例えば、製作プロセスに十分先立って工場で得られ、機械に(またはオンラインで)供給される測定値に基づくことができる。いくつかの用途では、液滴量特性は、例えば、インク粘度または種類、温度、ノズルの詰まり、または他の劣化に依存して、あるいは他の要因により、経時的に変化し得る。したがって、一実施形態では、基板の各新しい印刷を伴って、例えば、電源投入時に(または他の種類の電力サイクル事象時に)、所定の時間の満了時に、または、別のカレンダーあるいは非カレンダー基準で液滴量測定を原位置で動的に行うことができる。数字504によって表されるように、この(測定または提供された)データは、最適化プロセスで使用するために記憶される。
【0051】
ノズルあたりの(随意に、駆動波形あたりの)液滴量データに加えて、各標的領域に対する所望の充填量に関する情報(505)も受信される。このデータは、全ての標的領域に適用される単一の標的充填値、個々の標的領域、標的領域の行、または標的領域の列に
適用される、それぞれの標的充填値、あるいはある他の様式で分解される値であり得る。例えば、個々の電子デバイス構造(トランジスタまたは経路等)に対して大きい材料の単一の「ブランケット」層を製作することに適用される場合、そのようなデータは、層全体に適用される単一の厚さ(例えば、次いで、ソフトウェアが、それを関連インクに特定的である所定の変換データに基づいて、標的領域あたりの所望のインク充填量に変換する)から成ることができる。そのような場合において、データは、各「印刷セル」(この場合、各標的領域に同等であり得るか、または複数の標的領域から成り得る)の共通値に変換することができる。別の実施例では、データは、1つ以上のウェルの特定の値(例えば、50.00pL)を表すことができ、範囲データは、提供されるか、または状況に基づいて理解されるかのいずれかである。これらの実施例から理解されるはずであるように、所望の充填は、限定ではないが、厚さデータまたは量データを含む、多くの異なる形態で特定されることができる。追加のフィルタリングまたは処理基準もまた、随意に、受信デバイスに提供されることができるか、または受信デバイスによって実施されることもできる。例えば、以前に参照されたように、線効果を完成したディスプレイにおいて人間の眼に見えなくするように、充填量の無作為な変動を、受信デバイスによって、1つ以上の提供された厚さまたは量パラメータに注入することができる。そのような変動は、事前に行われることができる(領域によって異なる、それぞれの標的領域あたりの充填として提供される)か、または(例えば、下流コンピュータまたはプリンタによって)受信側デバイスから独立して透過的に導出されることができる。
【0052】
各領域に対する標的充填量および個々の液滴量測定(すなわち、プリントヘッドノズルあたり、およびノズルあたりの駆動波形)に基づいて、次いで、本プロセスは続けて、随意に、(すなわち、プロセスブロック506により)所望の公差範囲内の充填量に合計される、種々の液滴の組み合わせを計算する。記述されるように、この範囲は、標的充填データを提供されることができるか、または状況に基づいて「理解」されることができる。一実施形態では、範囲は、提供された充填値の±1パーセントであると理解される。別の実施形態では、範囲は、提供された充填値の±0.5パーセントであると理解される。明確に、これらの例示的な範囲より大きかろうと小さかろうと、多くの他の可能性が公差範囲に対して存在する。
【0053】
この時点で、実施例は、組の可能な液滴の組み合わせを計算するための1つの可能な方法を伝えることに役立つであろう。以前に説明された簡略化実施例に戻ると、各々が9.80pL、10.01pL、9.89pL、9.96pL、および10.03pLのそれぞれの仮想液滴量を有する5つのノズルがあり、5つのウェルの中に50.00pLの標的量±0.5パーセント(49.75pL~50.25pL)を堆積させることが所望されると仮定される。この方法は、公差範囲に達するが、それを超えないように組み合わせることができる液滴の数を決定し、各ノズルについて、任意の容認できる順列で使用されることができる、そのノズルからの液滴の最小および最大数を決定することから始まる。例えば、この仮説では、検討中のノズルの最小および最大液滴量を考慮すると、ノズル(1)からの1つ以下の液滴、ノズル(3)からの2つ以下の液滴、およびノズル(4)からの4つ以下の液滴が任意の組み合わせで使用されることができる。このステップは、考慮される必要がある組み合わせの数を制限する。組の考慮にそのような制約を装備して、次いで、本方法は、順に、各ノズルを取り込んで、液滴の必要数(本実施例では5つ)の組み合わせを考慮する。例えば、本方法は、最初に、ノズル(1)を伴う容認できる組み合わせのみが、このノズルからの1つ以下の液滴を特色とすることを理解して、ノズル(1)から始まる。このノズルからの単一の液滴を伴う組み合わせを考慮すると、次いで、本方法は、検討中の他のノズル・波形の組み合わせの最小および最大液滴量を考慮する。例えば、ノズル(1)が所与の駆動波形に対して9.80pLの液滴量を生成すると決定されることを考慮して、所望の公差範囲に達するために、ノズル(3)から1つ以下の液滴、またはノズル(4)からの2つ以下の液滴が、ノズル(1)からの液滴と組み合わせ
て使用されることができる。本方法は続いて、ノズル(1)からの液滴と、他のノズルからの4つの液滴の組み合わせ(例えば、ノズル(2)または(5)からの4つの液滴、ノズル(2)からの3つの液滴とノズル(4)からの1つの液滴等)との組み合わせを考慮する。議論を簡略化するために、ノズル(1)のみを伴う組み合わせを考慮すると、第1のノズルを伴う以下の異なる組み合わせのうちの任意のものが、潜在的に公差範囲内で使用されることができる:
{1(1),4(2)}、{1(1),3(2),1(4)}、{1(1),3(2),1(5)}、{1(1),2(2),1(4),1(5)}、{1(1),1(2),1(3),2(5)}、{1(1),1(2),1(4),2(5)}、{1(1),1(2),3(5)}、{1(1),1(3),3(5)}、{1(1),2(4),2(5)}、{1(1),1(4),3(5)}、および{1(1),4(5)}
上で記載される数式では、角括弧の使用は、1つ以上のノズルからの液滴量の組み合わせを表す、一組の5つの液滴を表し、これらの角括弧内の各丸括弧が特定のノズルを識別する。例えば、式{1(1),4(2)}は、ノズル(1)からの1つの液滴、およびノズル(2)からの4つの液滴、すなわち、特定された公差範囲内である、9.80pL+(4×10.01pL)=49.84pLを表す。実際には、本実施例での方法は、所望の公差を生成するために使用することができる、ノズル(1)からの最多数の液滴を考慮し、この最多数を伴う組み合わせを評価し、数を1だけ削減し、考慮のプロセスを繰り返す。一実施形態では、このプロセスは、使用することができる、全ての可能な組の非冗長的な液滴の組み合わせを決定するように繰り返される。ノズル(1)を伴う組み合わせが完全に探索されたとき、本方法は、ノズル(1)ではなくノズル(2)を伴う組み合わせへ進み、本プロセスを繰り返す等して、所望の公差範囲を達成することができるかどうかを決定するように、各可能なノズルの組み合わせを試験する。例えば、本実施形態では、本方法が、ノズル(1)からの2つ以上の液滴の組み合わせを使用することができないと決定したので、種々の組み合わせで、ノズル(1)からの1つの液滴および他のノズルからの4つの液滴を伴う組み合わせの考慮から始める。本方法は、実際には、ノズル(2)の4つの液滴を使用することができるかどうかを評価し、{1(1),4(2)}であり得ることを決定し、次いで、この数を1だけ低減させ(ノズル2からの3つの液滴)、この数をノズル(4)または(5)からの単一の液滴と組み合わせて使用することができ、{1(1),3(2),1(4)}、{1(1),3(2),1(5)}の容認できる組を生じることを決定する。次いで、本方法はさらに、ノズル(2)からの容認できる液滴の数を削減し、{1(1),2(2)・・・・}、次いで、{1(1),1(2)・・・・}等の組み合わせを評価する。ノズル(2)を伴う組み合わせがノズル(1)からの液滴と組み合わせて考慮されると、次いで、本方法は、次のノズル、すなわち、ノズル(3)を取り込み、ノズル(2)ではなく、このノズルを伴うノズル(1)の組み合わせを考慮し、唯一の容認できる組み合わせが{1(1),1(3),3(5)}によって求められることを決定する。ノズル(1)からの液滴を伴う全ての組み合わせが考慮されると、次いで、本方法は、ノズル(1)ではなくノズル(2)からの液滴を伴う、5つの液滴の組み合わせ、例えば、{5(2)}、{4(2),1(3)}、{4(2),1(4)}、{4(2),1(5)}、{3(2),2(3)}、{3(2),1(3),1(4)}等を考慮する。
【0054】
また、ノズルを複数の発射波形(それぞれ異なる液滴量を生成する)によって駆動することができる場合において、同一のアプローチが同等に適用されることも留意されたい。これらの追加のノズル・波形の組み合わせは、単純に、標的量の公差範囲内である、組の液滴の組み合わせを選択する際に使用するための追加の液滴量を提供する。複数の発射波形の使用はまた、より多数の容認できる液滴の組み合わせを利用可能にし、それによって、各通過でノズルの大部分から液滴を同時に発射する可能性を増加させることによって、印刷プロセスの効率を向上させることもできる。ノズルが複数の駆動波形を有し、幾何学的ステップも使用される場合において、一組の液滴の組み合わせの選択は、所与のスキャ
ンで使用される幾何学的オフセット、および各ノズルに使用されるであろうノズル波形の両方を組み込むであろう。
【0055】
叙述の目的で、強引なアプローチが説明されており、例えば、ノズルおよび標的領域の数が大きい(例えば、それぞれ128より多い)、圧倒的な数の可能な組み合わせが、典型的には、実践で提示されるであろうことに留意されたい。しかしながら、そのような計算は、適切なソフトウェアを有する高速プロセッサの能力の十分に範囲内である。また、計算を削減するように適用されることができる、種々の数学的ショートカットが存在することにも留意されたい。例えば、所与の実施形態では、本方法は、任意の1回の通過で利用可能なノズルの半分未満の使用に対応するであろう、任意の組み合わせを考慮から除外することができる(または代替として、任意の1回の通過で標的領域(TR)にわたる量分散を最小化する組み合わせに考慮を限定することができる)。一実施形態では、本方法は、容認できる総充填値を生成するであろう、液滴の組み合わせのあるセットのみを決定し、第2の実施形態では、本方法は、容認できる総充填値を生成するであろう、全ての可能な組の液滴の組み合わせを徹底的に計算する。また、複数の反復で、印刷スキャンが行われ、次の後続スキャンを最適化する目的で、所望の公差範囲に達するように依然として堆積させられていないインクの量が考慮される、反復アプローチを使用することも可能である。他のアプローチも可能である。
【0056】
また、初期動作として、同一の充填値(および公差)が各標的領域に適用される場合、(例えば、1つの標的領域について)組み合わせを1回計算し、これらの可能な液滴の組み合わせを記憶することが、各標的領域とともに最初に使用するために十分であることにも留意されたい。これは、必ずしも全ての組計算方法および全ての用途に当てはまるわけではない(例えば、いくつかの実施形態では、容認できる充填範囲が全ての標的領域について変化し得る)。
【0057】
さらに別の実施形態では、本方法は、各標的領域に対する組の容認できる液滴の組み合わせを決定するために、近似、行列数学、無作為な選択、または他の技法等の数学的なショートカットを使用する。
【0058】
プロセスブロック507によって表されるように、組の容認できる組み合わせが各標的領域について決定されると、次いで、本方法は、各標的領域に対する特定の組(または液滴の組み合わせ)と関連する方法で、スキャンを効果的に計算する。この特定の組選択は、特定の組(各標的領域に対して1つ)が、複数の標的領域中に液滴量を同時に堆積させるための少なくとも1回のスキャンの使用を通したプロセス節約を表す様式で、行われる。すなわち、理想的な場合において、本方法は、各標的領域に対して1つの特定の組を選択し、その特定の組は、プリントヘッドが1度に標的領域の複数の行の中へ同時に印刷することができる様式の特定の液滴量の組み合わせを表す。選択された組み合わせにおける特定の液滴の選択は、最小印刷時間、最小数のスキャン、幾何学的ステップの最小サイズ、最小総幾何学的ステップ距離、または他の基準等の所定の基準に合致する印刷プロセスを表す。これらの基準は、
図5の数字508によって表される。一実施形態では、最適化は、特定の組が、スキャンの数、総幾何学的ステップ距離、および幾何学的ステップのサイズの各々をその順序で最小化する様式で選択される、パレート最適である。再度、この特定の組の選択は、いくつかの非限定的実施例が以下でさらに議論される、任意の所望の様式で行うことができる。
【0059】
一実施例では、本方法は、考慮されている全ての領域に適用される特定の幾何学的ステップまたは波形に対応する、各標的領域に対する各組から液滴を選択し、次いで、利用可能な組からこの液滴を減算し、残余を決定する。例えば、利用可能なセットの選択が、最初は、5つの標的領域の各々について{1(1),4(2)}、{1(1),3(2),
1(4)}、{1(1),3(2),1(5)}、{1(1),2(2),1(4),1(5)}、{1(1),1(2),1(3),2(5)}、{1(1),1(2),1(4),2(5)}、{1(1),1(2),3(5)}、{1(1),1(3),3(5)}、{1(1),2(4),2(5)}、{1(1),1(4),3(5)}、および{1(1),4(5)}である場合、本実施形態は、5つの標的領域のうちの第1の領域に特定の残余を得るように、この最初の組から1つの液滴(1)を減算し、5つの標的領域のうちの第2の領域に特定の残余を得るように、最初の組から1つの液滴(2)を減算し、標的領域のうちの第3の領域に特定の残余を得るように、最初の組から1つの液滴(3)を減算する等であろう。この評価は、「0」の幾何学的ステップを表すであろう。次いで、本方法は、残余を評価し、他の可能な幾何学的ステップのためのプロセスを繰り返すであろう。例えば、次いで、「-1」の幾何学的ステップが適用された場合、本方法は、5つの標的領域のうちの第1の領域について、最初の組から1つの液滴(2)を減算し、標的領域のうちの第2の領域について、最初の組から1つの液滴(3)を減算する等して、残余を評価するであろう。
【0060】
印刷計画の一部として特定の幾何学的ステップ(およびノズル発射)を選択する際に、本方法は、採点および優先機能に従って種々の残余を分析し、最良のスコアを伴う幾何学的ステップを選択する。一実施形態では、採点は、(a)同時に使用されるノズルの数を最大化し、(b)影響を受ける標的領域について残っている組み合わせの最小数を最大化するステップにより大きく重みを加えるように適用される。例えば、スキャン中に4つのノズルからの液滴を使用したスキャンが、2つだけのノズルからの液滴を使用したものより大きく優遇されるであろう。同様に、異なるステップを考慮する際に上で議論される減算プロセスを使用して、1つの可能なステップについて、それぞれの標的領域に対する1、2、2、4、および5の残りの組み合わせ、および第2の可能なステップについて、それぞれの標的領域に対する2、2、2、3、および4の残りの組み合わせをもたらした場合、本方法は、後者により大きく重みを加えるであろう(すなわち、最大の最小数が「2」である)。実践では、好適な重み付け係数を経験的に発生させることができる。明確に、他のアルゴリズムを適用することができ、他の形態の分析またはアルゴリズムショートカットを適用することができる。例えば、特定の液滴の組み合わせ、および所定の基準を満たす関連スキャンパラメータを決定するために、(例えば、固有ベクトル分析を使用して)行列数学を使用することができる。別の変形例では、例えば、線効果を軽減するために計画された無作為充填変動の使用を考慮に入れる、他の式を使用することができる。
【0061】
特定の組および/またはスキャン経路が数字507により選択されると、数字509により、プリンタ作用が順序付けられる。例えば、総充填量が唯一の考慮事項であった場合、典型的には、一組の液滴を恣意的な順序で堆積させることができることが留意される。印刷がスキャンまたは通過の数を最小化するように計画される場合、幾何学的ステップの順序もまた、プリントヘッド/基板運動を最小化するように選択することができる。例えば、仮想実施例での容認できるスキャンが、{0、+3、-2、+6、および-4}という幾何学的ステップを伴う場合、これらのスキャンは、プリントヘッド/基板運動を最小化し、したがって、印刷速度をさらに向上させるように並べ替えることができ、例えば、{0、+1、+1、+2、および+4}という一連のステップとしてスキャンを順序付ける。15という総ステップ増分距離を伴う、第1の一連の幾何学的ステップ{0、+3、-2、+6、および-4}と比較して、第2の一連の幾何学的ステップ{0、+1、+1、+2、および+4}は、より速いプリンタ応答を促進する、8という総ステップ増分距離を伴う。
【0062】
数字510によって表されるように、同一の標的充填を受け取るものである、標的領域の多数の行を伴う用途については、次いで、基板の部分領域にわたって再現される反復可能パターンとして、特定の解法を表すこともできる。例えば、ある用途で、単一の行で配
列された128個のノズル、および1024行の標的領域があった場合、標的領域の255行以下の部分領域について、最適なスキャンパターンを決定できることが期待され、したがって、本実施例では、同一の印刷パターンが、基板の4つ以上の部分領域に適用されることができる。したがって、いくつかの実施形態は、随意的なプロセスブロック510によって表されるような反復可能パターンを活用する。
【0063】
非一過性の機械読み取り可能な媒体アイコン511の使用に留意されたい。このアイコンは、上で説明される方法が、随意に、1つ以上の機械を制御するための命令(例えば、1つ以上のプロセッサを制御するためのソフトウェアまたはファームウェア)として実装されることを表す。非一過性の媒体は、任意の機械読み取り可能な物理媒体、例えば、フラッシュドライブ、フロッピー(登録商標)ディスク、テープ、サーバ記憶装置または大容量記憶装置、ダイナミックランダムアクセスメモリ(DRAM)、コンパクトディスク(CD)、または他のローカルあるいは遠隔記憶装置を含むことができる。この記憶装置は、より大型の機械の一部(例えば、デスクトップコンピュータまたはプリンタ内の常駐メモリ)として、または分離基準で(例えば、後にファイルを別のコンピュータまたはプリンタに転送するであろう、フラッシュドライブまたは独立型記憶装置)具現化することができる。
図5を参照して記述される各機能は、単一の媒体表現(例えば、単一のフロッピー(登録商標)ディスク)上で一緒に、または複数の別個の記憶デバイス上でのいずれかで記憶される、複合プログラムの一部として、または独立型モジュールとして実装することができる。
【0064】
図5の数字513によって表されるように、計画プロセスが完了すると、プリントヘッドに対するノズル発射データと、発射パターンを支援するためのプリントヘッドと基板との間の相対移動に対する命令とを備えている一組のプリンタ命令を効果的に表す、データが生成されるであろう。スキャン経路、スキャン順序、および他のデータを効果的に表す、このデータは、(例えば、非一過性の機械読み取り可能な媒体アイコン515によって描写されるように)後に使用するために記憶するか、またはプリンタ(517)を制御して選択された組み合わせ(標的領域あたりの特定の組のノズル)を表すインクを堆積させるように即時に適用されることができるかのいずれかである、電子ファイル(513)である。例えば、本方法は、独立型コンピュータ上で適用することができ、命令データは、後に使用するため、または別の機械にダウンロードするために、RAMに記憶される。代替として、本方法は、実装され、プリンタによって動的に「着信」データに適用され、プリンタパラメータ(ノズル・液滴量データ等)に応じてスキャンを自動的に計画することができる。多くの他の代替案が可能である。
【0065】
図6A-6Cは、概して、ノズル選択およびスキャン計画プロセスに関するフローチャートを提供する。再度、スキャンが移動の方向または速度において連続的または線形である必要はなく、かつ基板の1つの側面から別の側面まで進む必要がないことを留意されたい。
【0066】
第1のブロック図が、
図6Aの数字601によって表される。この図は、前の叙述で議論された例示的プロセスの多くを表す。本方法は、最初に、数字603により、各標的領域に対する組の容認できる液滴量の組み合わせをメモリから取り出すことから始まる。これらのセットは、動的に計算することができ、または例えば、異なる機械上のソフトウェアを使用して、事前に計算することができたであろう。ローカルに記憶されたデータベース(例えば、ローカルRAMに記憶された)または遠隔データベースのいずれか一方を表す、データベースアイコン605の使用に留意されたい。次いで、本方法は、各標的領域に対する容認できる組のうちの特定の組を効果的に選択する(607)。この選択は、多くの実施形態では間接的であり、つまり、本方法は、(例えば、上で参照される技法を使用して)特定のスキャンを選択するための容認できる組み合わせを処理し、実際に特定の
組を定義するのは、これらのスキャンである。それでもなお、スキャンを計画することによって、本方法は、それぞれの標的領域に対する特定の組の組み合わせを選択する。次いで、このデータは、上で参照されるように、スキャンを順序付けて運動および発射パターンをまとめる(609)ために使用される。
【0067】
図6Aの中央および右は、スキャン経路およびノズル発射パターンを計画し、実際に、印刷最適化を表す様式で各標的領域に対する特定の液滴の組み合わせを選択するためのいくつかのプロセスオプションを図示する。数字608によって表されるように、図示した技法は、このタスクを行うための1つの可能な方法論を表すにすぎない。数字611により、分析は、容認できる組み合わせにおける各ノズル(またはノズルが1つより多くの発射波形によって駆動される、これらの場合においては、ノズル・波形の組み合わせ)の最小および最大使用を決定することを伴うことができる。特定のノズルが不良である(例えば、発射しない、または容認できない軌道で発射する)場合、そのノズルを使用から(および考慮から)除外することができる。第2に、ノズルが非常に少ない、または非常に多い液滴量のいずれか一方を有する場合、これは、容認できる組み合わせにおけるそのノズルから使用されることができる液滴の数を制限し得る。数字611は、考慮されるであろう組み合わせの数を削減する、事前処理を表す。数字612によって表されるように、評価されるであろう液滴の組み合わせの組の数を制限するために、プロセス/ショートカットを使用することができる。例えば、各ノズルに対する「全ての」可能な液滴の組み合わせを考慮する代わりに、本方法は、随意に、半分より少ないノズル(または1/4等の別の数量のノズル)を伴う組み合わせ、半分より多くの液滴が任意の特定のノズル・波形に由来する組み合わせ、または、液滴量の高い分散を表す、あるいは標的領域にわたって適用される同時液滴量の大きい分散を表す組み合わせを除外するように構成することができる。他の測定基準も使用することができる。
【0068】
計算/考慮される組の数への任意の制限を受けて、次いで、本方法は続いて、数字613により、容認できる液滴の組み合わせを計算して考慮する。数字614および615によって参照されるように、スキャンを計画し、および/または別様に標的領域(TR)あたりの特定の組の液滴量を効果的に選択するために、種々のプロセスを使用することができる。例えば、上で紹介されるように、1つの方法は、スキャン経路(例えば、特定の幾何学的ステップ選択)を仮定し、次いで、考慮されている全てのTRにわたる最も少ない残りの組選択の最大値を考慮する。本方法は、1度に複数の標的領域を覆う次のスキャンの能力を最大化する、これらのスキャン経路(代替的な幾何学的ステップ)に優遇して重みを加えることができる。代替として、または加えて、本方法は、1度に使用されるノズルの数を最大化する、幾何学的ステップに優遇して重みを加えることができる。上記の簡略化された5つのノズルの議論に戻ると、5つのノズルを標的領域に適用するであろうスキャンに、1回の通過で3つだけのノズルを発射するであろうスキャンまたは通過より優遇して重みを加えることができる。したがって、一実施形態では、以下のアルゴリズムをソフトウェアによって適用することができる。
【0069】
【0070】
この例示的な方程式において、「i」は、幾何学的ステップまたはスキャン経路の特定の選択を表し、w1は、1つの経験的に決定される重み付けを表し、w2は、第2の経験的に決定される重み付けを表し、#RemCombsTR,iは、スキャン経路iを仮定した、標的領域あたりの残りの組み合わせの数を表し、#Simult.Nozzlesiは、スキャン経路iに使用されるノズルの数の尺度を表す。この後者の値は整数である必要はなく、例えば、TRあたりの充填値が(例えば、表示デバイスにおいて潜在的に可視
的なアーチファクトを隠すように)変化させられる場合、所与のスキャン経路が、1列の標的領域につき使用される様々な数のノズルを特色とすることができ、例えば、平均またはある他の尺度を使用できることに留意されたい。また、これらの係数および重み付は例証的にすぎず、すなわち、これらとは異なる加重および/または考慮事項を使用すること、一方の変数のみを使用するが他方を使用しないこと、または完全に異なるアルゴリズムを使用することが可能であることも留意されたい。
【0071】
図6Aはまた、いくつかのさらなるオプションも示す。例えば、ある実装における液滴組の考慮が、数字617により、方程式/アルゴリズム従って行われる。特定のステップまたはオフセットを選択するために、各可能な代替幾何学的ステップについて計算することができるスコアとして、比較測定基準を表すことができる。例えば、別の可能なアルゴリズムアプローチは、以下に示されるような3つの項を用いた方程式を伴う。
【0072】
【0073】
式中、Sv、Se、およびSdに基づく項は、それぞれ、堆積された液滴量の分散、効率(通過につき使用される最大ノズル)、および幾何学的ステップの変動について計算されるスコアである。1つの公式化において、「(Sv,min/Sv)」の項は、液滴の総数に依存する様式で、通過あたりの標的値からの充填量の変動を最小化しようとする。
【0074】
図6Aの数字619は、一実施形態では、例えば、全ての液滴量の組み合わせを同時に考慮し、スキャン経路を選択するために固有ベクトル分析の形態を使用する、数学的技法の使用を通した、行列数学を使用して、液滴の組み合わせの選択を行うことができることを表す。
【0075】
数字621によって表されるように、考慮される液滴の組み合わせの数を削減するために、反復プロセスが適用されることができる。つまり、例えば、1つの可能な処理技法の以前の叙述によって表されるように、幾何学的ステップを1度に1つ計算することができる。特定のスキャン経路が計画される度に、本方法は、検討中の各標的領域において依然として必要とされる増分量を決定し、次いで、所望の公差内である標的領域あたりの総量または充填量を生成することに最も適したスキャンまたは幾何学的オフセットを続けて決定する。次いで、このプロセスは、全てのスキャン経路およびノズル発射パターンが計画されるまで、それぞれの反復として繰り返すことができる。
【0076】
数字622により、ハイブリッドプロセスの使用も可能である。例えば、一実施形態では、ノズルあたりの液滴量の最小化された偏差および最大効率(例えば、スキャンにつき使用されるノズル)に基づいて、例えば、1つ以上のスキャンまたは幾何学的ステップの第1の組を選択して使用することができる。ある数のスキャン、例えば、1、2、3回以上のスキャンが適用されると、(例えば、適用された液滴量の偏差にかかわらず)例えば、スキャンにつき使用されるノズルを最大化する、異なるアルゴリズムを呼び出すことができる。上で議論される特定の方程式または技法のうちのいずれか(あるいは他の技法)は、随意に、そのようなハイブリッドプロセスにおけるアルゴリズムのうちの適用された1つであり得、他の変形例が当業者に疑いなく想起されるであろう。
【0077】
以前に参照されたように、例示的なディスプレイ製造プロセスでは、標的領域あたりの充填量は、線効果を軽減するように意図的に注入される、計画された無作為化(623)を有することができることに留意されたい。一実施形態では、随意に、この計画された無作為化または他の効果を達成する様式で、標的充填量を意図的に変動させるように(また
は各標的領域に対する液滴の組み合わせについて生成される総量を非対称にするように)、発生器関数(625)が適用される。前述のように、異なる実施形態では、すなわち、液滴の組み合わせが分析される前でさえも、そのような変動が標的充填量および公差に含まれること、および例えば、標的領域あたりの充填要件を満たすように、以前に示されたようなアルゴリズムアプローチを適用することも可能である。
【0078】
図6Bおよび数字631は、上で参照される反復解法に関連するさらに詳細なブロック図を参照する。数字633および635によって表示されるように、再度、可能な液滴の組み合わせが、最初に識別され、記憶され、ソフトウェアによる評価のために適宜取り出される。各可能なスキャン経路(または幾何学的ステップ)について、数字637により、本方法は、スキャン経路を識別する足跡および適用されるノズルを記憶し(639)、標的領域あたりの組からノズルあたりの発射を減算し(641)、各標的領域に対する残余の組み合わせを決定する(643)。これらも記憶される。次いで、数字645により、本方法は、事前定義された基準に従って記憶されたデータを評価する。例えば、随意的な(鎖線)ブロック647によって示されるように、全ての関連標的領域にわたって液滴の組み合わせの最小数を最大化しようとする方法は、ちょうど記憶された組み合わせが、以前に考慮された代替案より良好であるか、または不良であるかを示すスコアを割り当てることができる。特定された基準が満たされた場合(645)、特定のスキャンまたは幾何学的ステップを選択することができ、残余の組み合わせが、数字649および651によって表されるように、別のプリントヘッド/基板スキャンまたは通過の考慮で使用するために記憶されるか、または別様にフラグを付けられる。基準が満たされない(または考慮が不完全である)場合、別のステップを考慮することができ、および/または本方法は、数字653により、検討中の幾何学的ステップ(または以前に選択されたステップ)の考慮を調整することができる。再度、多くの変形例が可能である。
【0079】
スキャンが行われる順序または液滴が堆積させられる順序は、標的領域の最終的な充填値に対して重要ではないことが以前に指摘された。これは事実であるが、印刷速度およびスループットを最大化するために、スキャンは、好ましくは、可能な限り速いまたは効率的な印刷をもたらすよう順序付けられる。したがって、幾何学的ステップ分析に以前は含まれなかった場合、次いで、スキャンまたはステップの並べ替えおよび/または順序付けを行うことができる。このプロセスは、
図6Cによって表される。
【0080】
具体的には、数字661が、
図6Cの方法を概して指定するために使用される。例えば、好適な機械で作動するソフトウェアが、プロセッサに、選択された幾何学的ステップ、特定の組、または、選択されたスキャン経路(および適宜あるノズルを1つより多くの発射波形によって駆動することができる、これらの実施形態において、複数の発射波形のうちのどれが各液滴に使用されるものであるかを特定するデータをさらに含むことができる、ノズル発射パターン)を識別する他のデータを取り出させる(663)。次いで、これらのステップまたはスキャンは、増分ステップ距離を最小化する様式で並べ替えられるか、または順序付けられる。例えば、再度、以前に紹介された仮想実施例を参照すると、選択されたステップ/スキャン経路が{0、+3、-2、+6、および-4}であった場合、これらは、各増分ステップを最小化するように、およびスキャンの間に運動システムによって横断される全体(総)距離を最小化するように、最大に並べ替えられ得る。例えば、並べ替えがないと、これらのオフセットの間の増分距離は、3、2、6、および4と同等であろう(横断される総距離は、本実施例では「15」となる)。スキャン(例えば、スキャン「a」、「b」、「c」、「d」、および「e」)が説明される様式で(例えば、「a」、「c」、「b」、「e」、および「d」の順序で)並べ替えられた場合、増分距離は、+1、+1、+2、および+4であろう(横断される総距離が「8」となる)。数字667によって表されるように、この時点で、本方法は、運動をプリントヘッド運動システムおよび/または基板運動システムに割り当てることができ、かつノズル発射の順
序を逆転させることができる(例えば、
図2Aの数字219および220により、交互の往復スキャン経路方向が使用される場合)。以前に記述され、随意的なプロセスブロック669によって表されるように、いくつかの実施形態では、計画および/または最適化を標的領域の一部について行うことができ、次いで、解法が大型基板にわたって空間的に反復する基準で適用される。
【0081】
この反復は、
図6Dによって部分的に表される。
図6Dによって示唆されるように、この叙述について、フラットパネルデバイスのアレイを製作することが所望されると仮定されるべきである。共通基板が、数字681によって表され、ボックス683等の一組の鎖線のボックスが、各フラットパネルデバイスの幾何学形状を表す。好ましくは、2次元特性を伴う基準685が、基板上に形成され、種々の製作プロセスを位置付けて整列させるために使用される。これらのプロセスの最終的な完了に続いて、各パネル683は、切断または同様のプロセスを使用して、共通基板から分離されるであろう。パネルのアレイがそれぞれのOLEDディスプレイを表す場合、共通基板681は、典型的には、ガラスであり、構造がガラスの上に堆積させられ、1つ以上の封入層が後に続くであろう。次いで、各パネルは、ガラス基板がディスプレイの発光表面を形成するように反転させられるであろう。いくつかの用途については、他の基板材料、例えば、透明または不透明の可撓性材料を使用することができる。記述されるように、多くの他の種類のデバイスを、説明された技法に従って製造することができる。フラットパネル683の特定の一部687について、解法を計算することができる。次いで、この解法は、フラットパネル683の他の類似サイズの部分689について繰り返すことができ、次いで、各パネルが所与の基板から形成されるために、解法セット全体を繰り返すこともできる。
【0082】
上で紹介される種々の技法および考慮を熟考すると、迅速に、単位あたりの低費用で製品を大量生産するように、製造プロセスを行うことができる。表示デバイス製造、例えば、フラットパネルディスプレイに適用されると、これらの技法は、複数のパネルが共通基板から生産される、高速のパネルあたりの印刷プロセスを可能にする。(例えば、パネルからパネルに共通インクおよびプリントヘッドを使用する)高速の反復可能印刷技法を提供することによって、印刷を実質的に向上させることができ、例えば、標的領域あたりの充填量が仕様内であることを保証しながら、層あたりの印刷時間を、上記の技法を用いないと必要とされるであろう時間の小さな割合にまで削減することが考えられる。再度、大型HDテレビディスプレイの実施例に戻ると、大幅なプロセス向上を表す、180秒以下、またはさらに90秒以下で、各色成分層を、大型基板(例えば、約220cm×250cmである8.5世代基板)のために正確かつ確実に印刷できることが考えられる。印刷の効率および品質を向上させることは、大型HDテレビディスプレイを生産する費用の有意な削減、したがって、より低い最終消費者費用のための道を開く。前述のように、ディスプレイ製造(具体的にはOLED製造)が、本明細書で紹介される技法の1つの用途であるが、これらの技法は、多種多様のプロセス、コンピュータ、プリンタ、ソフトウェア、製造機器、およびエンドデバイスに適用することができ、ディスプレイパネルに限定されない。
【0083】
公差内の精密な標的領域量(例えば、ウェル量)を堆積させる能力の1つの利益は、記述されるように、公差内の意図的な変動を注入する能力である。これらの技法は、ディスプレイの画素化アーチファクトを隠し、そのような「線効果」を人間の眼に認識できなくする能力を提供するため、ディスプレイにおいて大幅な品質向上を促進する。
図7は、この変動を注入するための1つの方法に関連付けられている、ブロック
図701を提供する。上で議論される種々の方法およびブロック図と同様に、ブロック
図701および関連方法は、随意に、独立型媒体上で、またはより大型の機械の一部としてのいずれかで、ソフトウェアとして実装することができる。
【0084】
数字703によって表されるように、変動を特定の周波数基準に依存させることができる。例えば、コントラスト変動に対する人間の眼の感受性は、輝度、期待視認距離、ディスプレイ解像度、色、および他の要因の関数であることが、概して理解される。周波数基準の一部として、異なる輝度レベルでの色の間のコントラストの空間的変動に対する典型的な人間の眼の感受性を考慮すると、そのような変動が、人間の眼に知覚可能ではない様式で平滑化され、例えば、(a)1つまたは複数の任意の方向で、あるいは(b)期待視認条件を考慮して色成分の間で、人間が観察可能なパターンを提供しない様式で変動させられるであろうことを確実にするために、尺度が使用される。これは、随意に、以前に参照されたように、計画された無作為化関数を使用して達成することができる。最小基準が特定されると、各色成分および各画素に対する標的充填量は、数字705によって表されるように、人間の眼から任意の視覚アーチファクトを隠すように計算された様式で、意図的に変動させられることができる。
図7の右側は、例えば、充填変動が知覚可能なパターンを生じないことを確実にするように、アルゴリズム基準で適用される知覚可能なパターンに対する試験とともに、色成分にわたって変動を独立させることができる(707)という、種々のプロセスオプションを表すことに留意されたい。数字707によって記述されるように、任意の所与の色成分(例えば、任意の所与のインク)について、変動はまた、複数の空間次元の各々で、例えば、xおよびy次元で独立させることができる(709)。再度、一実施形態では、知覚可能ではないよう、変動が各次元/色成分について平滑化されるだけでなく、これらの次元の各々の間の差異の任意のパターンも、見えないように抑制される。数字711により、例えば、随意に、任意の所望の基準を使用して、液滴量分析に先立って、軽微な標的充填変動を各標的領域の充填に割り当てることによって、これらの基準が満たされることを確実にするように、1つまたは複数の発生器関数が適用されることができる。数字713によって表されるように、一実施形態では、随意に、変動を、無作為であるようにすることができる。
【0085】
数字715により、各標的領域に対する特定の液滴の組み合わせの選択が、このようにして、選択された変動基準を支持して重み付けられる。これは、記述されるように、標的充填変動を介して、または液滴(例えば、スキャン経路、ノズル・波形の組み合わせ、または両方)選択時に行うことができる。この変動を与えるための他の方法も存在する。例えば、1つの想定される実装では、数字717により、スキャン経路は、非線形的に変動させられ、平均スキャン経路方向にわたって液滴量を効果的に変動させる。数字719により、例えば、発射パルス上昇時間、下降時間、電圧、パルス幅を調整すること、または軽微な液滴量変動を提供するためにパルスにつき複数の信号レベル(または他の形態のパルス成形技法)を使用することによって、ノズル発射パターンも変動させることができる。一実施形態では、これらの変動を事前に計算することができ、異なる実施形態では、総充填が特定された公差範囲内にとどまることを確実にするために採用される他の尺度とともに、非常に軽微な量変動を生成する波形変動のみが使用される。一実施形態では、各標的領域については、特定された公差範囲内に入る、複数の液滴の組み合わせが計算され、各標的領域については、どの液滴の組み合わせがその標的領域で使用されるかという選択が変動させられ(例えば、無作為に、または数学関数に基づいて)、それによって、標的領域にわたって液滴量を効果的に変動させ、線効果を軽減する。そのような変動は、1行の標的領域にわたって、1列の標的領域にわたって、または両方にわたって、スキャン経路方向に沿って実装することができる。
【0086】
図8A-9Cは、本明細書で議論される技法のためのシミュレーションデータを提供するために使用される。
図8A-8Cが、5つの液滴に基づく充填量を表す一方で、
図9A-9Cは、10個の液滴に基づく充填量を表す。これらの図の各々については、文字指定「A」(例えば、
図8Aおよび9A)は、量差に関して考慮することなく液滴を堆積させるためにノズルが使用される、状況を表す。それに反して、文字指定「B」(例えば、
図8Bおよび9B)は、ノズル間の期待量差を「平均化」するように、(5または10個の
)液滴の無作為な組み合わせが選択される、状況を表す。最終的に、文字指定「C」(例えば、
図8Cおよび9C)は、スキャンおよびノズル発射が、標的領域にわたる総充填分散を最小化しようとする、標的領域あたりの特定の総インク量に依存している、状況を表す。これらの種々の図では、ノズルあたりの変動は、実際のデバイスで観察される変動と一致すると仮定され、各垂直軸は、pL単位の総充填量を表し、各水平軸は、標的領域、例えば、画素ウェルまたは画素色成分の数を表す。これらの図の強調は、仮定された平均についての無作為に分布した液滴変動を仮定して、総充填量の変動を示すものであることに留意されたい。
図8A-8Cについては、ノズルあたりの平均量は、ノズルにつき10.00pLをわずかに下回ると仮定され、
図9A-9Cについては、ノズルあたりの平均液滴量は、ノズルにつき10.00pLをわずかに上回ると仮定される。
【0087】
図8Aで表される第1のグラフ801は、ノズル液滴量の差異を軽減しようとすることなく、これらの差異を仮定する、ウェルあたりの量変動を示す。これらの変動は、約±2.61%の総充填量の範囲を伴って、(例えば、ピーク803により)極端であり得ることに留意されたい。記述されるように、5つの液滴の平均は、50.00pLをわずかに下回り、
図8Aは、この値を中心とした±1.00%の範囲を表す第1の範囲805、およびこの値を中心とした±0.50%の範囲を表す第2の範囲807を含む、この平均を中心としたサンプル公差範囲の2つの組を示す。いずれか一方の範囲を超える数値ピークおよびトラフ(例えば、ピーク803)によって見られるように、そのような印刷プロセスは、仕様(例えば、これらの範囲の一方または他方のいずれか)を満たすことができないであろう、多数のウェルをもたらす。
【0088】
図8Bで表される第2のグラフ811は、液滴量変動の効果を統計的に平均化しようとして、ウェルあたり無作為化された組の5つのノズルを使用する、ウェルあたりの量変動を示す。そのような技法が、任意の特定のウェルの中の特定の量のインクの精密な生成を可能にせず、そのようなプロセスが、範囲内の総量を保証しないことも留意されたい。例えば、仕様外になる充填量の割合は、
図8Aによって表されるよりはるかに良好な事例を表すが、依然として、(トラフ813によって識別されるような)個々のウェルが、仕様外になる、例えば、それぞれ、数字805および807によって表される±1.00%および±0.50%変動外になる状況がある。そのような場合において、最小/最大誤差は、±1.01%であり、
図8Aで表されるデータに対する無作為混合を用いた向上を反映する。
【0089】
図8Cは、上記の技法に従って、ノズルあたりの液滴の特定の組み合わせを使用する、第3の事例を表す。具体的には、グラフ821は、変動が完全に±1.00%範囲内であり、全ての表された標的領域に対する±0.50%範囲を満たすことに極めて近いことを示す。再度、これらの範囲は、それぞれ、数字805および807によって表される。本実施例では、各通過またはスキャンに対して、適宜、プリントヘッド/基板偏移を伴って、各スキャンライン内のウェルを充填するために、5つの特定的に選択された液滴量が使用される。最小/最大誤差は、±0.595%であり、この形態の「スマート混合」を用いたさらなる向上を反映する。特定の充填または公差範囲を達成するための、知的な液滴量の組み合わせの任意の形態(例えば、ノズル行(または複数のプリントヘッド)の間のオフセットが使用される場合、または特定的に選択された液滴量の組み合わせを可能にするために複数の事前選択された駆動波形が使用される場合)に対して、向上およびデータ観察が一貫するであろうことに留意されたい。
【0090】
記述されるように、
図9A-9Cは、同様のデータを提示するが、ノズルあたり約10.30pLの平均液滴量を伴う、ウェルあたり10個の液滴の組み合わせを仮定する。具体的には、
図9Aのグラフ901は、液滴量差を軽減することに注意が払われていない事例を表し、
図9Bのグラフ911は、量差を統計的に「平均化」しようとして液滴が無作
為に適用される事例を表し、
図9Cのグラフ921は、(
図9A/9Bの平均充填量、すなわち、約103.10pLを達成するように)特定の液滴の計画された混合の事例を表す。これらの種々の図は、それぞれ、矢印905および907を使用して表される、この平均についての±1.00%および±0.50%変動の公差範囲を示す。図の各々はさらに、変動によって表される、それぞれのピーク903、913、および923を示す。しかしながら、
図9Aは、標的について±2.27%の変動を表し、
図9Bは、標的について±0.707%の変動を表し、
図9Cは、標的について±0.447%の変動を表すことに留意されたい。より多数の液滴の平均化により、
図9Bの「無作為液滴」解法は、±0.50%範囲ではなく、平均について±1.00%公差範囲を達成することが分かる。それに反して、
図9Cによって描写される解法は、両方の公差範囲を満たすことが分かり、依然としてウェル間の液滴の組み合わせの変動を可能にしながら、仕様内にあるように変動を制約できることを実証する。
【0091】
本開示で説明される技法の1つの随意的な実施形態は、正確にこれらの観点から説明される。つまり、y%の最大期待量変動を有する総充填量を堆積させるために、x%の最大液滴量変動を有するノズルが使用される、印刷プロセスについて、従来、総充填量がx%未満だけ変動するであろうことを保証する手段はほとんど存在しない。x%がy%より大きい用途について、これは潜在的な問題を提示する。(例えば、
図8Bおよび9Bで見られるデータによって表されるような)液滴平均化技法は、標的領域にわたる量変動をx%/(n)1/2という期待分散まで統計的に削減し、nは、所望の充填量を達成するために標的領域につき必要とされる液滴の平均数である。そのような統計的アプローチを用いても、実際の標的領域充填量がy%の公差内にあるであろうことを確実に確保するための機構がないことに留意されたい。本明細書で議論される技法は、そのような信頼性を提供するための機構を提供する。したがって、1つの随意的な実施形態は、標的領域にわたる統計的量分散がx%/(n)1/2より良好(例えば、x%/(n)1/2より大幅に良好)である、制御データを生成する方法、または、プリンタ、ならびに関連装置、システム、ソフトウェア、および改良を制御するための方法が提供される。具体的実装では、各スキャンで標的領域のそれぞれの行(例えば、それぞれの画素ウェル)において液滴を堆積させるためにプリントヘッドノズルが同時に使用される状況で、この条件が満たされる。おそらく別の言い方をすると、そのような具体的実装では、標的液滴量の±x%の液滴変動を表すノズルは、標的領域の総充填量がx%/(n)1/2未満の統計的分散を有する、標的領域充填量を達成するようにそれらの液滴を組み合わせ、各プリントヘッド/基板スキャンに対して、標的領域の異なるそれぞれの行に対する異なるノズルの同時使用を特色とする。
【0092】
上で説明された、それらの量の合計が特定の標的を満たすよう具体的に選択されるように液滴を組み合わせるための一組の基本的技法を用いて、ここで、本書は、これらの原理から利益を得ることができる、特定のデバイスおよび用途のより詳細な説明を参照する。この議論は、非限定的であること、すなわち、上で紹介される方法を実践するための少数の具体的に考慮された実装を説明することを目的としている。
【0093】
図10で見られるように、多重チャンバ製作装置1001は、移送モジュール1003、印刷モジュール1005、および処理モジュール1007を含む、いくつかの一般的なモジュールまたはサブシステムを含む。各モジュールは、例えば、印刷を第1の制御された雰囲気中で印刷モジュール1005によって行うことができ、他の処理、例えば、無機封入層堆積等の別の堆積プロセスまたは(例えば、印刷された材料のための)硬化プロセスを第2の制御された雰囲気中で行うことができるように、各モジュールは、制御された環境を維持する。装置1001は、基板を制御されていない雰囲気にさらすことなく、モジュールの間で基板を移動させるために、1つ以上の機械ハンドラを使用する。任意の所与のモジュール内で、そのモジュールのために、行われる処理に適合された他の基板取り
扱いシステムおよび/または特定のデバイスおよび制御システムを使用することが可能である。
【0094】
移送モジュール1003の種々の実施形態は、入力ロードロック1009(すなわち、制御された雰囲気を維持しながら異なる環境間で緩衝を提供するチャンバ)、移送チャンバ1011(基板を輸送するためのハンドラも有する)、および雰囲気緩衝チャンバ1013を含むことができる。印刷モジュール1005内で、印刷プロセス中の基板の安定した支持のための浮動テーブル等の他の基板取り扱い機構を使用することが可能である。加えて、分割軸またはガントリ運動システム等のxyz運動システムが、基板に対して少なくとも1つのプリントヘッドを精密に位置付けるとともに、印刷モジュール1005を通した基板の輸送のためのy軸運搬システムを提供するために使用されることができる。さらに、例えば、2つの異なる種類の堆積プロセスを制御された雰囲気中の印刷モジュール内で行うことができるように、例えば、それぞれのプリントヘッドアセンブリを使用して、印刷チャンバ内で、印刷するために複数のインクを使用することも可能である。印刷モジュール1005は、ガスエンクロージャ1015を備えていることができ、ガスエンクロージャ1015は、不活性雰囲気(例えば、窒素、希ガス、別の類似ガス、またはそれらの組み合わせ)を導入し、別様に、環境的調節(例えば、温度および圧力)、ガス構成要素、および粒子状物質の存在について雰囲気を制御するための手段とともに、インクジェット印刷システムを収納する。
【0095】
処理モジュール1007は、例えば、移送チャンバ1016を含むことができ、この移送チャンバはまた、基板を輸送するためのハンドラも有する。加えて、処理モジュールはまた、出力ロードロック1017、窒素スタック緩衝器1019、および硬化チャンバ1021を含むこともできる。いくつかの用途では、硬化チャンバは、例えば、熱または紫外線放射硬化プロセスを使用して、単量体フィルムを一様なポリマーフィルムに硬化させるために使用することができる。
【0096】
ある用途では、装置1001は、まとまった液晶表示画面またはOLED表示画面の大量生産、例えば、単一の大型基板上に1度に8枚の画面のアレイの製作のために適合される。これらの画面は、テレビに、および他の形態の電子デバイス用の表示画面として使用することができる。第2の用途では、装置は、さらに類似する様式で、ソーラパネルの大量生産に使用することができる。
【0097】
上で説明される液滴量の組み合わせ技法に適用されると、印刷モジュール1005は、有利なことには、光フィルタリング層、発光層、障壁層、伝導性層、有機または無機層、封入層、および他の種類の材料等の1つ以上の層を堆積させるために、表示パネル製造で使用することができる。例えば、描写された装置1001は、基板を装填され、制御されていない雰囲気への露出に介入することによって全てが途切れない様式で、種々のチャンバの間で基板を前後に移動させ、1つ以上の印刷層を堆積および/または硬化あるいは硬質化させるように制御されることができる。基板は、入力ロードロック1009を介して装填することができる。移送モジュール1003の中に位置付けられたハンドラは、入力ロードロック1009から印刷モジュール1005まで基板を移動させ、印刷プロセスの完了に続いて、硬化のために処理モジュール1007に移動させることができる。後続の層の繰り返しの堆積によって、標的領域あたりの制御された量、凝集層性質の各々を、任意の所望の用途に適するように構築することができる。再度、上で説明される技法が表示パネル製造プロセスに限定されず、多くの異なる種類のツールを使用できることに留意されたい。例えば、装置1001の構成は、異なる並置で種々のモジュール1003、1005、および1007を配置するように変動させられることができ、さらに、追加のモジュール、またはより少ないモジュールも使用されることができる。
【0098】
図10は、一組の連結されたチャンバまたは製作構成要素の一実施例を提供するが、明確に多くの他の可能性が存在する。上で紹介されるインク液滴堆積技法は、
図10で描写されるデバイスとともに、または実際には、任意の他の種類の堆積機器によって行われる製作プロセスを制御するために、使用することができる。
【0099】
図11は、本明細書で特定されるような1つ以上の層を有するデバイスを製作するために使用することができる、1つの装置の種々のサブシステムを示す、ブロック図を提供する。種々のサブシステムにわたる調整は、ソフトウェア(
図11に示されていない)によって提供される命令の下で作用する、プロセッサ1103によって提供される。製作プロセス中、プロセッサは、例えば、ハーフトーン印刷イメージによって提供される発射命令に応じて、プリントヘッドに種々の量のインクを放出させるように、データをプリントヘッド1105に供給する。プリントヘッド1105は、典型的には、1行(またはアレイの行)に配列される複数のインクジェットノズルと、ノズルあたりの圧電または他の変換器の起動に応答してインクの噴出を可能にする関連貯留部とを有し、そのような変換器は、対応する圧電変換器に適用される電子ノズル駆動波形信号によって統制される量で、ノズルに制御された量のインクを放出させる。他の発射機構も使用することができる。プリントヘッドは、ハーフトーン印刷イメージによって表されるように、種々の印刷セル内の格子座標に対応する種々のx-y位置でインクを基板1107に適用する。位置の変化は、プリントヘッド運動システム1109および基板取り扱いシステム1111(例えば、基板を横断する1つ以上の帯状の範囲を描く印刷を引き起こす)の両方によって達成される。一実施形態では、プリントヘッド運動システム1109が、トラベラに沿って前後にプリントヘッドを移動させる一方で、基板取り扱いシステムは、安定した基板支持、および基板の任意の部分の「分割軸」印刷を可能にするように、基板の「y」次元輸送を提供する。基板取り扱いシステムが、比較的高速のy次元輸送を提供する一方で、プリントヘッド運動システム1009は、比較的低速のx次元輸送を提供する。別の実施形態では、基板取り扱いシステム1111は、xおよびy次元輸送の両方を提供することができる。さらに別の実施形態では、完全に基板取り扱いシステム1111によって、一次輸送を提供することができる。任意の基準を位置付け、整列および/または誤差検出を支援するために、画像捕捉デバイス1113を使用することができる。
【0100】
本装置はまた、インク送達システム1115と、印刷動作を支援するプリントヘッド維持システム1117とを備えている。プリントヘッドは、周期的に較正されるか、または維持プロセスを受けることができ、この目的を達成するために、維持シーケンス中に、プリントヘッド維持システム1117は、特定のプロセスに対して、適宜、適切な下準備、インクまたはガスのパージ、試験および較正、ならびに他の動作を行うために使用される。
【0101】
以前に紹介されたように、印刷プロセスは、制御された環境で、つまり、堆積層の有効性を劣化させ得る汚染物質のリスクの低減を提供する様式で、行うことができる。この趣旨で、本装置は、機能ブロック1121によって表されるようなチャンバ内の雰囲気を制御するチャンバ制御サブシステム1119を含む。随意的なプロセス変形例は、記述されるように、周囲窒素ガス雰囲気の存在下で堆積材料の噴出を行うことを含むことができる。
【0102】
前述のように、本明細書で開示される実施形態では、標的充填量に依存して選択される、標的領域あたりの特定の充填量を達成するように、個々の液滴量が組み合わせられる。特定の充填量を各標的領域のために計画することができ、充填値は容認可能な公差範囲内で標的値について変動する。そのような実施形態については、液滴量は、インク、ノズル、駆動波形、および他の要因に依存する様式で、特定的に測定される。この目的を達成するために、参照数字1123は、液滴量1125が、各ノズルについて、および各駆動波
形について測定され、次いで、メモリ1127に記憶される、随意的な液滴量測定システムを表す。そのような液滴測定システムは、前述のように、市販の印刷デバイスに組み込まれる随意的なストロボカメラまたはレーザスキャンデバイス(または他の量測定ツール)であり得る。一実施形態では、そのようなデバイスは、個々の液滴量、堆積軌道、液滴速度、および同様のデータを測定するように、リアルタイム(または近リアルタイム)で動作する。このデータは、印刷中、または1度きりの断続的な較正動作、あるいは周期的較正動作中のいずれかで、プロセッサ1103に提供される。数字1129によって示されるような事前配列された組の発射波形も、随意に、後に特定の標的領域あたりの液滴の組み合わせを生成する際に使用するために、各ノズルに関係付けられることができる。そのような一組の波形が実施形態に使用される場合、液滴量測定は、有利なことには、各波形に対して、各ノズルに対する液滴測定システム1127を使用して較正中に計算される。測定値が必要に応じて採取され、統計的量測定誤差を最小化するように処理(例えば、平均)されることができるので、リアルタイムまたは近リアルタイム液滴量測定システムを提供することは、所望の公差範囲内の標的領域量充填を提供することにおいて信頼性を大いに増進する。
【0103】
数字1131は、プロセッサ1103上で作動する印刷最適化ソフトウェアの使用を指す。より具体的には、このソフトウェアは、液滴量1125(原位置で測定されるか、または別様に提供される)に基づいて、標的領域あたりの特定の充填量を得るように適宜液滴量を組み合わせる方法で、印刷を計画するためにこの情報を使用する。一実施形態では、上記の実施例により、総量を、ある誤差公差内で0.01pL以上の分解能まで下げて計画することができる。印刷が計画されると、プロセッサは、スキャンの数および順序、液滴径、相対的液滴発射時間、および類似情報等の印刷パラメータを計算し、各スキャンに対するノズル発射を決定するために使用される印刷イメージを構築する。一実施形態では、印刷イメージは、ハーフトーインイメージである。別の実施形態では、プリントヘッドは、10,000個もの多くの複数のノズルを有する。以下で説明されるように、時間値および発射値(例えば、発射波形を表すデータ、または液滴が「デジタルで」発射されるであろうかどうかを示すデータ)に従って、各液滴を表すことができる。ウェルあたりの液滴量を変動させるために幾何学的ステップおよび2元ノズル発射決定が依拠される、実施形態では、データのビット、ステップ値(またはスキャン番号)および液滴が配置される場所を示す位置値によって、各液滴を定義することができる。スキャンが連続運動を表す実装では、時間値を位置値の均等物として使用することができる。時間/距離に根ざそうと、または絶対位置で根ざそうと、値は、ノズルが発射されるべきである場所および時間を精密に特定する、参照(例えば、同期化マーク、位置、またはパルス)に対する位置を表す。いくつかの実施形態では、複数の値を使用することができる。例えば、1つの特に想定される実施形態では、スキャン中の相対的プリントヘッド/基板運動の各ミクロンに対応する様式で、同期パルスが各ノズルについて生成される。各同期パルスについて、各ノズルは、以下のものをプログラムされる:(a)ノズルが発射される前の整数クロックサイクル遅延を表すオフセット値、(b)特定のノズルドライバ専用のメモリに事前にプログラムされた15個の波形選択のうちの1つを表す(すなわち、16個の可能な値のうちの1つがノズルの「オフ」または非発射状態を特定する)4ビット波形選択信号、および(c)1回だけ、同期パルスごとに1回、またはn個の同期パルスごとに1回、ノズルが発射されるべきことを特定する繰り返し値。そのような場合において、波形選択および各ノズルのアドレスは、プロセッサ1103によって、メモリ1127に記憶された特定の液滴量データに関連付けられ、特定のノズルからの特定の波形の発射は、総インクを基板の特定の標的領域に供給するために、特定の対応する液滴量が使用されるものであるという計画された決定を表す。
【0104】
図12A-14Cは、異なる液滴量を組み合わせて各標的領域に対する精密な公差内充填量を得るために使用することができる、他の技法を紹介するために使用されるであろう
。第1の技法では、印刷中に(例えば、スキャンの間に)ノズルの行を互に対して選択的にオフセットすることができる。この技法は、
図12A-12Bを参照して紹介される。第2の技法では、圧電変換器発射、したがって、(量を含む)各放出される液滴の性質を調整するために、ノズル駆動波形を使用することができる。
図13A-13Bは、いくつかのオプションについて議論するために使用される。最終的に、一実施形態では、一組の複数の代替的な液滴発射波形が、事前に計算され、各印刷ノズルとともに使用するために利用可能にされる。この技法および関連回路は、
図14A-Cを参照して議論される。
【0105】
図12Aは、矢印1207によって示されるスキャン方向に基板1205を横断する、プリントヘッド1203の平面
図1201を提供する。基板は、ここでは、各画素が、それぞれの色成分に関連付けられているウェル1209-R、1209-G、および1209-Bを有する、いくつかの画素1209から成ることが分かる。再度、この描写は、実施例に過ぎず、すなわち、本明細書で使用されるような技法をディスプレイの任意の層(例えば、個々の色成分に限定されず、かつ色付与層に限定されない)に適用することができ、これらの技法はまた、表示デバイス以外のものを作製するためにも使用できることに留意されたい。この場合、プリントヘッドが1度に1つのインクを堆積させ、インクが色成分特定であることを仮定すると、ディスプレイの各々のウェルについて、色成分の1つずつに、別個の印刷プロセスが行われるであろうことが意図される。したがって、第1のプロセスが赤色光生成に特定のインクを堆積させるために使用されている場合、画素1209のウェル1209-Rおよび画素1211の同様のウェル等の各画素の第1のウェルのみが、第1の印刷プロセスでインクを受け取るであろう。第2の印刷プロセスでは、画素1209の第2のウェル(1209-G)および画素1211の同様のウェルのみが、第2のインクを受け取る等であろう。したがって、種々のウェルが、標的領域の3つの異なる重複アレイ(この場合、流体容器またはウェル)と見なされる。
【0106】
プリントヘッド1203は、番号1213、1215、および1217を使用して表されるようないくつかのノズルを含む。この場合、番号の各々は、行が基板の列軸1218に沿って延びる、ノズルの別個の行を指す。ノズル1213、1215、および1217は、基板1205に対してノズルの第1の列を形成することが分かり、ノズル1229は、ノズルの第2の列を表す。
図12Aによって描写されるように、ノズルは、画素と整列せず、プリントヘッドがスキャンで基板を横断すると、いくつかのノズルが標的領域を通り越すであろう一方で、他のノズルは通り越さないであろう。さらに、図では、印刷ノズル1213、1215、および1217が、画素1209から始まる画素の行の中心に精密に整列させる一方で、第2の列の印刷ノズル1229もまた、画素1211から始まる画素の行を通り越すであろうが、整列は画素の中心に精密ではない。しかしながら、多くの用途では、液滴が標的領域内で堆積させられる精密な場所は重要ではなく、そのような不整列は容認可能である。この図は、例証的にすぎず、例えば、実践では、いくつかの実施形態でノズルを十分に近接して離間されることができるため、(例えば、
図1Bおよび3Cの仮説で示されるように)任意の通過で所与のウェルの中にインクを堆積させるために、単一のプリントヘッドの1つより多くのノズルを使用できることに留意されたい。ウェルの行とのノズルの列の整列/不整列は、それぞれ、インクを受け取るものである印刷ウェルの中心を表す、線1225および1227によって描写される。
【0107】
図12Bは、ノズル(または個々のプリントヘッド)の3つ全ての行が、軸1218に対して約30度回転させられていることが分かる、第2の
図1231を提供する。この随意的な能力は、
図2Aの数字218によって以前に参照された。より具体的には、回転により、ウェル中心1225および1227と整列させるノズルの各列を伴って、列軸1218に沿ったノズルの間隔が変化している。しかしながら、スキャン運動1207により、ノズルの各列からのノズルは、異なる相対的時間で画素の列(例えば、1209および1211)を横断し、したがって、潜在的に異なる位置発射データ(例えば、液滴を発射
するための異なるタイミング)を有するであろうことに留意されたい。いくつかの実施形態では、特に、標的領域内に堆積する液滴を精密に位置付けることが必要である場合に、特定的に整列させられた配列が好ましい。他の実施形態では、特に、標的領域内の精密な場所に各液滴を位置付けることが必要ではない場合に、低減したシステム複雑性により、ノズルが標的領域に特別または精密に整列させられていない配列が好ましい。
【0108】
図12Cで表されるように、一実施形態では、随意にノズルの複数の行を与えられたプリントヘッドが、互から選択的にオフセットされたそのような行を有することができる。つまり、
図12Cは、オフセット矢印1253および1255によって表されるように、プリントヘッド(またはノズル行)1219、1221、および1223のそれぞれが互に対してオフセットされる、別の平面図を提供する。これらの矢印は、プリントヘッドアセンブリに対する、対応する行の選択的オフセットを可能にする、ノズルの各行に1つずつ、随意的な運動機構の使用を表す。これは、(例えば、数字1207により)各スキャンでのノズル(および関連する特定の液滴量)の異なる組み合わせ、したがって、異なる特定の液滴の組み合わせを提供する。例えば、そのような実施形態では、
図12Cによって描写されるように、そのようなオフセットは、ノズル1213および1257の両方が、中心線1225と整列し、したがって、単一の通過で組み合わせられたそれらのそれぞれの液滴量を有することを可能にする。この実施形態は、幾何学的ステップを変動させる実施形態の特定の事例と見なされ、例えば、たとえ基板1205に対するプリントヘッドアセンブリ1203の連続スキャンの間の幾何学的ステップサイズが固定されたとしても、ノズルの所与の行の各々のそのようなスキャン運動は、他のスキャンにおいて所与の行の位置に対して、運動機構を使用して、可変オフセットまたはステップで効果的に位置付けられることに留意されたい。しかしながら、以前に紹介された原理と一致して、そのような実施形態は、各ウェルに対する特定の組み合わせ(または液滴セット)で、しかし削減した数のスキャンまたは通過で、個々のノズルあたりの液滴量が集計されることを可能にすることを理解されたい。例えば、
図12Cで描写される実施形態では、3つの液滴を各スキャンで各標的領域(例えば、赤色成分のためのウェル)の中に堆積させることができ、さらに、オフセットが液滴量の組み合わせの計画された変動を可能にする。
【0109】
図12Dは、スキャンの方向で得られた1つのウェル(例えば、
図12Aからのウェル1209-R)に対する完成したディスプレイの断面図を図示する。具体的には、この図は、フラットパネルディスプレイ、具体的には、OLEDディスプレイの基板1252を示す。描写された断面図は、アクティブ領域1253、およびディスプレイ(各画素の色を含む)を制御する電子信号を受信する伝導性端子1255を示す。図の小さい楕円形領域1261は、基板1252の上方のアクティブ領域内の層を図示するように、図の右側で拡大されて見える。これらの層は、それぞれ、アノード層1269、正孔注入層(「HIL」)1271、正孔輸送層(「HTL」)1273、放射または発光層(「EML」)1275、電子輸送層(「ETL」)1277、およびカソード層1278を含む。偏光子、障壁層、プライマ、および他の材料等の追加の層も含むことができる。場合によっては、OLEDデバイスは、これらの層の一部のみを含むことができる。描写されたスタックが製造に続いて最終的に操作されるとき、電流がEML内で電子および「正孔」の再結合を引き起こし、光の放射をもたらす。アノード層1269は、いくつかの色成分および/または画素に共通する1つ以上の透明電極を備えていることができ、例えば、アノードは、インジウムスズ酸化物(ITO)から形成することができる。アノード層1269はまた、反射性または不透明であり得、他の材料も使用することができる。カソード層1278は、典型的には、選択的制御を各画素のための各色成分に提供するように、パターン化電極から成る。カソード層は、アルミニウム等の反射金属層を備えていることができる。カソード層はまた、ITOの層と組み合わせられた金属の薄い層等の不透明層または透明層を備えていることもできる。カソードおよびアノードは、一緒に、OLEDスタックに入る、および/またはそれを通過する、電子および正孔を供給および収集する働きを
する。HIL1271は、典型的には、アノードからHTLの中へ正孔を輸送するように機能する。HTL1273は、典型的には、EMLからHTLの中への電子の輸送を妨害しながらも、HILからEMLの中へ正孔を輸送するように機能する。ETL1277は、典型的には、EMLからETLの中への電子の輸送を妨害しながらも、カソードからEMLの中へ電子を輸送するように機能する。それによって、これらの層は、一緒に、EML1275の中へ電子および正孔を供給し、再結合して光を生成することができるように、これらの電子および正孔をその層に閉じ込める働きをする。典型的には、EMLは、ディスプレイの各画素のための赤、緑、および青の3原色の各々に対する別個に制御された活性材料から成り、記述されるように、この場合、赤色光生成材料によって表される。
【0110】
このアクティブ領域内の層は、酸素および/または湿気へのばく露を通して劣化させられ得る。したがって、基板の反対側のこれらの層の面および側面(1262/1263)の両方、ならびに外側縁上で、これらの層を封入することによって、OLED寿命を増進することが所望される。封入の目的は、耐酸素および/または湿気障壁を提供することである。そのような封入は、全体で、または部分的に、1つ以上の薄膜層の堆積を介して形成することができる。
【0111】
本明細書で議論される技法は、これらの層のうちのいずれか、ならびにそのような層の組み合わせを堆積させるために使用することができる。したがって、1つの想定される用途では、本明細書で議論される技法は、3原色の各々に対するEML層のためのインク量を提供する。別の用途では、本明細書で議論される技法は、HIL層のためのインク量等を提供するために使用される。さらに別の用途では、本明細書で議論される技法は、1つ以上のOLED封入層のためのインク量を提供するために使用される。本明細書で議論される印刷技法は、プロセス技術に対して、適宜、有機または無機層、および他の種類のディスプレイおよび非表示デバイスのための層を堆積させるために使用することができる。
【0112】
図13Aは、ノズル駆動波形調整、およびプリントヘッドの各ノズルから異なる放出液滴量を提供するための代替的なノズル駆動波形の使用を紹介するために使用される。第1の波形1303は、静穏期1305(0ボルト)、時間t2におけるノズルを発射する決定に関連付けられている上昇傾斜1313、電圧パルスまたは信号レベル1307、および時間t3における下降傾斜1311から成る、単一のパルスとして見られる。数字1309によって表される有効パルス幅は、パルスの上昇および下降傾斜の間の差異に応じて、t3-t2に略等しい持続時間である。一実施形態では、これらのパラメータ(例えば、上昇傾斜、電圧、下降傾斜、パルス持続時間)のうちのいずれかは、所与のノズルの液滴量放出特性を潜在的に変化させるように変動されることができる。第2の波形1323は、第1の波形1303の信号レベル1307に対して、より大きい駆動電圧1325を表すことを除いて、第1の波形1303に類似する。より大きいパルス電圧および有限上昇傾斜1327により、このより高い電圧に達するためにより長くかかり、同様に、下降傾斜1329は、典型的には、第1の波形からの類似傾斜1311に対して遅延する。この場合、(例えば、ノズルインピーダンスの調整を通して)傾斜1313および1311の代わりに異なる上昇傾斜1335および/または異なる下降傾斜1337を使用できることを除いて、第3の波形1333も第1の波形1303に類似する。異なる傾斜は、より急勾配、またはより浅くのいずれかにされることができる(描写された場合では、より急勾配)。それに反して、第4の波形1343では、(数字1345によって表されるように)所与の信号レベルでパルスの時間を増加させるため、および数字1347によって表されるようにパルスの立ち下がりエッジを遅延させるための両方で、例えば、遅延回路(例えば、電圧制御された遅延線)を使用して、パルスをより長くさせることができる。最終的に、第5の波形1353は、パルス成形の手段も提供するものとして、複数の個別的な信号レベルの使用を表す。例えば、この波形は、最初に記述された信号レベル1307における時間、次いで、時間t3とt2との間の途中で適用される第2の信号レベル1
355まで上昇する傾斜を含むことが分かる。大きい方の電圧により、この波形1357の立ち下がり区間は、立ち下がりエッジ1311の後に遅延することが分かる。
【0113】
これらの技法のうちのいずれかは、本明細書で議論される実施形態のうちのいずれかと組み合わせて使用することができる。例えば、駆動波形調整技法は、随意に、線効果を軽減するように、スキャン運動およびノズル発射がすでに計画された後に、小さい範囲内で液滴量を変動させるために使用することができる。第2の公差が仕様に一致するような様式での波形変動の設計は、計画された非無作為または計画された無作為変動を用いて高品質層の堆積を促進する。例えば、テレビメーカーが50.00pL±0.50%の充填量を特定する、以前に紹介された仮定に戻ると、(総充填量に達するために必要とされる5つの液滴を考慮して)変動が液滴あたりわずか±0.025pLの量変動を統計的に提供する、波形変動に適用される非無作為または無作為技法を用いて、領域あたりの充填量は、50.00pL±0.25%(49.785pL~50.125pL)の第1の範囲内で計算されることができる。明確に、多くの変形例が存在する。
【0114】
上述のように、
図13Aからの第5の波形1353によって表される、一実施形態では、パルスを成形するために複数の信号レベルを使用することができる。この技法はさらに、
図13Bを参照して議論される。
【0115】
つまり、一実施形態では、波形は、例えば、デジタルデータによって定義される、一連の個別的な信号レベルとして事前定義することができ、駆動波形は、デジタル・アナログ変換器(DAC)によって生成される。
図13Bの数字1351は、個別的な信号レベル1355、1357、1359、1361、1363、1365、および1367を有する、波形1353を指す。本実施形態では、各ノズルドライバは、最大16個の異なる信号波形を受信して記憶する回路を含み、各波形は、各々がマルチビット電圧および持続時間として表される、一連の最大16個の信号レベルで定義される。すなわち、そのような実施形態では、1つ以上の信号レベルに対する異なる持続時間を定義することによって、パルス幅を効果的に変動させることができ、微妙な液滴径変動を提供するように選択される様式で、駆動電圧を波形成形することができ、例えば、液滴量は、0.10pL単位等の特定の量漸進増分を提供するように計測される。したがって、そのような実施形態では、波形成形は、標的液滴量値に近くなるように液滴量を調節する能力を提供し、上で例示される技法を使用して等、他の特定の液滴量と組み合わせられたとき、これらの技法は、標的領域あたりの精密な充填量を促進する。しかしながら、加えて、これらの波形成形技法はまた、線効果を低減または排除するための方策も促進し、例えば、1つの随意的な実施形態では、上で議論されるように、特定の量の液滴が組み合わせられるが、最後の液滴(または複数の液滴)は、所望の公差範囲の境界に対する変動を提供する様式で選択される。別の実施形態では、所定の波形を適用することができ、随意的なさらなる波形成形が、量を調整するように適宜適用される。さらに別の実施例では、ノズル駆動波形代替案の使用は、さらなる波形成形が必要ではないように量を計画する機構を提供する。
【0116】
典型的には、異なる駆動波形および結果として生じた液滴量の効果は、事前に測定される。各ノズルについて、次いで、最大16個の異なる駆動波形が、後に、ソフトウェアによって選択されるような個別的な量変動を提供する際に選択的に使用するために、ノズルあたり1kの同期ランダムアクセスメモリ(SRAM)に記憶される。異なる駆動波形が手元にあると、次いで、各ノズルは、特定の駆動波形を達成するデータのプログラミングを介して、どの波形を適用するかに関して液滴毎に指示される。
【0117】
図14Aは、概して、数字1401によって指定される、そのような実施形態を図示する。具体的には、標的領域あたりの意図された充填量を定義するデータを受信するために、プロセッサ1403が使用される。数字1405によって表されるように、このデータ
は、格子点または位置アドレスあたりの液滴量を定義する、レイアウトファイルまたはビットマップファイルであり得る。一連の圧電変換器1407、1408、および1409は、それぞれ、ノズル駆動波形およびプリントヘッド間製造変動を含む、多くの要因に依存する、関連放出液滴量1411、1412、および1413を生成する。較正動作中、変数のセットの各々は、使用されるであろう特定のインクを考慮して、ノズル間変動および異なる駆動波形の使用を含む、液滴量に及ぼすその効果について試験される。所望であれば、この較正動作は、例えば、温度、ノズルの詰まり、または他のパラメータの変化に応答するように、動的にされることができる。この較正は、印刷計画および次の印刷を管理する際に使用するために、測定データをプロセッサ1403に提供する、液滴測定デバイス1415によって表される。一実施形態では、この測定データは、(例えば、何千個ものプリントヘッドノズル、および潜在的に多数の可能なノズル発射波形について)文字通り数分、例えば、30分以下、好ましくはさらに少ない時間を要する、動作中に計算される。このデータは、受信されたときにレイアウトまたはビットマップデータ1405を処理する際に使用するために、メモリ1417に記憶することができる。ある実装では、プロセッサ1403が、実際のプリンタから遠隔にあるコンピュータの一部である一方で、第2の実装では、プロセッサ1403は、製品用の製作機構(例えば、ディスプレイを製作するためのシステム)またはプリンタのいずれか一方と統合される。
【0118】
液滴の発射を行うために、一組の1つ以上のタイミングまたは同期化信号1419が、基準として使用するために受信され、これらは、特定のノズル(それぞれ、1427、1428、および1429)に対する駆動波形を生成するように、各ノズルドライバ1423、1424、および1425に分配するためにクロックツリー1421を通過させられる。各ノズルドライバは、それぞれ、プロセッサ1403からマルチビットプログラミングデータおよびタイミング情報を受信する、1つ以上のレジスタ1431、1432、および1433を有する。各ノズルドライバおよびその関連レジスタは、それぞれ、レジスタ1431、1432、および1433をプログラムする目的で、1つ以上の専用書き込み許可信号(wen)を受信する。一実施形態では、レジスタの各々は、複数の所定の波形を記憶する1k SRAMを含む、かなりの量のメモリと、これらの波形の間で選択し、別様に波形生成を制御するプログラム可能レジスタとを備えている。プロセッサからのデータおよびタイミング情報は、マルチビット情報として描写されるが、この情報は、各ノズルへの直列または並列ビット接続のいずれか一方を介して提供することができる(以下で議論される
図14Bで見られるように、一実施形態では、この接続は、
図14Aで見られる並列信号表現とは対照的に直列である)。
【0119】
所与の堆積、プリントヘッド、またはインクについて、プロセッサは、液滴を生成するために選択的に適用されることができる、一組の16個の駆動波形を各ノズルのために選択する。この数は、恣意的であり、例えば、ある設計では、4つの波形を使用することができる一方で、別の設計では、4000個の波形を使用できることに留意されたい。これらの波形は、有利なことには、各ノズルに対する出力液滴量の所望の変動を提供するように、例えば、略理想的な液滴量(例えば、10.00pL)を生成する少なくとも1つの波形選択を各ノズルに行わせるように、および各ノズルから一連の意図的な量変動を提供するように選択される。種々の実施形態では、同一の組の16個の駆動波形のが、ノズルの全てに使用されるが、描写された実施形態では、16個のおそらく固有の波形は、各々別個であり、各ノズルについて事前に定義され、各波形は、それぞれの液滴量特性を与える。
【0120】
印刷中、各液滴の堆積を制御するために、次いで、事前定義された波形のうちの1つを選択するデータが、ノズル毎の基準で、各ノズルのそれぞれのレジスタ1431、1432、または1433にプログラムされる。例えば、10.00pLの標的量を考慮すると、ノズルドライバ1423は、レジスタ1431へのデータの書き込みを通して、16個
の異なる液滴量のうちの1つに対応する、16個の波形のうちの1つを設定するように構成されることができる。各ノズルによって生成される量は、液滴測定デバイス1415によって測定され、ノズル毎の(および波形毎の)液滴量は、プロセッサ1403によって登録され、所望の標的充填を生成することを補助してメモリに記憶されるであろう。プロセッサは、レジスタ1431をプログラムすることによって、特定のノズルドライバ1423に16個の波形のうちのプロセッサが選択した1つを出力させたいか否かを定義することができる。加えて、プロセッサは、所与のスキャン線に対して、ノズルの発射に対するノズルあたりの遅延またはオフセットを有するように(例えば、各ノズルをプリントヘッドによって横断される格子と整列させるように、誤差を補正するように、および他の目的で)レジスタをプログラムすることができ、このオフセットは、各スキャンのためのプログラム可能な数のタイミングパルスによって特定のノズルを斜めにする、カウンタによって達成される。一実施形態では、全てのノズルに配信される同期信号は、定義された時間間隔(例えば、1マイクロ秒)で生じ、別の実施形態では、同期信号は、例えば、プリントヘッドと基板との間の1ミクロンの増分的相対運動毎に発射するように、プリンタ運動および基板地形に対して調整される。高速クロック(φhs)が、例えば、100メガヘルツ、33メガヘルツ等で、同期信号より何千倍も速く作動させられ、一実施形態では、複数の異なるクロックまたは他のタイミング信号(例えば、ストロボ信号)を組み合わせて使用することができる。プロセッサはまた、格子間隔を画定する値もプログラムし、ある実装では、格子間隔は、利用可能なノズルの集合全体に共通するが、これは各実装に当てはまる必要はない。例えば、場合によっては、全ノズルが「5ミクロン毎に」発射するものである、規則的な格子を画定することができる。1つの想定される実施形態では、全てのノズルにわたって共有される、いくつかの異なる格子間隔(例えば、16)を、プロセッサが事前に記憶することを可能にするメモリが、全てのノズルにわたって共有され、次いで、プロセッサは、(例えば、不規則な格子を画定するように)全てのノズルに対して読み出される新しい格子間隔を(要求に応じて)選択することができる。例えば、(例えば、非色特有の層を堆積させるように)ノズルがOLEDの全ての色成分ウェルのために発射する実装では、3つ以上の異なる格子間隔が、プロセッサによってラウンドロビン様式で連続的に適用されることができる。明確に、多くの設計代替案が可能である。プロセッサ1403はまた、動作中に各ノズルのレジスタを動的に再プログラムすることもでき、すなわち、同期パルスは、そのレジスタの中で設定される任意のプログラムされた波形パルスを起動するトリガとして適用され、新しいデータが次の同期パルスの前に非同期的に受信された場合には、新しいデータが次の同期パルスとともに適用されるであろうことに留意されたい。プロセッサ1403はまた、同期パルス生成(1436)のためのパラメータを設定することに加えて、スキャンの開始および速度(1435)を制御する。加えて、プロセッサは、上で説明される種々の目的で、プリントヘッドの回転(1437)を制御する。このようにして、各ノズルは、任意の時間に(すなわち、任意の「次の」同期パルスとともに)各ノズルに対する16個の異なる波形のうちの任意の1つを使用して、一斉に(または同時に)発射することができ、選択された発射波形は、1回のスキャン中に発射間で動的に、16個の異なる波形のうちの任意の他のものと切り替えられることができる。
【0121】
図14Bは、各ノズルに対する出力ノズル駆動波形を生成するためにそのような実施形態で使用される、回路(1441)の追加の詳細を示し、出力波形は、
図14Bで「nzzl-drv.wvfm」として表される。より具体的には、回路1441は、同期信号、シリアルデータを搬送する単一のビット線(「データ」)、専用書き込みイネーブル信号(we)、および高速クロック(φhs)の入力を受信する。レジスタファイル1443は、それぞれ、初期オフセット、格子定義値、および駆動波形IDを伝える、少なくとも3つのレジスタのデータを提供する。初期オフセットは、記述されるように、格子の開始と整列させるように各ノズルを調整する、プログラム可能な値である。例えば、複数のプリントヘッド、ノズルの複数の行、異なるプリントヘッド回転、ノズル発射速度および
パターン、ならびに他の要因等の実装変数を考慮すると、初期オフセットは、遅延および他の要因を考慮するように、各ノズルの液滴パターンを格子の開始と整列させるために使用することができる。格子定義値は、プログラムされた波形がトリガされる前に「数えられる」同期パルスの数を表す数であり、フラットパネルディスプレイ(例えば、OLEDパネル)を印刷する実装の場合に、印刷される標的領域は、おそらく、規則的な(一定の間隔)または不規則的な(複数の間隔)格子に対応する、異なるプリントヘッドノズルに対して1つ以上の規則的な間隔を有する。前述のように、ある実装では、プロセッサは、要求に応じて全てのノズルのためのレジスタ回路に読み出すことができる、最大16個の異なる格子間隔を画定するように、独自の16エントリSRAMを保つ。したがって、格子間隔値が2(例えば、2ミクロン毎)に設定された場合には、各ノズルは、この間隔で発射されるであろう。駆動波形IDは、各ノズルに対する事前に記憶された駆動波形のうちの1つの選択を表し、実施形態に応じて、多くの様式でプログラムして記憶することができる。一実施形態では、駆動波形IDは、4ビット選択値であり、各ノズルは、16×16×4Bエントリとして記憶される、最大16個の所定のノズル駆動波形を記憶するように、独自の専用1kバイトSRAMを有する。簡潔には、各波形に対する16個のエントリの各々は、プログラム可能な信号レベルを表す4バイトを含み、これらの4バイトは、高速クロックのパルスの数を数えるために使用される、2バイトの分解能電圧レベル、および2バイトのプログラム可能な持続時間を表す。したがって、各プログラム可能な波形は、各々がプログラム可能な電圧および持続時間の(例えば、33メガヘルツクロックの1~255個のパルスに等しい持続時間の)最大16個までの個別的な(0~1の)パルスから成ることができる。
【0122】
数字1445、1446、および1447は、どのようにして特定波形を生成することができるかを示す、回路の一実施形態を指定する。第1のカウンタ1445は、新しい線スキャンの開始によってトリガされる同期パルスを受信し、初期オフセットのカウントダウンを開始する。第1のカウンタ1445は、ミクロン増分でカウントダウンし、ゼロに達するとき、トリガ信号が第1のカウンタ1445から第2のカウンタ1446に出力される。このトリガ信号は、本質的に、各スキャン線に対する各ノズルの発射プロセスを開始する。次いで、第2のカウンタ1446は、ミクロンの増分でプログラム可能な格子間隔を実装する。第1のカウンタ1445が、新しいスキャン線と併せてリセットされる一方で、第2のカウンタ1446は、その出力トリガに続く高速クロックの次のエッジを使用してリセットされる。第2のカウンタ1446は、トリガされたとき、特定のノズルに対する選択された駆動波形形状を生成する、波形回路発生器1447を起動する。発生器回路の下で見られる、鎖線のボックス1448-1450によって表されるように、この後者の回路は、高速クロック(φhs)に従って時期を決定される、高速デジタル・アナログ変換器1448、カウンタ1449、および高電圧増幅器1450に基づく。第2のカウンタ1446からのトリガが受信されると、波形発生器回路は、駆動波形ID値によって表される数のペア(信号レベルおよび持続時間)を取り出し、信号レベル値に従って所与のアナログ出力電圧を生成し、カウンタ1449は、カウンタに従って持続時間のDAC出力を保持するために効果的である。次いで、関連出力電圧レベルが、高電圧増幅器1450に適用され、ノズル・駆動波形として出力される。次いで、次の数のペアが、次の信号レベル値/持続時間等を定義するように、レジスタ1443からラッチされる。
【0123】
描写された回路は、プロセッサ1403によって提供されるデータに従って、任意の所望の波形を定義する効果的な手段を提供する。記述されるように、一実施形態では、プロセッサは、事前に、一組の波形(例えば、ノズルあたり16個の可能な波形)を決定し、次いで、これらの選択された波形の各々の定義を、各ノズルのドライバ回路用のSRAMに書き込み、次いで、プログラム可能な波形の「発射時間」決定が、4ビット駆動波形IDを各ノズルレジスタに書き込むことによって達成される。
【0124】
図14Cは、ノズルあたりの異なる波形および異なる構成オプションを使用する方法について議論する、フローチャート1451を提供する。1453によって表されるように、システム(例えば、好適なソフトウェアからの命令の下で作用する1つ以上のプロセッサ)は、一組の所定のノズル駆動波形を選択する。各波形について、および各ノズル(1455)について、例えば、レーザ測定デバイスまたはCCDカメラを使用して、液滴量が特定的に測定される。これらの量は、メモリ1457等のプロセッサにアクセス可能なメモリに記憶される。再度、測定されるパラメータは、インクの選択および多くの他の要因に応じて変動し得る。したがって、これらの要因および計画された堆積活動に応じて、較正が行われる。例えば、一実施形態1461では、プリントヘッドまたはプリンタを製造する工場で較正が行われ、このデータを販売デバイス(例えば、プリンタ)に事前にプログラムするか、またはダウンロードのために利用可能にすることができる。代替として、随意的な液滴測定デバイスまたはシステムを保有するプリンタについては、これらの量測定は、最初の使用時に、例えば、初期デバイス構成時に行うことができる(1463)。さらに別の実施形態では、測定は、各電力サイクルで行われ(1465)、例えば、プリンタが「オン」にされる度、または低電力状態から起動される度、あるいは別様に印刷の準備ができている状態に移行される度に行われる。前述のように、放出液滴量が温度または他の動的要因の影響を受ける実施形態については、断続的または周期的に行われ(1467)、例えば、定義された時間間隔の満了後に、誤差が検出されたときに、各新しい基板動作の状態で(例えば、基板装填および/または装填中に)、毎日、またはある他の基準で、較正を行われることができる。他の較正技法およびスケジュールも使用することができる(1469)。
【0125】
較正技法は、随意に、プロセス分離線1470によって表されるように、オフラインプロセスで、または較正モード中に行うことができる。記述されるように、一実施形態では、そのようなプロセスは、潜在的には、何千個もの印刷ノズルおよび1つ以上の関連ノズル発射波形について、30分未満で完了する。このプロセス分離線1470の下方に表される、オンライン動作中に(または印刷モード中に)、1471により、測定された液滴量は、各セットに対する液滴量が定義された公差範囲内の特定の総量に合計されるように、特定の測定された液滴量に基づいて、標的領域あたりの組の液滴を選択する際に使用される。領域あたりの量は、数字1472によって表されるように、レイアウトファイル、ビットマップデータ、ある他の表現に基づいて選択することができる。これらの液滴量、および各標的領域に対する液滴量の容認できる組み合わせに基づいて、発射パターンおよび/またはスキャン経路が選択され、それは、実際には、数字1473によって表される、堆積プロセスに使用されるであろう各標的領域に対する液滴の特定の組み合わせ(すなわち、容認可能な組の組み合わせのうちの1組)を表す。この選択または計画プロセス1473の一部として、例えば、スキャンまたは通過の数を、標的領域の行(または列)の数と標的領域あたりの液滴の平均数との積より少ない数まで(例えば、各影響を受けた標的領域に対する各スキャンで、行内の全てのノズルを使用することができるように、90度回転させられ、1度に1行進んで、標的領域の各行に対する複数の通過で液滴を堆積させる、1行のノズルに必要とされるであろうものより小さい数まで)削減するために、随意に、最適化機能1474を採用することができる。各スキャンについては、プリントヘッドを移動させることができ、ビットマップまたはレイアウトファイルに従って液滴堆積命令を達成するように、ノズルあたりの波形データをノズルにプログラムすることができ、これらの機能は、
図14Cの数字1477、1479、および1481によって様々に表される。各スキャン後に、本プロセスは、数字1483により、次のスキャンについて繰り返される。
【0126】
再度、互に対して随意的である、いくつかの異なる実装が上で説明されていることに留意されたい。第1に、一実施形態では、駆動波形は、変動させられず、各ノズルについて一定のままである。液滴量の組み合わせは、必要に応じて、異なるノズルを標的領域の異
なる行と重ね合わせるために、プリントヘッド/基板オフセットを表す可変幾何学的ステップを使用することによって、生成される。測定されたノズルあたりの液滴量を使用して、このプロセスは、標的領域あたりの(例えば、0.01pL分解能までの)非常に特定的な充填量を達成するように、特定の液滴量の組み合わせを可能にする。このプロセスは、各通過で標的領域の異なる行の中にインクを堆積させるために、複数のノズルが使用されるように計画することができる。一実施形態では、印刷解法は、可能な限り少ないスキャン、および可能な限り高速の印刷時間を生成するように最適化される。第2に、別の実施形態では、再度、特定的に測定された液滴量を使用して、異なる駆動波形を各ノズルに使用することができる。印刷プロセスは、特定の液滴量が特定の組み合わせで集計されるように、これらの波形を制御する。再度、測定されたノズルあたりの液滴量を使用して、このプロセスは、標的領域あたりの(例えば、0.01pL分解能までの)非常に特定的な充填量を達成するように、特定の液滴量の組み合わせを可能にする。このプロセスは、各通過で標的領域の異なる行の中にインクを堆積させるために、複数のノズルが使用されるように計画することができる。これらの実施形態の両方では、1行のノズルを使用することができ、または1つ以上のプリントヘッドとして配列される複数行のノズルを使用することができる。例えば、1つの想定される実装では、各プリントヘッドが1行のノズルを有し、各行が256個のノズルを有する、30個のプリントヘッドを使用することができる。プリントヘッドはさらに、種々の異なるグループに組織化することができ、例えば、これらのプリントヘッドは、一緒に機械的に搭載される5つのプリントヘッドのグループに組織化することができ、これらの結果として生じる6つのグループは、1回のスキャンでプリントヘッドの全てからノズルの同時発射を提供するよう、同時に印刷システムの中へ別々に搭載することができる。さらに別の実施形態では、さらに互から位置的にオフセットされることができる、複数行のノズルを有する、集合プリントヘッドが使用される。本実施形態は、可変有効位置オフセットまたは幾何学的ステップを使用して、異なる液滴量を組み合わせることができるという点で、上記の第1の実施形態に類似する。再度、測定されたノズルあたりの液滴量を使用して、このプロセスは、標的領域あたりの(例えば、0.05pL、またはさらに0.01pL分解能までの)非常に特定的な充填量を達成するように、特定の液滴量の組み合わせを可能にする。これは、測定が測定誤差等の統計的不確実性を含まないことを必ずしも示唆するわけではない。一実施形態では、そのような誤差は、小さく、標的領域充填計画に含まれる。例えば、液滴量測定誤差が±a%である場合には、標的領域にわたる充填量変動を、標的充填±(b-an1/2)%の公差範囲内に計画することができ、±(b2)%は、仕様の公差範囲を表し、±(n1/2)は、標的領域またはウェルあたりの液滴の平均数の平方根を表す。おそらく、別の言い方をすると、期待測定誤差が含まれるときに、標的領域に対する結果として生じた総充填量が、仕様の公差範囲内に入ることが期待され得るように、仕様より小さい範囲を計画することができる。当然ながら、本明細書で説明される技法は、随意に、他の統計的プロセスと組み合わせることができる。
【0127】
液滴堆積は、随意に、各通過で標的領域の異なる行の中にインクを堆積させるために、複数のノズルが使用されるように計画することができ、印刷解法は、随意に、可能な限り少ないスキャン、および可能な限り高速の印刷時間を生成するように最適化される。前述のように、互に、および/または他の技法とのこれらの技法の任意の組み合わせも採用することができる。例えば、1つの特に想定されるシナリオでは、標的領域につき計画される、非常に特定的な量の組み合わせを達成するために、可変幾何学的ステップが、ノズルあたりの駆動波形変動、およびノズルあたりの駆動波形あたりの量測定とともに使用される。例えば、別の具体的に考慮されたシナリオでは、標的領域につき計画される、非常に特定的な量の組み合わせを達成するために、固定幾何学的ステップが、ノズルあたりの駆動波形変動、およびノズルあたりの駆動波形あたりの量測定とともに使用される。
【0128】
各スキャン中に同時に使用することができるノズルの数を最大化することによって、か
つそれらが必ず仕様を満たすように液滴量の組み合わせを計画することによって、これらの実施形態は、高品質のディスプレイを約束する。また、印刷時間を短縮することによっても、これらの実施形態は、非常に低い単位あたりの印刷費用を助長し、したがって、最終消費者に対してのプライスポイントを低減させることに役立つ。
【0129】
また、上記のように、標的領域あたりの精密な充填量の使用は、線効果を回避するよう、(仕様内の)定義された基準に従って充填量を変動させる高度な技法の使用を可能にする。これは、従来の方法に対するさらなる品質の向上を提供する。
【0130】
前述の説明および添付の図面では、特定の用語および図面の記号が、開示された実施形態の徹底的な理解を提供するように記載されている。場合によっては、用語および記号は、これらの実施形態を実践するために必要とされない、具体的詳細を示唆し得る。「例示的な」および「実施形態」という用語は、選好または要件ではなく実施例を表すために使用される。
【0131】
示されるように、本開示のより広義の精神および範囲から逸脱することなく、本明細書で提示される実施形態に種々の修正および変更が行われ得る。例えば、実施形態のうちのいずれかの特徴または側面は、少なくとも実用的である場合、実施形態のうちのいずれか他方と組み合わせて、またはその対応特徴または側面の代わりに適用され得る。したがって、例えば、全ての特徴がありとあらゆる図面に示されているわけではなく、例えば、1つの図面の実施形態に従って示される特徴または技法は、随意に、たとえ本明細書で具体的に宣言されていなくても、任意の他の図面または実施形態の特徴の要素として、または特徴と組み合わせて、採用可能であると仮定されるべきである。したがって、本明細書および図面は、制限的な意味よりもむしろ例証的な意味で見なされるものである。