(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-10-01
(45)【発行日】2024-10-09
(54)【発明の名称】磁気援用加工法を応用した固定砥粒研磨方法及び研磨装置
(51)【国際特許分類】
B24B 37/00 20120101AFI20241002BHJP
B24B 7/00 20060101ALI20241002BHJP
B24B 7/24 20060101ALI20241002BHJP
B24B 7/22 20060101ALI20241002BHJP
H01L 21/304 20060101ALI20241002BHJP
【FI】
B24B37/00 D
B24B7/00 Z
B24B7/24 A
B24B7/22 A
B24B37/00 H
H01L21/304 621D
(21)【出願番号】P 2020030323
(22)【出願日】2020-02-26
【審査請求日】2023-01-30
【新規性喪失の例外の表示】特許法第30条第2項適用 2019年2月28日、公益社団法人砥粒加工学会発行、2019年砥粒加工学会卒業研究発表会発表論文集で発表
【新規性喪失の例外の表示】特許法第30条第2項適用 2019年8月22日、一般社団法人日本機械学会関東支部発行、第27回茨城講演会講演論文集で発表
【前置審査】
(73)【特許権者】
【識別番号】304036743
【氏名又は名称】国立大学法人宇都宮大学
(74)【代理人】
【識別番号】100117226
【氏名又は名称】吉村 俊一
(72)【発明者】
【氏名】鄒 艶華
(72)【発明者】
【氏名】佐藤 隆之介
【審査官】須中 栄治
(56)【参考文献】
【文献】特開2007-253313(JP,A)
【文献】国際公開第2006/030854(WO,A1)
【文献】特開平01-020964(JP,A)
【文献】特開2007-021661(JP,A)
【文献】特開2000-277826(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B24B37/00
B24B5/00-7/30
H01L21/304;21/463
(57)【特許請求の範囲】
【請求項1】
固定砥粒工具の被研磨体側
の逆側に磁極が設けられ、砥粒が付着した磁性粒子又は磁性砥粒と研磨液とで少なくとも構成された研磨材スラリーを前記被研磨体に供給して、前記砥粒が付着した磁性粒子又は
前記磁性砥粒を
前記固定砥粒工具の前記被研磨体側の端部に磁気吸着させて、前記被研磨体を研磨する固定砥粒研磨方法であって、前記固定砥粒工具の前記被研磨体側の端部が円形形状であり、周縁部が凸形状部になっており、中央部が凹形状部になっている、ことを特徴とする固定砥粒研磨方法。
【請求項2】
固定砥粒工具の被研磨体側
の逆側に磁極が設けられ、砥粒が付着した磁性粒子と研磨液とで少なくとも構成された研磨材スラリーを前記被研磨体に供給して、前記砥粒が付着した磁性粒子を
前記固定砥粒工具の前記被研磨体側の端部に磁気吸着させて、前記被研磨体を研磨する固定砥粒研磨方法であって、前記砥粒と前記磁性粒子とは粒径が異なる、ことを特徴とする固定砥粒研磨方法。
【請求項3】
固定砥粒工具の被研磨体側
の逆側に磁極が設けられ、砥粒が付着した磁性粒子又は磁性砥粒と研磨液とで少なくとも構成された研磨材スラリーを前記被研磨体に供給して、前記砥粒が付着した磁性粒子又は
前記磁性砥粒を
前記固定砥粒工具の前記被研磨体側の端部に磁気吸着させて、前記被研磨体を研磨する固定砥粒研磨方法であって、前記被研磨体が、ガラス、セラミックス、半導体シリコンウエハー等の硬脆材料、又は、ステンレス鋼、チタン合金等の難削材である、ことを特徴とする固定砥粒研磨方法。
【請求項4】
前記固定砥粒工具を回転させ、前記被研磨体に前記固定砥粒工具を押し付けると同時に前記被研磨体と前記固定砥粒工具とを相対移動させる、請求項1~3のいずれか1項に記載の固定砥粒研磨方法。
【請求項5】
被研磨体を研磨する固定砥粒工具と、前記固定砥粒工具を回転させる回転装置と、前記被研磨体を設置して前記固定砥粒工具と相対移動させる相対移動装置とを少なくとも備える研磨装置であって、前記固定砥粒工具の前記被研磨体側の端部が円形形状であり、周縁部が凸形状部になっており、中央部が凹形状部になっており、前記固定砥粒工具は、
前記被研磨体側
の逆側に磁極が設けられ、砥粒が付着した磁性粒子又は磁性砥粒と研磨液とで少なくとも構成された研磨材スラリーを前記被研磨体に供給して、前記砥粒が付着した磁性粒子又は
前記磁性砥粒を
前記固定砥粒工具の前記被研磨体側の端部に磁気吸着させて、前記被研磨体を研磨する、ことを特徴とする研磨装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気援用加工法を応用し、固定砥粒による高能率研磨と磁気ブラシによる精密仕上げとを融合させて、高能率且つ高精度での表面仕上げを実現した固定砥粒研磨方法及び研磨装置に関する。
【背景技術】
【0002】
磁気援用加工法(磁気研磨法ともいう。)は、磁場の作用を取り込んだ精密加工技術であり、磁力線を媒介にして磁性研磨剤に加工力と運動力を与えて精密な表面加工を実現するものである。例えば特許文献1には、特に磁性研磨剤を粒子ブラシとして用い、その粒子ブラシの柔軟な加工挙動により、例えば金型の曲面等のような複雑な部品の形状精度を維持しながら精密研磨を行うことができることが提案されている。
【0003】
特許文献2には、磁性金属材料からなる工作物であっても効率的に研磨することができる磁気研磨装置が提案されている。この装置は、磁性研磨剤を磁気吸着する2以上の永久磁石それぞれがヨークに離間して固定された先端構造を有する磁気研磨加工用工具を備え、その磁気研磨加工用工具の先端に磁性研磨剤を磁気吸着させた後に回転又は回動させながら工作物上を相対移動させて当該工作物を研磨するものである。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2002-192453号公報
【文献】特開2007-210073号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記のように、磁気援用加工法は、円管内面の精密仕上げ、平面部品の鏡面仕上げ及び複雑曲面部品の精密エッジ仕上げ等の分野で用いられている。そのうち、平面磁気研磨法は、磁極と工作物(被研磨体)との隙間に一定の隙間をもたせ、この隙間に微細磁性粒子(混合磁性砥粒)からなる磁気ブラシを形成させ、この磁気ブラシがフレキシブルな挙動をすることから、ナノメートルオーダの良好な仕上げ面を得ることができる加工法として期待されている。しかし、従来の磁気ブラシを利用した研磨加工は、加工力(磁力)が弱いため、特に硬い材料を研磨する場合に研磨時間が極めて長くなり、加工できないという問題があった。
【0006】
一方、研削砥石を用いて行う固定砥粒研磨は、砥粒を液体に分散させて用いる遊離砥粒加工法や上記磁気研磨法に比べて高い研磨能率と形状精度を得ることができる加工法であり、金型材料、ガラス、セラミックス等の難削材の加工に広く用いることができる低環境負荷で低消耗品コストの仕上げ加工法として期待されている。しかし、仕上げ面の品位と研磨能率を両立する点で、遊離砥粒加工法や磁気研磨法に劣るという難点があった。
【0007】
本発明は、上記課題を解決するためになされたものであって、その目的は、硬い材料からなる被研磨体を研磨する場合であっても、高能率で高精度の研磨加工を実現できる固定砥粒研磨方法及び研磨装置を提供することにある。
【課題を解決するための手段】
【0008】
本発明者は、近年求められているガラス、セラミックス、半導体シリコンウエハー等の硬脆材料やステンレス鋼、チタン合金等の難削材に対する新しい加工法として、高精度と高能率とを両立した研磨技術の開発を目指して検討を行った。その過程で、磁気援用加工法と固定砥粒研磨法を融合させ、その複合作用により上記課題を解決することができるとの知見を得て本発明を完成させた。
【0009】
本発明に係る固定砥粒研磨方法は、磁極を有する固定砥粒工具の被研磨体側に、砥粒が付着した磁性粒子又は磁性砥粒を磁気吸着させて、前記被研磨体を研磨する、ことを特徴とする。なお、固定砥粒工具において、「被研磨体側」は加工面となる側であるので加工面部ともいい、その反対側は背面となる側であるので背面部ともいう。
【0010】
この発明によれば、磁極を有する固定砥粒工具の被研磨体側に、砥粒が付着した磁性粒子又は磁性砥粒を磁気吸着されているので、その固定砥粒工具の加工面部では、突き出した固定砥粒同士の隙間に砥粒が付着した磁性粒子又は磁性砥粒が入り込んで磁気ブラシとなる。その結果、磁気ブラシになった加工面部により、被研磨体を高能率で高精度に仕上げ研磨することができる。
【0011】
本発明に係る固定砥粒研磨方法において、前記固定砥粒工具を回転させ、前記被研磨体に前記固定砥粒工具を押し付けると同時に前記被研磨体と前記固定砥粒工具とを相対移動させる。この発明によれば、被研磨体の各部で高能率で高精度の仕上げ研磨を実施できる。
【0012】
本発明に係る固定砥粒研磨方法において、前記固定砥粒工具の前記被研磨体側の端部が円形形状であり、周縁部が凸形状部になっており、中央部が凹形状部になっている。この発明によれば、周縁部の凸形状部は磁気吸着力が高まるので、その表面から突き出した固定砥粒同士の隙間に砥粒が付着した磁性粒子又は磁性砥粒が入り込んで効果的な磁気ブラシとなっている。また、中央部の凹系状部は、砥粒や磁性粒子等が溜まっているので、研磨時に固定砥粒同士の隙間にそれらを供給することができる。
【0013】
本発明に係る固定砥粒研磨方法において、前記砥粒が付着した磁性粒子を用いた場合、前記砥粒と前記磁性粒子とは粒径が異なることが好ましい。この発明によれば、こうした砥粒と磁性粒子を用いて研磨の効率化と研磨精度を上げることができる。
【0014】
本発明に係る固定砥粒研磨方法において、前記被研磨体が、ガラス、セラミックス、半導体シリコンウエハー等の硬脆材料、又は、ステンレス鋼、チタン合金等の難削材である。この発明によれば、硬くて脆い材料や難削材の研磨に効果的である。
【0015】
本発明に係る研磨装置は、被研磨体を研磨する固定砥粒工具と、前記固定砥粒工具を回転させる回転装置と、前記被研磨体を設置して前記固定砥粒工具と相対移動させる相対移動装置とを少なくとも備える研磨装置であって、前記固定砥粒工具は、磁極を有する固定砥粒工具の被研磨体側に、砥粒が付着した磁性粒子又は磁性砥粒を磁気吸着させて、前記被研磨体を研磨する、ことを特徴とする。
【0016】
この発明によれば、固定砥粒工具を回転させ、被研磨体に固定砥粒工具を押し付けると同時に被研磨体と固定砥粒工具とを相対移動させて研磨するので、被研磨体の各部で高能率で高精度の仕上げ研磨を実施できる。また、固定砥粒工具の加工面部に砥粒が付着した磁性粒子又は磁性砥粒が磁気吸着されるので、その固定砥粒工具の加工面部では、突き出した固定砥粒同士の隙間に砥粒が付着した磁性粒子又は磁性砥粒が入り込んで磁気ブラシとなる。その結果、磁気ブラシになった加工面部により、被研磨体を高能率で高精度に仕上げ研磨することができる。
【0017】
本発明に係る固定砥粒研磨装置において、前記固定砥粒工具の前記被研磨体側の端部が円形形状であり、周縁部が凸形状部になっており、中央部が凹形状部になっている。
【発明の効果】
【0018】
本発明によれば、硬い材料からなる被研磨体を研磨する場合であっても、高能率で高精度の研磨加工を実現できる固定砥粒研磨方法及び研磨装置を提供することができる。特に、ガラス、セラミックス、半導体シリコンウエハー等の硬脆材料やステンレス鋼、チタン合金等の難削材等に対しても、超精密表面に加工することができる。また、本発明で研磨加工した研磨体は、宇宙関連産業、医療分野、半導体産業、自動車産業等広い分野で応用できる。
【図面の簡単な説明】
【0019】
【
図1】本発明に係る固定砥粒研磨方法の原理を説明する模式図である。
【
図2】固定砥粒工具の加工面部の磁気ブラシの一例を示す模式図である。
【
図5】磁性粒子径を75μmとし加圧荷重を1N、3N及び10Nとした場合における、加工時間と表面粗さ及び加工量との関係を示すグラフである。
【
図6】磁性粒子径を330μmとし加圧荷重を3N、10N及び30Nとした場合における、加工時間と表面粗さ及び加工量との関係を示すグラフである。
【
図7】磁性粒子径を330μmとし加圧荷重を30Nとした場合における、加工時間2分ごとでの表面粗さ及び加工量の関係を示すグラフである。
【
図8】加工前の被研磨体の表面カラー画像と、磁性粒子径330μm・加圧荷重30Nで30分間研磨した後の表面カラー画像と、それぞれの表面を3Dモデルで表示したカラー画像である。
【
図9】磁気ブラシを有する場合(実験1:電解鉄粉75μm)と磁気ブラシを有しない場合(実験2)の表面粗さの結果を比較したグラフである。
【
図10】磁気ブラシを有する場合(実験1:電解鉄粉75μm)と磁気ブラシを有しない場合(実験2)の加工量の結果を比較したグラフである。
【
図11】磁気ブラシを有する場合(実験1:電解鉄粉330μm)と磁気ブラシを有しない場合(実験2)の表面粗さの結果を比較したグラフである。
【
図12】磁気ブラシを有する場合(実験1:電解鉄粉330μm)と磁気ブラシを有しない場合(実験2)の加工量の結果を比較したグラフである。
【
図13】本発明に係る固定砥粒研磨方法の研磨メカニズムの説明図である。
【発明を実施するための形態】
【0020】
本発明の固定砥粒研磨方法及び研磨装置について図面を参照しつつ説明する。なお、本発明は、その技術的特徴を有する範囲を包含し、以下に示す説明及び図面等に限定されない。
【0021】
[固定砥粒研磨方法及び研磨装置]
本発明に係る固定砥粒研磨方法は、
図1~
図4に示すように、磁極13有する固定砥粒工具10の被研磨体側に、砥粒が付着した磁性粒子又は磁性砥粒を磁気吸着させて、被研磨体20を研磨する、ことに特徴がある。この方法で使用する固定砥粒工具10において、「被研磨体20の側の端部11」は加工面となる側であるので加工面部11ともいい、「被研磨体の逆側端部12」は背面となる側であるので背面部12ともいう。
【0022】
この研磨方法では、固定砥粒工具10の加工面部11に砥粒が付着した磁性粒子又は磁性砥粒が磁気吸着されているので、その固定砥粒工具10の加工面部11では、突き出した固定砥粒1,1同士の隙間2に砥粒が付着した磁性粒子又は磁性砥粒が入り込んで磁気ブラシ3となる。その結果、磁気ブラシ3になった加工面部11により、被研磨体20を高能率で高精度に仕上げ研磨することができる。
【0023】
本発明に係る研磨装置50は、被研磨体20を研磨する固定砥粒工具10と、固定砥粒工具10を回転させる回転装置30と、被研磨体20を設置して固定砥粒工具10と相対移動させる相対移動装置40とを少なくとも備える装置であって、固定砥粒工具10は、磁極13を有する固定砥粒工具10の被研磨体側(加工面部11)に、砥粒が付着した磁性粒子又は磁性砥粒を磁気吸着させて、被研磨体20を研磨する、ことに特徴がある。
【0024】
この研磨装置では、固定砥粒工具10を回転させ、被研磨体20に固定砥粒工具10を押し付けると同時に被研磨体20と固定砥粒工具10とを相対移動させて研磨するので、被研磨体20の各部で高能率で高精度の仕上げ研磨を実施できる。また、固定砥粒工具10の加工面部11に砥粒が付着した磁性粒子又は磁性砥粒が磁気吸着されるので、その固定砥粒工具10の加工面部11では、突き出した固定砥粒1,1同士の隙間2に砥粒が付着した磁性粒子又は磁性砥粒が入り込んで磁気ブラシ3となる。その結果、磁気ブラシ3になった加工面部11により、被研磨体20を高能率で高精度に仕上げ研磨することができる。
【0025】
以下、各構成要素について詳しく説明する。
【0026】
(被研磨体)
被研磨体20は、研磨する対象となるものであり、その形状及び材質は特に限定されない。形状は、固定砥粒工具10の形状に応じた各種の形状のものとすることができる。代表例としては、
図1~
図4に示すように、固定砥粒工具10の加工面部11が円柱形状である場合は、被研磨体20は平らな形状のものとなる。例えば、矩形(長方形、正方形等)、多角形、円形、楕円形等の各種形状からなる板状部材を挙げることができる。一方、固定砥粒工具10の加工面部11が曲面である場合は、被研磨体20も曲面のものとすることができる。被研磨体20の形態は一様な平面形態であってもよいし、曲がった形態でも、段差を有する形態でも、途中で大きさが変化する形態であってもよい。
【0027】
被研磨体20としては、ガラス、セラミックス、半導体シリコンウエハー、次世代半導体材料であるSiC材料等の硬脆材料や、ステンレス鋼、チタン合金等の難削材等を挙げることができるが、それらに限定されない。本発明はこうした硬くて脆い材料や難削材等の研磨に効果的である。
【0028】
(固定砥粒工具)
固定砥粒工具10は、
図1に示すように、被研磨体20の側の端部11(加工面部11)に、砥粒が付着した磁性粒子又は磁性砥粒が磁気吸着される工具である。そして、固定砥粒工具10は、その加工面部11で突き出した固定砥粒1,1同士の隙間2に砥粒が付着した磁性粒子又は磁性砥粒が入り込んで磁気ブラシ3となるものであれば、どのような固定砥粒工具10であってもよい。固定砥粒工具10の形状も特に限定されないが、固定砥粒工具10は回転装置30に取り付けられるので、固定砥粒工具10の形状は、円柱形状であることが好ましい。円形形状の場合の直径も特に限定されないが、例えば2~500mm程度とすることが好ましい。なお、固定砥粒工具10の被研磨体の逆側端部(回転装置30の側)には、磁極13が取り付けられている。
【0029】
この固定砥粒工具10は、
図1~
図4に示す例では、加工面部11が円形形状であり、周縁部(周縁側ともいう。)が凸形状部11aになっており、中央部(中央側ともいう。)が凹形状部11bになっている。こうすることにより、周縁部の凸形状部11aは磁気吸着力が集中して高まるので、
図2に示すように、凸形状部11aには、砥粒が付着した磁性粒子又は磁性砥粒が磁気吸着される。そして、固定砥粒同士1,1の隙間2には、砥粒が付着した磁性粒子又は磁性砥粒が入り込んで効果的な磁気ブラシ3となる。砥粒が付着した磁性粒子又は磁性砥粒は凸形状部11aに磁気吸着されるので、その凹形状部11bは、研磨剤スラリー6が溜まった状態になり、研磨時に固定砥粒同士1,1の隙間2に砥粒が付着した磁性粒子又は磁性砥粒を供給するように作用する。
【0030】
凸形状部11aは、
図1~
図4に示す例では、固定砥粒工具10の周縁部であり、一定幅からなるリング状の凸部のようになっている。その幅は、固定砥粒工具10の大きさとの関係もあって一概に言えないが、後述の実施例のように直径10mmの固定砥粒工具10の場合は、凸形状部11aは幅が1~2mm程度であることが好ましく、したがって凹形状部11bは直径8~6mm程度であることが好ましい。なお、こうした関係は、相似形とすることができ、例えば加工面部11が円形形状の固定砥粒工具10の直径をDとした場合、凸形状部11aの幅Wは「D×(0.1~0.2)」の範囲であることが好ましく、凹形状部11bの直径dは「D×(0.8~0.6)」の範囲内であることが好ましい。
【0031】
なお、固定砥粒工具10の加工面部11の形状は、上記の例では、周縁部が凸形状部11aで中央部が凹形状部11bのリング形状としているが、これに限定されない。例えば、加工面部11が、櫛状の凹凸形状であってもよいし、二重リング形状であってもよいし、その他の形状であってもよい。これら凹凸形状においても、凸形状部と凹形状部の役割や隙間の役割は上記と同様である。
【0032】
固定砥粒工具10は、いわゆる砥石と呼ばれるものであり、例えば、砥粒で固められた工具を挙げることができるが、金属ベースの工具の外周に砥粒を固着させた工具であってもよい。後述の実施例では、ダイヤモンド砥粒を電着法で固着したダイヤモンド砥石を固定砥粒工具10として用いたが、この実施例で用いた固定砥粒工具10に限定されない。この固定砥粒工具10は、
図2に示すように、少なくとも加工面部11に固定された固定砥粒1が突き出しており、その突き出した固定砥粒1,1同士の隙間2に砥粒が付着した磁性粒子又は磁性砥粒が入り込む加工面部11となるものであればよい。
【0033】
隙間2は、
図2に示すように、加工面部11の表面に固着された固定砥粒1と固定砥粒1との間の隙間である。この隙間2の大きさや幅は、そこに入るべき砥粒が付着した磁性粒子又は磁性砥粒の大きさに応じて任意に設計することができ、隙間2の幅(水平方向の隙間幅)は、例えば1~2000μmとすることができ、好ましくは2~1000μmとすることができる。後述の実施例では、砥粒として粒径2~4μmのダイヤモンド粒子を用い、磁性粒子として粒径75μm又は330μmの電解鉄粉を用いているので、それらが入り込むことができる隙間2の幅であることが好ましい。
【0034】
(砥粒が付着した磁性粒子又は磁性砥粒)
砥粒が付着した磁性粒子又は磁性砥粒は、
図2に示すように、隙間2に入り込んで磁気ブラシ3を形成する。形成された磁気ブラシ3は、
図1~
図3に示すように、2及び被研磨体20を研磨するように作用するので、砥粒が付着した磁性粒子と、磁性砥粒とは、それぞれ研磨材として機能する。なお、磁気ブラシ3を構成する「砥粒が付着した磁性粒子」とは、磁性を有しない砥粒(例えば、ダイヤモンド砥粒等)を付着した磁性粒子のことである。また、「磁性砥粒」とは、磁性を有する砥粒(例えば、KMX-80の磁性研磨材等)のことである。
【0035】
(磁性粒子)
磁性粒子は特に限定されず、どのような形状であってもよい。例えば、球状又は略球状の粒子であってもよいし、非球状の角形や不定形の粒子であってもよい。磁性粒子は、磁極13に磁気吸着されて、固定砥粒1,1間の隙間2に保持される。磁性粒子は、こうした挙動を示すような磁気特性や粒径を持っている必要がある。磁性粒子としては、鉄、コバルト、ニッケル、クロムやこれらの酸化物、合金、化合物等、一般に磁性体と呼ばれる元素を全部又は一部に含む粒子が用いられる。具体例としては、カルボニル鉄粉、電解鉄粉、ニッケル粉、Ni-P合金粉又はNi-B合金粉等のニッケル合金粉等を使用することができる。また、高温高圧下の不活性ガス中で鉄と焼結させた酸化アルミニウム粉や不活性ガス雰囲気中でのアルミニウムと、酸化鉄とのテルミット反応の生成物粉等を用いることも可能である。なお、磁性を有する砥粒としては、市販の磁性研磨剤(東洋研磨材工業株式会社;KMX-80)や、その他の未市販の磁性研磨剤等を用いることができる。また、磁性を持つ粉末の表面に、他の材料を被覆してなる粒子であってもよい。
【0036】
磁性粒子の大きさも特に限定されないが、磁性粒子と共に作用する砥粒(例えばダイヤモンド砥粒等)との相対的な関係においては、磁性粒子の方が砥粒よりも大きいことが好ましい。一例としては、磁性粒子は、砥粒の4倍以上1000倍以下、好ましくは4倍以上50倍以下の範囲で任意に選択することができる。すなわち、磁性粒子と砥粒とは、粒径の大きさが異なることが好ましく、磁性粒子と砥粒を用いて研磨の効率化と研磨精度を上げることができる。磁性粒子の大きさと砥粒の大きさとの関係は、研磨する前の被研磨体20の表面状態(表面粗さの程度を含む。)、要求される被研磨体表面の表面状態、要求される研磨時間等によって任意に選択される。
【0037】
磁性粒子の粒径は特に限定されず、平均粒径として一定の範囲のあるものであればよい。例えば、平均粒径で0.5μm以上500μm以下等であればよい。平均粒径は、研磨対象となる被研磨体20の研磨段階や種類に応じて任意に選択される。例えば被研磨体20の粗研磨時や硬い被研磨体20の研磨時等に大きな砥粒を用いる場合には、砥粒と間の相対的な寸法範囲内で大きな粒径の磁性粒子が選択され、被研磨体20の仕上研磨時やあまり硬くない被研磨体20の研磨時等に小さな砥粒を用いる場合には、砥粒と間の相対的な寸法範囲内で小さな粒径の磁性粒子が選択されることが好ましい。すなわち、研磨段階(粗研磨、通常研磨、仕上研磨等)や被研磨体20の硬さ等によって任意に選択される。こうした選択により、特に従来から高精度研磨が難しいとされる上記した硬くて脆い材料や難削材等をより一層精密研磨できるという効果がある。なお、平均粒径は、磁性粒子の電子顕微鏡写真から測定した平均値であり、表面粗さ(Ra)は、JIS B 0601(2001)に基づいて測定した算術平均粗さである。
【0038】
(砥粒)
砥粒は、磁性を有するものでも磁性を有しないものでもよい。磁性を有する砥粒は、上記した市販の磁性研磨剤(東洋研磨材工業株式会社;KMX-80)や、その他の未市販の磁性研磨剤等を挙げることができる。一方、磁性を有しない砥粒としては、ダイヤモンド粒子、酸化アルミニウム粒子、酸化セリウム粒子、炭化ケイ素粒子、二酸化ケイ素粒子、酸化クロム粒子、又はそれらの複合体等が挙げられる。また、JIS表示でA、WA、GC、SA、MA、C、MD、CBNとして表されているものを含む、Al2O3、SiC、ZrO2、B4C、ダイヤモンド、立方晶窒化ホウ素、MgO、CeO2又はヒュームドシリカ等の砥粒であってもよい。砥粒の形態も特に制限されず各種の形態ものを用いることができる。
【0039】
砥粒の粒径は、上記した磁性粒子のところで説明した大きさであることが好ましい。なお、平均粒径は、砥粒の電子顕微鏡写真から測定した平均値であり、表面粗さ(Ra)は、JIS B 0601(2001)に基づいて測定した算術平均粗さである。
【0040】
(研磨材スラリー)
研磨材スラリー6は、砥粒が付着した磁性粒子又は磁性砥粒と、研磨液とで少なくとも構成され、被研磨体20上に供給される。研磨材スラリー6に含まれる磁性粒子又は磁性砥粒は、固定砥粒工具10の加工面部11に磁気吸着して磁気ブラシ3となり、研磨体20とが相対移動しても被研磨体20の表面を高能率・高精度で研磨することができる。
【0041】
研磨材スラリー6は、磁性粒子と磁性を有しない砥粒と研磨液とで少なくとも構成されている場合や、磁性粒子を含まず、磁性を有する砥粒と研磨液とで少なくとも構成されている場合等を挙げることができる。なお、磁性粒子、磁性を有しない砥粒、磁性を有する砥粒については、既述したのでこの研磨材スラリーの蘭ではその説明を省略する。
【0042】
研磨液は、磁性粒子や砥粒等をスラリー状にする媒体であって、磁性粒子や砥粒等を研磨材スラリー6内に分散させるための媒体である。スラリー状とする際の好ましい研磨液としては、軽油、水の他、一般的に研磨液として用いられる水溶性や油溶性の液体等が挙げられる。
【0043】
こうして構成された研磨材スラリー6においては、それぞれの含有割合は特に限定されないが、例えば、研磨材スラリー6中に含まれる磁性粒子の含有量は30質量%~70質量%の範囲であり、砥粒の含有量は10質量%~60質量%の範囲であり、これら磁性粒子と砥粒とを併せた総含有量は70質量%~90質量%の範囲であるようにすることができる。なお、磁性粒子の含有量は、研磨装置や磁性粒子の粒径等の条件とも関係し、また、砥粒の含有量は、被研磨体20の表面の研磨の程度(粗研磨、通常研磨、仕上研磨等)や研磨効率を考慮して設定することができる。また、粗研磨、通常研磨、仕上研磨等のように研磨精度の段階毎に適した複数種の研磨材スラリー6を準備することにより、段階毎の研磨を行うことができる。例えば粗研磨、中間研磨又は仕上研磨のいずれで行うかによって、磁性粒子や砥粒等を適した平均粒径とした複数の研磨材スラリー6を準備し、段階毎に使用して研磨効率を向上させてもよい。なお、研磨材スラリー6には、本発明が奏する効果を阻害しないものであれば、これら以外の添加物質が含まれていてもよい。
【0044】
(磁極)
固定砥粒工具10の被研磨体20の逆側(
図3では回転装置側)には、磁極13が取り付けられている。この磁極13は、加工面部11で突き出した固定砥粒1,1同士の隙間2に入り込んだ砥粒が付着した磁性粒子又は磁性砥粒を磁気吸着させて磁気ブラシ3とするように作用する。したがって、砥粒が付着した磁性粒子又は磁性砥粒を十分に磁気吸着するに足る磁力を有するものであることが好ましい。
【0045】
磁極13は、特に限定されないが、希土類磁石、フェライト磁石、アルニコマグネット、MA磁石等の永久磁石や、電磁石を挙げることができる。なお、希土類磁石としては、具体的には、ネオジウム磁石(Nd-Fe-B)やサマリウムコバルト磁石(Sm-Co)が好ましく用いられる。磁極13の装着形態は特に限定されないが、
図1に示すように、円形形状の固定砥粒工具10に設けられ、例えば永久磁石の場合はN極13NとS極13Sとがその順で積層されている形態としてもよいし、その逆の順で積層されている形態としてもよいし、それら以外の態様で構成されていてもよい。磁極13の大きさや形状は、磁極13の磁化の大きさとも関係するので特に限定されないが、固定砥粒工具10の大きさと同様であってもよいし小さくてもよい。
【0046】
(研磨装置)
本発明に係る研磨装置50は、
図3の具体例に示すように、被研磨体20を研磨する固定砥粒工具10と、固定砥粒工具10を回転させる回転装置30と、被研磨体20を設置して固定砥粒工具10と相対移動させる相対移動装置40とを少なくとも備えている。そして、固定砥粒工具10は、磁極13を有する固定砥粒工具10の被研磨体側(加工面部11)に、砥粒が付着した磁性粒子又は磁性砥粒を磁気吸着させて、被研磨体20を研磨する。こうした研磨装置50では、固定砥粒工具10を回転させ、被研磨体20に固定砥粒工具10を押し付けると同時に被研磨体20と固定砥粒工具10とを相対移動させて研磨するので、被研磨体20の各部で高能率で高精度の仕上げ研磨を実施できる。また、固定砥粒工具10の加工面部11に、砥粒が付着した磁性粒子又は磁性砥粒が磁気吸着されるので、その固定砥粒工具10の加工面部11では、突き出した固定砥粒同士1,1の隙間2に砥粒が付着した磁性粒子又は磁性砥粒が入り込んで磁気ブラシ3となる。その結果、磁気ブラシ3になった加工面部11により、被研磨体20を高能率で高精度に仕上げ研磨することができる。
【0047】
回転装置30は、機械加工で使用されている種々の回転装置30を適用でき、
図3に示すような試験装置の形態に限定されない。回転数も任意に可変することができる。また、「回転」には、左回転と左回転を繰り返す「回動」も含む意味で用いている。
【0048】
この研磨装置50では、
図1及び
図2に示すように、固定砥粒工具10が被研磨体20に向けて圧力Fを加えている。そして、圧力Fが加わった状態で、固定砥粒工具10と被研磨体20とを相対移動させて研磨する。したがって、固定砥粒工具10を回転させる回転装置30は、被研磨体20に向けて加圧する加圧機構も備えている。
【0049】
加圧手段は、油圧、機械圧、空気圧等のいずれであってもよく、特に限定されない。加える圧力Fは、被研磨体20の種類や砥粒(砥粒が付着した磁性粒子又は磁性砥粒)の研磨力との関係、求める研磨面の状態に応じて任意に設定される。例えば後述の実験例では、1N~30Nの荷重を負荷しており、固定砥粒工具10の外縁(リング状の凸形状部11a)の面積を考慮すれば、被研磨体20に加わる圧力は、0.035~1.061N/mm2の範囲で行っている。加える圧力Fと、被研磨体20に加わる圧力とはほぼ比例関係となる。
【0050】
相対移動装置40は、XY方向に自在に可変できるスライドテーブル等を利用できる。相対移動装置40による相対移動は、被研磨体20と固定砥粒工具10とが相対的に移動していればよく、一方を固定して他方を移動させて研磨してもよいし、両方を移動しながら研磨してもよい。相対移動の形態は、後述の実施例のような被研磨体20の移動(XY移動)と固定砥粒工具10の回転であることが好ましいが、これに限定されない。こうした相対移動の要素を調整することにより、種々の硬さの被研磨体20の表面を効果的に研磨することができる。
【実施例】
【0051】
実験例を挙げて本発明をさらに具体的に説明する。なお、本発明の範囲は以下の実験例に限定されるものではない。
【0052】
[実験1]
図3に示した実験用の研磨装置50で実証した。使用した固定砥粒工具10を
図4(A)(B)に示した。この研磨装置50は、被研磨体20を回転させるとともに、被研磨体20を相対移動させるXYステージからなる相対移動装置40を備えた装置である。被研磨体20は、縦100mmで横100mmで厚さ2.5mmのアルミナセラミックス平板(SSA-S)である。表1には、実験で用いた固定砥粒工具10、研磨材スラリー6(砥粒、磁性粒子、研磨液)、磁極13、研磨条件(回転数、送り速度、加圧荷重、加工時間)を示した。磁極13はリング状のNd-Fe-B磁石であり、N極13NとS極13Sとを
図3(A)に示す態様で固定砥粒工具10の回転軸に取り付けた。
【0053】
実験は、固定砥粒工具10を回転装置30のチャックに取り付けて使用した。実験装置は、卓上ボール盤を改造したものであり、チャックを下げるレバー部にプーリを連結させ、そこに重りをかけることで被研磨体20に任意の荷重(圧力F)をかけた。また、工作台の下にXYテーブル、電動スライダ、ロードセルを取り付け、加工の位置決め、往復運動、及び荷重測定を行った。
【0054】
(固定砥粒工具を用いたセラミックス平板の加工実験)
固定砥粒工具10の性能や挙動を調べるために、磁性粒子径と荷重を変えて、セラミックスの加工実験を行った。表1に実験条件を示す。市販のダイヤモンド砥石をそのまま使うと加工力が大きすぎたため、加工前に表2に示す条件でツルーイングを行った。研磨液と研磨材(砥粒と磁性粒子)をよく混ぜて研磨材スラリー6として使用した。また、研磨面が乾かないように、研磨材スラリー6を最初に研磨域に約2mLかけ、5分経過時に約1mLかけるようにした。
【0055】
【0056】
【0057】
(セラミックスの加工における固定砥粒工具の効果)
実験結果を
図5及び
図6にまとめた。
図7は、光学式表面性状測定装置での測定結果である。まず、
図5に示すように、磁性粒子径が75μmでは、荷重が1Nのときは、加工力がほぼないが、表面粗さRaは常に改善されていることが分かった。それに対し、3N、10Nの場合は、加工時間10分で一度大きく加工し、表面粗さRaが粗くなった。その後は加工力が下がり、仕上げ面粗さは改善に向かった。次に、
図6に示すように、磁性粒子径が330μmでは、3N,10N,30Nの全ての荷重で表面粗さRaが大きく改善し、高品質表面が得られた。特に荷重が30Nの場合には、10分間の加工で加工量が8mg、表面粗さが8.3nmRaとなり、良好な仕上げ面が得られた。
【0058】
図7は、磁性粒子径330μm・荷重30Nで2分ごと研磨を行ったときの実験結果である。
図7に示すように、2分後及び4分後までの間に表面粗さRaは大きく改善されているのがわかる。
図8は、加工前の被研磨体の表面カラー画像と、磁性粒子径330μm・加圧荷重30Nで30分間研磨した後の表面カラー画像と、それぞれの表面を3Dモデルで表示したカラー画像である。加工前の表面粗さRaが202.111nmであったのに対し、磁性粒子径330μmで荷重30Nで30分研磨した後は表面粗さRaが3.673nmになっていた。
【0059】
[実験2]
実験1と同様、
図3に示した実験用の研磨装置50に固定砥粒工具10を装着した。この実験2では、加工面部11に磁気ブラシ3を有しない固定砥粒工具を用いている点で、加工面部11に磁気ブラシ3を有する実験1の固定砥粒工具10とは異なる。研磨装置と被研磨体20は実験1と同じである。研磨材スラリーは使用しなかった。研磨条件(回転数、送り速度、加圧荷重、加工時間)、加工の位置決め、往復運動、及び荷重測定も実験1と同じである。
【0060】
図9及び
図10は、磁気ブラシ3を有する場合(実験1:電解鉄粉75μm)と磁気ブラシを有しない場合(実験2)の表面粗さ(
図9)及び加工量(
図10)の結果を比較したグラフである。この結果より、磁気ブラシ3を有する固定砥粒工具10での研磨は、荷重1N,3N,10Nのいずれの場合も、磁気ブラシを有しない固定砥粒工具10での研磨に比べて加工量Mが小さいにも関わらず表面粗さRaが小さく、高能率で高精度な表面を得ることができることがわかった。特に荷重1Nの場合は、研磨前の表面粗さRaよりも小さくなり、加工量Mも小さく、高能率で高精度な表面を得ることができることがわかった。
【0061】
図11及び
図12は、磁気ブラシ3を有する場合(実験1:電解鉄粉330μm)と磁気ブラシを有しない場合(実験2)の表面粗さ(
図11)及び加工量(
図12)の結果を比較したグラフである。この結果も上記同様、磁気ブラシ3を有する固定砥粒工具10での研磨は、荷重3N,10N,30Nのいずれの場合も、磁気ブラシを有しない固定砥粒工具10での研磨に比べて加工量Mが2桁以上著しく小さいにも関わらず表面粗さRaも2桁程度小さく、高能率で高精度な表面を得ることができることがわかった。特に全ての荷重において、研磨前の表面粗さRaよりも小さくなり、加工量Mも小さく、高能率で高精度な表面を得ることができることがわかった。
【0062】
[セラミックスの加工実験に対する考察]
図13は、被研磨体を加工するときの砥粒と磁気ブラシの作用を模式的に表した図である。固定砥粒工具は磁極により磁化されており、磁性粒子は磁極から磁力線方向(x軸方向)と等磁位線の方向(y軸方向)にそれぞれ次式(1)(2)で表される磁力ΔFx,ΔFy(その合力ΔF)を受けて加工域に集中、吸着する。式中、V0:磁性粒子の体積、X:磁性粒子の磁化率、H:磁界の強さ、(∂H/∂x),(∂H/∂y):x,y座標方向の磁界の変化率、x,y:座標、である。式(1)(2)から磁極によって受ける磁力の大きさは、磁性粒子の体積が大きいほど強く働くことがわかる。
【0063】
【0064】
また、磁性粒子相互の磁気吸引力ΔFmは、粒子形状を球形と仮定すれば、式(3)となる。式中、r:磁性粒子の半径、Xr:磁性粒子の比磁化率、である。式(3)からは、磁性粒子の粒径が大きくなるほど、粒子同士の吸着は強固になることがわかる。そのため、磁性粒子の径が大きければ、形成する磁気ブラシの形状がより保たれやすいと考えられる。
【0065】
【0066】
図13中で圧力Pを受けた固定砥粒工具は、砥粒と磁気ブラシに加工圧力を分散する。このとき、固定砥粒工具に加えた圧力Pと被研磨体に加えられる加工圧力Pn,Pmの関係は、式(4)によって示される。式中、n:被研磨体に作用している砥粒の個数、m:被研磨体に作用している磁気ブラシの個数、Pn:砥粒が被研磨体に与える加工圧力、Pm:磁気ブラシが被研磨体に与える加工圧力、である。ここで、定性的に、Δfmが大きくなればPmは大きくなる。そのため、磁性粒子の径が大きいと磁気ブラシが与える加工圧力が増え、砥粒の加工圧力は減少する。
【0067】
【0068】
これらのことから、粒子径が75μmと330μmとで表面粗さと加工量の変化に差が見られたのは、磁性粒子径が330μmの場合、固定砥粒工具に取り付けた磁極の磁力と磁性粒子間の相互の吸引力とをより強く受けて吸着し、磁気ブラシとしての効力をより働かせたからだと考えられる。一方、磁性粒子径が75μmの場合、1Nの場合に磁性粒子は磁気ブラシとして働いているが、3N、10Nと加工圧力が大きくなると、磁気ブラシにかかる加工圧力に比べ、固定砥粒工具の砥粒にかかる加工圧力が大きくなり、10分間の加工で仕上げ面粗さが初期より荒くなったと考えられる。20分間以上の加工で表面粗さが改善したのは、被研磨体の表面の微小なうねり等が取れ、固定砥粒工具に均一な圧力が加わるようになったためではないかと考えられる。
【0069】
以上より、硬い材料からなる被研磨体を研磨する場合であっても、高能率で高精度の研磨加工を実現できる固定砥粒研磨方法及び研磨装置を提供することができる。特に、ガラス、セラミックス、半導体シリコンウエハー等の硬脆材料や、ステンレス鋼、チタン合金等の難削材等に対しても、超精密表面に加工することができる。また、本発明で研磨加工した研磨体は、宇宙関連産業、医療分野、半導体産業、自動車産業等広い分野で応用できる。
【符号の説明】
【0070】
1 固定砥粒
2 隙間
3 磁気ブラシ
6 研磨材スラリー
10 固定砥粒工具
11 加工面部(被研磨体側端部)
11a 周縁部(凸形状部)
11b 中央部(凹形状部)
12 背面部(被研磨体の逆側端部)
13 磁極
13N N極
13S S極
20 被研磨体
30 回転装置
40 相対移動装置
50 研磨装置
F 圧力
M 磁力